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ON THE CHARACTERIZATION OF A SUBVARIETY OF SEMI-DE
MORGAN ALGEBRAS

CÁNDIDA PALMA AND RAQUEL SANTOS

Abstract. In this note we characterize by a new set of axioms the largest
subvariety of semi-De Morgan algebras with the congruence extension prop-
erty.

1. Introduction

The equational class of semi-De Morgan algebras was introduced by Sankap-
panavar in [8]. It consists of bounded distributive lattices with an additional
unary operation and it contains the variety of pseudocomplemented distribu-
tive lattices and K1,1, one of the subvarieties of Ockham algebras which in-
cludes De Morgan algebras.

In [4] Hobby developed a duality for semi-De Morgan algebras which he
used to find the largest subvariety of semi-De Morgan algebras with the con-
gruence extension property. This variety, which Hobby denoted by C, contains
both K1,1 and the equational class of demi-pseudocomplemented lattices, a
generalization of pseudocomplemented lattices studied by Sankappanavar in
[9] and [10].

The equations defining principal congruences as well as the subdirectly
irreducibles of the variety C were determined by us in [6]; however, the two
inequalities (α and β) that characterize this subvariety of semi-De Morgan are
rather complicated. In fact Problem 2 in [4] is to find “nicer axioms for C”.

We solved this problem algebraically determining a new inequality (γ) such
that C can be characterized by γ and β.

2. Preliminaries

We start by recalling some definitions and essential results from [8].

Definition (2.1). An algebra L =
(
L,∨,∧,′ , 0, 1

)
is a semi-De Morgan algebra

if the following five conditions hold
(
a, b ∈ L

)
:

(S1) (L,∨,∧, 0, 1) is a distributive lattice with 0, 1.
(S2) 0′ ≈ 1 and 1′ ≈ 0.
(S3)

(
a ∨ b

)′ ≈ a′ ∧ b′.

(S4)
(
a ∧ b

)′′ ≈ a′′ ∧ b′′.
(S5) a′′′ ≈ a′.
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This equational class of algebras will be denoted by SDMA.
The following rules hold in SDMA and some of them are proved in [8] :

(S6)
(
a ∧ b

)′ ≈
(
a′′ ∧ b′′)′ ≈

(
a ∧ b′′)′

.

(S7)
(
a ∧ b

)′ ≈
(
a′ ∨ b′)′′

.

(S8)
(
a ∧ b

)′′ ≈
(
a′ ∨ b′)′

.

(S9) a ≤ b implies b′ ≤ a′.

(S10) a ∧
(
a ∧ b

)′ ≥ a ∧ b′.

(S11)
(
a ∨ b

)′′ ≈
(
a′ ∧ b′)′ ≈

(
a′′ ∨ b′′)′′ ≈

(
a ∨ b′′)′′

.

3. The variety C

D. Hobby determined in [4] the largest subvariety of SDMA with the con-
gruence extension property. He characterized this variety, which he denoted
by C, by the following inequalities:

(α) a′ ∨ b′ ≥
(
a ∧ b

)′ ∧ (a ∧ c)′ ∧
(
b ∧ c

)′ ∧
(
b ∧ c′)′

(β) a′ ∨
(
a′ ∧ b ∧ b′)′ ≥

(
a ∧ b

)′
.

It is possible to obtain simpler inequalities characterizing C. The search
for these inequalities requires some rather nasty calculations so we consider
several lemmas before we can reach our goal.

With this aim we will consider first the following identities:

(α1) a′ ∨ b′ = a′ ∨ b′ ∨
((

a ∧ b
)′ ∧ (a ∧ c)′ ∧

(
b ∧ c

)′ ∧
(
b ∧ c′)′

)
(β1) a′ ∨

(
a′ ∧ b ∧ b′)′

=
(
a ∧ b

)′ ∨
(
a′ ∧ b ∧ b′)′

.

These identities are equivalent to α and β, respectively (note that a ≥ a∧ b

implies a′ ≤
(
a ∧ b

)′
).

Now we can prove the following.

Lemma (3.1). Let L ∈ C and a, d ∈ L. Then the identity α1 implies

(α2) (a′ ∨ d′) ∧ d′′ = (a ∧ d)′ ∧ d′′ .

Proof. By (S3),
(
a′ ∧ d′′)∨ d′ =

(
a ∨ d′)′ ∨ d′. Replacing b by a ∨ d′, a by d

and c by d′ in the identity α1 and using commutativity, we obtain

(a ∨ d′)′ ∨ d′

= (a∨d′)′ ∨ d′ ∨
(
((a ∨ d′) ∧ d)′ ∧ (d ∧ d′)′ ∧ ((a ∨ d′) ∧ d′)′ ∧ ((a ∨ d′) ∧ d′′)′

)
=

(
a ∨ d′)′ ∨ d′ ∨

(((
a ∨ d′) ∧ d

)′ ∧
(
d ∧ d′)′ ∧ d′′

)
because

((
a ∨ d′) ∧ d′′)′

=
((

a ∨ d′) ∧ d
)′

by (S6).
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But
(
d ∧ d′)′ ≥

((
a ∨ d′) ∧ d

)′
since d∧d′ ≤

(
a ∨ d′)∧d; hence it follows

from the previous equation that(
a ∨ d′)′ ∨ d′ =

(
a ∨ d′)′ ∨ d′ ∨

(((
a ∨ d′) ∧ d

)′ ∧ d′′
)

=
(
a ∨ d′)′ ∨ d′ ∨

(((
a ∨ d′) ∧ d

)
∨ d′)′

(by S3)

=
(
a ∨ d′)′ ∨ d′ ∨

((
a ∨ d′) ∧ (

d ∨ d′))′
(by distributivity)

= d′ ∨
(
(a ∨ d′) ∧

(
d ∨ d′))′

(because (a ∨ d′)′≤
((

a ∨ d′) ∧ (
d ∨ d′))′

= d′ ∨
((

a ∧ d
)
∨ d′)′

(by distributivity)

= d′ ∨
((

a ∧ d
)′ ∧ d′′

)
.

Therefore we have (a′ ∧ d′′) ∨ d′ = ((a ∧ d)′ ∧ d′′) ∨ d′.
Now, by distributivity, we obtain

(a′ ∨ d′) ∧ (d′′ ∨ d′) = ((a ∧ d)′ ∨ d′) ∧ (d′′ ∨ d′).

Since (a ∧ d)′ ≥ d′, it follows that

(a′ ∨ d′) ∧ (d′′ ∨ d′) = (a ∧ d)′ ∧ (d′′ ∨ d′)

and meeting the two members with d′′, we have α2.

Lemma (3.2). Let L ∈ SDMA and let a, b, c ∈ L. Then

(α2) (a′ ∨ b′) ∧ b′′ = (a ∧ b)′ ∧ b′′ and

(β1) a′ ∨ (a′ ∧ b ∧ b′)′ = (a ∧ b)′ ∨ (a′ ∧ b ∧ b′)′

imply

(δ)
(
a′ ∧ (b ∧ (c ∨ c′))′

)
∨

(
b′ ∧ (a ∧ c)′

)
= (a∧ b)′ ∧ (a∧ c)′ ∧

(
(b ∧ (c ∨ c′)

)′
.

Proof. Let us denote by A and B, respectively, the left and right sides of
the identity δ. We are going to prove that β1 and α2 imply A = B using the
distributivity of L.

First we will verify that the joins of A and B with (a′ ∧ c′ ∧ c′′)′ are equal:

A ∨ (a′ ∧ c′ ∧ c′′)′

=
(
a′ ∧ (b ∧ (c ∨ c′))′

)
∨

(((
b′ ∨ (a′ ∧ c′ ∧ c′′)′

)
∧

(
(a ∧ c)′ ∨ (a′ ∧ c′ ∧ c′′)′

)))
(by distributivity)

=
(
a′ ∧ (b ∧ (c ∨ c′))′

)
∨

(((
b′ ∨ (a′ ∧ c′ ∧ c′′)′

)
∧

(
a′ ∨ (a′ ∧ c′ ∧ c′′)′

)))
(by β1 and S6)

=
(
a′ ∧ (b ∧ (c ∨ c′))′

)
∨

(
b′ ∧ a′) ∨ (a′ ∧ c′ ∧ c′′)′ (by distributivity)

=
(
a′ ∧ (b ∧ (c ∨ c′))′

)
∨ (a′ ∧ c′ ∧ c′′)′

because, by S9, (b ∧ (c ∨ c′))′ ≥ b′ and thus a′ ∧ (b ∧ (c ∨ c′))′ ≥ a′ ∧ b′).

B ∨ (a′ ∧ c′ ∧ c′′)′

=
((

(a ∧ b)′ ∧ (b ∧ (c ∨ c′))′
)
∨ (a′ ∧ c′ ∧ c′′)′

)
∧

(
(a ∧ c)′ ∨ (a′ ∧ c′ ∧ c′′)′

)
(by distributivity)
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=
((

(a ∧ b)′ ∧ (b ∧ (c ∨ c′))′
)
∨ (a′ ∧ c′ ∧ c′′)′

)
∧

(
a′ ∨ (a′ ∧ c′ ∧ c′′)′

)
(by β1 and S6)

=
(
(a ∧ b)′ ∧ (b ∧ (c ∨ c′))′ ∧ a′) ∨ (a′ ∧ c′ ∧ c′′)′ (by distributivity)

=
(
a′ ∧ (b ∧ (c ∨ c′))′

)
∨ (a′ ∧ c′ ∧ c′′)′ because, by S9, (a ∧ b)′ ≥ a′.

Thus we have proved that A ∨ (a′ ∧ c′ ∧ c′′)′ = B ∨ (a′ ∧ c′ ∧ c′′)′.
Now we are going to see that the same is true with the meets. We will have

to use identity α2, so we must note that by S3, S11, S9 and S5,

(a′ ∧ c′ ∧ c′′)′ = (a ∨ c ∨ c′)′′ = (a ∨ c′′ ∨ c′)′′ ≥ (a′ ∧ c′ ∧ c′′)′′ = (a ∨ c ∨ c′)′.

Therefore, denoting by d the expression a ∨ c ∨ c′, we will have

(a′ ∧ c′ ∧ c′′)′ = d′′ ≥ d′

and thus

A ∧ (a′ ∧ c′ ∧ c′′)′ = A ∧ d′′

=
((

a′ ∧ (b ∧ (c ∨ c′))′
)
∨ (b′ ∧ (a ∧ c)′)

)
∧ d′′

=
((

a ∨ (b ∧ (c ∨ c′))
)′ ∨ (b′ ∧ (a ∧ c)′)

)
∧ d′′ (by S3)

=
((

(a ∨ b) ∧ (a ∨ c ∨ c′)
)′ ∧ d′′

)
∨

(
(b′ ∧ (a ∧ c)′) ∧ d′′)

(by distributivity)

=
((

(a ∨ b) ∧ d
)′ ∧ d′′

)
∨

(
(b′ ∧ (a ∧ c)′) ∧ d′′)

(by the definition of d , )

=
((

(a ∨ b)′ ∨ d′) ∧ d′′) ∨ (
(b′ ∧ (a ∧ c)′) ∧ d′′) (by α2)

=
((

(a′ ∧ b′) ∨ d′) ∧ d′′) ∨ (
(b′ ∧ (a ∧ c)′) ∧ d′′) (by S3)

=
(
(a′ ∧ b′) ∨ d′ ∨ (b′ ∧ (a ∧ c)′

)
∧ d′′ (by distributivity)

=
(
d′ ∨ (b′ ∧ (a ∧ c)′

)
∧ d′′ (because (a ∧ c)′ ≥ a′)

=
(
b′ ∧ (a ∧ c)′ ∧ d′′) ∨ (d′ ∧ d′′) (by distributivity)

=
(
b′ ∧ (a ∧ c)′ ∧ d′′) ∨ d′ (because d′′ ≥ d′).

By a similar process,

B ∧ (a′ ∧ c′ ∧ c′′)′ = B ∧ d′′

= (a ∧ b)′ ∧ (b ∧ (c ∨ c′))′ ∧ d′′ ∧ (a ∧ c)′ (by commutativity)

= ((a ∧ b) ∨ (b ∧ (c ∨ c′)))′ ∧ d′′ ∧ (a ∧ c)′ (by S3)

= (b ∧ (a ∨ c ∨ c′))′ ∧ d′′ ∧ (a ∧ c)′ (by distributivity)

= (b ∧ d)′ ∧ d′′ ∧ (a ∧ c)′ (by the definition of d )

= (b′ ∨ d′) ∧ d′′ ∧ (a ∧ c)′ (applying α2)
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= ((b′ ∧ d′′) ∨ (d′ ∧ d′′)) ∧ (a ∧ c)′) (by distributivity)

= ((b′ ∧ d′′) ∨ d′) ∧ (a ∧ c)′) (because d′′ ≥ d′ )

= (b′ ∧ d′′ ∧ (a ∧ c)′) ∨ (d′ ∧ (a ∧ c)′) (by distributivity )

= (b′ ∧ d′′ ∧ (a ∧ c)′) ∨ d′

(because, by S9, d′ = (a ∨ c ∨ c′)′ ≤ (a ∧ c)′).

Therefore we have proved that

A ∧ (a′ ∧ c′ ∧ c′′)′ = B ∧ (a′ ∧ c′ ∧ c′′)′.

By the characterization of θlatL((a′ ∧ c′ ∧ c′′)′, (a′ ∧ c′ ∧ c′′)′) we conclude that
A = B.

Lemma (3.3). Let L ∈ SDMA and let a, b, c ∈ L. Then the identity

(δ)
(
a′ ∧ (b ∧ (c ∨ c′))′

)
∨

(
b′ ∧ (a ∧ c)′

)
= (a∧ b)′ ∧ (a∧ c)′ ∧

(
(b ∧ (c ∨ c′)

)′
.

is equivalent to α.

Proof. First note that α is equivalent to

(a′∨b′)∧ (a∧b)′∧ (a∧c)′∧ (b∧c)′∧ (b∧c′)′ = (a∧b)′∧ (a∧c)′∧ (b∧c)′∧ (b∧c′)′

and, by distributivity, this identity is equivalent to(
a′ ∧ (a ∧ b)′ ∧ (a ∧ c)′ ∧ (b ∧ c)′ ∧ (b ∧ c′)′

)
∨(

b′ ∧ (a ∧ b)′ ∧ (a ∧ c)′ ∧ (b ∧ c)′ ∧ (b ∧ c′)′
)

=

= (a ∧ b)′ ∧ (a ∧ c)′ ∧ (b ∧ c)′ ∧ (b ∧ c′)′.

By S9, it is known that a′ is less than or equal to (a ∧ b)′ and to (a ∧ c)′ and
that b′ is also less than or equal to (a ∧ b)′, (b ∧ c)′ and (b ∧ c′)′ . Therefore the
previous identity is equivalent to(
a′ ∧ (b ∧ c)′ ∧ (b ∧ c′)′

)
∨

(
b′ ∧ (a ∧ c)′

)
= (a ∧ b)′ ∧ (a ∧ c)′ ∧ (b ∧ c)′ ∧ (b ∧ c′)′

and, by S3, also to(
a′ ∧ ((b ∧ c) ∨ (b ∧ c′))′

)
∨

(
b′ ∧ (a ∧ c)′

)
= (a∧b)′∧(a∧c)′∧

(
(b ∧ c) ∨ (b ∧ c′)

)′
.

Finally, by the distributivity of L, we conclude that α is equivalent to δ.

From the previous lemmas we obtain the following:

Proposition (3.4). Let L ∈ SDMA. Then L ∈ C if and only if the identities

(α2) (a′ ∨ b′) ∧ b′′ = (a ∧ b)′ ∧ b′′

and
(β1) a′ ∨ (a′ ∧ b ∧ b′)′ = (a ∧ b)′ ∨ (a′ ∧ b ∧ b′)′

hold.

Proof. We proved in Lemma 3.1 that the identity α2 is a consequence of α1

which is equivalent to α.
Conversely, by Lemma (3.2), (α2 and β1) imply (δ and β1), and by Lemma

(3.3), these are equivalent to α and β1.
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It is now possible to characterize C by simpler axioms solving Problem 2 in
Hobby [4]:

Theorem (3.5). The subvariety C of semi-De Morgan algebras can be char-
acterized by inequalities γ and β:

(γ) a′ ∨ b′ ≥ (a ∧ b)′ ∧ b′′

(β) a′ ∨ (a′ ∧ b ∧ b′)′ ≥ (a ∧ b)′

Proof. It is enough to prove that the identity α2 of the previous lemma is
equivalent to the inequality γ.

By α2 we have

a′ ∨ b′ ≥ (a′ ∨ b′) ∧ b′′ = (a ∧ b)′ ∧ b′′.

Therefore α2 implies γ.
On the other hand, from γ we know that

(a′ ∨ b′) ∧ (a ∧ b)′ ∧ b′′ = (a ∧ b)′ ∧ b′′.

But a′ ≤ (a ∧ b)′ and b′ ≤ (a ∧ b)′ so that a′ ∨ b′ ≤ (a ∧ b)′ and therefore α2

follows from γ.
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UNIFORMITY OF DISTRIBUTION MODULO 1 OF THE
GEOMETRIC MEAN PRIME DIVISOR

FLORIAN LUCA AND IGOR E. SHPARLINSKI

Abstract. We show that the fractional parts of n1/ω(n), n1/Ω(n) and the geo-
metric mean of the distinct prime factors ofn are uniformly distributed modulo
1 as n ranges over all the positive integers, where Ω(n) and ω(n) denote the
number of distinct prime divisors of n counted with and without multiplicities.
Note that n1/Ω(n) is the geometric mean of all prime divisors of n taken with
the corresponding multiplicities. The result complements a series of results
of similar spirit obtained by various authors, while the method can be applied
to several other arithmetic functions of similar structure.

1. Introduction

In [1], it is shown that the fractional part of the arithmetic mean of the prime
factors of an integer n, that is, the function

f (n) =
1

ω(n)

∑
p|n

p,

where ω(n) denotes the number of distinct prime divisors of n, is uniformly
distributed in [0, 1) as n ranges over all the positive integers. The same method
can also be applied to the fractional part of the arithmetic mean of the prime
factors of an integer n taken with the corresponding multiplicities, that is, to
the function

F (n) =
1

Ω(n)

∑
pαp ||n

αpp,

where Ω(n) denotes the number of distinct prime divisors of n counted with
multiplicities.

This is in contrast with the main result from [3] where it is shown that the
arithmetic mean of all the divisors of n, that is, the function

g(n) =
1
τ(n)

∑
d|n

d,

is an integer for almost all positive integers n, where, as usual, τ(n) denotes
the total number of positive divisors of n.

2000 Mathematics Subject Classification: 11K65, 11N37.
Keywords and phrases: uniform distribution, average prime divisor, arithmetic function.
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The above result from [1] naturally leads to the question whether the frac-
tional parts of the geometric mean of the prime factors of n

h(n) =

∏
p|n

p

1/ω(n)

are uniformly distributed in [0, 1).
In this paper, we investigate the distribution modulo 1 of the function h(n)

and the closely related functions n1/ω(n) and n1/Ω(n). Note that all three func-
tions coincide when n is square-free, and that n1/Ω(n) has the natural interpre-
tation of the geometric mean of the prime factors of n taken with the corre-
sponding multiplicities.

We also recall that several more problems of a similar flavor have been
treated previously in [1], [2], [3], [5], [6], [12], [13], [14], [15], [16], [17] (see
also the references therein).

2. Notation and the Main Result

Recall that the discrepancy D(A) of a sequence A = (an)Nn=1 of N (not neces-
sarily distinct) real numbers is defined by the relation

D(A) = sup
0≤γ≤1

∣∣∣∣I(A, γ)
N

− γ

∣∣∣∣ ,
where I(A, γ) is the number of positive integers n ≤ N such that {an} < γ.

We denote by δ(N), ∆(N) and ∇(N) the discrepancy of the sequences(
n1/ω(n)

)N
n=1,

(
n1/Ω(n)

)N
n=1 and (h(n))Nn=1, respectively.

Theorem (2.1). We have

δ(N) = (logN)−1+o(1), ∆(N) = (logN)−1+o(1), ∇(N) = (logN)−1+o(1)

as N →∞.

It is clear that the above result implies that the fractional parts {n1/ω(n)},
{n1/Ω(n)} and {h(n)} are all uniformly distributed in [0, 1) as n ranges over all
the positive integers.

3. Proof of the Main Result

(3.1) Preliminaries and the Scheme of the Proof. Since the proof of the
upper bound on ∆(N) is completely analogous to the proof of the upper bound
on δ(N) (and can be obtained from it by essentially making only typographical
changes) we concentrate on the case of δ(N). We also indicate the tiny changes
needed to deal with the case of the function ∇(N).

For a positive integer k we put logkN for the kth-fold iterate of the natural
logarithm function logN . We assume thatN is sufficiently large, in particular,
large enough to make all the iterated logarithms well defined.

Also, given a set A we use π(A) to denote the number of primes p ∈ A. In
particular, as usual, π(x) = π({1, . . . , bxc}).

Let P (n) denote the largest prime divisor of n ≥ 2 and put P (1) = 1. As
usual, we say that an integer n ≥ 1 is y-smooth if P (n) ≤ y.

The proof follows the following steps:
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• At the first step we remove integers n ≤ N whose arithmetic structure
is somewhat abnormal (for example, either n or P (n) are small).

• For the remaining integers n ≤ N , we write n = mP (n) and show that
for every fixed m obtained in such a way, even the fractional parts of
(mp)1/(ω(m)+1) are already uniformly distributed when p runs through the
set of prime values which P (n) can take. Similar considerations apply to
deal with (mp)1/(Ω(m)+1) and (h(mp))1/(ω(m)+1), respectively.

(3.2) The Exceptional Sets. We define the following sets Ei, i = 1, . . . , 7,
which are similar to those of [1] and estimated in the same way, although the
choice of parameters is somewhat different. We show that total number of
elements of these sets satisfies

(3.2.1) #

(
7⋃
i=1

Ei

)
� N(log2 N)2

logN
,

and thus they can be excluded from further considerations.
Let E1 denote the set of positive integers n ≤ N/ logN .
We choose Q = N1/u, where

u =
2 log2 N

log3 N
,

and we denote by E2 the set of Q-smooth positive integers n ≤ N .
According to Corollary 1.3 of [9] (see also [4]), we have the bound

#E2 = ψ(N,Q) ≤ Nu−u+o(u) � N

logN
,

where, as usual, ψ(x, y) = #{n ≤ x : P (x) ≤ y}.
Next, we denote by E3 the set of the positive integers n ≤ N not in E2 such

that P (n)2 |n. Clearly,

#E3 ≤
∑
p>Q

N

p2 �
N

Q
� N

logN
.

Now let
K = b4 log2 Nc ,

and let E4 denote the set of positive integers n ≤ N such that ω(n) > K. Since
2ω(n) ≤ τ(n) and ∑

n≤N

τ(n) ∼ N logN

(see [7], Theorem 320), we get

#E4 ≤ 2−KN logN � N

logN
.

Now let n ≤ N be a positive integer not in ∪4
i=1Ei. This integer n has a

unique representation of the form n = mp, where m is such that m < N/Q,
and p = P (n) is a prime number in the half-open interval p ∈ L(m), where

L(m) = max
{
Q,P (m),

N

m logN

}
and L(m) = (L(m), N/m].
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Let E5 be the set of those n such that L(m) = Q. In this case, since mQ ≤
mP (m) ≤ mP (n) = n ≤ N , we have

N

Q logN
≤ m ≤ N

Q
.

Whenm is fixed, p ≤ N/m can take at most π(N/m) values. Thus, the number
of elements n ∈ E5 is

#E5 �
∑

N/(Q log N)≤m≤N/Q

π

(
N

m

)

�
∑

N/(Q log N)≤m≤N/Q

N

m log(N/m)

� N

logQ

∑
N/(Q log N)≤m≤N/Q

1
m

� Nu

logN

(
log
(
N

Q

)
− log

(
N

Q logN

))
� Nu log2 N

logN
� N(log2 N)2

logN
.

Let E6 be the set of those positive integers n ≤ N which are not in ∪5
i=1Ei

and such that L(m) = P (m). In this case,

P (m) ≥ N

m logN
,

so we see immediately that p = P (n) ≤ P (m) logN . Thus, E6 is contained in
the set of all those positive integers n ≤ N which are divisible by two primes
q < p such that p ≤ q logN and p > Q. In particular, q ≥ Q/ logN > Q1/2.
Fix q and p. The number of such n ≤ N is O(N/pq). We recall the Mertens
formula (see Theorem 427 in [7]), which asserts that the relation

(3.2.2)
∑
p≤x

1
p

= log2 x + α+O

(
1

log x

)
holds for all x ≥ 2, where α is some absolute constant. Hence, we derive that
for each q the total number Tq(N) of such n ≤ N with some prime p in the
interval (q, q logN] can be estimated from (3.2.2) as

Tq(N) � N

q

∑
q<p≤q log N

1
p

=
N

q

(
log2(q logN)− log2 q

)
+O

(
N

q log q

)

=
N

q
log
(

1 +
log2 N

log q

)
+O

(
N

q log q

)
� N log2 N

q log q
.

Summing the above inequality over all q > Q1/2, we get that

#E6 ≤
∑

q>Q1/2

Tq(N) � N log2 N
∑

q>Q1/2

1
q log q

� N log2 N

logQ

� Nu log2 N

logN
� N(log2 N)2

logN
.
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Finally, put ρ(n) for the largest square-full divisor of n. Recall that a positive
integer m is called square-full if p2 | m whenever p | m. For the purpose of the
analysis of h(n) only, we let E7 be the set of n ≤ N such that ρ(n) ≥ (logN)2.
It is clear that an upper bound for the cardinality of E7 is

#E7 ≤
∑

ρ≥(log N)2

ρ square-full

N

ρ
� N

logN
,

where we used the fact that ∑
ρ≥x

ρ square−full

1
ρ
� 1

x1/2 ,

which follows by partial summation from [11], Theorem 14.4.
Therefore, we have (3.2.1).

(3.3) The Remaining n.

3.3.1. Bounds on δ(N) and ∆(N). We only prove the claimed bound on δ(N)
as the case of ∆(N) is completely analogous.

We assume that n 6∈ ∪7
i=1Ei and that n = mp, where p = P (n). Let M be the

set of all acceptable values for m. For a given m ∈ M, we have that

L(m) =
(

N

m logN
,
N

m

]
.

Now, for m ∈ M, we put

Xm = b(N/ logN)1/(ω(m)+1)c+ 1 and Ym = bN1/(ω(m)+1)c.

We let

R(m) =
(
Xω(m)+1
m

m
,
Y ω(m)+1
m

m

]
.

It is clear that R(m) ⊂ L(m). Further,

N

m
− Y ω(m)+1

m

m
=

N

m

(
1−

(
1 +O

(
1

N1/(ω(m)+1)

))ω(m)+1
)

= O

(
Nω(m)

mN1/(ω(m)+1)

)
= O

(
N

m(logN)2

)
and similarly

(3.3.1.1)
Xω(m)+1
m

m
− N

m logN
= O

(
N

m(logN)2

)
,

which together with

π(L(m)) = π

(
N

m

)
− π

(
N

m logN

)
=

N

m log(N/m)

(
1 +O

(
1

logN

))
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shows that

π(R(m)) = π(L(m)) +O

(∣∣∣∣Nm − Y ω(m)+1
m

m

∣∣∣∣+
∣∣∣∣ N

m logN
− Xω(m)+1

m

m

∣∣∣∣)
= π(L(m)) +O

(
π(L(m))
logN

)
.

(3.3.1.2)

Let us fix γ > 0 and let Jγ(N) be the number of n ≤ N with {n1/ω(n)} < γ.
For each real γ ∈ [0, 1) and positive integer U ∈ [Xm, Ym − 1], we put

Zγ(m,U) =
(U + γ)ω(m)+1

m

and define the set
Rγ(m,U) = [Z0(m,U), Zγ(m,U)).

Now note that ifm = M andp ∈ L(m), then forn = pmwe haveω(n) = ω(m)+1
and

n1/ω(n) ∈ [U,U + γ)

if and only if p ∈ Rγ(m,U).
Thus, it follows from (3.2.1) and (3.3.1.2) that

(3.3.1.3) Jγ(N) =
∑
m∈M

Ym−1∑
U=Xm

π(Rγ(m,U)) +O

(
N(log2 N)2

logN

)
.

It is easy to see that it is enough to show that

(3.3.1.4) Jγ(N) = γN +O

(
N

(logN)1+o(1)

)
as N →∞ uniformly for

(3.3.1.5)
1

logN
≤ γ ≤ 1 .

We have

Zγ(m,U)− Z0(m,U) = Z0(m,U)
((

1 +
γ

U

)ω(m)+1
− 1
)

=
(
γ +O

(
ω(m)
U

))
Z0(m,U)(ω(m) + 1)

U
,

(3.3.1.6)

uniformly over all parameters (since ω(m) ≤ X
1/2
m ≤ U1/2 for m ∈ M).

We now recall that, accordingly to Heath-Brown [8] and Huxley [10], we
have

(3.3.1.7) π(X + Y )− π(X) =
Y

logX

(
1 +O

(
(log2 X)4

logX

))
provided that Y ≥ X7/12.

Under the condition (3.3.1.5) and since U ≤ Ym = No(1) for m ∈ M, we
immediately see from (3.3.1.6) that

Zγ(m,U)− Z0(m,U) ≥ Zγ(m,U)7/12.
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Hence, the estimate (3.3.1.7) applies to π(Rγ(m,U)). Remarking that

(3.3.1.8)
ω(m)
U

≤ ω(m)
Xm

� exp
(
−0.5

logN
log2 N

)
and, by (3.3.1.1),

Zγ(m,U) ≥ Z0(m,U) ≥ Uω(m)+1

m
≥ Xω(m)+1

m

m
� N

m logN
≥ Q

logN
� Q1/2,

we deduce the bound

π(Rγ(m,U)) =
Z0(m,U)(ω(m) + 1)

U

(
γ +O

(
(log2 Q)4

logQ

))
=

Z0(m,U)(ω(m) + 1)
U

(
γ +O

(
(log2 N)5

logN

))
.(3.3.1.9)

Certainly, even much weaker results about primes in short intervals would
suffice, but using (3.3.1.7) makes everything immediately obvious.

Substituting (3.3.1.9) in (3.3.1.3) leads us to the bound

Jγ(N) =
(
γ +O

(
(log2 N)5

logN

)) ∑
m∈M

Ym−1∑
U=Xm

Z0(m,U)(ω(m) + 1)
U

+O
(
N(log2 N)2

logN

)
,

which holds uniformly over all γ ≤ 1 under the condition (3.3.1.5). Using this
formula with γ = 1 for which we obviously have J1(N) = N , we see that∑

m∈M

Ym−1∑
U=Xm

Z0(m,U)(ω(m) + 1)
U

= N +O

(
N(log2 N)5

logN

)
,

which concludes the proof of the upper bound.
Taking into account the contribution from the prime numbers, we see that

for any γ ≥ 0,

Jγ(N) ≥ π(N) � N

logN
,

which implies the lower bound and concludes the proof for δ(N).
As we have mentioned, the case of ∆(N) is entirely similar.

3.3.2. Bound on ∇(N). We let r(n) be the product of all prime divisors of n,
that is,

r(n) =
∏
p|n

p = h(n)ω(n).

To estimate ∇(N) one takes m ∈ M, puts

X̃m =

⌊(
N

(m/r(m)) logN

)1/(ω(m)+1)
⌋

+ 1

and

Ỹm =

⌊(
N

(m/r(m))

)1/(ω(m)+1)
⌋
,
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and lets

R̃(m) =

(
X̃ω(m)+1
m

r(m)
,
Ỹ ω(m)+1
m

r(m)

]
.

As in the analysis of the previous case, one shows that

π(R̃(m)) = π(L(m)) +O

(
π(L(m))
logN

)
.

Thus, proceeding as in the previous analysis, we get that for all γ ∈ (0, 1] the
number of n ≤ N such that {h(n)} < γ is

J̃γ(N) =
∑
m∈M

Ỹm−1∑
U=X̃m

π(R̃γ(m,U)) +O

(
N(log2 N)2

logN

)
,

where R̃γ(m,U) = [Z̃0(m,U), Z̃γ(m,U)) and

Z̃γ(m,U) =
(U + γ)ω(m)+1

r(m)
.

Since m/r(m) ≤ ρ(m) = ρ(n) ≤ (logN)2, the resulting intervals are still large
enough to apply (3.3.1.7), and now an argument identical to the previous one
finishes the proof of the upper bound.

For the lower bound, one uses again the contribution from the prime num-
bers.
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TRIALGEBRAS AND LEIBNIZ 3-ALGEBRAS

J. M. CASAS

Abstract. We analyze the relationship between trialgebras (K-vector spaces
equipped with three binary associative operations) and Leibniz 3-algebras (K-
vector spaces equipped with a ternary bracket that verifies an identity which
is a generalization of the Leibniz identity for Leibniz algebras) in a similar
way as dialgebras are related to Leibniz algebras. The universal enveloping
algebra U3L(L) of a Leibniz 3-algebras L is constructed and the equivalence
between the categories of right U3L(L)-modules and L-representations is
proved.

1. Introduction

It is well-known that there exists a functor [−,−] from Ass (the category
of associative algebras) to Lie (the category of Lie algebras) which endows
an associative K-algebra A with a structure of Lie algebra by means of the
bracket [x, y] = x ·y−y ·x and that this functor is right adjoint to the universal
enveloping algebra functor U(−) : Lie → Ass. In order to fix the notation, K
denotes a fixed ground field throughout the paper.

A non skew-symmetric version of Lie algebras, called Leibniz algebras, was
introduced by Loday [8, 9] asK-vector spaces equipped with a bilinear bracket
which satisfies the Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y]

If we factorize a Leibniz algebra g by the two-sided ideal spanned by the
elements [x, x], x ∈ g, then we obtain the Lie algebra denoted by gLie. The
kernel of the canonical map g → gLie is denoted by gann. Thus we have defined
a functor (−)Lie : Leib → Lie which is left adjoint to the inclusion functor from
Lie to Leib which considers a Lie algebra as a Leibniz algebra.

Moreover Loday [10] introduced a type of algebras, called dialgebras, which
are K-vector spaces endowed with two associative operations a and ` (left and
right) satisfying three axioms (see below). We denote by Dias the category
corresponding to these objects. This kind of algebras is closely related to
binary trees [10] and they play a similar role with respect to Leibniz algebras
as associative algebras with respect to Lie algebras, that is, a dialgebra D
can be functorially endowed with a structure of Leibniz algebra by means of
the bracket [x, y] = x a y − y ` x and this functor is right adjoint to the
universal enveloping dialgebra functor Ud(−) : Leib → Dias (see Proposition
1.9 in [10]).

2000 Mathematics Subject Classification: 17A30, 17A32, 17A40, 17A42, 18A40.
Keywords and phrases: Leibniz algebra, Leibniz 3-algebra, QuasiLie 3-algebra, Dialgebra,

Trialgebra.
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When Loday and Ronco were studying ternary planar trees [13], they found
a type of algebras, called trialgebras, which are K-vector spaces equipped
with three binary associative operations a,⊥, and ` (left, middle, and right)
satisfying eight axioms (see below).

The goal of this paper (see section 2) is to endow trialgebras functorially with
a structure of Leibniz 3-algebra (Leibniz n-algebras [2] are K-vector spaces
endowed with ann-ary bracket satisfying the fundamental identity (2.4) below)
by means of the bracket

[x, y, z] = x a (y ⊥ z− z ⊥ y)− (y ⊥ z− z ⊥ y) ` x.

Moreover we construct the universal enveloping trialgebra functorUT (−) from
3Leib (the category of Leibniz 3-algebras) to Trias (the category of trialgebras)
which is left adjoint to the functor described previously. These adjoint functors
are related with the adjoint functors Ud(−) a [−,−] : Leib → Dias by means
of the commutative diagram (2.12) below.

Section 3 is devoted to introducing the category 3QLie of QuasiLie 3-
algebras as Leibniz 3-algebras for which the following identity holds:

[x, y, y] = 0

for all x, y. This kind of algebras plays a similar role with respect to Leibniz
3-algebras as Lie algebras with respect to Leibniz algebras. Concretely, we
functorially endow an associative algebra with a structure of QuasiLie 3-
algebras by mean of the bracket

[x, y, z] = x · y · z− x · z · y− y · z · x+ z · y · x = x · (y · z− z · y)− (y · z− z · y) · x

We construct the universal Quasi-Lie 3-algebra functorU3(−) as the left adjoint
to the functor [−,−,−] : Ass → 3QLie and, finally, we relate this pair of adjoint
functors with the adjoint pair UT (−) a [−,−,−] : 3Leib → Trias by means of
the commutative diagram (3.4) below.

Finally, in section 4, we construct the universal enveloping algebra of a
Leibniz 3-algebra and we prove that the category of representations of a Leibniz
3-algebra L is equivalent to the category of right-modules on the universal
enveloping algebraU3L(L). Also we prove the typical properties of a universal
enveloping algebra for U3L(L) (see Th. 1, p. 152 in [5]).

2. Trialgebras

Our goal in this section is to construct a pair of adjoint functors between
the categories of Leibniz 3-algebras and trialgebras similar to the adjoint pair
between the categories of Leibniz algebras and dialgebras. We start recalling
a kind of algebras with three associative operations, called trialgebras, which
were introduced by Loday and Ronco [13] when they studied ternary planar
trees.

Definition (2.1). An associative trialgebra is a K-vector space A equipped
with 3 binary associative operations: a,⊥,`: A ⊗A → A (called left, middle,
and right, respectively), satisfying the following relations:

1. (x a y) a z = x a (y ` z) = x a (y ⊥ z)
2. (x ` y) a z = x ` (y a z)
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3. (x a y) ` z = x ` (y ` z) = (x ⊥ y) ` z
4. (x ⊥ y) a z = x ⊥ (y a z)
5. (x a y) ⊥ z = x ⊥ (y ` z)
6. (x ` y) ⊥ z = x ` (y ⊥ z)

A morphism between two associative trialgebras is a linear map which is
compatible with the three operations. We denote by Trias the category of
associative trialgebras.

Examples (2.2).
i) An associative K-algebra A endowed with the binary operations x a y =

x ⊥ y = x ` y = x.y, for all x, y ∈ A. This operation defines a functor from
Ass to Trias which has as left adjoint the functor (−)Ass : Trias → Ass which
maps a trialgebra T to the associative algebra TAss, which is the factorization
of T by the ideal (in sense of trialgebras) spanned by the elements of the form
x ` y − x ⊥ y; x a y − x ⊥ y; x, y ∈ T .

ii) Let A be an associative K-algebra. Take T = A ⊗ A ⊗ A and define the
following operations:

a ⊗ b ⊗ c a a′ ⊗ b′ ⊗ c′ := a ⊗ b ⊗ ca′b′c′

a ⊗ b ⊗ c ` a′ ⊗ b′ ⊗ c′ := abca′ ⊗ b′ ⊗ c′

a ⊗ b ⊗ c ⊥ a′ ⊗ b′ ⊗ c′ := a ⊗ bca′b′ ⊗ c′

Extending these formulas by linearity on A ⊗ A ⊗ A one obtains product
applications a,`,⊥ which satisfy the trialgebra axioms.

iii) Opposite Trialgebra: The opposite trialgebra of a trialgebra (T,a,`,⊥)
is the trialgebra T op with the same underlying vector space and product given
by

x a′ y := y ` x; x `′ y := y a x; x ⊥′ y := y ⊥ x

iv) For other examples we refer to [13].

In order to show the role which trialgebras play with respect to Leibniz
3-algebras we start recalling few well-known material.

Leibniz algebras [8, 9] are a non-skew symmetric version to Lie algebras,
that is, they areK-vector spaces g equipped with a bilinear bracket [−,−] : g⊗
g → g satisfying the Leibniz relation [x, [y, z]] = [[x, y], z] − [[x, z], y]. We
denote by Lie and Leib the categories of Lie algebras and Leibniz algebras,
respectively.

A dialgebra [10] is a K-vector space equipped with two associative opera-
tions: a,` (called left and right, respectively), satisfying the following rela-
tions:

1. (x a y) a z = x a (y ` z)
2. (x ` y) a z = x ` (y a z)
3. (x a y) ` z = x ` (y ` z)
A morphism between two associative dialgebras is a linear map which pre-

serves the two operations. We will denote by Dias the category of associative
dialgebras.
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It is well-known that an associative algebra A can be endowed with a struc-
ture of dialgebra by means of the operations x a y = x · y = x ` y, for all
x, y ∈ A [10]. Conversely, for a dialgebra D, let DAss be the factorization of D
by the two sided ideal (in the sense of dialgebras) spanned by the elements
of the form x a y − x ` y,∀x, y ∈ D. It is clear that a = ` in DAss and so
DAss is an associative algebra. The factorization map D → DAss is universal
among the applications from D to an associative algebra, that is, the associa-
tivization functor (−)Ass : Dias → Ass is left adjoint to the inclusion functor
inc : Ass → Dias. We summarize this information in the following diagram:

Lie Leib

Ass Dias

↪→

↪→

�

�

(−)Lie

(−)Ass
? ?

6 6U(-) [-,-] Ud(-) [-,-](2.3)

From the diagonal composition of adjoint functors in diagram (2.3) one derives
the isomorphism Ud(g)Ass

∼= U(gLie) (see Lemma 4.8 in [11]).
On the other hand, a dialgebra D can be functorially endowed with a struc-

ture of trialgebra by means of one of the inclusion functors:
1. Taking the dialgebra operations a, ` and defining x ⊥ y := x a y.
2. Taking the dialgebra operations a, ` and defining x ⊥ y := x ` y.
Conversely, for any trialgebra T , let T1Dias be the factorization of T by the

three-sided ideal I1 spanned by the elements of the form x ⊥ y − x a y, and
let T2Dias be the factorization of T by the three-sided ideal I2 spanned by the
elements of the form x ⊥ y − x ` y. It is clear that x ⊥ y = x a y in the first
case and x ⊥ y = x ` y in the second one. Therefore, TiDias, (i = 1, 2), is an
associative dialgebra. Moreover, the factorization application T → TiDias, (i =
1, 2) is universal for applications from T to any associative dialgebra, that
is, the dialgebrization functor (−)iDias : Trias → Dias is left adjoint to the
inclusion functor inci : Dias → Trias, (i = 1, 2).

Lie algebras and Leibniz algebras are a particular case (n = 2) of Lie
n-algebras and Leibniz n-algebras respectively [4, 14, 2]. We recall that a
Leibniz n-algebra is a K-vector space L equipped with an n-linear operation
[−, . . . ,−] : L⊗n → L satisfying the following fundamental identity:
(2.4)

[[x1, x2, . . . , xn], y2, . . . , yn] =
n∑
i=1

[x1, . . . , xi−1, [xi, y2, . . . , yn], xi+1, . . . , xn]

If the bracket is skew-symmetric, that means

[x1, x2, . . . , xn] = (−1)ε(σ).[xσ(1), xσ(2), . . . , xσ(n)]

for all σ ∈ Sn (Sn is the symmetric group of n elements and the number ε(σ)
is equal to 0 or 1 depending on the parity of the permutation σ), then we have
a Lie n-algebra. A morphism of Leibniz n-algebras (Lie n-algebras) is a linear
map which preserves the bracket. We denote by nLie and nLeib the categories
of Lie n-algebras and Leibniz n-algebras, respectively.
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In this paper we concentrate on the case n = 3 in order to establish an
adjunction between trialgebras and Leibniz 3-algebras similar to the adjunc-
tion between dialgebras and Leibniz algebras. To achieve this we need the
following results:

Proposition (2.5). Let A be a trialgebra. Then A is a Leibniz 3-algebra with
respect to the bracket

[x, y, z] = x a (y ⊥ z)− (y ⊥ z) ` x − x a (z ⊥ y) + (z ⊥ y) ` x =

= x a (y ⊥ z− z ⊥ y)− (y ⊥ z− z ⊥ y) ` x
for all x, y, z ∈ A.

Proof. The proof is straightforward and we leave it to the reader.

Also it is possible to establish other structures of Leibniz 3-algebras from
a trialgebra. To do this we introduce the notion of noncommutative Leibniz-
Poisson algebra. A cohomology theory of this kind of algebras was developed
in [3].

Definition (2.6). A non-commutative Leibniz-Poisson algebra (in brief NLP-
algebra) is a K-vector space P together with two bilinear operations

· : P × P → P, (x, y) 7→ x · y
[−,−] : P × P → P, (x, y) 7→ [x, y]

such that (P, [−,−]) is a Leibniz algebra, (P, ·) is an associative algebra and
the following identity holds:

[a · b, c] = a · [b, c] + [a, c] · b
for all a, b, c ∈ P .

Examples (2.7).
i) Poisson algebras.
ii) Any Leibniz algebra is a NLP-algebra with trivial associative product

(a · b = 0). On the other hand, any associative algebra is a NLP-algebra with
the usual bracket [a, b] = a · b − b · a.

iii) Any associative dialgebra is a NLP-algebra with respect to the operations
a · b = a ` b; [a, b] = a a b − b ` a.

iv) Any associative trialgebra is a NLP-algebra with respect to the operations
a · b = a ⊥ b; [a, b] = a a b − b ` a.

v) If P1 and P2 are NLP-algebras, then the K-module P1 ⊗P2 endowed with
the operations

(a1 ⊗ a2) · (b1 ⊗ b2) = (a1 · b1)⊗ (a2 · b2)
[a1 ⊗ a2, b1 ⊗ b2] = [a1, [b1, b2]]⊗ a2 + a1 ⊗ [a2, [b1, b2]]

is a NLP-algebra.
vi) For examples coming from Physics the reader is referred to [6].

Lemma (2.8). If P is a non-commutative Leibniz-Poisson algebra, then

{x, y, z} := [x, y · z]
defines a Leibniz 3-algebra structure on P .
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Proof.

{{x, y, z},a, b} − {{x, a, b}, y, z} − {x, {y, a, b}, z} − {x, y, {z, a, b}}
= [[x, y · z], a · b]− [[x, a · b], y · z]− [x, [y, a · b] · z]− [x, y · [z, a · b]]

= [[x, y · z], a · b]− [[x, a · b], y · z]− [x, [y, a · b] · z+ y · [z, a · b]]

= [[x, y · z], a · b]− [[x, a · b], y · z]− [x, [y · z, a · b]]

The last term vanishes thanks to the Leibniz identity.

Lemma (2.9). If P is a non-commutative Leibniz-Poisson algebra , then P op

is also a non-commutative Leibniz-Poisson algebra. Here P op has the same
Leibniz algebra structure as P , but the associative algebra structure in P op is

x ∗ y = y · x

Lemma (2.10). If A is an associative trialgebra, then (A,⊥, [−,−]) is a non-
commutative Leibniz-Poisson algebra, where

[a, b] = a a b − b ` a .

Corollary (2.11). Let A be a trialgebra, then A is a Leibniz 3-algebra in
two ways:

1. with respect to the bracket: [x, y, z]1 = x a (y ⊥ z)− (y ⊥ z) ` x;
2. with respect to the bracket: [x, y, z]2 = (z ⊥ y) ` x − x a (z ⊥ y) .

Proof. Apply Lemmas (2.8), (2.9) and (2.10).

Let us observe that [x, y, z] in Proposition (2.5) is equal to [x, y, z]1 +[x, y, z]2.
We will use the structure in Proposition (2.5) since it is the structure which
guarantees the commutativity of square (2.12) below.

Proposition (2.5) gives us a functor [−,−,−] : Trias → 3Leib which has
as left adjoint the universal enveloping trialgebra functor UT(−) : 3Leib →
Trias. This functor assigns to a Leibniz 3-algebra L the trialgebra UT (L)
defined by

UT (L) =
⊕n≥1K[Pn]⊗ L⊗n

I
where ⊕n≥1K[Pn]⊗L⊗n is the free associative trialgebra over the underlying
vector space L [13] and I = 〈{x a (y ⊥ z)− (y ⊥ z) ` x− x a (z ⊥ y) + (z ⊥ y) `
x − [x, y, z] | x, y, z ∈ L}〉.

It is well-known that a Leibniz algebra g can be endowed with a Leibniz
3-algebra structure by means of the operation [x, y, z] = [x, [y, z]] [2], thus we
obtain the following diagram which extends the diagram (2.3)

Leib 3Leib

Dias Trias

-

↪→
�

? ?

6 6Ud(-) [-,-] UT(-) [-,-,-](2.12)

ω

(−)iDias

inci
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It is easy to verify that a Leibniz 3-algebra coming from a dialgebra D via
Trias is same as that via Leib; that is, diagram (2.12) is commutative in the

following way: Dias [−,−]→ Leib ω→ 3Leib ∼= Dias
inci
↪→ Trias [−,−,−]→ 3Leib.

3. QuasiLie 3-algebras

The goal of this section is to construct a diagram similar to diagram (2.3) in
the category 3Leib. In order to achieve our goal we need to introduce a new
kind of ternary algebras.

Definition (3.1). A QuasiLie algebra of order 3 or QuasiLie 3-algebra is a
Leibniz 3-algebra L for which the following identity holds:

[x, y, y] = 0

for all x, y ∈ L.

Obviously, a homomorphism of QuasiLie 3-algebras is a linear map such
that preserves the bracket. We denote by 3QLie the category of QuasiLie
3-algebras.

Examples (3.2). i) Lie 3-algebras [4, 14].
ii) Lie triple systems [7] are K-vector spaces equipped with a trilinear

bracket which satisfies the identity (2.4) and, instead of skew-symmetry, sat-
isfies the conditions

[x, y, z] + [z, x, y] + [y, z, x] = 0

and
[x, y, y] = 0

This is an example of QuasiLie 3-algebras which are not Lie 3-algebras.
iii) Let A be a K-associative algebra equipped with a K-linear map D : A →

A satisfying
D(a ·Db) = Da ·Db = D(Da · b)

for all a, b ∈ A. If we define the bracket

[a, b, c] = a · b ·Dc − a ·Dc · b − b ·Dc · a +Dc · b · a
then we have a Leibniz 3-algebra, when D is an endomorphism of algebras
such that D2 = D or D is a derivation such that D2 = 0, which is a QuasiLie
3-algebra, for instance, in particular case of D = Id.

iv) The particular caseD = Id in example iii) shows a K-associative algebra
A endowed with a structure of Quasi-Lie 3-algebra by means of the bracket

[x, y, z] = x · y · z− x · z · y− y · z · x+ z · y · x = x · (y · z− z · y)− (y · z− z · y) · x
x, y, z ∈A. This QuasiLie 3-algebra is not a Lie 3-algebra.

If we factorize a Leibniz 3-algebra L by the three-sided ideal spanned by all
brackets of the form [x, y, y], x, y ∈ L, then we obtain the QuasiLie 3-algebra
denoted by LQ Lie. The canonical morphism L → LQ Lie is universal for every
morphism from L to a QuasiLie 3-algebra, that is, the functor (−)Q Lie : 3Leib →
3QLie is left adjoint to the inclusion functor. We denote the kernel of the
canonical morphism L → LQ Lie by LQ ann.
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On the other hand, the functor [−,−,−] : Ass → 3QLie described in Ex-
ample (3.2) iv) has as left adjoint the universal enveloping QuasiLie 3-algebra
functor. The universal enveloping QuasiLie 3-algebra functor assigns to a
QuasiLie 3-algebra L the factorization of the free QuasiLie 3-algebra QL(L)
by the ideal spanned by the elements of the form [x, y, z]− x · y · z + x · z · y +
y · z · x − z · y · x, for all x, y, z ∈ L.

Proposition (3.3). There exists the free QuasiLie 3-algebra over a set X.

Proof. Following the same way as [15], we define a 3-magma M as a set
together with a ternary operation ω : M×M×M → M, (x, y, z) 7→ ω(x, y, z).
For a set X define inductively the family of sets Xn(n ≥ 1) as follows:

i) X1 = X, X2 = X ×X,

ii) Xn =
∐

p+q+r=nXp ×Xq ×Xr(n ≥ 3) (= disjoint union).
Put MX =

∐∞
n=1 Xn and define MX × MX × MX → MX by means of Xp ×

Xq ×Xr → Xp+q+r ⊂ M.
MX is the free 3-magma on X, since for every 3-magma N and every map
f : X → N there exists a unique homomorphism of 3-magma F : MX → N

which extends f .
Let AX be the free K-3-algebra (K-vector space equipped with a ternary op-
eration called product) associated to the free magma MX and let I be the
three-sided ideal of AX spanned by the elements of the form ω(a, b, b) and

FI(a, b, c, d, e) = ω(ω(a, b, c), d, e)− ω(ω(a, d, e), b, c)− ω(a, ω(b, d, e), c)

− ω(a, b, ω(c, d, e)),

then AX/I is the free QuasiLie 3-algebra on X, denoted by QL(X).

After Proposition (3.3), the universal enveloping QuasiLie 3-algebra of L is

U3(L) =
QL(L)

〈{[x, y, z]− x · y · z+ x · z · y + y · z · x − z · y · x}〉

since L ↪→ QL(L) � U3(L) and every homomorphism of QuasiLie 3-algebras
f : L → [Λ] can be extended to a homomorphism f : QL(L) → [Λ] by the
universal property of the free QuasiLie 3-algebra. Plainly f vanishes on the
ideal spanned by the elements [x, y, z]− x · y · z+ x · z · y+ y · z · x− z · y · x, so it
induces a homomorphism of associative algebras ϕ : U3(L) → Λ which extends
f . Here [Λ] denotes an associative algebra endowed with a QuasiLie 3-algebra
structure given by Example (3.2) iv).

We can summarize this information in the following diagram of adjoint
functors:

3QLie 3Leib

Ass Trias

↪→

�
-

�

? ?

6 6U3(−) [-,-,-] UT(-) [-,-,-](3.4)

(−)Q Lie

(−)Ass
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Proposition (3.5). For a Leibniz 3-algebra L the following isomorphism
holds:

U3(LQ Lie) ∼= UT(L)Ass .

Proof. The composition of adjunctions gives us an adjunction in the diagonal
and apply that adjoint functors are unique up to isomorphism.

4. Universal enveloping algebra

In the category Lie the universal enveloping algebra functorU : Lie → Ass
has the following property: the category of representations over a Lie algebra
g is equivalent to the category of U(g)-modules. Nevertheless, in Leib the
same property does not hold in the sense that the composition of the adjoint
functors from Leib to Ass in diagram (2.3) does not reproduce the analogous
property. To solve this problem, in [12] Loday and Pirashvili constructed the
functor UL : Leib → Ass, defined by

UL(g) := T (gl ⊕ gr)/I

where gl and gr are isomorphic copies of g and I is an appropriate two-sided
ideal. One verifies that a g-representation in Leib is equivalent to a UL(g)-
module. Moreover one verifies that UL(g) ∼= U(gLie) ⊕ (U(gLie) ⊗ g) and the
subalgebra of UL(g) generated by the elements rx, x ∈ g, which are the iso-
morphic copies of x in gr, is isomorphic to U(gLie).

The goal of this section is to analyze this problem in the category 3Leib.

Definition (4.1). [1]. A representation of a Leibniz n-algebra L is a K-
vector space M endowed with n actions [−, n. . .,−] : L⊗i ⊗ M ⊗ L⊗n−i−1 → M,
0 ≤ i ≤ n− 1, satisfying the following 2n− 1 axioms:

1. For 2 ≤ k ≤ n

ρk([l1, . . . , ln], ln+1, . . . , l2n−2) =
n∑
i=1

ρi(l1, . . . , l̂i, . . . , ln) · ρk(li, ln+1, . . . , l2n−2);

2. For 1 ≤ k ≤ n

[ρ1(ln, . . . , l2n−2), ρk(l1, . . . , ln−1)]

=
n−1∑
i=1

ρk(l1, . . . , li−1, [li, ln, . . . , l2n−2], li+1, . . . , ln−1)

the multilinear applications ρi : L⊗n−1 → EndK (M) being defined by

ρi(l1, . . . , ln−1)(m) = [l1, . . . , li−1,m, li, . . . , ln−1], (1 ≤ i ≤ n)

and the bracket on EndK (M) being the usual one for associative algebras.

In the particular case n = 3, that is, L is a Leibniz 3-algebra, a representa-
tion M of L consists of three applications

[−,−,−] : L⊗L⊗M → M; [−,−,−] : L⊗M⊗L → M; [−,−,−] : M⊗L⊗L → M

satisfying the following axioms:
1. [[l1, l2, l3], l4,m] = [[l1, l4,m], l2, l3] + [l1, [l2, l4,m], l3] + [l1, l2, [l3, l4,m]]
2. [[l1, l2, l3],m, l4] = [[l1,m, l4], l2, l3] + [l1, [l2,m, l4], l3] + [l1, l2, [l3,m, l4]]
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3. [[m, l1, l2], l3, l4] = [[m, l3, l4], l1, l2] + [m, [l1, l3, l4], l2] + [m, l1, [l2, l3, l4]]
4. [[l1,m, l2], l3, l4] = [[l1, l3, l4],m, l2] + [l1, [m, l3, l4], l2] + [l1,m, [l2, l3, l4]]
5. [[l1, l2,m], l3, l4] = [[l1, l3, l4], l2,m] + [l1, [l2, l3, l4],m] + [l1, l2, [m, l3, l4]]
For a Leibniz 3-algebra L, we consider three copies (L⊗L)l, (L⊗L)m, (L⊗L)r

of the Leibniz algebra (L⊗ L) whose bracket is given by

[x ⊗ y, a ⊗ b] = [x, a, b]⊗ y + x ⊗ [y, a, b]

We denote by lx⊗y,mx⊗y, rx⊗y the elements of (L ⊗ L)l, (L ⊗ L)m, (L ⊗ L)r

corresponding to x ⊗ y ∈ L⊗L. We consider the tensorial algebra T ((L⊗L)l⊕
(L⊗ L)m ⊕ (L⊗ L)r) and the following relations

i) r([l1,l2,l3]⊗l4) − l(l2⊗l3)r(l1⊗l4) −m(l1⊗l3)r(l2⊗l4) − r(l1⊗l2)r(l3⊗l4)

ii) m([l1,l2,l3]⊗l4) − l(l2⊗l3)m(l1⊗l4) −m(l1⊗l3)m(l2⊗l4) − r(l1⊗l2)m(l3⊗l4)

iii) l(l3⊗l4)l(l1⊗l2) − l(l1⊗l2)l(l3⊗l4) − l([l1,l3,l4]⊗l2) − l(l1⊗[l2,l3,l4])

iv) l(l3⊗l4)m(l1⊗l2) −m([l1,l3,l4]⊗l2) −m(l1⊗l2)l(l3⊗l4) −m(l1⊗[l2,l3,l4])

v) l(l3⊗l4)r(l1⊗l2) − r([l1,l3,l4]⊗l2) − r(l1⊗[l2,l3,l4]) − r(l1⊗l2)l(l3⊗l4)

Let us observe that from the relations ii) and iv) we can deduce the following:
i’) m(l1⊗l3)m(l2⊗l4) +m(l1⊗l4)l(l2⊗l3) + r(l1⊗l2)m(l3⊗l4) +m(l1⊗[l4 ,l2,l3]) = 0
and from the relations i) and v) we can deduce the following:
ii’) m(l1⊗l3)r(l2⊗l4) + r(l1⊗l4)l(l2⊗l3) + r(l1⊗l2)r(l3⊗l4) + r(l1⊗[l4 ,l2,l3]) = 0

Definition (4.2). The universal enveloping algebra of the Leibniz 3-algebra
L is the associative unitary algebra

U3L(L) := T ((L⊗ L)l ⊕ (L⊗ L)m ⊕ (L⊗ L)r)/I

where I is the two-sided ideal corresponding to the relations i’), ii’), iii), iv), v).

Theorem (4.3). The category of representations of the Leibniz 3-algebra L

is equivalent to the category of right modules on U3L(L).

Proof. Let M be a representation of L. We define a right action fromU3L(L)
on the K-vector space M as follows. Firstly (L⊗ L)l, (L⊗ L)m, (L⊗ L)r act on
M by

m · l(x⊗y) = [m,x, y];m ·m(x⊗y) = [x,m, y];m · r(x⊗y) = [x, y,m];

then we extend this actions to an action of T ((L ⊗ L)l ⊕ (L ⊗ L)m ⊕ (L ⊗ L)r)
by composition and linearity.

The axioms 1-5 of representation imply that the relations i’), ii’), iii)-v) act
trivially. Thus M is endowed with a structure of U3L(L)-module.

Conversely, we start with a U3L(L)-module. The restriction of actions to
(L ⊗ L)l, (L ⊗ L)m, (L ⊗ L)r provides three actions of L ⊗ L which make M a
representation of L⊗ L.

Thanks to relation iii) we have that the subalgebra spanned by the elements
lx⊗y, x ⊗ y ∈ L⊗ L, is isomorphic to U((L⊗ L)Lie).

Let d : (L ⊗ L)l ⊕ (L ⊗ L)m ⊕ (L ⊗ L)r → U((L ⊗ L)Lie) be the K-linear
application defined by d(lx⊗y) = −x ⊗ y = −x ⊗ y+J , where J = 〈{[x⊗ y, x⊗
y] | x ⊗ y ∈ L ⊗ L}〉, d(mx⊗y) = 0, d(rx⊗y) = 0. One extends d to an algebra
homomorphism from T ((L⊗L)l ⊕ (L⊗L)m ⊕ (L⊗L)r) to U((L⊗L)Lie) which
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vanishes on the ideal spanned by the relations i)–v), hence d extends to an
algebra homomorphism d : U3L(L) → U((L⊗ L)Lie).

On the other hand, s : L⊗L → U3L(L), s(x⊗y) = −lx⊗y is a Leibniz algebra
homomorphism which vanishes on (L⊗L)ann and hence it induces a Lie algebra
homomorphism s : (L⊗L)Lie → U3L(L) which extends to an algebra homomor-
phism s : U((L⊗ L)Lie) → U3L(L), s(x ⊗ y) = −lx⊗y. Moreover s is a section of
d. LetH be the two-sided ideal ofU3L(L) spanned bymx⊗y, rx⊗y, x ⊗ y ∈ L⊗L.
It is clear that H = Ker d, so we have the following split exact sequence:

0 H U3L(L) U((L⊗ L)Lie) 0 .- - -� -
s

d

Definition (4.4). Let be L ∈ 3Leib and A ∈ Ass. A trihomomorphism from
L to A consists of a triple of K-linear maps (ϕ, ψ, φ) : L⊗L → A satisfying the
following relations.

a)φ([l1, l2, l3]⊗l4)) = ϕ(l2⊗l3)·φ(l1⊗l4)+ψ(l1⊗l3)·φ(l2⊗l4)+φ(l1⊗l2)·φ(l3⊗l4)
b)ψ([l1, l2, l3]⊗l4) = ϕ(l2⊗l3)·ψ(l1⊗l4)+ψ(l1⊗l3)·ψ(l2⊗l4)+φ(l1⊗l2)·ψ(l3⊗l4)
c) ϕ[l1 ⊗ l2, l3 ⊗ l4] = ϕ(l3 ⊗ l4) · ϕ(l1 ⊗ l2)− ϕ(l1 ⊗ l2) · ϕ(l3 ⊗ l4)
d) ψ[l1 ⊗ l2, l3 ⊗ l4] = ϕ(l3 ⊗ l4) · ψ(l1 ⊗ l2)− ψ(l1 ⊗ l2) · ϕ(l3 ⊗ l4)
e) φ[l1 ⊗ l2, l3 ⊗ l4] = ϕ(l3 ⊗ l4) · φ(l1 ⊗ l2)− φ(l1 ⊗ l2) · ϕ(l3 ⊗ l4)

For a Leibniz 3-algebra L there exists a canonical trihomomorphism (l,m, r)
from L to U3L(L) given by l(x⊗ y) = l(x⊗y),m(x⊗ y) = m(x⊗y), r(x⊗ y) = r(x⊗y),
for all x ⊗ y ∈ L⊗ L.

Proposition (4.5) (Universal Property). The canonical trihomomorphism
(l,m, r) : L⊗ L → U3L(L) is universal for the trihomomorphisms of L, that is,
Trihom (L, A) ∼= Ass(U3L(L), A).

Let (ϕ, ψ, φ) be a trihomomorphism from L to A. We define a K-linear
homomorphism (L⊗L)l⊕(L⊗L)m⊕(L⊗L)r → A by l(x⊗y) 7→ ϕ(x⊗y),m(x⊗y) 7→
ψ(x⊗ y), r(x⊗y) 7→ φ(x⊗ y) which extends to T ((L⊗ L)l ⊕ (L⊗ L)m ⊕ (L⊗ L)r)
and which vanishes on I , so it induces a homomorphism of associative algebras
U3L(L) → A.

Conversely, for a homomorphism of associative algebras f : U3L(L) → A,
the triple (f · l, f ·m, f ·r) is a trihomomorphism of L. Moreover, both processes
are inverses.

Proposition (4.6). U3L(L) is generated by the image (l,m, r)(L⊗ L)

Proof. Let B the subalgebra spanned by l(x⊗y),mx⊗y, rx⊗y,∀x ⊗ y ∈ L ⊗ L.
(l,m, r) is a trihomomorphism from L to B, then Proposition (4.5) gives a
unique homomorphism i such that i · (l,m, r) = (l,m, r). We can consider i
as a homomorphism from U3L(L) to U3L(L), so Proposition (4.5) implies that
i = 1U3L(L). Hence 1U3L(L)(U3L(L)) ⊆ B, so B = U3L(L).

Lemma (4.7). Let (ϕ, ψ, φ) be a trihomomorphism from a Leibniz 3-algebra
L2 to a K-algebra A and let α : L1 → L2 be a homomorphism of Leibniz
3-algebras. Then (ϕ, ψ, φ) · (α⊗ α) is a trihomomorphism from L1 to A.
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Proof. α induces the homomorphism of Leibniz algebras α⊗ α : L1 ⊗ L1 →
L2 ⊗ L2, x ⊗ y 7→ α(x) ⊗ α(y); hence it is a straightforward task to verify the
properties of trihomomorphism for (ϕ, ψ, φ) · (α⊗ α).

Proposition (4.8). Let α : L1 → L2 be a homomorphism of Leibniz 3-alge-
bras. There exists a unique homomorphism α′ : U3L(L1) → U3L(L2) such that
α′ · (l1,m1, r1) = (l2,m2, r2) · (α⊗ α).

Proof. Apply Lemma (4.7) and Proposition (4.5).

Proposition (4.9). LetB be a three-sided ideal of a Leibniz 3-algebra L and
let R be the two-sided ideal of U3L(L) spanned by the elements lx⊗y,mx⊗y, rx⊗y
∀x ⊗ y ∈ B ⊗ B ⊕ B ⊗ L⊕ L⊗ B. Then U3L(L/B) ∼= U3L(L)/R.

Proof. We construct the well-defined trihomomorphism (ϕ, ψ, φ) from L/B
toU3L(L)/R by ϕ((x+B)⊗ (y+B)) = lx⊗y +R; ψ((x+B)⊗ (y+B)) = mx⊗y +R;
φ((x + B) ⊗ (y + B)) = rx⊗y + R. The Proposition (4.5) provides a unique
homomorphism δ : U3L(L/B) → U3L(L)/R.

Conversely, ϕ′(x ⊗ y) = l(x+B)⊗(y+B); ψ′(x ⊗ y) = m(x+B)⊗(y+B); φ′(x ⊗ y) =
r(x+B)⊗(y+B) define a trihomomorphism from L to U3L(L/B), then Proposition
(4.5) provides a unique homomorphism τ : U3L(L) → U3L(L/B) which van-
ishes on R, so induces a homomorphism τ from U3L(L)/R to U3L(L/B).

Finally, it is easy to check that δ and τ are inverses.

Proposition (4.10). U3L(L) has a unique anti-homomorphism π such that
π · (l, r,m) = (−l,−r,−m). Moreover, π2 = 1.

Proof. (−l,−r,−m) is a trihomorphism; then Proposition (4.5) ends the
proof.

Proposition (4.11). There is a unique homomorphism δ : U3L(L) → U3L(L)
∧U3L(L) such that δ·(l,m, r) = (ϕ, ψ, φ), whereϕ(x⊗y) = lx⊗y∧1+1∧lx⊗y;ψ(x⊗
y) = mx⊗y ∧ 1 + 1 ∧mx⊗y;φ(x ⊗ y) = rx⊗y ∧ 1 + 1 ∧ rx⊗y, ∀x ⊗ y ∈ L⊗ L.

Proof. The map (ϕ, ψ, φ) is a trihomomorphism from L to the associative
algebra U3L(L) ∧U3L(L). Proposition (4.5) ends the proof.

Proposition (4.12). Let d be a derivation of a Leibniz 3-algebra L. There
exists a unique derivation D′ of U3L(L) such that D′ · (l,m, r) = (l,m, r) · D,
where D = d ⊗ 1 + 1⊗ d.

Proof. The derivation d induces a derivation of Leibniz algebras D = d ⊗
1 + 1⊗ d : L⊗L → L⊗L. We consider the algebra M2 of 2× 2 matrices with
entries in U3L(L) and we define the K-linear maps ϕ, ψ, φ from L ⊗ L to M2

given by

ϕ : (x ⊗ y) 7→
(

lx⊗y ld(x)⊗y+x⊗d(y)
0 lx⊗y

)
ψ : (x ⊗ y) 7→

(
mx⊗y md(x)⊗y+x⊗d(y)

0 mx⊗y

)
φ : (x ⊗ y) 7→

(
rx⊗y rd(x)⊗y+x⊗d(y)

0 rx⊗y

)
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With a tedious verification we can see that (ϕ, ψ, φ) is a trihomomorphism
from L to M2, so Proposition (4.5) gives us a homomorphism θ : U3L(L) → M2

such that θ · (l,m, r) = (ϕ, ψ, φ). Since θ(lx⊗y) =
(

lx⊗y ld(x)⊗y+x⊗d(y)
0 lx⊗y

)
,

θ(mx⊗y) =
(

mx⊗y md(x)⊗y+x⊗d(y)
0 mx⊗y

)
, θ(rx⊗y) =

(
rx⊗y rd(x)⊗y+x⊗d(y)

0 rx⊗y

)
and

(l,m, r)(L ⊗ L) generates U3L(L), we have for any Xa⊗b ∈ U3L(L) that

θ(Xa⊗b) =
(

Xa⊗b Xd(a)⊗b+a⊗d(b)
0 Xa⊗b

)
. We write D′(Xa⊗b) = Xd(a)⊗b+a⊗d(b).

From the calculations of trihomomorphism conditions for (ϕ, ψ, φ) we can de-
duce that D′ is a derivation of U3L(L) considered as associative algebra in the
usual way. Moreover D′ · (l,m, r) = (l,m, r) ·D. The uniqueness of D′ follows
from the fact that (l,m, r)(L⊗ L) generates U3L(L).
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A METHOD TO INTEGRATE FILIFORM LIE ALGEBRAS

J. C. BENJUMEA, F. J. ECHARTE AND J. NÚÑEZ

Abstract. Lie’s Third Theorem states that given a Lie algebra g of finite
dimension, there exists a simply connected Lie group G whose associated Lie
algebra is g. The classical proof of this result, which is not simple, is based
on Ado’s Theorem. According to it, every Lie algebra of finite dimension can
be represented as a Lie subalgebra of the general linear group of matrices.
We show in this paper a method to give a matrix representation of the simply
connected group associated with a fixed nilpotent Lie algebra. Moreover, we
give the representation of the Lie groups associated with filiform nilpotent Lie
algebras whose derived is abelian.

Introduction

Lie’s Third Theorem (and its converse, which is false in infinite dimension)
establishes a unique correspondence between simply connected Lie groups and
their associated Lie algebras. A direct proof of this result (see [4]), which is
also known as Cartan’s Theorem, uses a geometrical construction based on
Maurer-Cartan constants and on the group of automorphisms.

Moreover, the customary proof in the literature is based on Ado’s Theorem
(see [7]), which states that given any Lie algebra g, there is a linear Lie algebra
isomorphic to it. However, its proof cannot be called elementary.

Recently (see [10]), Tuynman has given an elementary proof of Lie’s Third
Theorem by using the correspondence between Lie subalgebras and Lie sub-
groups and the fact that, for a simply connected Lie group G, one has H2(G) =
0. This proof generalizes, as the same author claims, the method to integrate
nilpotent Lie algebras in a recursive way studied by A. Gray in [5].

In this paper we now improve Tuynman’s work for a particular case, al-
though far-reaching: a special class of nilpotent Lie algebras called filiform.
To do this we give an explicit construction of a simply connected Lie group
whose Lie algebra falls into a given filiform Lie algebra, say g. This is the
main goal of the paper.

By using the group of automorphisms of filiform Lie algebras of a finite
dimension n, in particular the unipotent automorphisms, we find a kind of basis
with respect to which these automorphisms can be represented by triangular
matrices. The dimension of the associated algebra, which is a subalgebra of
Der g, is at most 2n− 3.

Starting from the model filiform Lie algebra of each dimension (it is the
most abelian of filiforms), its algebra of derivations contains as subalgebras
those filiform Lie algebras such that [g, g] is abelian. Note that one of them
is the initial model algebra. These subalgebras determine, in a unique way,
the corresponding subgroups from the initial group of automorphisms which

2000 Mathematics Subject Classification: 22E60, 17B30.
Keywords and phrases: Lie group, matrix group, Lie algebra, nilpotent, filiform.
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constitute, as is claimed, a matrix representation of the simply connected Lie
group corresponding to each of such algebras.

We also apply this method, as an example, to construct the Lie groups
associated with complex filiform Lie algebras of dimension less or equal than 7.

We conclude this introduction by explaining the motivations for dealing with
filiform Lie algebras. These algebras were introduced by M. Vergne in the
late 60’s of the past century [11], although before that, Blackburn had already
studied the analogous class of finite p-groups and used the term maximal class
for them, which is now also used for Lie algebras [3]. In fact, both terms filiform
and maximal class are synonymous.

Vergne showed that within the variety of nilpotent Lie multiplications
on a fixed vector space, non-filiforms can be relegated to small-dimensional
components. Further, filiform Lie algebras are as the most structured as the
least abelian within the nilpotent Lie algebras. In this sense, we can study
them more easily than the set of nilpotent Lie algebras.

1. Definitions and notations

Let g = (Cn, [ , ]) be a Lie algebra of dimension n with [ , ] the associated law.
We consider the lower central series of g defined by C1g = g, Cig = [g, Ci−1g].
This was used by Ancochea and Goze to classify complex nilpotent Lie algebras
of dimension 7 and complex filiform Lie algebras of dimension 8, since it is an
invariant of these algebras, in the sense of not depending on the basis chosen
(see [1]).

A Lie algebra g of dimension n is filiform if dim Cig = n − i for 2 ≤ i ≤ n.
If x ∈ g we denote by ad(x) the adjoint mapping associated to x (i.e. the map
y 7→ [x, y]). As we already said, these algebras were introduced by Vergne in
1966 (see [11]). In the case of groups, the term filiform goes back at least as
far as Ph. Hall in the 1930’s and in the case of algebras, Vergne also used it in
her paper, although in fact the term may appear in the works of Ph. Hall and
Witt, also in the 1930’s.

Let g be a filiform Lie algebra of dimension n. Then there exists a basis
B = {X1, . . . , Xn} of g such that X1 ∈ g\C2g, the matrix of ad(X1) with respect
to B has a Jordan block of order n − 1 and Cig is the span of {Xi+1, . . . , Xn}
with 2 ≤ i ≤ n− 1.

Note that the previous conditions involve [X1, Xh] = Xh+1 for 2 ≤ h ≤ n−1.
Further, as [X2, Xn] = 0 ({Xn} is the center of g) and [X1, Xn−1] = Xn, we can
conclude that [X2, Xn−1] = αXn and thus the change of basis X′

2 = X2 − αX1,
X′

k = Xk (k 6= 2) gives [X′
2, X′

n−1] = 0 and this does not change the remaining
brackets. Such a basis B is called an adapted basis.

It is easy to deduce that, with respect to such a basis,

C2(g) ≡ 〈X3, . . . , Xn〉

C3(g) ≡ 〈X4, . . . , Xn〉
...

Cn−1(g) ≡ 〈Xn〉
Cn(g) ≡ {0}

(1.1)
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Moreover, expressions (1.1) supply, for each filiform Lie algebra g of dimen-
sion n, a chain of ideals with successive quotients of dimension 1, which are
also invariant as by automorphisms of Lie algebras as by derivations, that is:

(1.2) g = g0 ⊇ g1 ⊇ g2 ⊇ . . . ⊇ gn−1 ⊇ gn = {0}

where g1 = Zg(Cn−2(g)), gi = Ci(g) (i ≥ 2).

In this sense, a basis B = {X1, . . . , Xn} of g is adapted if and only if, up to
order, the following holds:

(1.3) Xi ∈ gi−1 , i = 1, . . . , n

A filiform Lie algebra is said to be a model Lie algebra if the unique nonzero
brackets between the elements of an adapted basis are the following:

[X1, Xh] = Xh+1 (h = 2, . . . , n− 1) .

It is immediate to check that there exists an unique model filiform Lie
algebra for each dimension. It will denoted by Pn.

Finally, if C2(g) is a abelian subalgebra of g, the nonzero brackets with
respect to an adapted basis are the following (see [2]):

(1.4)
[X1, Xh] = Xh+1 (h = 2, . . . , n− 1) ,

[X2, Xh] =
∑n−h−1

l=1 αl Xh+l+1 (h = 3, . . . , n− 2) .

2. The group of unipotent automorphisms of Pn

The objective of this section is to parametrize the group of unipotent auto-
morphisms of the model algebra of each dimension. To do this, we will prove
first that with respect to an adapted basis, all automorphisms are represented
by triangular matrices (it is general for every nilpotent Lie algebra).

Let Pn be the model filiform Lie algebra of dimension n ≥ 4. Let B =
{X1, . . . , Xn} an adapted basis of Pn, with respect to which the law of the
algebra can be expressed by

[X1, Xk] = Xk+1 ; 2 ≤ k ≤ n− 1

with the rest of brackets null, up to antisymmetry.

Proposition (2.1). Every automorphism of Lie algebras in Pn maps adapted
bases to adapted bases. Moreover, for a given adapted basis, the matrices of all
of automorphisms are (upper) triangular.

Proof. The first assertion is a consequence of (1.2) and (1.3).
Let us fix an adapted basis B = {X1, . . . , Xn} of Pn, and let ϕ : Pn → Pn be

an automorphism of Lie algebras. If we denote Yi = ϕ(Xi), we obtain a new
adapted basis of Pn satisfying

[Y1, Yk] = Yk+1, 2 ≤ k ≤ n− 1

and having the rest of brackets null, up to antisymmetry. The matrix corre-
sponding to ϕ is triangular. Indeed, if we express Y1 and Y2 with respect to the
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basis B,

Y1 =
n∑

i=1

a1,iXi, Y2 =
n∑

j=1

a2,jXj .

the rest of the basis vectors are determined by them:

Y3 = [Y1, Y2] =
n∑

k=3

a3,kXk , where a3,k = a1,1a2,k−1 − a1,k−1a2,1

and by recurrence, we obtain (3 ≤ h ≤ n):
(2.2)

Yh = [Y1, Yh−1] =
n∑

k=h

ah,kXk , where ah,k = a1,1ah−1,k−1 − a1,k−1ak−1,1 .

Moreover, from [Y2, Yn−1] = 0 we deduce a2,1 = 0, which implies that the
matrix of the basis change is triangular and gives the elements placed in the
third and following rows as functions of those belonging to the first two rows,
(2.3)

a1,1 a1,2 a1,3 . . . a1,n

0 a2,2 a2,3 . . . a2,n

0 0 a3,3 . . . a3,n

...
...

...
...

0 0 0 . . . an,n


a1,i, a2,i ∈ C

ah,k , with 3 ≤ h ≤ n, satisfying (2.2).

This construction allows us to parametrize the group of automorphisms of
Pn by triangular matrices which have a Lie group structure. More specifically,
the subgroup of unipotent automorphisms will be a simply connected Lie group
of dimension 2n− 3. It will contain the simply connected Lie group associated
with Pn as a subgroup.

Theorem (2.4). The unipotent automorphisms of Pn give a 2n − 3-dimen-
sional Lie subgroup G of Aut(Pn) admitting a linear representation by upper
triangular matrices.

Proof. Let B = {X1, . . . , Xn} be an adapted basis of Pn, as in (2.1), and let
ϕ : Pn → Pn be an unipotent automorphism of Lie algebras with Yi = ϕ(Xi).

If we choose the two first elements of the matrix as a11 = a22 = 1, that is,

Y1 = X1 + a1,2X2 + a1,3X3 + · · ·+ a1,nXn

Y2 = X2 + a2,3X3 + · · ·+ a2,nXn ,

the remaining diagonal elements satisfy, according to (2.2), that

ak,k = 1 , k ≥ 3

Moreover, due to ai,1 = 0 (2 ≤ i ≤ n), we have that

ah,k = ah−1,k−1 , 3 ≤ h ≤ k ≤ n .

Therefore we have a group G formed by triangular matrices having diagonal
elements equal 1, which represent all unipotent automorphisms of Pn with
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respect to an adapted basis. This allows us to parametrize G as a Lie subgroup
of the general linear group,
(2.5)

1 x2 x3 x4 . . . xn−3 xn−2 xn−1 xn

0 1 x1 xn+1 . . . x2n−6 x2n−5 x2n−4 x2n−3

0 0 1 x1
. . .

. . . x2n−6 x2n−5 x2n−4

0 0 0 1
. . .

. . .
. . . x2n−6 x2n−5

...
...

...
...

. . .
. . .

. . .
. . .

...
0 0 0 0 . . . 1 x1 xn+1 xn+2

0 0 0 0 . . . 0 1 x1 xn+1

0 0 0 0 . . . 0 0 1 x1

0 0 0 0 . . . 0 0 0 1


with (xi) ∈ C2n−3 .

3. The Lie algebra associated with G

The tangent space of G at the unit In ∈ G is composed of all the matrices X
for which we can find a differentiable curve ϕ = ϕ(t) on G satisfying ϕ(0) = In

and ϕ′(0) = X. This space g constitutes the Lie algebra associated with G and
it is formed of the component at the origin of differentiable fields in G which
are invariant under left translations of the group.

We will construct a basis of g starting from a system of one-parameter
groups of transformations {ϕ}i=1,...,2n−3, which will define the paths of such
left-invariant fields.

We will denote
g : C2n−3 → G

(xi) → g(xi)

where g(xi) is a generic point of G, as in (2.5).
We now define 2n − 3 differentiable curves in G, which will represent a

system of one-parameter groups of transformations. Basically, these curves
ϕi : R → G will be parametrized by xi = t and the remaining coordinates equal
0, with the exception of suitable adjustments to make that ϕi into a group, that
is, that ϕi(t + s) = ϕi(t)ϕi(s). The first curve will be obtained in the following
way:

ϕ1 : R → G, t 7→ g(xi) with



x1 = t
x2 = 0
...
xn = 0
xn+k = 1

(k+1)! t
k+1; 1 ≤ k ≤ n− 3.

It is verified that ϕ1(t + s) = ϕ1(t)ϕ1(s) and ϕ(0) = In. The following 2n − 4
curves are defined by

ϕk : R → G, t 7→ g(xi) with
{

xk = t
xj = 0, j 6= k.
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except in the case of n even. In this case, the one-parameter group ϕn+ n
2−2 is

parametrized by 
xn+ n

2−2 = t

x2n−3 = 1
2 t2

xj = 0 , otherwise.

For each k, the curves gϕk represent the paths of a differentiable field on
G, which is invariant under left translations. Tangent vectors define at the
origin (with respect to the canonical basis

{
ei = @

@xi

}
i=1,...,2n−3

of C2n−3), the

following basis {X1, . . . , Xn, Xn+1, . . . , X2n−3} of g:

X1 = ( 1 , 0 ,x2,x3,x4, . . . ,xn−2,xn−1, x1 ,xn+1,xn+2,. . .,x2n−5,x2n−4 )
X2 = ( 0 , 1 , 0 , 0 , 0 , . . . , 0 , 0 , 0 , 0 , 0 ,. . ., 0 , 0 )
X3 = ( 0 , 0 , 1 , 0 , 0 , . . . , 0 , 0 , 0 , 0 , 0 ,. . ., 0 , 0 )

...

Xn = ( 0 , 0 , 0 , 0 , 0 , . . . , 0 , 1︸︷︷︸
n

, 0 , 0 , 0 ,. . ., 0 , 0 )

Xn+1 = ( 0 , 0 , 0 ,x2,x3, . . . ,xn−3,xn−2, 1︸︷︷︸
n+1

, x1 ,xn+1,. . .,x2n−6,x2n−5 )

Xn+2 = ( 0 , 0 , 0 , 0 ,x2, . . . ,xn−4,xn−3, 0 , 1︸︷︷︸
n+2

, x1 ,. . .,x2n−7,x2n−6 )

...

X2n−4= ( 0 , 0 , 0 , 0 , 0 , . . . , x2 , x3 , 0 , 0 , 0 ,. . ., 1 , x1 )

X2n−3= ( 0 , 0 , 0 , 0 , 0 , . . . , 0 , x2 , 0 , 0 , 0 ,. . ., 0 , 1 )

In this way we obtain a Lie algebra g of dimension 2n − 3 which is a
subalgebra of Der(Pn), since the latter is the algebra associated with the group
of automorphisms of Pn (see, for example, [8]). Note also that the algebra
obtained is isomorphic to the nilradical of the derivation algebra of Pn. With
respect to this basis, the law of the algebra is the following:

[X1, Xk] = −Xk+1 , 2 ≤ k ≤ n− 1

[Xn−h, Xn+k] = Xn−h+k+1 , 2 ≤ h ≤ n− 2 , 1 ≤ k ≤ n− 3

Moreover, the basis so obtained allows us to check that g has the following
property, which is also satisfied by Pn: the subalgebra 〈X2, . . . , Xn〉 is abelian.
Indeed, we obtain the following result:

Theorem (3.1). Every filiform Lie algebra L of dimension n whose derived
algebra [L, L] is abelian, is a subalgebra of g. As a consequence, there exists a
Lie subgroup of G whose associated algebra is L.

Proof. We consider, in the first instance, the case in which L = Pn. If
{X1, . . . , X2n−3} is the basis of g previously constructed, the subalgebra gn =
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〈X1, . . . , Xn〉 satisfies

[X1, X2] = −X3 ; [X1, X3] = −X4 ; . . . ; [X1, Xn−1] = −Xn ; [X1, Xn] = 0

[Xh, Xk] = 0 ; 2 ≤ h < k ≤ n

which implies gn = Pn.
On the other hand, as each Lie subalgebra of g determines, in an unique way,

a Lie subgroup of G, the existence of a subgroup of Gn ⊂ G whose associated
Lie algebra is Pn can be deduced. Moreover, gn = 〈X1, . . . , Xn〉 determines in g
an involutive distribution. Therefore, Gn will be the n-dimensional connected
integral subvariety containing every point of G, and it will be obtained as a
solution of the system:

{ωi = 0}i=n+1,...,2n−3

where {ωi}i is the dual basis of {Xi}i in g.
If we also require

{xi = 0}i=1,...,2n−3

as an initial condition, we will obtain the connected component of the unit.
Recall that a representation of Pn (and of Qn) are explicitly described in [9].

Now let L be a filiform Lie algebra of dimension n whose derived Lie algebra
[L, L] is abelian. As in (1.4), the nonzero brackets are

[X1, Xh] = Xh+1 (h = 2, . . . , n− 1)

[X2, Xh] =
∑n−h−1

l=1 αlXh+l+1 (h = 3, . . . , n− 2)

for some α1, . . . , αn−4 ∈ C. After applying the change of basis
Y1 = X1

Y2 = X2 −
∑n−4

k=1 αkXn+k

Yi = Xi , i ≥ 3

the law of the algebra with respect to the basis {Yi}i=1,...,2n−3 satisfies the
following brackets:

[Y1, Yh] = Yh+1 2 ≤ h ≤ n− 1

[Y2, Yh] =
∑n−h−1

l=1 αlYh+l+1 3 ≤ h ≤ n− 2

[Yh, Yk] = 0 , 3 ≤ h < k ≤ n

and, as a consequence, 〈Y1, . . . , Yn〉 ∼= L. By a similar reasoning for Gn we
deduce the existence of a simply connected Lie subgroup GL ⊂ G corresponding
to the solution of the system:

ωi = 0 , i = n + 1, . . . , 2n− 3

xj(0) = 0 , j = n + 1, . . . , 2n− 3

where {ωi} is the dual basis of {Yi} in g.
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4. Application to filiform Lie algebras of dimension less or equal
than 7

In this section, we will give a list of filiform Lie algebras of dimension n,
with 3 ≤ n ≤ 7 (according to Goze and Ancoechea’s classification given in [1],
later corrected by Goze and Remm in [6]), whose derived Lie algebra is abelian
(they make 13 out of a total of 17) and the simply connected associated Lie
group. We will show the complete study of one of the cases, as an example.

Example (4.1). Let µ2
7 be the complex filiform Lie algebra defined, with

respect to a basis {Y1, . . . , Y7}, by the nonzero brackets:
[Y1, Yk] = Yk+1 , k = 2, . . . , 6
[Y2, Y3] = Y5

[Y2, Y4] = Y6

[Y2, Y5] = Y7

Its derived Lie algebra is 〈Y2, . . . , Y6〉, which is, indeed, abelian. The
corresponding values in (1.4) are α1 = 1, α2 = 0 and α3 = 0.

The group of unipotent automorphisms of the model Lie algebra P7 of
dimension 7 is a Lie group G of dimension 11 whose representation with respect
to an adapted basis is

1 x2 x3 x4 x5 x6 x7

0 1 x1 x8 x9 x10 x11

0 0 1 x1 x8 x9 x10

0 0 0 1 x1 x8 x9

0 0 0 0 1 x1 x8

0 0 0 0 0 1 x1

0 0 0 0 0 0 1


; (xi) ∈ C11

The associated Lie algebra g is nilpotent of dimension 11, and a basis is
{X1, . . . , X11}. Coordinates of this basis with respect to the canonical basis of
C11 are

X1 = ( 1 , 0 , x2 , x3 , x4 , x5 , x6 , x1 , x8 , x9 , x10 )
X2 = ( 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )
X3 = ( 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )
X4 = ( 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )
X5 = ( 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 )
X6 = ( 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 )
X7 = ( 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 )
X8 = ( 0 , 0 , 0 , x2 , x3 , x4 , x5 , 1 , x1 , x8 , x9 )
X9 = ( 0 , 0 , 0 , 0 , x2 , x3 , x4 , 0 , 1 , x1 , x8 )
X10= ( 0 , 0 , 0 , 0 , 0 , x2 , x3 , 0 , 0 , 1 , x1 )
X11= ( 0 , 0 , 0 , 0 , 0 , 0 , x2 , 0 , 0 , 0 , 1 )
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The bracket products in g are:

[X1, X11] = 0 [X2, X11] = X7

[X1, X10] = 0 [X2, X10] = X6 [X3, X10] = X7

[X1, X9] = 0 [X2, X9] = X5 [X3, X9] = X6 [X4, X9] = X7

[X1, X8] = 0 [X2, X8] = X4 [X3, X8] = X5 [X4, X8] = X6

[X5, X8] = X7

[X1, X7] = 0

[X1, X6] = −X7

[X1, X5] = −X6

[X1, X4] = −X5

[X1, X3] = −X4

[X1, X2] = −X3

The change of basis  Y1 = −X1

Y2 = X2 −X8

Yi = Xi , i 6= 1, 2

allows us to deduce that the subalgebra g7 = 〈Y1, . . . , Y7〉 of g is isomorphic to
µ2

7. If {ωi} denotes the dual basis of {Yi} in g, the connected integral subvariety
of G of dimension 7 which corresponds to g7 is the solution of the system
{ωi = 0}8≤i≤11 which contains the unit in G. The results of this integration is
the following:

ω8 = −x1 dx1 − dx2 + dx8 ⇒ x8 =
1
2

x2
1 + x2

ω9 = (x2
1 − x8) dx1 − x1 dx8 + dx9

=
(
−1

2
x2

1 − x2

)
dx1 − x1 dx2 + dx9 ⇒ x9 =

1
6

x3
1 + x1x2

ω10 = (−x3
1 + 2x1x8 − x9) dx1 + (x2

1 − x8) dx8 − x1 dx9 + dx10

=
(
−1

6
x3

1 − x1x2

)
dx1 +

(
−1

2
x2

1 − x2

)
dx2 + dx10

⇒ x10 =
1
24

x4
1 +

1
2

x2
1x2 +

1
2

x2
2

ω11 =
(
x4

1 − 3x2
1x8 + 2x1x9 − x10 + x2

8

)
dx1 + (−x3

1 + 2x1x8 − x9) dx8

+ (x2
1 − x8) dx9 − x1 dx10 + dx11 =

=
(
− 1

24
x4

1 −
1
2

x2
1x2 −

1
2

x2
2

)
dx1 +

(
−1

6
x3

1 − x1x2

)
dx2 + dx11 ⇒

⇒ x11 =
1

120
x5

1 +
1
6

x3
1x2 +

1
2

x1x2
2



188 J. C. BENJUMEA, F. J. ECHARTE AND J. NÚÑEZ

and therefore, the simply connected Lie group associated with µ2
7 is

1 x2 x3 x4 x5 x6 x7

0 1 x1
1
2 x2

1 + x2
1
6 x3

1 + x1x2
1
24 x4

1 + 1
2 x2

1x2 + 1
2 x2

2
1

120 x5
1 + 1

6 x3
1x2 + 1

2 x1x2
2

0 0 1 x1
1
2 x2

1 + x2
1
6 x3

1 + x1x2
1
24 x4

1 + 1
2 x2

1x2 + 1
2 x2

2
0 0 0 1 x1

1
2 x2

1 + x2
1
6 x3

1 + x1x2

0 0 0 0 1 x1
1
2 x2

1 + x2

0 0 0 0 0 1 x1

0 0 0 0 0 0 1


with (xi) ∈ C7.

We finally show a table with the list of filiform Lie algebras of dimension less
or equal than 7 (whose derived algebra is abelian) and the Lie group associated
to each one.

Dimension 3.

Lie algebra µ1
3 (model, Heisenberg’s algebra). The law of this Lie algebra with

respect to the basis {X1, X2, X3} is

[X1, X2] = X3 .

Its associated Lie group is 1 x2 x3

0 1 x1

0 0 1

 .

Dimension 4.

Lie algebra µ1
4 (model). The law of this Lie algebra with respect to the basis

{X1, X2, X3, X4} is {
[X1, X3] = X4

[X1, X2] = X3 .

Its associated Lie group is 
1 x2 x3 x4

0 1 x1
1
2 x2

1
0 0 1 x1

0 0 0 1

 .

Dimension 5.

Lie algebra µ1
5. The law of this Lie algebra with respect to the basis {X1, . . . ,

X5} is {
[X1, Xk] = Xk+1 , k = 2, 3, 4
[X2, X3] = X5 .

Its associated Lie group is
1 x2 x3 x4 x5

0 1 x1
1
2 x2

1 + x2
1
6 x3

1 + x1x2

0 0 1 x1
1
2 x2

1 + x2

0 0 0 1 x1

0 0 0 0 1

 ; (xi) ∈ C5
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Lie algebra µ2
5 (model). The law of this Lie algebra with respect to the basis

{X1, . . . , X5} is

[X1, Xk] = Xk+1 , k = 2, 3, 4 .

Its associated Lie group is
1 x2 x3 x4 x5

0 1 x1
1
2 x2

1
1
6 x3

1
0 0 1 x1

1
2 x2

1
0 0 0 1 x1

0 0 0 0 1

 ; (xi) ∈ C5 .

Dimension 6.

Lie algebra µ3
6. The law of this Lie algebra with respect to the basis {X1, . . . ,

X6} is  [X1, Xk] = Xk+1 , k = 2, . . . , 5
[X2, X4] = X6

[X2, X3] = X5 .

Its associated Lie group is

1 x2 x3 x4 x5 x6

0 1 x1
1
2 x2

1 + x2
1
6 x3

1 + x1x2
1
24 x4

1 + 1
2 x2

1x2 + 1
2 x2

2
0 0 1 x1

1
2 x2

1 + x2
1
6 x3

1 + x1x2

0 0 0 1 x1
1
2 x2

1 + x2

0 0 0 0 1 x1

0 0 0 0 0 1

 ; (xi) ∈ C6 .

Lie algebra µ4
6. The law of this Lie algebra with respect to the basis {X1, . . . ,

X6} is {
[X1, Xk] = Xk+1 , k = 2, . . . , 5
[X2, X3] = X6 .

Its associated Lie group is

1 x2 x3 x4 x5 x6

0 1 x1
1
2 x2

1
1
6 x3

1 + x2
1
24 x4

1 + x1x2

0 0 1 x1
1
2 x2

1
1
6 x3

1 + x2

0 0 0 1 x1
1
2 x2

1
0 0 0 0 1 x1

0 0 0 0 0 1

 ; (xi) ∈ C6 .

Lie algebra µ5
6 (model). The law of this Lie algebra with respect to the basis

{X1, . . . , X6} is

[X1, Xk] = Xk+1 , k = 2, . . . , 5 .
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Its associated Lie group is

1 x2 x3 x4 x5 x6

0 1 x1
1
2 x2

1
1
6 x3

1
1
24 x4

1
0 0 1 x1

1
2 x2

1
1
6 x3

1
0 0 0 1 x1

1
2 x2

1
0 0 0 0 1 x1

0 0 0 0 0 1

 ; (xi) ∈ C6 .

Dimension 7.

Lie algebra µ2
7. The law of this Lie algebra with respect to the basis {X1, . . . ,

X7} is 
[X1, Xk] = Xk+1 , k = 2, . . . , 6
[X2, X5] = X7

[X2, X4] = X6

[X2, X3] = X5 .

Its associated Lie group is

1 x2 x3 x4 x5 x6 x7

0 1 x1
1
2 x2

1 + x2
1
6 x3

1 + x1x2
1
24 x4

1 + 1
2 x2

1x2 + 1
2 x2

2
1

120 x5
1 + 1

6 x3
1x2 + 1

2 x1x2
2

0 0 1 x1
1
2 x2

1 + x2
1
6 x3

1 + x1x2
1
24 x4

1 + 1
2 x2

1x2 + 1
2 x2

2
0 0 0 1 x1

1
2 x2

1 + x2
1
6 x3

1 + x1x2

0 0 0 0 1 x1
1
2 x2

1 + x2

0 0 0 0 0 1 x1

0 0 0 0 0 0 1


with (xi) ∈ C7.

Lie algebra µ3
7. The law of this Lie algebra with respect to the basis {X1, . . . ,

X7} is 
[X1, Xk] = Xk+1 , k = 2, . . . , 6
[X2, X5] = X7

[X2, X4] = X6

[X2, X3] = X5 + X7 .

Its associated Lie group is

1 x2 x3 x4 x5 x6 x7

0 1 x1
1
2 x2

1 + x2
1
6 x3

1 + x1x2
1
24 x4

1 + 1
2 x2

1x2 + 1
2 x2

2 + x2
1

120 x5
1 + 1

6 x3
1x2 + 1

2 x1x2
2 + x1x2

0 0 1 x1
1
2 x2

1 + x2
1
6 x3

1 + x1x2
1
24 x4

1 + 1
2 x2

1x2 + 1
2 x2

2 + x2

0 0 0 1 x1
1
2 x2

1 + x2
1
6 x3

1 + x1x2

0 0 0 0 1 x1
1
2 x2

1 + x2

0 0 0 0 0 1 x1

0 0 0 0 0 0 1


with (xi) ∈ C7.
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Lie algebra µ5
7. The law of this Lie algebra with respect to the basis {X1, . . . ,

X7} is  [X1, Xk] = Xk+1 , k = 2, . . . , 6
[X2, X4] = X7

[X2, X3] = X6 + X7 .

Its associated Lie group is

1 x2 x3 x4 x5 x6 x7

0 1 x1
1
2 x2

1
1
6 x3

1 + x2
1
24 x4

1 + x1x2 + x2
1

120 x5
1 + 1

2 x2
1x2 + x1x2

0 0 1 x1
1
2 x2

1
1
6 x3

1 + x2
1
24 x4

1 + x1x2 + x2

0 0 0 1 x1
1
2 x2

1
1
6 x3

1 + x2

0 0 0 0 1 x1
1
2 x2

1
0 0 0 0 0 1 x1

0 0 0 0 0 0 1


with (xi) ∈ C7.

Lie algebra µ6
7. The law of this Lie algebra with respect to the basis {X1, . . . ,

X7} is  [X1, Xk] = Xk+1 , k = 2, . . . , 6
[X2, X4] = X7

[X2, X3] = X6 .

Its associated Lie group is

1 x2 x3 x4 x5 x6 x7

0 1 x1
1
2 x2

1
1
6 x3

1 + x2
1
24 x4

1 + x1x2
1

120 x5
1 + 1

2 x2
1x2

0 0 1 x1
1
2 x2

1
1
6 x3

1 + x2
1
24 x4

1 + x1x2

0 0 0 1 x1
1
2 x2

1
1
6 x3

1 + x2

0 0 0 0 1 x1
1
2 x2

1
0 0 0 0 0 1 x1

0 0 0 0 0 0 1


with (xi) ∈ C7.

Lie algebra µ7
7. The law of this Lie algebra with respect to the basis {X1, . . . ,

X7} is {
[X1, Xk] = Xk+1 , k = 2, . . . , 6
[X2, X3] = X7 .

Its associated Lie group is

1 x2 x3 x4 x5 x6 x7

0 1 x1
1
2 x2

1
1
6 x3

1
1
24 x4

1 + x2
1

120 x5
1 + x1x2

0 0 1 x1
1
2 x2

1
1
6 x3

1
1
24 x4

1 + x2

0 0 0 1 x1
1
2 x2

1
1
6 x3

1
0 0 0 0 1 x1

1
2 x2

1
0 0 0 0 0 1 x1

0 0 0 0 0 0 1


with (xi) ∈ C7.
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Lie algebra µ8
7 (model). The law of this Lie algebra with respect to the basis

{X1, . . . , X7} is {
[X1, Xk] = Xk+1 , k = 2, . . . , 6 .

Its associated Lie group is

1 x2 x3 x4 x5 x6 x7

0 1 x1
1
2 x2

1
1
6 x3

1
1
24 x4

1
1

120 x5
1

0 0 1 x1
1
2 x2

1
1
6 x3

1
1
24 x4

1
0 0 0 1 x1

1
2 x2

1
1
6 x3

1
0 0 0 0 1 x1

1
2 x2

1
0 0 0 0 0 1 x1

0 0 0 0 0 0 1


with (xi) ∈ C7.
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HÖLDER ESTIMATES FOR THE @-EQUATION ON SURFACES
WITH SIMPLE SINGULARITIES

F. ACOSTA AND E. S. ZERÓN

Abstract. Let Σ ⊂ C3 be a 2-dimensional subvariety with an isolated simple
(rational double point) singularity at the origin. The main objective of this
paper is to solve the @-equation on a neighbourhood of the origin in Σ, requiring
a Hölder condition on the solution.

1. Introduction

Let Σ ⊂ C3 be a subvariety with an isolated singularity at the origin. Given
a @-closed (0, 1)-differential form λ defined on Σ minus the origin, Gavosto and
Fornæss proposed a general technique for solving the differential equation
@g = λ on a neighbourhood of the origin in Σ. The calculations were done
in the sense of distributions, and they required an extra Hölder condition
on the solution g, see [2] and [3]. Their basic idea was to analyse Σ as a
branched covering over C2, to solve the corresponding @-equation on C2, and to
lift the solution from C2 into Σ again. Gavosto and Fornæss completed all the
calculations in the particular case when Σ ⊂ C3 is defined by the polynomial
x1x2 = x2

3, that is, when Σ is a surface with an isolated simple (rational double
point) singularity of type A2 at the origin, [1], p. 60.

Let XN and YN be two subvarieties of C3 defined by the respective poly-
nomials x1x2 = xN3 and y2

1y3 + y2
2 = yN+1

3 , for any natural number N ≥ 2.
The surface XN (respect. YN ) has an isolated simple singularity of type AN−1
(respect. DN+2) at the origin, see [1], p. 60. The main objective of this paper is
to give an alternative and simplified solution to the equation @g = λ on both
surfaces XN and YN , with an extra Hölder condition on g. The central idea is
to consider C2 as a branched covering over XN and YN , instead of analysing
XN as a branched covering over C2. In the case of XN , we use the natural
branched N-covering πN : C2 → XN defined by πN (z1, z2) = (zN1 , z

N
2 , z1z2), in

order to obtain the following theorem. We shall explain, at the end of the third
section of this paper, why we use the covering πN instead of a standard blow
up mapping.

Theorem (1.1). LetEv(N) be the smallest even integer greater than or equal
to N . Given an exponent 0 < β < 1/Ev(N) and an open ball BR ⊂ C2 of radius
R > 0 and centre in the origin, there exists a finite positive constant C1(R,β)
such that: For every continuous (0, 1)-differential form λ defined on the compact
set πN (BR) ⊂ XN , and @-closed on the interior πN (BR), the equation @h = λ has

2000 Mathematics Subject Classification: 32F20, 32W05, 35N15.
Keywords and phrases: Hölder estimates, @-equation, branched covering.
Research supported by Cinvestav(Mexico) and Conacyt(Mexico).
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a continuous solution h on πN (BR) which also satisfies the following Hölder
estimate,

(1.2) ‖h‖πN (BR ) + sup
x,w∈πN (BR )

|h(x)− h(w)|
‖x − w‖β

≤ C1(R,β)‖λ‖πN (BR ).

In the last section of this paper, we extend Theorem (1.1) to solve the @-
equation on the subvariety YN as well. The notation ‖h‖S stands for the
supremun of |h| on the set S, and ‖x − w‖ stands for the euclidean distance
between x and w. Since ‖x − w‖ is less than or equal to the distance between
x and w measured along the surface XN , we can assert that inequality (1.2)
is indeed a Hölder estimate on XN itself. Finally, all differentials are defined
in terms of distributions. For example, the fact that the continuous (0, 1)-
differential form λ is @-closed on πN (BR) means that the integral

(1.3)
∫
πN (BR )

λ ∧ @σ = 0,

vanishes for every smooth (2, 0)-differential form σ defined on πN (BR) \ {0},
such that bothσ and @σ extend continuously to the origin, and these extensions
have both compact support inside πN (BR).

The proof of Theorem (1.1) is presented in the following two sections. The
next section is devoted to introducing all the basic ideas for the particular case
when N = 2. Moreover, in the third section of this paper, we shall use these
ideas for solving the @-equation on XN , in the extended case N ≥ 3. Finally, in
the last section of this paper, we extend Theorem (1.1) to solve the @-equation
on the subvariety YN as well.

2. Proof of Theorem (1.1), case N = 2.

Consider the natural branched covering π2(z1, z2) = (z2
1, z

2
2, z1z2) defined

from C2 onto X2 := [x1x2 = x2
3]. It is easy to see that π2 is a branched 2-

covering, and that the origin is the only branch point of π2, because the inverse
image π−1

2 (x) is a set of the form {±z}, for every x ∈ X2. Further, define
the antipodal automorphism φ(z) = −z which allows us to jump between the
different branches of π2. In particular, we have that φ∗π2(z) = π2(−z) = π2(z).

We assert that the operators π∗2 and @ commute. It is easy to see that
π∗2 and @ commute when @ is a standard differential, for π2 is holomorphic.
However, calculations become more complicated when @ is analysed in the
sense of distributions. Let BR ⊂ C2 be an open ball of radius R > 0. We
prove the commutativity of π∗2 and @ for the particular case of a @-closed (0, 1)-
differential form λ defined on π2(BR); the proof with a general differential
form follows exactly the same procedure. We have that @λ = 0 in the sense of
equation (1.3), and we need to prove that @(π∗2λ) is equal to π∗2 (@λ) = 0 in the
sense of distributions, that is:

(2.1)
∫
BR

π∗2λ ∧ @v = 0,

for every smooth (2, 0)-differential form v with compact support in BR. The
automorphism φ preserves the orientation of BR, for it is analytic. Thus, after
doing a simple change of variables, and recalling that φ∗π2 = π2, we have
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that the integral in equation (2.1) is equal to
∫
BR
π∗2λ ∧ @φ∗v. Moreover, since

v + φ∗v is constant on the fibres of π2 (it is invariant under the pull back φ∗)
there exists a second differential form σ defined on π2(BR) such that v + φ∗v
is equal to π∗2σ. Hence∫

BR

π∗2λ ∧ @v =
∫
BR

π∗2λ ∧ @
v + φ∗v

2
=

∫
π2(BR )

λ ∧ @σ
2

= 0.

The equality to zero follows from equation (1.3), and so @(π∗2λ) = 0 on BR, as
we wanted to prove. Suppose now that the differential equation @g = π∗2λ has
a solution g on BR. The sum g + φ∗g is also constant in the fibres of π2 (it is
invariant under the pull back φ∗), so there exists a continuous function f on
BR such that π∗2f is equal to g +φ∗g. We assert that @f = 2λ on π2(BR). This
result follows automatically because

π∗2@f = @(g + φ∗g) = π∗2λ + φ∗π∗2λ = π∗2 (2λ).

The previous equation requires that the operators φ∗ and @ commute as
well in BR, when @ is seen as a distribution. This is an exercise based on
the fact that

∫
φ∗ℵ =

∫
ℵ, as we have indicated in the paragraph situated

after equation (2.1), and because φ preserves the orientation of BR. Suppose
now that λ is also continuous on the compact set π2(BR). Then we can apply
Theorems 2.1.5 and 2.2.2 of [4] in order to get the following Hölder estimate.

Theorem (2.2). Given an exponent 0 < δ < 1 and an open ball BR ⊂ C2 of
radius R > 0 and centre at the origin, there exist two finite positive constants
C2(R) and C3(R, δ) such that: For every continuous (0, 1)-differential form λ
defined on π2(BR) ⊂ X, and @-closed on the interior π2(BR), the equation
@g = π∗2λ has a continuous solution g on BR which also satisfies the following
Hölder estimates,

‖g‖BR
+ sup

z,ζ∈BR

|g(z)− g(ζ)|
‖z− ζ‖1/2 ≤ C2(R)‖π∗2λ‖BR

,(2.3)

and sup
z,ζ∈BR/2

|g(z)− g(ζ)|
‖z− ζ‖δ

≤ C3(R, δ)‖π∗2λ‖BR
.(2.4)

Proof. Inequality (2.3) holds because of Theorem 2.2.2 in [4]. Further,
recalling the proofs of Lemma 2.2.1 and Theorem 2.2.2, in [4], we have that
inequality (2.4) holds whenever there exists a finite positive constant C4(R)
such that

(2.5) sup
z,ζ∈BR/2

|E(z)− E(ζ)|
‖z− ζ‖

≤ C4(R)‖π∗2λ‖BR
,

for every function E(z) defined according to equation (2.2.7) of [4], p. 70. Let Υ
be the closed interval which joins z and ζ inside the ball BR/2. Then,

|E(z)− E(ζ)| ≤
∫ 1

0

∣∣∣∣ ddtE(tζ + (1− t)z)
∣∣∣∣ dt(2.6)

≤ ‖z− ζ‖ sup
y∈Υ

2∑
k=1

∣∣∣∣ @E@yk
∣∣∣∣ +

∣∣∣∣ @E@yk
∣∣∣∣ .
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Finally, by equation (2.2.9) in [4], we know there exists a finite constant
C4(R) such that all partial derivatives

∣∣∣ @E@yk ∣∣∣ and
∣∣∣ @E@yk ∣∣∣ are less than or equal to

C4(R)
5 ‖π∗2λ‖BR

, for every y ∈ BR/2 and each index k = 1, 2. Notice that D = BR

in equations (2.2.7) and (2.2.9), but y lies inside the smaller ball BR/2. Thus,
equation (2.6) automatically implies that inequalities (2.5) and (2.4) holds, as
we wanted.

The problem is now reduced to estimating the distance ‖z− ζ‖ with respect
to the projections ‖π2(z)− π2(ζ)‖.

Lemma (2.7). Given two points z and ζ in C2 such that ‖z − ζ‖ is less than
or equal to ‖z+ ζ‖, the following inequality holds.

2‖π2(z)− π2(ζ)‖ ≥ ‖z− ζ‖max{‖z‖, ‖ζ‖, ‖z− ζ‖}.

Proof. We know that 2‖z‖ and 2‖ζ‖ are both less than or equal to ‖z+ ζ‖+
‖z − ζ‖. The given hypotheses indicates that ‖z − ζ‖ ≤ ‖z + ζ‖. Hence, the
maximum of ‖z‖, ‖ζ‖ and ‖z − ζ‖ is also less than or equal to ‖z + ζ‖. The
desired result will follows after proving that ‖z − ζ‖ · ‖z + ζ‖ is less than or
equal to 2‖π2(z)− π2(ζ)‖. Setting P1 = z1 − ζ1, P2 = z2 − ζ2, Q1 = z1 + ζ1 and
Q2 = z2 + ζ2, allows us to write the following series of inequalities:

‖z− ζ‖2 · ‖z+ ζ‖2 =

= |P1Q1|2 + |P1Q2|2 + |P2Q1|2 + |P2Q2|2

≤ 4|P1Q1|2 + 4|P2Q2|2 + |P1Q2|2 + |P2Q1|2 − 2|P1Q1P2Q2|
≤ 4|P1Q1|2 + 4|P2Q2|2 + |P1Q2 + P2Q1|2

= 4‖π2(z)− π2(ζ)‖2.

We are now in position to prove Theorem (1.1) for the simplest case N = 2.

Proof. (Theorem (1.1), case N = 2). Suppose that λ =
∑

λkdxk. Then,

(2.8) π∗2λ = [2z1λ1(π2) + z2λ3(π2)]dz1 + [2z2λ2(π2) + z1λ3(π2)]dz2.

We obviously have that |zk| < R for every point z ∈ BR. Hence,

(2.9) ‖π∗2λ‖BR
≤ 3R ‖λ‖π2(BR ).

Let g be a continuous solution to the equation @g = π∗2λ on BR, and suppose
that g satisfies the Hölder estimates given in equations (2.3) and (2.4) of
Theorem (2.2). Recalling the analysis done in the paragraphs situated before
Theorem (2.2), we know there exists a continuous function h defined on π2(BR)
such that h ◦ π2 is equal to g+φ∗g

2 . In particular, @h = λ on π2(BR), and

(2.10) ‖h‖π2(BR ) =
‖g + φ∗g‖BR

2
≤ ‖g‖BR

.

Note that β < 1/2 when N = 2. Given two points x,w ∈ π2(BR), choose
z, ζ ∈ BR such that x = π2(z) and w = π2(ζ). Since π2(ζ) = π2(−ζ), we can
even choose ζ ∈ BR so that ‖z−ζ‖ is less than or equal to ‖z+ζ‖. If z and ζ are
both inside the ball BR/2, we may apply equation (2.4) of Theorem (2.2), and
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the inequality 2‖x−w‖ ≥ ‖z− ζ‖2 given in Lemma (2.7), in order to obtain the
following equation for 0 < β < 1/2

|h(x)− h(w)|
2β‖x − w‖β

≤ |g(z)− g(ζ)|+ |g(−z)− g(−ζ)|
2 ‖z− ζ‖2β(2.11)

≤ C3(R, 2β)‖π∗2λ‖BR
.

On the other hand, suppose, without lost of generality, that z is not inside
the ballBR/2; that is ‖z‖ ≥ R

2 . Lemma (2.7) implies then that ‖x−w‖ is greater
than or equal to R

4 ‖z − ζ‖. Whence, equation (2.3) automatically implies the
following,

(2.12)
|h(x)− h(w)|
‖x − w‖1/2 ≤ 2√

R
C2(R)‖π∗2λ‖BR

.

Finally, considering Theorem (2.2) and equations (2.9) to (2.12), we can de-
duce the existence of a bounded positive constant C1(R,β) such that equa-
tion (1.2) holds.

We close this section with some observations about Theorem (1.1). Firstly,
the procedure presented in this section yields a continuous solution h to the
equation @h = λ. Moreover, we are directly using the estimates given in [4],
but we may use any integration kernel which produces estimates similar to
those presented in equations (2.3) and (2.4) of Theorem (2.2).

On the other hand, the extension of Theorem (1.1) to considering a general
subvariety Σ with an isolated singularity does not seem to be trivial. Theo-
rem (1.1) requires the existence of a branched finite coveringπ : W → Σ, where
W is a nice non-singular manifold and the inverse image of the singular point
is a singleton. It does not seem to be trivial to produce such a branched finite
covering.

3. Proof of Theorem (1.1), case N ≥ 3.

We analyse in this section the general case of the varietyXN ⊂ C3 defined by
x1x2 = xN3 , for any natural number N ≥ 3. Surface XN has an isolated simple
singularity of type AN−1 at the origin, [1], p. 60. Define the automorphisms
φk : C2 → C2 for each natural number k,

(3.1) φk(z1, z2) = (ρkNz1, ρ
−k
N z2) where ρN = e2πi/N .

Consider the natural branched covering πN (z1, z2) = (zN1 , z
N
2 , z1z2) defined

from C2 onto XN . It is easy to see that πN is a branched N-covering, and that
the origin is the only branch point of πN , because the inverse image π−1

N (x) is
a set of the form {φk(z)}1≤k≤N , for every x ∈ XN . Thus, the automorphisms
φk allow us to jump between the different branches of πN . In particular, we
have that πN = φ∗kπN for every k. Besides, the operators π∗N and @ commute,
the proof is based on the same ideas presented at the beginning of section two.

Given a @-closed (0, 1)-differential form λ defined on XN , we obviously have
that @(π∗Nλ) = 0. Suppose the differential equation @g = π∗Nλ has a solution
g in C2. The sum 1

N

∑N
k=1 φ

∗
kg is constant in the fibres of πN (it is invariant

under every pull back φ∗j ), so there exists a continuous function h on XN such
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that π∗Nh is equal to 1
N

∑
φ∗kg. We assert that @h = λ on XN . This result

follows automatically because

π∗N@h = 1
N

∑
@φ∗kg = 1

N

∑
φ∗kπ

∗
Nλ = π∗Nλ.

Let BR ⊂ C2 be an open ball of radius R > 0. If λ is continuous on the
compact set πN (BR), then we can apply Theorem (2.2) in order to get a solution
h which satisfies a Hölder estimate on the ball BR. Obviously, as in the second
section of this paper, the central part of the proof is an estimate of the distance
‖z− ζ‖ with respect to the projections ‖πN (z)− πN (ζ)‖. This estimate is done
in the next lemma. Given two points z and ζ in C2, notation ‖z, ζ‖∞ stands for
the maximum of |z1|, |z2|, |ζ1| and |ζ2|. Moreover, ‖z‖∞ := ‖z, 0‖∞ as well.

Lemma (3.2). Let Ev(N) be the smallest even integer greater than or equal
to N . Given two points z and ζ in C2 such that ‖z − φk(ζ)‖∞ is greater than
or equal to ‖z− ζ‖∞ for every automorphism φk defined in (3.1), the following
inequality holds for δ equal to both N and Ev(N)/2.

(3.3) ‖πN (z)− πN (ζ)‖ ≥ min
{
‖z− ζ‖2

∞
12

,
‖z, ζ‖N−δ∞ ‖z− ζ‖δ∞

(8/3)N−δ 2δ

}
.

Proof. Set z = (a, b), so that πN (z) = (aN , bN , ab). Moreover, given ζ = (s, t),
we can suppose without loss of generality that |a − s| ≥ |b − t|, and so
‖z− ζ‖∞ = |a− s|. We shall prove inequality (3.3) by considering three cases.

Case I. Whenever |b| ≥ |s|+ |a−s|
12 , we have the inequality,

|ab − st| ≥ |a − s| · |b| − |b − t| · |s| ≥ |a − s|2

12
.

Finally, notice that ‖πN (z)− πN (ζ)‖ ≥ |ab− st|, so equation (3.3) holds in this
particular case.

Case II. If |b| ≤ |s|+ |a−s|
12 , and there exists a natural j such that |a− ρjNs|

is less than or equal to |a−s|
2 , we also have,

|a − s| ≤ |a − ρjNs|+ 2|s| ≤ |a − s|
2

+ 2|s|.

Consequently, |s| ≥ |a−s|
4 . On the other hand, we know that ‖z − φj(ζ)‖∞ is

equal to the maximum of |a − ρjNs| and |ρjNb − t|. Recalling the hypotheses
of Lemma (3.2) and this case (II), we have that |a − ρjNs| < |a − s|, and that
‖z − φj(ζ)‖∞ is greater than or equal to ‖z − ζ‖∞ = |a − s|. Hence, both
|ρjNb − t| ≥ |a − s| and

|ab − st| ≥ |ρjNb − t| · |s| − |a − ρjNs| · |b|

≥ |a − s| · |s|
2

− |a − s|2

24
≥ |a − s|2

12
.

Notice that |a− ρjNs| · |b| is less than or equal to |a−s|·|s|
2 + |a−s|2

24 because of the
hypotheses of this case (II). We may conclude that equation (3.3) holds in this
particular case as well, after recalling that ‖πN (z)− πN (ζ)‖ is greater than or
equal to |ab − st|.
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Case III. If |b| ≤ |s| + |a−s|
12 , and |a − ρkNs| ≥

|a−s|
2 for every natural k, we

automatically have the following inequality

|aN − sN | =
N∏
k=1

|a − ρkNs| ≥
|a − s|N

2N
.

Finally, we know that ‖z−ζ‖∞ = |a−s|, and that ‖πN (z)−πN (ζ)‖ is greater
than or equal to |aN − sN |. The previous inequalities show that equation (3.3)
holds for δ = N . On the other hand, when δ = Ev(N)/2, it is easy to deduce
the existence of a subset J of {1, 2, . . . ,N} composed of at least N−δ elements
and which satisfies

(3.4) |a − ρjNs| ≥ max
{
|a|, |s|, |a − s|√

2

}
for each j ∈ J.

The set J can be built as follows. We may suppose, without lost of generality,
that a is real and a ≥ 0, for we only need to multiply both a and s by an
appropriate complex number θ with |θ| = 1. Thus, the set J is composed of
all exponents 1 ≤ j ≤ N which satisfy <(ρjNs) ≤ 0. It is easy to see that
|a − ρjNs|

2 is greater than or equal to |a|2 + |s|2, for every j ∈ J . Moreover,
J is composed of at least N/2 elements when N is even, and of at least N−1

2
elements when N is odd. Equation (3.4) follows automatically because |a|2,
|s|2 and |a−s|2

2 are all less than or equal to |a|2 + |s|2. The hypotheses of this
case (III), and equation (3.4), directly imply that

2|a − ρjNs| ≥ |s|+ |a − s|√
2

≥ |b|, ∀j ∈ J.

Moreover, since 5
3 > 13

12

√
2, and we are supposing from the beginning of this

proof that |a − s| ≥ |b − t|, we may also deduce the following inequality,

8|a − ρjNs|
3

> |s|+ |a − s|
12

+ |b − t| ≥ |t|, ∀j ∈ J.

Finally, considering all the results presented in previous paragraphs, equa-
tion (3.4) and the hypotheses of this case (III), we can deduce the desired
result,

|aN − sN | =
N∏
k=1

|a − ρkNs| ≥
‖z, ζ‖N−δ∞ |a − s|δ

(8/3)N−δ 2δ

where δ = Ev(N)/2, the norm ‖z− ζ‖∞ = |a− s| and ‖z, ζ‖∞ is the maximum
of |a|, |b|, |s| and |t|. We can conclude that equation (3.3) holds when δ is equal
to N and Ev(N)/2.

We are now in a position to complete the proof of Theorem (1.1). Notice that
Lemma (3.2) automatically implies the following inequalities, whenever z and
ζ lie inside the compact ball BR, and δ = N ,

‖πN (z)− πN (ζ)‖ ≥ ‖z− ζ‖N∞
2N

min
{

1
3RN−2 , 1

}
≥ ‖z− ζ‖N(√

8
)N min

{
1

3RN−2 , 1
}
.
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Proof. (Theorem (1.1), case N ≥ 3). We shall follow step by step the
proof of Theorem (1.1), case N = 2, presented in section two; so we shall only
indicate the main differences. Let g be a continuous solution to the equation
@g = π∗λ on BR which satisfies the Hölder estimates given in equations (2.3)
and (2.4). Recalling the analysis done at the beginning of this section, we know
there exists a continuous function h defined on π(BR) such that h ◦ π is equal
to 1

N

∑
φ∗kg. In particular, @h = λ on π(BR), and ‖h‖πN (BR ) is less than or equal

to ‖g‖BR
. Moreover, working as in equations (2.8) and (2.9), we may deduce

the existence of a finite positive constant C5(R) such that ‖π∗Nλ‖BR
is less than

or equal to C5(R)‖λ‖πN (BR ).
Given two points x,w ∈ π(BR), choose z, ζ ∈ BR such that x = πN (z) andw =

πN (ζ). Since πN (ζ) = πN (φk(ζ)) for every automorphism φk defined in (3.1), we
can even choose ζ ∈ BR so that ‖z−ζ‖∞ is less than or equal to ‖z−φk(ζ)‖∞ for
every φk. A direct application of Lemma (3.2), with δ = N , yields the existence
of a finite positive constant C6(R) such that ‖x−w‖ is greater than or equal to
C6(R)‖z− ζ‖1/β. Recall that 0 < β < 1/Ev(N) and N ≥ 3. Thus, if z and ζ are
both inside the ball BR/2, we may apply equation (2.4) in order to deduce that
|h(x)−h(w)|
‖x−w‖β is less than or equal to C3(R,Ev(N)β)

Cβ
6 (R)

‖π∗λ‖BR
.

On the other hand, suppose, without lost of generality, that z is not inside
the ball BR/2. a direct application of Lemma (3.2), with δ = Ev(N)

2 , yields the
existence of a finite positive constant C7(R) such that ‖x − w‖ is greater than
or equal to C7(R)‖z − ζ‖δ. Whence, equation (2.3) automatically implies that
|h(x)−h(w)|
‖x−w‖β is less than or equal to C2(R)

Cβ
7 (R)

‖π∗λ‖BR
as well.

The analysis done in the previous paragraphs automatically implies the
existence of a finite positive constant C1(R) such that equation (1.2) holds for
every N greater than or equal to three.

Finally, as we have already said at the end of section two, the proof of
Theorem (1.1) works perfectly if we apply Theorem (2.2) of Henkin and Leiterer,
or any other integration kernel which produces estimates similar to those posed
in equations (2.3) and (2.4). For example, the hypotheses on λ can be relaxed
in Theorem (1.1), to consider (0, 1)-differential forms λ which are bounded
and continuous on π(BR) \K, for some compact set K ⊂ BR of zero-measure.
Besides, the results presented in Theorem (1.1) hold as well, if we consider
an arbitrary strictly pseudoconvex domain D, with smooth boundary and the
origin in its interior, instead of the open ball BR. In this case, the ball BR/2
used in equation (2.4) of Theorem (2.2) would be a sufficiently small ball Br

whose closure is contained in the interior of D.
On the other hand, the work presented in this paper is strongly based on

the existence of a branched finite covering πN from C2 onto XN , such that
the inverse image of the singular point π−1

N (0) = {0} is a singleton. This
property allows us to get the estimates presented in Lemmas (2.7) and (3.2),
which are essential for this paper. It is obvious to consider a blow-up mapping
η : W → XN instead of the finite covering πN . In any case, a blow-up is
a 1-covering everywhere, except at the singular point 0. However, since the
inverse image η−1(0) is not a singleton, and it is not even finite in general, we
have strong problems for calculating a Hölder solution to the equation @h = λ,
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unless we introduce stronger hypotheses. We finish this section by analysing
the case of a blow-up.

Remark. Let Σ be a variety with an isolated singularity at σ0 ∈ Σ, and η :
W → Σ be a holomorphic blow-up of Σ at σ0, such thatW is a smooth manifold.
Given a @-closed (0, 1)-form λ defined on Σ minus σ0, we automatically have
that η∗λ is also @-closed on W minus η−1(σ0). Thus, suppose there exists a
continuous solution g : W → C to the equation @g = η∗λ. Since η is a blow-up,
we automatically have that η−1 is well defined on Σ \ {σ0}, and so λ is equal
to @(g ◦ η−1) there.

Define h := g ◦ η−1. Unless g is constant on the inverse fibre η−1(σ0), the
function h does not have a continuous extension to σ0, and does not satisfy
any Hölder condition in a neighbourhood of σ0. Suppose there exists a pair of
points a and b in η−1(σ0) such that g(a) 6= g(b). Besides, take {am} and {bm} a
pair of infinite sequences in W \ η−1(σ0) which respectively converge to a and
b. Notice that both η(am) and η(bm) converge to the same point σ0. However,
g(am) and g(bm) converge to different points, for g(a) 6= g(b). Hence, given any
metric ∆ on Σ, which defines the topology, we have that

lim sup
m

|h ◦ η(am)− h ◦ η(bm)|
∆[η(am), η(bm)]β

= ∞, ∀β > 0.

That is, in order to introduce Hölder conditions on h := g◦η−1, it is essential
that the solution to equation @g = η∗λ is constant on the inverse fibre of the
singular point η−1(σ0).

4. Surfaces with simple singularities of type DN+2

We finish this paper by solving the @-equation on a neighbourhood of the
origin in the subvariety YN ⊂ C3, defined by the polynomial y2

1y3 + y2
2 = yN+1

3 .
The surface YN has an isolated simple (rational double point) singularity of
type DN+2 at the origin, for any natural number N ≥ 2, [1], p. 60. We
extend the results presented in Theorem (1.1), by introducing a branched 2-
covering defined from X2N := [x1x2 = x2N

3 ] onto the surface YN . Consider the
holomorphic mapping η2 : X2N → YN , and the pair of matrices P and Q, given
by the respective equations,

η2(x1, x2, x3) =
(
x1 + x2

2
, x3

x1 − x2

2i
, x2

3

)
,(4.1)

P =

 0 1 0
1 0 0
0 0 −1

 , Q =
1
2

 1 1 0
−i i 0
0 0 2

 .(4.2)

It is easy to see that η2(x) = η2(Px) for every x ∈ X2N . Moreover, η2 is
a branched 2-covering, and the origin is the unique branch point, because
the inverse image η−1

2 (y) is a set of the form {x, Px}, for every y ∈ YN . For
example, the inverse image of (y1, 0, 0) is composed of two points: (2y1, 0, 0)
and (0, 2y1, 0). We have already defined a branched covering π2N from C2 onto
X2N , so the composition η2 ◦ π2N is indeed a covering from C2 onto YN . The
branch covering η2 is a central part in the following result.
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Theorem (4.3). Given an exponent 0 < β2 < 1/(4N) and an open ball
BR ⊂ C2 of radius R > 0 and centre in the origin, define the open set ER :=
η2(π2N (BR)) in YN . There exists a finite positive constant C11(R,β2) such
that: for every continuous (0, 1)-differential form ℵ defined on the compact set
ER ⊂ YN , and @-closed on ER, the equation @f = ℵ has a continuous solution f
on ER which also satisfies the following Hölder estimate

(4.4) ‖f‖ER
+ sup

y,ξ∈ER

|f (y)− f (ξ)|
‖y − ξ‖β2

≤ C11(R,β2)‖ℵ‖ER
.

The proof of this theorem follows exactly the same ideas and steps presented
in the proof of Theorem (1.1), case N = 2, so we do not include it. Given a
(0, 1)-differential form ℵ continuous on ER ⊂ YN , and @-closed on ER. We have
that η∗2ℵ is also continuous on π2N (BR), and @-closed on π2N (BR). Therefore,
we can apply Theorem (1.1), in order to obtain a continuous solution h to the
differential equation @h = η∗2ℵ, which also satisfies the Hölder conditions given
in equation (1.2). There exists a continuous function f on ER such that η∗2f is
equal to h+ψ∗h

2 , and so @f = ℵ, as we wanted. Finally, inequality (4.4) follows
from equation (1.2), after noticing that there exists a pair of finite positive
constants C8(R) and C9(R) such that

‖f‖ER
≤ ‖h‖π2N (BR ), ‖η∗2ℵ‖π2N (BR ) ≤ C8(R)‖ℵ‖ER

,

and |f (y)−f (ξ)|
‖y−ξ‖β2

is also less than or equal to C9(R)‖η∗2ℵ‖π2N (BR ) for every y and ξ

in ER. We obviously need an estimate of ‖x − w‖2, with respect to the projec-
tions ‖η2(x) − η2(w)‖, in order to show that the inequality above holds. This
estimate is presented in the following Lemma (4.5). In conclusion, the proof of
Theorem (4.3) follows the same ideas and steps of the proof of Theorem (1.1),
case N = 2, we only need to apply Theorem (1.1) instead of Theorem (2.2), and
the following Lemma (4.5) instead of Lemma (2.7).

Lemma (4.5). Let x and w be two points in X2N whose norms ‖x‖ and ‖w‖
are both less than or equal to a finite constant ρ > 0. If the distance ‖Q(w−Px)‖
is greater than or equal to ‖Q(w−x)‖, for the matrices P and Q defined in (4.2),
then the following inequality holds.

‖η2(x)− η2(w)‖ ≥ C12(ρ)‖x − w‖2,(4.6)

where C12(ρ) =
1
80

min
{

4,
5
3ρ

,
1

ρ2N−2N

}
.

Proof. Introducing the new variables (a, b, c) := Qx and (s, t, u) := Qw, we
have that a2 + b2 = c2N and QPx = (a,−b,−c) for every x ∈ X2N . Moreover,

(4.7) ‖η2(x)− η2(w)‖2 = |a − s|2 + |bc − tu|2 + |c2 − u2|2.
A main step in this proof is to shown that the following inequality holds,

(4.8) ‖η2(x)− η2(w)‖ ≥ 16C12(ρ)‖π2(b, c)− π2(t, u)‖,

where π2(b, c) = (b2, c2, bc) was defined in the introduction of this paper, and
C12(ρ) is given in equation (4.6) above. We know that ‖Q(w − Px)‖ is greater
than or equal to ‖Q(w− x)‖, according to the hypotheses of this lemma, so it is
easy to deduce that ‖t+ b, u+ c‖ is also greater than or equal to ‖t− b, u− c‖,
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because QPx is equal to (a,−b,−c). Therefore, if equation (4.8) holds, a direct
application of Lemma (2.7) yields

(4.9) ‖η2(x)− η2(w)‖ ≥ 8C12(ρ)(|b − t|2 + |c − u|2).

On the other hand, we can easily calculate the following upper bound for
|a|,
(4.10) |a| ≤ ‖Qx‖ ≤ ‖x‖ ≤ ρ.

A similar upper bound |s| ≤ ρ holds as well. Hence, recalling equation (4.7),
we have that ‖η2(x)−η2(w)‖ is greater than or equal to |a−s| ≥ |a−s|2

2ρ . Adding
together the inequality presented in the previous statement and equation (4.9)
yields the desired result, noting that 1

2ρ > 8C12(ρ) and 2‖ξ‖ ≥ ‖Q−1ξ‖ for
ξ ∈ C3,

2‖η2(x)− η2(w)‖ ≥ 8C12(ρ)‖Q(x − w)‖2

≥ 2C12(ρ)‖w− x‖2.

We may then conclude that inequality (4.6) holds, as we wanted. We only
need to prove that equation (4.8) is always satisfied, in order to finish our
calculations; and we will prove this by considering two complementary cases.

Case I Whenever 3|c2 −u2| is greater than or equal to |b2−t2|
ρ2N−2N

, the following
inequality holds,

|c2 − u2|2 ≥ 16 |c2 − u2|2

25
+

|b2 − t2|2

(5ρ2N−2N)2 .

Thus, in this particular case, inequality (4.8) follows directly from equa-
tion (4.7), because 1

5ρ2N−2N
and 4/5 are both greater than or equal to 16C12(ρ).

Case II Whenever |b2−t2|
ρ2N−2N

is greater than or equal to 3|c2 − u2|, we proceed
as follows. The absolute values |a| and |c| are both bounded by ‖Qx‖ ≤ ρ,
according to equation (4.10); the same upper bound can be calculated for |s|
and |u|. Whence, the following series of inequalities hold:

2|b2 − t2|/3 ≤ |b2 − t2| − ρ2N−2N |c2 − u2|
≤ |b2 − t2| − |c2N − u2N |
≤ |a2 − s2| ≤ 2ρ|a − s|.

Recall that a2 + b2 = c2N and that (ξN − 1) is equal to the product of (ξ − 1)
times the sum

∑N−1
k=0 ξk. Inequality (4.8) follows then from equation (4.7), after

noticing that 16C12(ρ)|b2 − t2| is less than or equal to |a − s|, and obviously,
16C12(ρ) is also less than one.
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A NOTE ON ASYMPTOTIC INTEGRATION OF SECOND ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

OCTAVIAN G. MUSTAFA AND YURI V. ROGOVCHENKO

Abstract. The paper is concerned with the asymptotic behavior of solutions
to a second order nonlinear differential equation u′′ + f (t, u) = 0. Using the
Banach contraction principle, we establish global existence of solutions which
satisfy u(t) = At + o(tν) as t→ +∞, where A ∈ R and ν ∈ (0, 1].

1. Introduction

Asymptotic behavior of solutions of nonlinear second order differential equa-
tions

(1.1) u′′ + f (t, u, u′) = 0, t ≥ t0 ≥ 1

and

(1.2) u′′ + f (t, u) = 0, t ≥ t0 ≥ 1

has always been the subject of intensive research. Many papers published
recently are concerned with existence of solutions to Eqs. (1.1) and (1.2) which
behave at infinity like solutions of the simplest second order differential equa-
tion, u′′ = 0, see, for instance, [1]-[9], [11]-[22]. A thorough study of the prop-
erties of such solutions, called asymptotically linear [5] or linear-like [16], is
important, for instance, for the theory of oscillation of ordinary and functional
differential equations, see the references in [9], as well as for the study of exis-
tence of positive solutions of elliptic problems in exterior domains, cf. [2] and
[21]. We also note that this type of asymptotic behavior has been addressed
recently by the authors in connection with Weyl’s limit circle and limit point
classification of differential operators in the theory of singular Sturm-Liouville
problems [10].

Two particular types of behavior of asymptotically linear solutions of Eqs.
(1.1) and (1.2) have been studied more extensively. Namely, Constantin [1],
Rogovchenko and Rogovchenko [16], Yin [21] and Zhao [22] explored conditions
which guarantee asymptotic representation

(1.3) u(t) = At + o(t) as t → +∞,

whereas Lipovan [5], Mustafa [8] and the authors [9] established conditions
for a more precise asymptotic development

(1.4) u(t) = At + B + o(1) as t → +∞,

for some real constants A and B.

2000 Mathematics Subject Classification: 34A34, 34E05, 47H10.
Keywords and phrases: nonlinear differential equation, asymptotic integration, asymptotic
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Using a fixed point argument and a Wronskian-type representation similar
to those exploited in [11], [12], the first author established recently in [8] ex-
istence of solutions of Eq. (1.2) which, for a given µ ∈ (0, 1), have asymptotic
representation

(1.5) u(t) = At + o(tµ) as t → +∞.

As pointed out by Lipovan [5] and the authors [9], asymptotic formula (1.3)
embraces large classes of solutions to Eq. (1.2), including those satisfying (1.4)
or, in case this is not possible, solutions with the asymptotic representation
(1.5).

It is known that Eq. (1.2) may possess solutions with the asymptotic devel-
opment (1.4) in some situations where standard results on asymptotic integra-
tion guarantee only existence of solutions that behave at infinity as (1.3) or, at
most, as (1.5), see the details in our paper [9, pp. 364-365]. Furthermore, a
class of solutions with asymptotic representation (1.5) contains also solutions
which satisfy (1.4). Therefore, in order to complete the study of solutions with
asymptotic expansions (1.3)-(1.5) and understand completely relationship be-
tween all three classes, it is natural to explore existence of solutions of Eq.
(1.2) that can be expressed in the form (1.5), but do not satisfy (1.4). The first
attempt to answer this question has been made by the authors in [13]. To sim-
plify the formulation of the result we adapt from the cited paper, we introduce
two constants

θ(n, t0) :=
∫ +∞

t0

sna(s)ds and γ := tδ−(1+ε)c
0 θ(m + (1 + ε)c, t0).

Application of [13, Theorem 2.2] to the celebrated Emden-Fowler equation

(1.6) u′′ + a(t) |u|m sgn u(t) = 0, t ≥ 1, m ≥ 1,

frequently encountered in applications, leads to the following proposition.

Theorem (1.7). Let c ∈ (0, 1), ε ∈ (0, c−1 − 1), δ ∈ (c, (1 + ε)c) and let a(t)
be a continuous, nonnegative function that does not vanish eventually. Assume
also that

(i) θ(m + (1 + ε)c, 1) < +∞;
(ii) θ(m, t0) < cm−1;
(iii) θ(m + (1 + ε)c, t0) < ctδ

0.
Then, for every A ∈

(
0, 1− γ(ctδ

0)−1
)

, there exists a solution u(t) of Eq. (1.6)
with the asymptotic representation

(1.8) u(t) = At + w(t) as t → +∞,

where w(t) = o(t1−δ) and, for all t ≥ t0,

Am

[∫ t

t0

sm+(1+ε)ca(s)ds + t

∫ +∞

t

sm+(1+ε)c−1a(s)ds

]
≤ w(t) ≤ γ

(1 + ε)c
t(1+ε)c−δ
0 t1−(1+ε)c.

It is clear that for the solution u(t) whose existence is established in Theorem
(1.7), one has

lim inf
t→+∞

w(t) ≥ B = Amγt(1+ε)c−δ
0 > 0,
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which, however, does not rule out the possibility that u(t) has the asymptotic
development (1.4).

In this note, using a modification of the Hale-Onuchic technique [4] that
has been successfully applied by the first author [7] to investigate asymptotic
behavior of solutions with prescribed decay of the first derivative, we establish,
under rather general assumptions, existence of global solutions to Eq. (1.2) that
satisfy (1.5) and can be written in the form (1.8), where

(1.9) lim
t→+∞

w(t) = +∞,

which, obviously, excludes for these solutions possibility of asymptotic repre-
sentation (1.4).

2. Asymptotic behavior of solutions

Theorem (2.1). Let A > 0, ν ∈ [0, 1), u0 ∈ R and α, β ∈ C([t0, +∞); [0, +∞))
be two functions such that α(t) ≤ β(t) for all t ≥ t0 and β(t) = o

(
t−ν
)

as t → +∞.
Introduce the set DA,u0 by

DA,u0 =
{

u ∈ C1([t0, +∞); R) | α(t) ≤ u′(t)−A ≤ β(t)

for all t ≥ t0, u(t0) = u0} ,

and assume that for all t ≥ t0 and u ∈ DA,u0 ,

α(t) ≤
∫ +∞

t

f (s, u(s))ds ≤ β(t).

Suppose further that for all t ≥ t0 and any u1, u2 ∈ DA,u0 ,

|f (t, u1(t))− f (t, u2(t))| ≤ k(t)
t
|u1(t)− u2(t)| ,

where a function k ∈ C([t0, +∞); [0, +∞)) satisfies

(2.2)
∫ +∞

t0

k(t)dt < 1− ν.

Then there exists a unique solution of the initial value problem{
u′′ + f (t, u) = 0, t ≥ t0 ≥ 1,
u(t0) = u0,

defined on [t0, +∞) such that

u(t) = At + o(t1−ν) as t → +∞,

α(t) ≤ u′(t)−A ≤ β(t), t ≥ t0.

If, in particular, ∫ +∞

t0

α(t)dt = +∞,

one has
lim

t→+∞
[u(t)−At] = +∞.
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Proof. Define the distance between the functions u1 and u2 in DA,u0 by

d(u1, u2) = sup
t≥t0

[
tν |u′1(t)− u′2(t)|

]
.

Then the metric space E = (DA,u0 , d) is complete. For u ∈ DA,u0 and t ≥ t0,
introduce the operator T : DA,u0 → C1([t0, +∞); R) by the formula

(2.3) (Tu)(t) = u0 + A(t− t0) +
∫ t

t0

∫ +∞

s

f (τ, u(τ))dτds.

It is not hard to see that T is well-defined, that is, TDA,u0 ⊆ DA,u0 . Furthermore,
we shall prove that T is a contraction in DA,u0 . Let

λ =
1

1− ν

∫ +∞

t0

k(s)ds.

It follows from the estimate

|(Tu1)′(t)− (Tu2)′(t)| ≤
∫ +∞

t

k(τ)
τ
|u1(τ)− u2(τ)|dτ

≤
∫ +∞

t

k(s)
s

∫ s

t0

|u′1(τ)− u′2(τ)|dτds

≤
(∫ +∞

t

k(s)
s

∫ s

t0

1
τν

dτds

)
d(u1, u2)

≤ t−ν

(
1

1− ν

∫ +∞

t0

k(s)ds

)
d(u1, u2) = t−νλd(u1, u2)

that, for u1, u2 ∈ DA,u0 ,

d(Tu1, Tu2) ≤ λd(u1, u2).

By virtue of (2.2), λ ∈ (0, 1), and the existence of a solution follows now from
the Banach contraction principle. Furthermore, for all t ≥ t0,

u(t)−At = u0 −At0 +
∫ t

t0

∫ +∞

s

f (τ, u(τ))dτds ≥ u0 −At0 +
∫ t

t0

α(s)ds,

which yields

lim
t→+∞

[u(t)−At] =
∫ +∞

t0

α(t)dt = +∞.

The proof is complete.

Application of Theorem (2.1) to Emden-Fowler equation (1.6) leads to the
proposition which complements results established in [3, 7, 13, 20]. In what
follows, C := t−(ν+ε)

0 θ(m + ν + ε, t0), where θ is defined as above.

Corollary (2.4). Let ν ∈ [0, 1), ε ∈ (0, 1 − ν), and let a(t) be a continuous,
nonnegative function that does not vanish eventually. Assume that

(a) θ(m + ν + ε, 1) < +∞;
(b) θ(m, t0) < m−1 (1− ν) ;
(c) θ(m + ν + ε, t0) < tν+ε

0 .
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Then, for every A, 0 < A < 1 − C, there exists a solution u(t) of Eq. (1.6) with
the asymptotic representation (1.8), where w(t) = o(t1−ν) as t → +∞ and, for
all t ≥ t0,

Am

∫ t

t0

∫ +∞

s

τma(τ)dτds ≤ w(t) ≤
∫ t

t0

∫ +∞

s

τma(τ)dτds.

In particular, w(t) satisfies (1.9) provided that

(d) θ(m + 1, 1) = +∞.

Proof. Let u0 = At0. For t ≥ t0, introduce the functions α(t) and β(t) by

α(t) = Am

∫ +∞

t

sma(s)ds and β(t) =
∫ +∞

t

sma(s)ds.

Taking into account (2.3) and the fact that(
t

t0

)ν+ε

β(t) ≤ t−(ν+ε)
0

∫ +∞

t

sm+ν+εa(s)ds ≤ C,

we deduce that for all t ≥ t0 and all u ∈ DA,At0 ,

α(t) ≤
∫ +∞

t

a(s)
(

As +
∫ s

t0

α(τ)dτ

)m

ds ≤
∫ +∞

t

a(s)[u(s)]mds

= (Tu)′(t)−A ≤
∫ +∞

t

a(s)
(

As +
∫ s

t0

β(τ)dτ

)m

ds

≤
∫ +∞

t

a(s)

(
As +

∫ s

t0

C

(
t0

τ

)ν+ε

dτ

)m

ds

≤
∫ +∞

t

sma(s)(A + C)mds ≤ β(t).

Furthermore, for any u1, u2 ∈ DA,At0 and for all t ≥ t0, one has

|f (t, u1(t))− f (t, u2(t))| = tma(t)
∣∣∣∣(u1(t)

t

)m

−
(

u2(t)
t

)m∣∣∣∣
≤ mtma(t)

t
sup
s≥t0

[(
1
s

(
As +

∫ s

t0

β(τ)dτ

))m−1
]
|u1(t)− u2(t)|

≤ k(t)
t
|u1(t)− u2(t)| ,

where k(t) = mtma(t). The conclusion follows now from Theorem (2.1).

We conclude the paper by noticing that it is not difficult to see that, given
two positive constants c1 < c2, any continuous function a(t) such that

c1t−m−2 ≤ a(t) ≤ c2t−m−2, t ≥ 1,

will satisfy conditions (a)-(d) of Corollary (2.4).



210 OCTAVIAN G. MUSTAFA AND YURI V. ROGOVCHENKO

Acknowledgement

This research has been supported in part by the Abdus Salam International
Centre for Theoretical Physics, Trieste, Italy through the Young Collaborators
Programme (O.G.M.) and Associate Membership Programme (Yu.V.R.) The au-
thors are grateful to three referees for useful suggestions that helped to im-
prove presentation of the results.

Received June 03, 2005

Final version received April 12, 2006

Octavian G. Mustafa
Department of Mathematics
University of Craiova,
Al. I. Cuza 13 Craiova
Romania

Yuri V. Rogovchenko
Department of Mathematics
Eastern Mediterranean University
Famagusta, TRNC, Mersin 10
Turkey
yuri.rogovchenko@emu.edu.tr

References

[1] A. Constantin, On the asymptotic behavior of second order nonlinear differential equations,
Rend. Mat. Appl. 7 (1993), 627-634.

[2] A. Constantin and Gab. Villari, Positive solutions of quasilinear elliptic equations in two-
dimensional exterior domains, Nonlinear Anal. 42 (2000), 243-250.
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POINCARÉ SERIES AND INSTABILITY OF EXPONENTIAL MAPS

P. MAKIENKO AND G. SIENRA

Abstract. We relate the properties of the postsingular set for the exponential
family regarding stability questions. We calculate the action of the Ruelle
operator for the exponential family, and we prove that if the asymptotic (or
singular) value is a summable point and its orbit satisfies certain topological
conditions, the map is unstable. Hence there are no Beltrami differentials in
the Julia set. We also show that if the Julia set is the whole sphere and the
postsingular set is a compact set, then the singular value is summable and
the map is unstable.

1. Introduction

If f is a transcendental entire map, we denote by fn, n ∈ N, then-th iterate of
f and write the Fatou set as F (f ) = {z ∈ C; there is an open setU containing z
in which {fn} is a normal family}. The complement of F (f ) is called the Julia
set J (f ). We say that f belongs to class Sq if the set of singularities of f−1

contains at most q points.
Two entire maps g and h are topologically equivalent if there exist homeo-

morphisms ϕ, ψ : C → C such that ϕ ◦ g = h ◦ ψ. Given a map f , let us denote
by Mf the set of all entire maps topologically equivalent to f .

It is proved in [5] thatMf has the structure of a (q+2)-dimensional complex
manifold. The Affine group acts on the space Mf and as it is shown in [5] the
space Nf = Mf/{Affine group} is a q-dimensional complex orbifold.

A measurable field of tangent ellipses of bounded eccentricity determines
a complex structure on the sphere. This ellipse field is recorded by a (−1, 1)-
form µ(z)dzdz with ||µ||∞ < 1, a Beltrami differential. If an entire map f is
holomorphic in a complex structure defined by the Beltrami differential µ,
then µ is the invariant Beltrami differential. Since the sphere admits a unique
complex structure, there is a homeomorphism φ : C → C such that µ is the
pullback of the standard structure and the map fφ = φ ◦ f ◦ φ−1 is an entire
map.

The nonexistence of an invariant Beltrami differential (invariant line field)
on the Julia set is related to the Fatou conjecture, see [9].

Now, let us consider the main hero of this paper – The Exponential Family:
E = {fλ(z) = exp(λz), λ ∈ C∗}.ThenNf1

∼= E,where f1 = exp(z).The map fλ0 is
structurally stable if for any λ close enough to λ0 there exists a quasiconformal
homeomorphism φλ, such that fλ = φλ ◦ fλ0 ◦ φ

−1
λ .

2000 Mathematics Subject Classification: 37F10, 37F45.
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Due to Mañé, P. Sad, D. Sullivan (see [10]) and A. Eremenko, M. Lyubich
(see [5]) the following three items are equivalent for E:

Fatou conjecture
There are no invariant Beltrami differentials supported by the Julia set
If J (fλ) = C, then fλ is structurally unstable.

In 1985 R. Devaney (see [2]) proved that exp(z) is structurally unstable.
Afterwards, A. Douady and L. R. Goldberg (see [4]) showed that the maps
λ exp(z), λ ≥ 1 are topologically unstable. Zhuan Ye (see [13]) proved that fλ is
structurally unstable if limn→∞ fnλ (0) = ∞.

In this paper we follow the approach of papers [1], [6] and [7]–[8] (case
of rational maps) and [3] (case of transcendental entire maps with algebraic
singularities only) were we generalize the above mentioned results.

In holomorphic dynamics the stability of a map depends on the behavior of
the postsingular set, denoted in this paper by Xλ = {∪n≥1fnλ (0)}. In the case
of the Exponential family we have only one asymptotic singularity, being a
different situation than in [3]; however our tools can also be applied in this
case to obtain concrete results.

Let us start with fλ ∈ E whose Julia set is equal to the plane. Then we have
the following simple possibilities:

1). limn→∞ |(fnλ )′(0)| = 0,
2). there exists a subsequence {ni} such that limi→∞ |(fniλ )′(0)| = ∞,
3). there exists a subsequence {ni} such that limi→∞ |(fniλ )′(0)| = M < ∞

and M 6= 0.

We believe that the first case contains a contradiction, since in this situation
the forward orbit of 0 should converge to an attractive cycle and hence 0 /∈
J (fλ). We show this conjecture under very strong additional conditions as an
illustration that this conjecture is not completely false (see theorem 1).

As for the last two cases, the Fatou conjecture claims that fλ is an unstable
map.

Definition (1.1). Let λ ∈ C∗, then the Poincaré series for fλ is the following
formal series

Pλ = 1 +
1
λ

∞∑
i=2

1

(f i−2
λ )′(1)

.

Let

Sn = 1 +
1
λ

n∑
i=2

1

(f i−2
λ )′(1)

be the partial sum of the Poincaré series Pλ. Thus we have the following theo-
rem and proposition.

Theorem (1.2). 1). If there exists a sequence {ni} such that (fniλ )′(1) → ∞
and limi→∞ sup |Sni | > 0, then fλ is unstable.

2). If there exists a sequence {ni} such that limi→∞(fniλ )′(1) = c, where c 6= 0
is a constant and limi→∞ sup |Sni | = ∞, then fλ is unstable.

3). Let limn→∞(fnλ )′(1) = 0, and suppose that one of the following conditions
holds:



POINCARÉ SERIES AND INSTABILITY OF EXPONENTIAL MAPS 215

limn→∞ sup |(fn+1
λ )′(1)|
|(fn

λ
)′(1)| <∞, or

limn→∞ inf |(fn+1
λ )′(1)|
|(fn

λ
)′(1)| > 0.

Then F (fλ) 6= ∅.

Proposition (1.3). There is no map fλ ∈ E, with J (fλ) = C satisfying that
limn→∞ |fn′λ (1)| = C > 0.

The next theorems discuss the best conditions on the Poincaré series and
on the postsingular set for the map to be unstable.

Definition (1.4). A point a ∈ C is called “summable” if and only if the series∑
i=0

1
(f iλ)′(a)

is absolutely convergent. Note that the point z = 0 is summable if and only if
the Poincaré series Pλ is absolutely convergent.

Definition (1.5). Let W ⊂ E be the subset of exponential maps fλ with
summable singular point 0 ∈ J (fλ), satisfying one of the following conditions:

1). m(Xλ) = 0, where m is the Lebesgue measure.
2). The diameters of the components of C\Xλ are uniformly bounded below

away from zero.

Theorem (1.6). Let fλ ∈ W . Then fλ is an unstable map, and hence there is
no invariant Beltrami differential on its Julia set.

Theorem (1.7). Let fλ ∈ E, with J (fλ) = C. Then
1). If 0 /∈ Xλ (i.e. 0 is non-recurrent), there exists a subsequence nk such that

(fnk )′(1) →∞;
2). If Xλ is bounded, the singular point z = 0 is summable for fλ and

m(Xλ) = 0.

In section 2 we discuss and prove Theorem (1.7) and Proposition (1.3).
Finally, we have the following

Corollary. If Xλ is bounded and J (f ) = C, then f is unstable.

In section 3 we consider the basic definitions and properties of the Ruelle
operator R∗λ of fλ and we study the potential of deformations and as a conse-
quence we prove Theorem (1.2).

The rest of the paper is devoted to prove Theorem (1.6) for which we have
the following strategy:

1). Assuming that fλ is a stable map and that 0 is a summable point, we
prove in Lemma (5.1) that R∗λ (ϕ(z)) = ϕ(z). Here
ϕ(z) :=

∑
n≥0

1
(fn
λ

)′(fλ(1))γfnλ (fλ(1))(z) and γa(z) = a(a−1)
z(z−1)(z−a) , as in section 4.

2). In Propositon (5.7), we prove that if ϕ 6= 0 on Y = C − Xλ then fλ
is unstable

3). We prove in Proposition (5.9) that ϕ 6= 0 identically on Y if fλ ∈ W .

The Corollary is proved at the end of this paper.
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We would like to remark that Lemma (5.3), Corollary (4.3), Propositions
(5.7) and (5.9) remain basically as in the paper [3]. We have included these
results for reader’s convenience.

2. Postsingular set and dynamics

Mañé has a result establishing expansion properties of rational maps on
the compact subsets of their Julia sets, which are far away from the parabolic
points and the ω-limit sets of recurrent critical points. Next we will consider
this result for our map fλ.

Remark (2.1). Note that if fnλ (0) → ∞ then fλ is summable. To see this,
consider

| 1
(fn+1
λ )′(a)

|/| 1
(fnλ )′(a)

| = | 1
λfnλ (a)

|

and choose a = fλ(1). Since the orbit of 0 tends to ∞ this fraction converges to
zero, so the series

∑ 1
(fn
λ

)′(1) converges absolutely.

(2.2) Proof of Theorem (1.7). The proof of the theorem follows exactly the
proof in [12] by Shishikura and Tan Lei. For completeness we will state the
lemmas used in the above mentioned paper, restricted to the situation of our
case. Hence in order to prove our Theorem (1.7), we will follow their arguments.

Denote by d(z, E) the Euclidean distance between a point z ∈ C and a closed
subset E ⊂ C. Let dY (z,X) be the Poincaré distance on a hyperbolic surface Y
between a point z and a closed subset X ⊂ Y and diamW (W ′) the diameter of
W ′ with respect to the Poincaré metric of W .

Lemma (2.2.1). ([12], lemma 2.1). For any 0 ≤ r ≤ 1, there exists a constant
C(1, r) ≥ 0 such that for any holomorphic proper map g : V → D of degree 1,
with V simply connected, each component of g−1(Dr(0)) has diameter ≤ C(1, r)
with respect to the Poincaré metric on V . Moreover limr→0 C(1, r) = 0.

Definition (2.2.2). N0: There exist z1, ..., zN0−1 ∈ D such that { 2
3 ≤ |z| ≤

1} ⊂
⋃N0−1
i=1 D 1

3
(zi). Let C0 = N0C(1, 2

3 ).

The Julia set is J (fλ) = C. Hence we can choose a periodic point w so that
the domain Ω = C\{forward orbit of the point w} satisfies dΩ(0, Xλ) ≥ 2C0.

Lemma (2.2.3). ([12], lemma 2.3). Let U0 = Dr(x) be a disc centered at
x ∈ Xλ with radius r so that U0 ⊂ Ω and diamΩ(U0) ≤ C0. Then for every
n ≥ 0 the following is true:

deg(n). For every Ds(z) ⊂ U0 with 0 ≤ s ≤ d(z, @U0)/2, and every connected
component V ′ of f−nλ (Ds(z)), V ′ is simply connected and deg(fnλ : V ′→ Ds(z))=1;

diam(n). For every Dr(w) ⊂ U0 with 0 ≤ r ≤ d(w, @U0)/2 and every con-
nected component of V of f−nλ (Dr(w)), diamΩ V ≤ C0.

Now, we begin to prove Theorem (1.7). If ∞ is the unique point of accumu-
lation of {

⋃
n fλ(0)}, then by Remark (2.1) above, the point z = 0 is a summable

point and hence limn→∞ |(fnλ )′(0)| = ∞.
Now let y ∈ Xλ be another point of accumulation of the orbit of z = 0. Let

ni be any subsequence such that y = limi→∞ fniλ (1). Then we claim:
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Claim limi→∞ |(fniλ )′(1)| = ∞.
To prove the claim we repeat the arguments of Shishikura and Tan Lei. Let

us assume that there exists a number M <∞ and a sequence of natural num-
bers {nj} ⊂ {ni} such that |(fnjλ )′(1)| ≤M. Then by Lemma (2.2.3) there exists
an integer N and a number r such that components Wj ⊂ f

−nj
λ (Dr(y)) contain-

ing the point z = 1 are simply connected and the respective restriction maps
f
nj
λ : WJ → Dr(y) are univalent for all j ≥ N. Now let B ⊂ Ω be the hyperbolic

ball of the radius C0 centered at the point z = 1, then B is a precompact sub-
set of Ω and hence has a bounded Euclidian diameter in C. Besides, again by
Lemma (2.2.3), the set {∪jWj} ⊂ B.

Let gj : D→ Wj be the inverse maps then they form a normal family. Hence,
after passing to a subsequence we can assume that gj converge. Let g∞ be a
limit map, then g∞ 6= constant since the derivatives are ≥ 1

M by hypothesis.
Then there is a neighborhood U0 of z = 1 such that U0 ⊂ gj(D) for large j.

Thus, fnjλ is normal in U0, but there are many periodic expansive points in
U0 ⊂ J (fλ) and the derivative diverges, which is a contradiction. The claim
and the first part of the theorem are done.

Finally, for the proof of the second part, we once more repeat the arguments
of Shishikura and Tan Lei in [12]. First, assume that fλ is not expansive on
Xλ i.e. there are nk → ∞, xk ∈ Xλ, such that |(fnk )′(xk)| ≤ 1. Now using
the compactness of Xλ and the arguments above, we obtain a contradiction.
Therefore, expansivity immediately implies summability of the point z = 1.

Second, ifm(Xλ) 6= 0 we follow the concepts of [9], page 44. Let x be a density
point inXλ and consider for each point in the orbit of x the discDδ(fn(x)) = Dn.
It is clear that for all z ∈ C and δ ≤ 1

2d(0, Xλ), there exists a univalent branch
h : Dδ(f (z)) → C, such that h(f (z)) = z. Consecuently, since Xλ is bounded
0 /∈ Xλ. It follows that there exist univalent branches gn : Dδ(fn(x)) → Cn.
Observe that by Koebe’s principle, gn has bounded nonlinearity. By part one
above, |(fnk )′(x)| → ∞ for some subsequence nk, and then diam(Cnk ) → 0.

Using that x is a density point, we have that

lim
n→∞

m(Cnk

⋂
Xλ)

m(Cnk )
→ 1 ,

then by the invariance of Xλ, we have that

lim
n→∞

m(Dnk

⋂
Xλ)

m(Dnk )
→ 1 .

Boundness of Xλ implies that there exists a subsequence such that Dk → B
in which the density of Xλ is equal to one. Then B ⊂ Xλ a.e. and that implies
that fn(B) = C, hence Xλ = C which is a contradiction with the hypothesis
that Xλ is bounded. ut

(2.3) Proof of Proposition (1.3).

Proof. We have limn→∞ | 1
fn+1′
λ

(1)
/ 1
fn
′

λ
(1)
| = 1. Since

lim
n→∞

| f
n′

λ (1)
fn+1′
λ (1)

| = lim
n→∞

| 1
λfn+1

λ (1)
|,
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then |fnλ (1)| is near 1
|λ| for all large values of n.

This implies that Xλ is bounded, hence compact and 0 is non-recurrent, by
Theorem (1.7), and fλ is summable. This is a contradiction of the hypothesis.

3. Ruelle Operator: Definitions and Properties

For any λ ∈ C∗ we define the following operators (compare with [7], [8], [6]).

Definition (3.1).

Ruelle operator (or push-forward operator)

R∗λ (ϕ)(z) :=
∑
ξi

ϕ(ξi)ξ′i
2 =

1
λ2z2

∑
ξi

ϕ(ξi),

where the summation is taken over all branches ξi of f−1
λ .

Modulus of the Ruelle operator |R∗λ |(ϕ)(z) = 1
|λ2z2|

∑
ξi
ϕ(ξi).

Beltrami operator Bλ(ϕ) = ϕ(fλ)
f ′
λ

f ′
λ
.

Then we have the following simple lemma.

Lemma (3.2). For all λ ;

1). R∗λ : L1(C) → L1(C) and ‖ R∗λ ‖L1≤ 1,

2). |R∗λ | : L1(C) → L1(C), ‖ |R∗λ | ‖L1≤ 1, and the fixed points of |R∗λ | define
finite, complex-valued, invariant, and absolutely continuous measures on C.

3). Bλ : L∞(C) → L∞(C) is the dual operator to R∗λ , and ‖ Bλ ‖L∞= 1.

Proof. Immediately follows from the definitions.

(3.3) Potential of Deformations. The open unit ball B of the space Fix(Bλ)
⊂ L∞(C) of fixed points of Bλ is called the space of invariant Beltrami differ-
entials for fλ and describes all quasiconformal deformations of fλ.

Let µ ∈ Fix(Bλ), then tµ ∈ B for all t such that |t| < 1
‖µ‖ .

Let us denote by ht their corresponding quasiconformal maps, normalized
so that ht(0) = 0 and ht(1) = 1; then we have the following functional equation
as explained in [1], [7], [8]:

Fµ(fλ(z))− f ′λ(z)Fµ(z) = Gµ(z)

where ht ◦ fλ ◦ h−1
t = fλ(t) ∈ Mf1 and Gµ(z) = @fλ(t)

@t (z)|t=0 = z exp(λz)λ′(t)|t=0.
The function

Fµ(a) =
@ht
@t
|t=0 = −a(a − 1)

π

∫∫
C

µ(z)
z(z− 1)(z− a)

is called the potential of the qc-deformations generated by µ and @Fµ = µ in
the sense of distributions, see [11]. Fµ(a) is a continuous function in C with
Fµ(0) = 0 and Fµ(1) = 0.

Lemma (3.3.1). If F (fλ) = ∅, then Gµ = 0 if and only if µ = 0.
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Proof. If Gµ = 0, then Fµ(fλ(z)) = f ′λ(z)Fµ(z). Hence Fµ = 0 on the set of
repelling periodic points and hence Fµ = 0 on the Julia set. Then µ = @Fµ = 0.
The lemma is finished.

Then by an inductive argument we have that

Fµ(fnλ (a)) = fn
′

λ (a)

(
Fµ(a) +

n∑
i=1

Gµ(f i−1
λ (a))

f i
′
λ (a)

)
.

from above Gµ(a) = af ′λ (a)c
λ , where the constant c = λ′(t)|t=0 and by Lemma

(3.3.1) above c 6= 0.

(3.4) Fµ(fnλ (a)) = fn
′

λ (a)

(
Fµ(a) +

ac

λ
+

c

λ2

n∑
i=2

1

(f i−2
λ )′(a)

)
Now we are ready to prove Theorem (1.2).

(3.5) Proof of Theorem (1.2). We show first (3). By the assumption, we have
either

lim
n→∞

sup
|(fn+1

λ )′(1)|
|(fnλ )′(1)|

≤ C <∞

or

lim
n→∞

inf
|(fn+1

λ )′(1)|
|(fnλ )′(1)|

≥ K > 0.

Since |(fn+1
λ )′(0)|
|(fn

λ
)′(0)| = |λfn+1

λ (0)| , either Xλ is a compact subset of the plane or
0 /∈ Xλ, respectively. Let us assume that F (fλ) = ∅, then an application of
Theorem (1.7) implies a contradiction with limn→∞ |(fnλ )′(0)| = 0. Hence we
are done.

Now we show (1) and (2). Assume fλ is stable.
From the equation (3.4) above, we have that

(3.6)
Fµ(fnλ (a))
(fnλ )′(a)

= Fµ(a) +
ac

λ
+

c

λ2

n∑
i=2

1

(f i−2
λ )′(a)

From [11], Lemma 1 of chapter 4; we have the following inequality

|Fµ(a)| ≤M|a|| log |a||,

where M is a constant depending only on µ. Applying this estimate we obtain:

|Fµ(fnλ (a))|
|(fnλ )′(a)|

≤ M|fnλ (a)|| log |fnλ (a)||
|(fnλ )′(a)|

.

An easy calculation shows

log |fnλ (a)| = |λfn−1
λ (a)|

and
(fnλ )′(a) = λ2fnλ (a)fn−1

λ (a)(fn−2
λ )′(a).

So, |Fµ(fnλ (a))|
|(fn

λ
)′(a)| ≤ M

λ(fn−2
λ

)′(a)
.
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Now let nj be the sequence from the assumptions of Theorem (1.2), items
(1)-(2). Let the point a = 1. Since Fµ(1) = 0, then from equation (3.6) we
obtain the following equality:

Fµ(fnj+2
λ (1))

(fnj+2
λ )′(1)

=
c

λ
+

c

λ2

nj+2∑
i=2

1

(f i−2
λ )′(1)

=
c

λ
· Snj .

Therefore, this equation produces a contradiction in both cases with the hy-
pothesis over Snj , consequently fλ is unstable.

4. Calculation of the Ruelle Operator

In this section we calculate the action of the Ruelle operator on the family
of rational functions γa(z) = a(a−1)

z(z−1)(z−a) such that a 6= 0, 1. Let us recall that
any rational integrable differential is a linear combination of such γa(z).

Let S = C\{0, 1} be the thrice punctured sphere.

Proposition (4.1).

R∗λ (γa(z)) =
1

(fλ)′(a)
γfλ(a)(z)−

a

(fλ)′(1)
γfλ(1)(z).

Proof. Let ha(z) = R∗λ (γa)(z) − 1
(fλ)′(a)γfλ(a)(z) + a

(fλ)′(1)γfλ(1)(z) be a function.
Our aim is to show that ha(z) defines a holomorphic integrable function on the
surface S, hence ha(z) = 0 and we are done. By Lemma (3.2) the function ha(z)
is integrable over the plane.

Now let us show that ha(z) is holomorphic by calculating the complex con-
jugate derivative in the sense of distributions. Let ϕ ∈ C∞(S) be any differen-
tiable function with compact support in S, and such that ϕ = 0 in C− S.

By duality between the Ruelle operator and the Beltrami operator, we have∫∫
C
ϕzha(z) =

∫∫
C
Bλ(ϕz)γa(z)− 1

(fλ)′(a)

∫∫
C
ϕzγfλ(a)(z) +

a

(fλ)′(1)

∫∫
C
ϕzγfλ(1)(z)

=
∫∫

C
ϕz(fλ)

(fλ)′(z)
(fλ)′(z)

γa(z)− 1
(fλ)′(a)

∫∫
C
ϕzγfλ(a)(z)

+
a

(fλ)′(1)

∫∫
C
ϕzγfλ(1)(z) = (∗).

On the other hand,∫∫
C
ϕz(fλ)

(fλ)′(z)
(fλ)′(z)

γa(z) = a(a − 1)
∫∫

C

(ϕ ◦ fλ)z
z(z− 1)(z− a)(fλ)′(z)

= (a − 1)
∫∫

C

(ϕ ◦ fλ)z
z(fλ)′(z)

− a

∫∫
C

(ϕ ◦ fλ)z
(z− 1)(fλ)′(z)

+
∫∫

C

(ϕ ◦ fλ)z
(z− a)(fλ)′(z)

.

Since we have ϕ(0) = 0 and ϕ(1) = 0,

(a − 1)
∫∫

C

(ϕ ◦ fλ)z
z(fλ)′(z)

=
a − 1
f ′λ(0)

ϕ(fλ(0)) = 0
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∫∫
C

(ϕ ◦ fλ)z
(z− a)(fλ)′(z)

=
1

(fλ)′(a)
ϕ(fλ(a))

Further,
1

(fλ)′(a)

∫∫
C
ϕzγfλ(a)(z) =

1
(fλ)′(a)

ϕ(fλ(a))

hence, by cancelation, we obtain

(∗) =
∫∫

C
ϕzha(z) = 0.

By Weyl’s Lemma ha(z) is a holomorphic function on S.Hence we are done.

Corollary (4.2). If F (fλ) = ∅ and µ 6= 0 ∈ B, then

Gµ(a) =
af ′λ(a)
f ′λ(1)

Fµ(fλ(1)) .

Proof. Let µ 6= 0 ∈ B be invariant Beltrami differential for fλ, then by
Proposition (4.1), we have

−πFµ(a) =
∫∫

γa(z)µ =
∫∫

R∗λ (γa(z))µ

=
1

f ′λ(a)
(−π)Fµ(fλ(a))− a

f ′λ(1)
(−π)Fµ(fλ(1)) .

Hence

Fµ(a) =
1

f ′λ(a)
Fµ(fλ(a))− a

f ′λ(1)
Fµ(fλ(1)) ,

and

Gµ(a) = Fµ(fλ(a))− f ′λ(a)Fµ(a) =
af ′λ(a)
f ′λ(1)

Fµ(fλ(1)) .

Define the following series:

B(a) =
1

f ′λ(1)

∞∑
j=1

f j−1
λ (a)

(f j−1
λ )′(a)

.

We also have by direct calculation that

B(a) =
1

f
′
λ(1)

(1 +
1
λ

∞∑
j=2

1

(f j−2
λ )′(a)

)

Corollary (4.3). Let µ 6= 0 ∈ B. Then for all n > 0 we have

(∗) (R∗λ )n(γa(z)) =
1

(fnλ )′(a)
γfn

λ
(a)(z)−

fn−1
λ (a)

(fn−1
λ )′(a)f ′λ(1)

γfλ(1)(z)−

−
fn−2
λ (a)

(fn−2
λ )′(a)f ′λ(1)

R∗λ (γfλ(1)(z))− . . .− a

f ′λ(1)
(R∗λ )n−1(γfλ(1)(z)) .

and

(∗∗) Fµ(a) =
1

fn
′

λ (a)
Fµ(fnλ (a))− Bn(a)Fµ(fλ(1)),

where Bn(a) is the n− th partial sum of the series B(a) above.
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Proof. By induction on the formula of Proposition (4.1) we obtain the equa-
tion for (R∗λ )n(γa(z)). An application of formula (3.6) in the proof of Theorem
(1.2) together with the formula in Corollary (4.2) and second formula for B(a),
give us the required formula for Fµ(a).

These two formulas are equivalent but we will use only the one for Fµ(a).

5. Proof of Theorem (1.6)

Assume that fλ is a stable map. Then the summability of the singular value
impliesF (fλ) = ∅, otherwise the critical point must tend to a periodic attracting
point and so the Poincaré series is not convergent.

Let a be a summable point. Then the series B(a) is absolutely convergent
and by the arguments of Theorem (1.2), item (1), 1

fn
′

λ
(a)
Fµ(fnλ (a)) → 0 as n→∞.

Then passing to the limit in the formula (∗∗) in Corollary (4.3), we have

Fµ(a) = −B(a)Fµ(fλ(1)) .

Now set a = fλ(1), then

Fµ(fλ(1))
(
1 + B(fλ(1))

)
= 0.

and we have two possibilities:
1) Fµ(fλ(1)) = 0. Then by Corollary (4.2), Gµ = 0 and by Lemma (3.3.1),

µ = 0 which contradicts the assumption above.
2) B(fλ(1)) = −1.

Now we will finish Theorem (1.6) in 3 steps. Let ϕ be the following series,

ϕ(z) :=
∑
n≥0

1
(fnλ )′(fλ(1))

γfn
λ

(fλ(1))(z) .

The summability of z = 0 implies
1) The function ϕ is an absolutely integrable function in C.
2) Outside of Xλ, ϕ is holomorphic.

Indeed, again by Lemma 1, chapter 4 in [11] we have that for any x ∈ C,
|
∫∫

C γx(z)| ≤M|x| | log(x)| being M a constant not depending on x. Then

||ϕ|| ≤
∑
n≥0

1
|(fnλ )′(fλ(1))|

|
∫∫

C
γfn

λ
(fλ(1))(z)| ≤M

∑
n≥0

|(fnλ (1))|| log((fnλ (1)))|
|(fnλ )′(fλ(1))|

and from the calculations in Theorem (1.2), we have

M
∑
n≥2

| (fnλ (1))
(fnλ )′(fλ(1))

log((fnλ (1)))| = M
∑
n≥2

|
(fnλ (1))λ(fn−1

λ (1))

λ2(fnλ (1))(fn−1
λ (1))(fn−2

λ )′(fλ(1))
|

||ϕ|| =
M

λ

∑
n≥2

1
|(fn−2

λ )′(fλ(1))|
+
|
∫∫

C γ(fλ(1))(z)|
|fλ(z)|

+
|
∫∫

C γfλ(fλ(1))(z)|
|(fλ)′(fλ(1))|

Summability of fλ(1) proves the first part of the assertion. For the second
part, just observe that ϕ is uniformly approximated by the rational functions∑k

n=0
1

(fn
λ

)′(fλ(1))γfnλ (fλ(1))(z).
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Lemma (5.1). Under assumption (2) above we have

R∗λ (ϕ(z)) = ϕ(z) .

Proof. For any n ≥ 0, by the formula of the Proposition (4.1), we have the
following expression,

R∗λ

(
1

(fnλ )′(fλ(1))
γfn

λ
(fλ(1))(z)

)
=

1
(fn+1
λ )′(fλ(1))

γfn+1
λ

(fλ(1))(z)−
1

f ′λ(1)
γfλ(1)(z)

fnλ (fλ(1))
(fnλ )′(fλ(1))

,

Then summation over all n ≥ 0 gives

R∗λ (ϕ) = R∗λ

∑
n≥0

γfn
λ

(fλ(1))(z)

(fnλ )′(fλ(1))

 =

=
∑
n≥0

1
(fn+1
λ )′(fλ(1))

γfn+1
λ

(fλ(1))(z)−
1

f ′λ(1)
γfλ(1)(z)

∑
n≥0

fnλ (fλ(1))
(fnλ )′(fλ(1))

=

= ϕ(z)− γfλ(1)(z)− γfλ(1)(z)
[
B(fλ(1))

]
= ϕ(z)

by hypothesis.

Lemma (5.2). Under the assumption of Lemma (5.1) above the function |ϕ|
is a fixed point for the modulus of the Ruelle operator,

|R∗λ |(|ϕ|) = |ϕ| .

Proof. We recall that by definition, for every function ϕ

|R∗λ |(|ϕ|) =
∑
ζi

|ϕ(ζi)| |ζ′i |2

where the summation is over all branches ζi of inverses of fλ(z) = eλz.
By assumption

‖ ϕ ‖=‖ R∗λ (ϕ) ‖=
∫∫

C

∣∣∣∣∣∣
∑
ζi

ϕ(ζi)(ζ′i)
2

∣∣∣∣∣∣ .
Now, define for each index i, αi = ϕ(ζi)(ζ′i)

2, βi =
∑

j 6=i ϕ(ζj)(ζ′j)
2 = ϕ − αi.

With this notation we have

‖ ϕ ‖=‖ R∗λ (ϕ) ‖=
∫∫

C

∣∣∣∣∣∣
∑
ζi

ϕ(ζi)(ζ′i)
2

∣∣∣∣∣∣dz ∧ dz̄ =
∫∫

C

|
∑
j

αj | ≤

≤
∫∫

C

|αi|+
∫∫

C

|βi| ≤
∑∫∫

C

|αj | = ||ϕ||

Hence
|
∑
j

αj | = |αi|+ |βi| =
∑
j

|αj |
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That implies that

|ϕ| = |
∑
i

αi| =
∑
i

|αi| =
∑
ζi

|ϕ(ζi)||ζ′i |2 = |R∗λ |(|ϕ|) .

By Lemma (3.2), the measure σ(A) =
∫∫

A |ϕ(z)| is a non-negative invariant
absolutely continuous probability measure, where A ⊂ Ĉ is a measurable set.
We have therefore completed the first step.

Let Y = C−Xλ be the complement to the postsingular setXλ. In the second
step we show that ϕ = 0 identically on Y .

In the notation of the lemmas above we have

Lemma (5.3). If αj 6= 0 identically on Y, then the function kj = βj
αj

is a
non-negative constant on any component of Y.

Proof. We have |1 + βj
αj
| = 1 +

∣∣∣∣βjαj
∣∣∣∣, then if βj

αj
= γj1 + iγj2 we have(

1 + (γj1)
)2

+ (γj2)2=
(

1 +
√

(γj1)2 + (γj2)2

)2

=1 + (γj1)2 + (γj2)2 + 2
√

(γj1)2 + (γj2)2.

Hence γj2 = 0 and βj
αj

= γj1 is a real-valued function but βj
αj

is a meromorphic

function. So γj1 = kj is constant on every connected component of Y and the
condition |1 + kj | = 1 + |kj | shows kj ≥ 0.

Definition (5.4). A measurable set A ∈ Ĉ is called back wandering if and
only if m(f−n(A) ∩ f−k(A)) = 0, for k 6= n.

Remark (5.5). If a setA is back wandering and µ is an invariant probability
measure, then µ(A) = 0.

Corollary (5.6). If ϕ 6= 0 on Y , then (i)m(Xλ) = 0,wherem is the Lebesgue
measure and (ii) ϕ̄

|ϕ| defines an invariant Beltrami differential.

Proof. (i) If m(Xλ) > 0, then m(f−1
λ (Xλ)) > 0 so m(f−1

λ (Xλ) −Xλ) > 0 since
f−1
λ (Xλ) 6= Xλ, Xλ 6= C. Denote by Z1 = f−1

λ (Xλ) − Xλ. Then Z1 is back
wandering so ϕ = 0, on the orbit of Z1, which is dense in J (fλ), hence ϕ = 0 in
Y. Therefore m(Xλ) = 0.

(ii) By the notation and the proofs of Lemmas (5.1) and (5.2) we have ki(x) =
βi
αi

= ϕ
αi
− 1so ϕ(x) = (1 + ki(x))αi = (1 + ki(x))(ϕ(ζi(x))(ζ′i)

2(x). Hence,

ϕ̄(x)
|ϕ(x)|

=
(1 + ki(x))ϕ̄(ζi(x)) ¯(ζ′i)

2
(x)

(1 + ki(x))|ϕ(ζi(x)||(ζ′i)2(x)|
,

and so for any branch ζi we have

µ =
ϕ̄

|ϕ|
=

ϕ̄(ζi)ζ̄′i
|ϕ(ζi)|ζ′i

= µ(ζi)
ζ̄′i
ζi

as a result µ = ϕ̄
|ϕ| is an invariant line field. Thus the corollary is proved.
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Now we prove the main result of the second step.

Proposition (5.7). If ϕ 6= 0 on Y , then fλ is unstable.

Proof. Let us show first that Xλ =
⋃
f iλ(1). We will use a McMullen argu-

ment as in [9]. By Corollary (4.3), µ = ϕ̄
|ϕ| is an invariant Beltrami differential.

That implies that ϕ is dual to µ and ϕ is defined by µ up to a constant. We
will construct a meromorphic function ψ dual to µ and such that ψ has a finite
number of poles on each ring AR = {z : : 1

R ≤ |z| ≤ R} around the origin.
For that suppose that for z ∈ C there exists a branch g of a suitable fnλ , such

that g(Uz) ⊂ Y andUz is a neighborhood of z.Then define ψ(ζ) = ϕ(g(ζ))(g ′)2(ζ)
for all ζ ∈ Uz. Note that ψ(ζ) is dual to µ and has no poles in Uz.

By considering R → ∞ we construct a meromorphic function ψ which is
dual to µ. The poles of ψ form a discrete set accumulating z = ∞ and 0. Since
ϕ is a dual to µ, then ϕ = C · ψ, where C is a constant. Hence Xλ =

⋃
f iλ(1) is a

discrete closed set accumulating z = ∞ and 0, so Y is connected.
By Corollary (4.3) the functions ki are globally defined constants onY . More-

over, by the argument of Lemma (5.3) ϕ(x) = (1 + ki)(ϕ(ζi(x))(ζ′i)
2(x) for any

x ∈ C, thus ki = kj for any i, j.
Therefore we have

∑
i
ϕ(x)
1+ki

=
∑

i ϕ(ζi(x))(ζ′i)
2(x) = ϕ(x). Since the first term

of the equation is infinite, this can be only if ϕ = 0.

To obtain a contradiction in step 3, we show that if fλ ∈ W is structurally
stable, then ϕ 6= 0 identically on Y.

The following proposition is proved in [8] and [3].

Proposition (5.8). Let ai ∈ C with ai 6= aj , for i 6= j be points such that
Z =

⋃
i ai ⊂ C is a compact set. Let bi 6= 0 be complex numbers such that

the series
∑

bi is absolutely convergent. Then the function l(z) =
∑

i
bi

z−ai 6= 0
identically on Y = C\Z in any of the following cases:

(1) the set Z has zero Lebesgue measure;

(2) the diameters of the components of C\Z are uniformly bounded below
away from zero.

Proposition (5.9). Let fλ be the exponential map and 0 a summable point.
Then ϕ(z) 6= 0 identically on Y in any of the following cases:

(1) if m (Xλ) = 0, where m is the Lebesgue measure on C;

(2) if the diameters of the components of Y are uniformly bounded below
away from 0.

Proof. Denote dλ = fλ(1). We have two cases according toXλ being bounded
or not.

First assume that the set Xλ is bounded. Then by Proposition (5.8) we
have that φ(z) = C1

z + C2
z−1 +

∑ 1
(f i
λ
)′(dλ)(z−f i

λ
(dλ)) = l(z) 6= 0, which proves the

proposition.

Now let Xλ be unbounded. We want to reduce this situation to a bounded
one, observe that under our assumptions Xλ 6= C.
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Let y ∈ C be a point such that the point 1−y ∈ Y . Then the map g(z) = yz
z+y−1

maps Xλ onto a compact subset of C. Let us consider the function G(z) =
1
z

∑
i

(f iλ(dλ)−1)
(f i
λ
)′(dλ) − 1

z−1

∑
i

f iλ(dλ)
(f i
λ
)′(dλ) +

∑ 1
(f i
λ
)′(dλ)(z−g(f i

λ
(dλ)) . Then by Proposition (5.8)

G(z) 6= 0 identically on g(Y ).

Now, we Claim that G(g(z))g ′(z) = φ(z).

Proof of the claim. Let us define C1 =
∑

i
(f iλ(dλ)−1)
(f i
λ
)′(dλ) and C2 =

∑
i

f iλ(dλ)
(f i
λ
)′(dλ) then

we have
C1

g(z)
=
C1(z+ y − 1)

yz
and

C2

g(z)− 1
=
C2(z+ y − 1)
(y − 1)(z− 1)

and for any n

1
g(z)− g(fnλ (dλ))

=
(z+ y − 1)(fnλ (dλ) + y − 1)

y(y − 1)(z− fnλ (dλ))
=

=
1

y(y − 1)

(
(z+ y − 1)2

z− fnλ (dλ)
+ 1− y − z

)
,

then

G(g(z)) =
C1(z+ y − 1)

yz
− C2(z+ y − 1)

(y − 1)(z− 1)
+
∑ 1

(f iλ)′(dλ)(g(z)− g(f iλ(dλ))
=

=
1

y(y − 1)

(
(1− y − z)

∑ 1
(f iλ)′(dλ)

+ (z+ y − 1)2
∑ 1

(f iλ)′(dλ)(z− f iλ(dλ))
+

+
C1(z+ y − 1)

yz
− C2(z+ y − 1)

(y − 1)(z− 1)

)
= ∗

and

∗ =
1

g ′(z)

φ(z) +

∑
i
f iλ(dλ)−1
(f i
λ
)′(dλ)

z
−

∑
i

f iλ(dλ)
(f i
λ
)′(dλ)

z− 1
+

∑ 1
(f i
λ
)′(dλ)

1− y − z

+

+
1

g ′(z)

(
C1(y − 1)
z(z+ y − 1)

− C2y

(z− 1)(z+ y − 1)

)
=

=
φ(z)
g ′(z)

.

Hence φ(z) = 0 identically on Y if and only if G(z) = 0 identically on g(Y ).
So by Proposition (5.8) we complete the proof of this proposition.

Step 3 and Theorem (1.6) are finished.

Proof of the Corollary: Since Xλ is bounded, Theorem (1.7) part (2), implies
that z = 0 is a summable point and m(Xλ) = 0. Then fλ ∈ W and this implies
by Theorem (1.6) that fλ is unstable.
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A CHARACTERIZATION OF Ck(X) FOR X NORMAL AND
REALCOMPACT

F. MONTALVO, A. A. PULGARÍN AND B. REQUEJO

Abstract. We present some internal conditions on a locally m-convex Φ-
algebra A stated in terms of order and/or closed ideals of A. It turns out
that a locally m-convex Φ-algebra satisfies these conditions if and only if it
is l-isomorphic and homeomorphic to the locally m-convex Φ-algebra Ck(X)
for some realcompact normal space X. Here Ck(X) is the set of all real-
valued continuous functions on X endowed with the topology of compact
convergence. One of the above mentioned internal conditions can be replaced
by the requirement that A be a barreled space. We also prove that any Fréchet
uniformly closed Φ-algebra satisfies the internal conditions in question.

Introduction

Throughout this paper, X will denote a completely regular and Hausdorff
topological space, and C(X) will be the Φ-algebra of all real-valued continuous
functions on X with pointwise operations and order. Let Ck(X) denote C(X)
endowed with the compact convergence topology. Recently we obtained a
partial answer to the classical problem of characterizing Ck(X). More precisely,
we characterized Ck(X) when X is a normal space (see [10]). Our aim in this
article is to solve the same problem when X is a normal and realcompact
space. But we should emphasize that the answer we obtain here is not derived
as a particular case of that in [10]. Instead, our approach to the problem
is based on the following result due to Feldman and Porter: A topological
space X is realcompact if and only if the compact convergence topology of C(X)
coincides with the order topology [4]. It thus appears appropriate to seek a
characterization in which the order plays a more important role in this case.

Let A be a uniformly closed Φ-algebra A endowed with a Hausdorff locally
m-convex topology. The problem lies in looking for internal conditions on
A which imply that A is l-isomorphic and homeomorphic to Ck(X) for some
normal and realcompact topological space X. Thus, if τ is such a topology on
A then τ must be the order topology on A.

First we solve the algebraic part of the problem; i.e., we characterize those Φ-
algebras that are l-isomorphic to some C(X) with X normal and realcompact.
Then, for these Φ-algebras, the problem turns into one of determining the
order topology among all the Hausdorff locally m-convex topologies on those
algebras.

2000 Mathematics Subject Classification: 46H05, 54H12, 06B30.
Keywords and phrases: continuous functions; Φ-algebra; compact convergence topology; locally

m-convex algebra; realcompact space.
Research partially supported by Spanish Dirección General de Investigación (Project no.
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Before approaching the problem proper, we will make use of the solution
given to the algebraic problem to prove the following result: A locally m-convex
Φ-algebra A is l-isomorphic and homeomorphic to Ck(X) for some hemicompact
k-space X if and only if A is uniformly closed and Fréchet.

The article is organized into two sections. Section 1 sets out the results
concerning topological algebras and Φ-algebras that we will need in the sequel.
For easier reading, we shall give complete definitions of all the terms we will
use, but not give any proofs. In Section 2 we prove the main results.

1. Preliminaries

In the sequel, every ring will be assumed to be commutative and to possess
an identity, and every morphism of rings will carry the identity into the identity.
We shall denote by R-algebra (henceforth simply algebra) every ring A endowed
with a morphism of rings R → A (the structural morphism of the algebra)
which must be injective and allow R to be identified with a subring of A; in
particular 1 will denote indistinctly the identity of R and the identity of A.
Given algebras A and B, a map A → B is a morphism of algebras if it is a
morphism of rings that leaves R invariant.

Definition (1.1). A topological algebra is an algebra A endowed with a (not
necessarily Hausdorff) topology for which A is a topological vector space, the
product of A is continuous, and the map a 7→ a−1 (defined over the invertible
elements) is continuous.

An important class of topological algebras consists of the locally m-convex
algebras, i.e., those in which the topology may be defined by a family of m-
seminorms (a seminorm q on an algebra A is an m-seminorm if q(ab) ≤ q(a)q(b)
for all a, b ∈ A).

Example (1.2). Let us now consider the topological algebra that we are most
interested in. For each compact subset K of X, one has the m-seminorm qK

on C(X) defined by the equality qK (f ) = max{|f (x)| : x ∈ K} (f ∈ C(X)).
The topology that the family {qK : K compact subset of X} defines in C(X) is
known as the topology of uniform convergence on compact sets (in brief, compact
convergence topology); C(X) endowed with this topology will be denoted by
Ck(X).

Definitions (1.3). Let A be a topological algebra. We shall call the set of
morphisms of algebras of A in R that are continuous the topological spectrum
of A, and shall denote it by Spect A. Each element a ∈ A defines on Spect A
the function a : Spect A → R, x 7→ a(x) := x(a). The initial topology that
these functions define on Spect A is known as the Gelfand topology. Except
when otherwise specified, we shall assume that Spect A is endowed with this
topology. Thus, it is clear that Spect A is a completely regular Hausdorff
topological space (it may be that Spect A = ∅).

Let us assume that Spect A 6= ∅ and let C(Spect A) be the algebra of all
real-valued continuous functions on Spect A. There is a natural morphism of
algebras T : A → C(Spect A) known as the spectral representation of A. A is
said to be semisimple when its spectral representation is injective.
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A maximal ideal M of A is real if the residue class field A/M is R. If
x : A → R is a morphism of algebras, then its kernel Ker x is a real maximal
ideal of A, and x is continuous if and only if Ker x is closed. Hence there is
a one-to-one correspondence between the points of Spect A and the set of all
closed real maximal ideals of A. Clearly, A is semisimple if and only if the
intersection of all its closed real maximal ideals is zero.

Definitions (1.4). Let A be a topological algebra. For every ideal I of A we
have the closed set (I)0 := {x ∈ Spect A : a(x) = 0 for every a ∈ I} of Spect A.
We shall say that (I)0 is the zero set of the ideal I . The zero set of an element
a ∈ A is the closed subset (a)0 := {x ∈ Spect A : a(x) = 0} of Spect A. It is
clear that (I)0 =

⋂
a∈I (a)0 for any ideal I of A. We shall say that A is regular if

its elements separate points and closed sets of Spect A in the following sense:
if x ∈ Spect A and F is a non-empty closed subset of Spect A such that x 6∈ F ,
then there exists a ∈ A satisfying a(F ) = 0 and a(x) = 1. It follows from the
definition that A is regular if and only if {(a)0 : a ∈ A} is a basis of closed sets
in Spect A.

Example (1.5). Each x ∈ X defines the continuous morphism of algebras
δx : Ck(X) → R, δx(f ) := f (x), and so one has the natural map i : X →
Spect Ck(X), i(x) := δx. On the one hand, i : X → i(X) is a homeomorphism
because X is completely regular. On the other, if for each closed set C in X
and each closed ideal J in Ck(X) one denotes JC = {f ∈ C(X) : f (C) = 0},
(J )0 = {x ∈ X : f (x) = 0 ∀ f ∈ J}, then the closed ideals in Ck(X) are in one-
to-one correspondence with the closed subsets of X (via C 7→ JC and J 7→ (J )0,
see [11]), and consequently the closed maximal ideals in Ck(X) are in one-to-
one correspondence with the points of X. Therefore, X = Spect Ck(X) and the
spectral representation of Ck(X) is an isomorphism. In particular Ck(X) is
regular and semisimple.

Definition (1.6). We shall say that a topological algebra A is normal if its
elements separate disjoint closed sets of Spect A in the following sense: if F, G
are disjoint non-empty closed sets of Spect A, then there exists a ∈ A such that
a(F ) = 0 and a(G) = 1. Clearly, if A is normal then A is regular.

According to Urysohn’s Lemma, X is normal if and only if Ck(X) is normal.
Also, it is not difficult to show that Ck(X) is normal if and only if in Ck(X)
there do not exist two closed ideals whose sum is dense and proper. One has
the more general lemma:

Lemma (1.7). ([10], Lemma 2.13 (ii)). Let A be a regular topological algebra
such that: (i) every non-dense ideal is contained in some closed real maximal
ideal; (ii) there do not exist two closed ideals whose sum is dense and proper.
Then A is normal.

Next, let us describe the order structures that interest us.

Definitions (1.8). A vector lattice is a real vector space E endowed with an
order relationship “≤ ” with which it is a lattice (every non-empty finite subset
has a supremum and an infimum), and is compatible with the vector structure
(if a, b ∈ E such that a ≤ b, then a + c ≤ b + c for every c ∈ E, and λa ≤ λb for
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every λ ∈ R, λ ≥ 0). For C(X) we shall always consider its usual order with
which it is a vector lattice: the point-wise defined natural order.

Let E be a vector lattice. The set E+ = {a ∈ E : a ≥ 0} is called the
positive cone of E. As is usual, the supremum and infimum of a finite subset
{a1, . . . , an} of E will be denoted by a1 ∨ · · · ∨ an and a1 ∧ · · · ∧ an, respectively.
Given an element a ∈ E, its positive part, its negative part, and its absolute
value are elements of E which are denoted by a+, a− and |a|, respectively, and
are defined by the equalities a+ = a ∨ 0, a− = (−a) ∨ 0, |a| = a+ ∨ a−. Given
a, b ∈ E, the closed interval of extremes a and b is the subset of E which is
denoted [a, b] and is defined by the equality [a, b] := {c ∈ E : a ≤ c ≤ b}. A
subset C of E is said to be solid if a ∈ C implies {b ∈ E : |b| ≤ |a|} ⊆ C.

A map T : E → F , where E and F are vector lattices, is a morphism of vector
lattices if it is linear and is a morphism of lattices, i.e., if it is a linear map such
that T (a ∨ b) = T (a) ∨ T (b) and T (a ∧ b) = T (a) ∧ T (b) for all a, b ∈ E.

Definition (1.9). Given a vector lattice E, the order topology in E, which we
shall denote by τo, is defined as the finest locally convex topology for which all
closed intervals of E are t-bounded (bounded in the topological sense, i.e., the
closed intervals are absorbed by each 0-neighbourhood). The order topology
on R is its usual topology.

It is easy to prove the following property: “ Let T : E → F be a linear map
between vector lattices. If T preserves the order, then T is continuous if E and
F are endowed with their respective order topologies.”

Definitions (1.10). An l-algebra is an algebra A endowed with an order
relationship “≤ ” with which it is a lattice and is compatible with the algebraic
structure (if a, b ∈ A such that a ≤ b, then a + c ≤ b + c for all c ∈ A, λa ≤ λb
for all λ ∈ R, λ ≥ 0, and ac ≤ bc for all c ∈ A+). If A is an l-algebra, then in
particular it is a vector lattice, so that the notions given for vector lattices in
(1.8) above are valid in A.

Let A and B be l-algebras. A map A → B is said to be a morphism of l-
algebras if it is a morphism of algebras and a morphism of lattices. A morphism
of l-algebras is called an l-isomorphism if it is bijective. An ideal I of A is said
to be an l-ideal if I is a solid set. A maximal l-ideal is a proper l-ideal that is
not contained strictly in another proper l-ideal. C(X) with its usual order is
an l-algebra, and each closed ideal of Ck(X) is an l-ideal, since for each closed
subset C of X the ideal JC is solid (Example (1.5)).

Remark (1.11). Let A be an l-algebra, I an ideal of A, and π : A → A/I the
quotient morphism. Then π(A+) is the positive cone for an l-algebra structure
on A/I for which π is a morphism of l-algebras if and only if I is an l-ideal.

Whenever we speak of the l-algebra A/I , we shall be assuming on A/I the
above structure, and therefore that I is an l-ideal.

Definitions (1.12). Let A be an l-algebra. A is said to be Archimedean if for
a, b ∈ A, na ≤ b for all n ∈ N implies a ≤ 0. An element e of A is said to be
a weak order unit if for a ∈ A, a ∧ e = 0 implies a = 0. An element e of A is
said to be a strong order unit if a ∈ A+ implies a ≤ ne for some non-negative
integer n. A is said to be an f -algebra if for a, b, c ∈ A, a ∧ b = 0 and c ≥ 0
imply ca ∧ b = 0. A Φ-algebra is an Archimedean f -algebra; equivalently, a
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Φ-algebra is an Archimedean l-algebra in which 1 is a weak order unit (see [2],
§9, Corollary 3). It is clear that C(X) is a Φ-algebra.

Definitions (1.13). Let A be an f -algebra. Then it is known that A induces
in R the usual order of R. According to the above, given α, β ∈ R, one will have
α ≤ β in R if and only if α ≤ β in A, so that we will make no distinction.

We shall say that an element a ∈ A is o-bounded if there exists a non-
negative integer n such that |a| < n. We shall denote the set of all the o-
bounded elements of A by A∗. It is clear that A∗, with the order induced by
the order of A, is an f -algebra. The f -algebra C(X)∗ is denoted by C∗(X).

A sequence (an)n in A is said to be Cauchy uniform if for every real ε > 0
there exists a positive integer ν such that |an−am| ≤ ε for n, m ≥ ν. A sequence
(an)n in A is said to be uniformly convergent to a ∈ A if for each real ε > 0
there exists a positive integer ν such that |an − a| ≤ ε for n ≥ ν. It is easy
to see that if (an)n is uniformly convergent to both a and b in A and if A is
Archimedean then a = b. A subset S in A is said to be uniformly closed if each
Cauchy uniform sequence in S is uniformly convergent in S. A subset S in A
is said to be uniformly dense if for each element a ∈ A there is a sequence in
S that converges uniformly to a. It is known that C(X) is uniformly closed.

We conclude this section with some results which we shall use later.

Lemma (1.14). Let A be a uniformly closed Φ-algebra. One has
(i) If a ∈ A and a ≥ 1 then a is invertible. As a consequence A is strictly

real, i.e., 1 + a2 is invertible for all a ∈ A.
(ii) A is a Gelfand algebra; i.e., each prime ideal of A is contained in a unique

maximal ideal.
(iii) If τ is a topology on A such that (A, τ) is a topological algebra, then (A, τ)

is regular.
(iv) If B is another uniformly closed Φ-algebras, then every morphism of

algebras A → B is a morphism of l-algebras. Consequently, every real maximal
ideal of A is τo-closed.

(v) Let us consider A endowed with a Hausdorff locally m-convex topology.
Every non-dense ideal of A is contained in some closed real maximal ideal.
Consequently, every closed maximal ideal of A is real and Spect A 6= ∅. More-
over, if A is complete, then an element a ∈ A is invertible if and only if a(x) 6= 0
for all x ∈ Spect A.

Proof. See [9], Lemma 3.12, for (i), [10], Lemma 3.5, for (ii), [10], Lemma
3.7, for (iii), and [9], Lemma 3.15, for (iv). According to some results proved in
[12] for complex algebras (whose proofs in the real case may be found in [16],
Ejemplo II.1.6, Teorema II.3.10 and Teorema II.3.11), the property (v) holds in
each locally m-convex, Hausdorff, and strictly real algebra, and by (i) this is
the case here.

2. The Main results

Definitions (2.1). Let A be an algebra and Specm A = {maximal ideals of
A} the maximal spectrum of A. If for every ideal I of A one writes [I]0 :=
{maximal ideals of A that contain I}, then the sets of the family {[I]0 :
I ideal of A} are the closed sets of a topology on Specm A, known as the
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Zariski topology. Under this topology Specm A is a compact topological space
(not necessarily Hausdorff). One basis of closed sets for this topology is the
collection {[a]0 : a ∈ A}, where [a]0 := [(a)]0 and (a) is the principal ideal of
A generated by a.

We shall call the set SpecR A := {morphisms of algebras of A into R} = {real
maximal ideals of A} the real spectrum of A. We shall say that A is closed under
inversion if its invertible elements are just its non-null elements which do not
belong to any real maximal ideal of A. We shall say that A is real-semisimple
if the intersection of all the real maximal ideals of A is null.

It is clear that C(X) is closed under inversion and real-semisimple.

Remarks (2.2). (i) When an algebra is real-semisimple, one implicitly as-
sumes that its real spectrum is non-empty.

(ii) If A is a closed under inversion Φ-algebra, then it must be the case
that SpecR A 6= ∅. Indeed, if the real spectrum of A were empty, then every
non-null element of A would be invertible and hence A would be a field. It is
straightforward to see that this field would be totally ordered (see [2], p. 57),
and as it is Archimedean, it would have to be a subfield of R (see [5], 0.21).
Therefore A = R and SpecR A would be a point, which is absurd.

Recall that the topological space X it said to be realcompact if X satisfies one
of the following equivalent properties: (i) every real maximal ideal of C(X) is
of the form Jx for some x ∈ X (i.e., every real maximal ideal of Ck(X) is closed;
see Example (1.5)); (ii) X is homeomorphic to a closed subspace of a product
of real lines.

Let A be a uniformly closed Φ-algebra with SpecR A 6= ∅. Each element
a ∈ A defines on SpecR A the function a : SpecR A → R, x 7→ a(x) := x(a). It
is easy to see that the initial topology defined by these functions on SpecR A
coincides with the Zariski topology induced by Specm A. We shall denote by
Xo the set SpecR A endowed with this topology. The natural map A → C(Xo)
is a morphism of l-algebras (because it is a morphism of algebras); that A is
real-semisimple means that this morphism is injective, and that A is closed
under inversion means that, given a ∈ A, a is invertible if (and only if) a(x) 6= 0
for all x ∈ SpecR A.

Considering SpecR A ⊆ RA = {maps of A into R}, one easily sees that the
topology of Xo coincides with that induced by the product topology of RA, with
Xo being a closed subspace of RA; i.e., Xo is realcompact.

Example (2.3). If A = C(X), then from Example (1.5) it follows that X is
realcompact if and only if X = Xo (topological equality).

Let A be a uniformly closed Φ-algebra. When A is closed under inversion,
in which case SpecR A 6= ∅, it follows from an important result due to Buskes
that the order topology on A is the initial topology induced by the morphism
of algebras A → Ck(Xo) (see [3]; [9], Lemma 3.18 and Corollary 3.19). In
particular, if X is realcompact then the order topology on C(X) coincides with
the compact convergence topology. One has:

Proposition (2.4). If A is a Φ-algebra that is uniformly closed and closed
under inversion, then (A, τo) is a locally m-convex algebra such that
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(i) Spect(A, τo) = Xo and hence Spect(A, τo) is realcompact;
(ii) (A, τo) is Hausdorff, regular and semisimple.

Proof. From Buskes’ result mentioned above it follows that (A, τo) is a locally
m-convex algebra. The regularity of (A, τo) and the equality Spect(A, τo) = Xo

hold by (iii) and (iv) of Lemma (1.14), respectively. Since every uniformly closed
and closed under inversion Φ-algebra is real-semisimple (see [9], Lemma 3.17,
where o-semisimple means real-semisimple), from the equality Spect(A, τo) =
Xo it follows that (A, τo) is semisimple and Hausdorff.

For the proof of the next theorem we will use a result of Tietze [18], namely:
“ Let E be a vector subspace of C∗(X) that contains the constant functions. If E
S1-separates disjoint closed sets of X (i.e., for each pair of non-empty disjoint
closed sets F and G of X, there exists h ∈ E such that 0 ≤ h ≤ 1, h(F ) = 0
and h(G) = 1), then E is uniformly dense in C∗(X)”.

Theorem (2.5). Let A be a uniformly closed Φ-algebra. A is l-isomorphic
to C(X) for some normal and realcompact topological space X if and only if

(i) A is closed under inversion;
(ii) (A, τo) is normal.

Proof. Assume that A satisfies (i) and (ii). From Proposition (2.4) it fol-
lows that the spectral representation of (A, τo) is the injective morphism of
l-algebras A → C(Xo), and that the condition “(A, τo) normal” means that A
separates disjoint closed sets of Xo (in particular, the realcompact space Xo is
normal). Identifying A with its image in C(Xo), one has that A is a uniformly
closed l-subalgebra of C(Xo) that separates disjoint closed sets of Xo. Then
A∗ S1-separates them, since, if for a ∈ A one has a(F ) = 0 and a(G) = 1 (F
and G closed sets of Xo), the same is the case for |a| ∧ 1 ∈ A∗. From Tietze’s
result it follows that A∗ is uniformly dense in C∗(Xo), and as A∗ is uniformly
closed (since A is so) one concludes that A∗ = C∗(Xo). Now, if f ∈ C(Xo), then
f1 = 1/(f+ + 1) and f2 = 1/(f− + 1) are functions of A∗ that do not vanish
at any point of Xo, and such that f = 1/f1 − 1/f2. But, by hypothesis (i),
1/f1, 1/f2 ∈ A, so that f ∈ A, and one concludes that A = C(Xo); i.e., the
spectral representation of (A, τo) is an isomorphism of l-algebras.

Now, let A = C(X) with X normal and realcompact, in which case X = Xo

and A → C(Xo) = C(X) is an isomorphism. Hence (A, τo) = Ck(X) by Buskes’
result, and therefore A satisfies (i) and (ii).

We shall apply the preceding theorem to obtain the next result. We will take
some notions from the theory of locally convex spaces: barreled, metrizable,
and complete. Recall that the topological space X it said to be: (i) hemicompact
if there exists a sequence {Kn}n of compact subsets of X such that every
compact subset of X is contained in some Kn; (ii) a k-space if a subset of X
is open if its intersection with each compact subset K of X is open in K. It is
well-known that Ck(X) is a Fréchet space (i.e., metrizable and complete) if and
only if X is a hemicompact k-space (see [19]).

Theorem (2.6). Let A be an uniformly closed Φ-algebra. If τ is a locally m-
convex topology on A, then (A, τ) is l-isomorphic and homeomorphic to Ck(X)
for some hemicompact k-space X if and only if (A, τ) is Fréchet.
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Proof. First, note that Spect(A, τ) 6= ∅ by Lemma (1.14) (v). From a well-
known result of Michael [8] it follows that if B is a semisimple Fréchet algebra,
then every morphism of algebras A → B is continuous (see [16], Teorema II.4.6,
for the real case). As a consequence one obtains that Spect(A, τ) = SpecR A =
Spect(A, τo), and hence from Lemma (1.14) (v) it follows that A is closed under
inversion. It is also known that any regular and strictly real Fréchet algebra
is normal (see [17]; [16], Teorema II.4.13, for the real case), then one has that
(A, τo) is normal. We can apply Theorem (2.5) to deduce that the spectral
representation (A, τ) → Ck(Xo) is an l-isomorphism. Again, Michael’s result
shows that the composition (A, τ) → Ck(Xo) → Ck(K) is continuous for each
compact subset K of Xo (where Ck(Xo) → Ck(K) is the restriction morphism),
and thus we obtain that the spectral representation of (A, τ) is continuous.
Finally, in order to prove the continuity of the inverse map Ck(Xo) → (A, τ),
note that Ck(Xo) is barreled because Xo is realcompact (see [13]). Then, the
proof follows from a generalization of the open mapping theorem: “ a linear
and continuous map from a Fréchet space onto a barreled space is open ” (see
[15]; [6], 4.1 and Proposition 3).

Remark (2.7). The previous theorem is not a consequence or a particular
case of Theorem (2.14) below.

Lemma (2.8). Let A be a uniformly closed Φ-algebra that is also a topological
vector space. If the closed intervals of A are t-bounded, then every closed subset
of A is uniformly closed.

Proof. Let F be a closed subset of A. If (an)n is a uniform Cauchy sequence
in F and a ∈ A is the uniform limit of (an)n, one will have to show that a ∈ F .
Let V be a neighbourhood of 0 in A. On the one hand, there exists λ ∈ R+

such that [−1, 1] ⊆ λV , i.e., [− 1
λ , 1

λ ] ⊆ V ; and on the other hand, there exists
a non-negative integer m such that an − a ∈ [− 1

λ , 1
λ ] for all n ≥ m. Therefore

(an)n converges to a, and one concludes that a ∈ F .

Lemma (2.9). Let A be a uniformly closed Φ-algebra. The following are
equivalent:

(i) every maximal ideal of A is real;
(ii) the unit element of A is a strong order unit.

Proof. (i) ⇒ (ii) If A satisfies (i) then it is clear that Xo = Specm A (topolog-
ical equality) and so Xo is compact. Since every maximal ideal of a uniformly
closed Φ-algebra is an l-ideal (see [14], Theorem 3.7), and the intersection of
all the maximal l-ideals is zero (see [7], Chapter II, Theorem 2.11), it follows
that A is real-semisimple; i.e., A is l-isomorphic to a subalgebra of (bounded)
functions in C(Xo). Hence A = A∗, which is equivalent to saying that 1 is a
strong order unit for A.

(ii) ⇒ (i) Let M be a maximal ideal of A. Since M is an l-ideal, one has that
A/M is an f -field and thus a totally ordered field (see [2], p. 57). Moreover,
A/M must be Archimedean since otherwise it would contain infinitely large
elements, against that the unit of A/M is a strong order unit. It follows that
A/M = R.
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Definitions (2.10). Let A be a topological algebra. We shall say that A is a
Q-algebra if the set of its invertible elements is open. We shall say that an ideal
I of A is a C-ideal, if I is closed and every maximal ideal of A that contains I
is real and closed.

Let A be a locally m-convex algebra and I an ideal of A. We shall endow the
quotient A/I with the quotient topology, i.e., the final topology defined by the
quotient morphism A → A/I . Thus, A/I is also a locally m-convex algebra (see
for instance [16], Teorema I.2.5), and there exists a one-to-one correspondence
between the closed ideals of A containing I and the closed ideals of A/I .

When A is also a uniformly closed Φ-algebra, it is obvious that if I is a closed
ideal such that A/I is a Q-algebra then I is a C-ideal (because in a Q-algebra
every maximal ideal is closed). The converse is not true. Actually one has

Lemma (2.11). Let A be a locally m-convex and uniformly closed Φ-algebra.
The spectral representation A → Ck(Spect A) is continuous if and only if A/I
is a Q-algebra for every C-ideal I of A.

Proof. According to [10], Theorem 2.28, the lemma is true when A is a
Gelfand regular locally m-convex algebra. As A is so by (ii) and (iii) of Lemma
(1.14), the proof is complete.

Remark (2.12). If A is a Gelfand regular topological algebra, then the C-
ideals of A are in correspondence with the compact subsets of Spect A (see [10],
Section 2, for the details). Thus it is reasonable that the C-ideals should play an
essential role in a statement about the continuity of the spectral representation
(such as Lemma (2.11)), since the topology of Ck(Spect A) is defined in terms
of the compact subsets of Spect A.

Theorem (2.13). Let A be a Φ-algebra that is uniformly closed and closed
under inversion. If τ is a topology on A such that (A, τ) is a locally m-convex
algebra, then τ = τo if and only if

(i) each closed interval of A is τ-bounded;
(ii) every real maximal ideal of A is τ-closed;
(iii) if I is a τ-closed ideal of A such that the unit of A/I is a strong order

unit, then A/I is a Q-algebra.

Proof. We have that (A, τo) is a locally m-convex algebra (and thus regular)
that satisfies condition (ii) (Proposition (2.4)) and condition (i). Let us see that
τo satisfies (iii). Let I be a closed ideal of A. From Lemma (2.8) it follows that
I is also uniformly closed, and so it is known that A/I is a uniformly closed
Φ-algebra (see [14], Theorem 3.7 and Theorem 2.5). Assume that the unit of
A/I is a strong order unit. According to the preceding lemma, this condition
is equivalent to “every maximal ideal containing I is real”, i.e., to I being a
C-ideal of A. That A/I is a Q-algebra follows from Lemma (2.11), because the
spectral representation (A, τo) → Ck(Xo) is continuous (by Buskes’ result).

Conversely, assume that (A, τ) is a locally m-convex algebra satisfying con-
ditions (i), (ii), and (iii). Then it is clear that τ ≤ τo. A similar argument to
the previous one allows one to prove that if I is a C-ideal of A then A/I is a
Q-algebra, and hence from Lemma (2.11) one derives that the spectral repre-
sentation (A, τ) → Ck(Spect A) is continuous. Since, according to condition (ii),
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the equality Spect A = Xo is satisfied, from Buskes’ result it follows that τo

is the initial topology associated with this spectral representation, so that it
must be the case that τo ≤ τ.

Theorem (2.14). Let A be a uniformly closed Φ-algebra endowed with a
Hausdorff locally m-convex topology. A is l-isomorphic and homeomorphic to
Ck(X) for some normal and realcompact topological space X iff:

(i) there exist no principal ideals in A that are proper and dense;
(ii) each closed interval of A is t-bounded;
(iii) every real maximal ideal of A is closed;
(iv) if I is a closed ideal of A such that the unit of A/I is a strong order unit,

then A/I is a Q-algebra.
(v) there do not exist two closed ideals in A whose sum is dense and proper.

Proof. Let us see that these conditions are sufficient. We first prove that A
is closed under inversion: if a ∈ A such that a(x) 6= 0 for all x ∈ SpecR A (6= ∅
by Lemma (1.14) (v)), then from Lemma (1.14) (v) it follows that the principal
ideal (a) is dense. Condition (i) yields that (a) is the whole algebra A; i.e., a
is an invertible element of A. Then we can apply Theorem (2.13) to deduce
that the topology of A is the order topology. Also A is normal by condition
(v) and Lemma (1.7). Finally, Theorem (2.5) shows that A → Ck(Xo) is an
l-isomorphism, and therefore a homeomorphism.

Conversely, if X is realcompact then C(X) is closed under inversion and the
topology of Ck(X) is the order topology. From Theorem (2.13) it follows that
Ck(X) satisfies conditions (ii), (iii), and (iv). Inverting the reasoning of the
preceding paragraph, one has that Ck(X) satisfies (i). Lastly, we have already
said that condition (v) on Ck(X) is equivalent to X being normal.

Remark (2.15). Condition (iv) in the preceding theorem can be replaced by
the requirement that A be a barreled space. Indeed, on the one hand, as
has already been pointed out, Ck(X) is barreled when X is realcompact. On
the other hand, if A is barreled, then it is easy to show that the spectral
representation of A is continuous (see [1], (4.12-4)), and therefore, reasoning
as in the proof of (2.13), one has that condition (iv) holds.
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41–69.

[3] G. J. Buskes, The support of certain Riesz pseudo-norms and the order-bound topology, Rocky
Mountain J. Math. 18 (1988), 167–178.

[4] W. A. Feldman and J. F. Porter, The order topology for function lattices and realcompact-
ness, Internat. J. Math. & Math. Sci. 4 (1981), 289–304.

[5] L. Gillman and M. Jerison, Rings of Continuous Functions, Graduate Text in Math. no. 43,
Springer-Verlag, New York, 1960.

[6] T. Husain, The Open Mapping and Closed Graph Theorems in Topological Vector Spaces,
Robert E. Krieger Publishing Co., Inc., New York, 1976.

[7] D. J. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math. 104 (1960),
163–215.

[8] E. Michael, Locally Multiplicatively-Convex Topological Algebras, Mem. Amer. Math.
Soc. no. 11, AMS, Providence, RI, 1952.

[9] F. Montalvo, A. Pulgarı́n and B. Requejo, Order topologies on l-algebras, Topology Appl.
137 (2004), 225–236.

[10] F. Montalvo, A. Pulgarı́n and B. Requejo, Closed ideals in topological algebras: a
characterization of the topological Φ-algebra Ck(X), Czechoslovak Math. J. 56 (131) (2006),
903-918

[11] P. D. Morris and D. E. Wulbert, Functional representation of topological algebras, Pacific
J. Math. 22 (1967), 323–327.
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ON TRANSVERSELY HOLOMORPHIC PRINCIPAL BUNDLES

INDRANIL BISWAS AND N. RAGHAVENDRA

Abstract. The notion of a transversely holomorphic structure on a foliated
manifold is generalized. We define principal bundles, and their associated
bundles, on these generalized transversely complex spaces. For any pair of
holomorphic structures on a transversely differentiable principal bundle over
such a space, we construct and study certain naturally associated elements of
the Dolbeault cohomology of the foliated space. The construction of these
cohomology classes are inspired by the construction of the Chern-Simons
secondary invariants of flat vector bundles.

1. Introduction

Transversely holomorphic structures were introduced by Gómez-Mont in
[GM80]. He defined such a structure on a topological space M to be an open
covering of M by coordinate patches modeled after Rm×Cn, with the property
that the transition function between any two coordinate patches is of the form

Rm × Cn → Rm × Cn ,

(x, y) 7→ (g(x, y), h(y)) ,
(1.1)

where g is a C∞ function and h is a holomorphic function. Gómez-Mont then
showed that certain natural sheaves on such a foliated space M have finite-
dimensional cohomologies, provided M is compact. He also studied deforma-
tions of such spaces. Deformations of transversely holomorphic structures
were also studied by Girbau, Haefliger, and Sundararaman [GHS83], who
introduced the notion of a versal deformation of a transversely holomorphic
structure, and constructed it.

In this paper, we generalize the notion of transversely holomorphic struc-
tures as follows. We require that the space M in the above setting should
have a covering by coordinate patches modeled after X × Cn, where X is an
arbitrary fixed topological space, and that the transition function between any
two coordinate patches is of the form (x, y) 7→ (g(x, y), h(y)), where g is a con-
tinuous function and h is a holomorphic function. We shall call such a space a
transversely complex manifold. We define principal bundles on such a space,
and prove some properties of their characteristic classes.

Fix a complex Lie group G. Let P be a C∞ principal G-bundle on a
transversely complex manifold M . This means that, in terms of a coordinate
chart on M , the principal bundle P is continuous in the X direction, and C∞

in the Cn direction (the transverse direction). We shall define on P an analog
of a Dolbeault operator; the Dolbeault operator on a smooth principal bundle
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bundles.
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over a complex manifold gives a complex structure on the principal bundle.
The space Dol(P ) of all Dolbeault operators on P is an affine space modeled
after the space of all ad(P )-valued transversely differential forms on M of
Hodge type (0, 1), where ad(P ) is the adjoint vector bundle of P . For each
pair of Dolbeault operators @0 and @1, we construct a sequence {Dk(@0, @1)}∞k=0
of cohomology classes Dk(@0, @1) ∈ H2k+1(M,OM ), where OM is the sheaf of
transversely holomorphic functions onM . These cohomology classes are called
the secondary invariants of P .

It may be pointed out that the transversely complex manifolds we define
here are the ‘transversal’ analogue of the foliated spaces of Moore and Schochet
[MS88]. The local models considered in [MS88] are Rm × Y , where Y is an
arbitrary topological space, and the transition function between any two charts
is of the form Rm × Y → Rm × Y ′ defined by (x, y) 7→ (g(x, y), h(y)), where g
is a C∞ function and h is a continuous function. Another difference is that
they study ‘tangential’ objects, i.e., objects along Rm, whereas in this paper, we
study ‘transversal’ objects, i.e., objects along Y .

Transversely complex manifolds are also related to laminations. For in-
stance, a lamination by Riemann surfaces [Gh99] is a topological space lo-
cally homeomorphic to a model space of the type D × T , where D is the open
unit disc in C and T is a topological space; the transition function between
two such charts is assumed to be of the form D × T → D × T ′ defined by
(z, t) 7→ (f (z, t), γ(t)), where f (z, t) is holomorphic in z and continuous in t, and
γ(t) is a continuous function of t (cf. [Gh99], Section 2, p. 50). The local models
of a transversely complex manifold are also of the type U×T , where U is open
in Cn and T is a topological space. However, the transition function between
two such charts is assumed to be of the form U × T → U × T ′ defined by
(z, t) 7→ (f (z), γ(z, t)), where f (z) is holomorphic in z, and γ(z, t) is continuous
in z and t (Proposition (2.5)).

In Section (2), we establish the basic formalisms of transversely complex
manifolds and principal bundles over them. We discuss, in Section (3), holo-
morphic structures on principal bundles over a transversely complex mani-
folds. In section (4), we develop the notion of secondary invariants of such
principal bundles. In Section (5), we investigate the simplest case of these
invariants.

2. Transversely complex manifolds and bundles

Fix a topological space X.

Definition (2.1). A local model of dimension n is a pair (X,U), where X is
the above topological space, and U is an open subset of X×Cn. We shall often
suppress the space X from the notation, and refer to U itself as a local model.

If (X,U) is a local model, and if x0 is a point in X, we define U(x0,·) = {y ∈
Cn | (x0, y) ∈ U}, and for any point y0 of Cn we define U(·,y0) = {x ∈ X | (x, y0) ∈
U}. If f : U → T is a function from U to a set T , we define f(x0,·) : U(x0,·) → T
by f(x0,·)(y) = f (x0, y), and define f(·,y0) : U(·,y0) → T by f(·,y0)(x) = f (x, y0).
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We say that a continuous function f : U → C on a local model (X,U) is
transversely holomorphic if the functions f(x0,·) and f(·,y0) are holomorphic on
U(x0,·) and U(·,y0), respectively, for all (x0, y0) ∈ U × Cn.

If V is an open subset of U, then (X,V ) clearly is also a local model, so
the above definition of transversely holomorphic functions applies to V also.
We thus obtain the sheaf O(X,U) of transversely holomorphic functions on U.
The stalk of O(X,U) at a point of U is the space of all transversely holomorphic
functions defined around the point.

We shall, most of the time, abbreviate the notation O(X,U) to OU . The stalk
of OCn (the sheaf of holomorphic functions on Cn) at any point y ∈ Cn will be
denoted by OCn,y.

Definition (2.2). If (X,U) and (X′, U ′) are local models, then a continuous
map f : U → U ′ is said to be a transversely holomorphic map if f ◦ u ∈
OU (f−1(V )) whenever V is an open subset of U ′, and u ∈ OU′ (V ). We say
that a continuous map f : U → U ′ is a transversely biholomorphic map if f is a
homeomorphism and both the maps f and f−1 are transversely holomorphic.

Remark (2.3). We can define differentiable analogues of transversely holo-
morphic objects as follows. A real local model of dimension n is a pair (X,U),
where X is a topological space, and U is an open subset of X × Rn. As before,
we have the notion of a transversely differentiable map.

The following two Propositions (2.4) and (2.5) are easy consequences of the
description of the topological inverse image given above, hence we omit their
proofs.

Proposition (2.4). If (X,U) is a holomorphic local model, then the sheaf of
transversely holomorphic functions OU on U is canonically isomorphic to the
topological inverse image pr2

−1OCn , where pr2 : U → Cn is the restriction of the
second projection X × Cn → Cn, and OCn is the sheaf of holomorphic functions
on Cn.

Proposition (2.5). If (X,U) and (X′, U ′) are local models, then a continuous
map f : U → U ′ is transversely holomorphic if and only if each point z0 ∈ U
has an open neighborhoodU0 = U1×U2 ⊂ U, withU1 ⊂ X andU2 ⊂ Cn, such
that the restriction f |U0 is of the form

(2.6) (x, y) 7−→ (g(x, y), h(y)),

where g : U0 → X′ is continuous, h : U2 → Cn′
is holomorphic, and n′ is the

dimension of the local model (X′, U ′).

Definition (2.7). Let M be a second-countable and metrizable topological
space. A transversely complex chart of dimension n, or briefly a chart, on M is
a homeomorphism φ : V → U, where V is an open subset of M and (X,U) is
a local model. For notational convenience we shall sometimes denote such a
chart by φ : V → (X,U). Two charts φ : V → (X,U) and φ′ : V ′ → (X′, U ′) are
said to be compatible if the transition function φ′ ◦φ−1 : φ(V ∩V ′) → φ′(V ∩V ′)
is a transversely biholomorphic map from the local model (X,φ(V ∩ V ′)) to
the local model (X′, φ′(V ∩ V ′)). An atlas of dimension n on M is a set of
pairwise compatible charts φi : Vi → (Xi, Ui) (i ∈ I), whose domains Vi cover
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M . A transversely complex manifold of dimension n is a second-countable and
metrizable topological space, together with a maximal atlas of dimension n.

Remark (2.8). Every open subset of a transversely complex manifold is
again a transversely complex manifold of the same dimension. If M and N
are transversely complex manifolds, then their product M ×N has a natural
structure of a transversely complex manifold, whose dimension is the sum of
the dimensions of M and N . Every complex manifold of dimension n is a
transversely complex manifold of dimension n.

We will recall from [GM80] and [GHS83] a couple of examples of transversely
complex manifolds; see [GM80], p. 164, Examples 1,2 and [GHS83], p. 131.

Example (2.9). Let M be a complex manifold of dimension m + n equipped
with a nonsingular holomorphic foliation F of complex dimension m. Then M
has a natural structure of a transversely complex manifold of dimension n.
Indeed, this follows immediately from the fact that the locally defined leaf–
spaces for F have a natural complex structure. Nice applications of this fact
that the locally defined leaf–spaces of a holomorphic foliation has a natural
complex structure can be found in [LV97], [MV02].

Example (2.10). For the second example, let Z be a complex manifold of
dimension n and X a topological space. Let Γ be a group acting freely and
properly on X × Z through homeomorphisms of X × Z. In other words, for
any γ ∈ Γ, the bijection X × Z −→ X × Z given by the action of γ is a
homeomorphism. Assume that Γ acts on Z through biholomorphisms. So,
for any γ ∈ Γ, the bijective map Z −→ Z given by the action of γ on Z is
a biholomorphism. The action of Γ on Z need not be free. Assume that the
natural projection X×Z → Z commutes with the actions of Γ on X×Z and Z.
Then the quotient space (X × Z)/Γ has a natural structure of a transversely
complex manifold of dimension n. For instance, X can be a Galois cover of
another topological space X′ and Γ the Galois group. For any holomorphic
action of Γ on a complex manifold Z, the diagonal action of Γ on X×Z satisfies
the above conditions. If we take Γ to be a closed subgroup of a Lie groupX with
Γ acting holomorphically on Z, then this also satisfies the above conditions.

A continuous function f : M → C on a transversely complex manifold is
called a transversely holomorphic function if, for every chart φ : V → (X,U),
the function f ◦ φ−1 : U → C is a transversely holomorphic function on the
local model (X,U). With this definition, we obtain the sheaf OM of trans-
versely holomorphic functions on M . A continuous map f : M → M ′ between
transversely complex manifolds is said to be a transversely holomorphic map
if u ◦ f ∈ OM (f−1(V )), whenever V is an open subset of M ′ and u ∈ OM′ (V ).

Remark (2.11). Let M be a transversely complex manifold, and let N be a
complex manifold. Therefore, the Cartesian product M ×N is a transversely
complex manifold. An explicit description of the transversely complex manifold
structure onM×N is as follows. If φ : V → U is a transversely complex chart,
where (X,U) is a local model of of M dimension n, and if φ′ : V ′ → U ′ is a
complex chart on N , where U ′ is an open subset of Ck and k = dimC N , then

(2.12) φ× φ′ : V × V ′ → U ×U ′
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is a transversely complex chart on M × N , where we identify Cn × Ck with
Cn+k in the obvious way, and consider (X,U×U ′) as a local model of dimension
n + k. As φ and φ′ vary over atlases on M and N , respectively, (2.12) defines
a transversely complex structure on M ×N .

Consider the right action of G on M ×G, defined by (x, g)h = (x, gh), where
x ∈M and g, h ∈ G. Let

λ : M ×G −→ M ×G

be a G-equivariant transversely holomorphic map, with respect to the trans-
versely complex structure onM×G as defined in Remark (2.11). Suppose that
pr1 ◦λ = pr1, where pr1 denotes the projection to the first factor (the projection
to the second factor will be denoted by pr2). Define two maps ρ : M × G → G
and σ : M → G by ρ = pr2 ◦ λ and σ(x) = ρ(x, e), where e denotes the identity
element of G.

Proposition (2.13). With the above notation, the map σ : M → G is trans-
versely holomorphic. Indeed, every point x0 ∈ M has an open neighborhood
U0, and a chart φ : U0 → (X,V0), such that

1).V0 = V1 ×V2, where V1 is a connected open subset of X, and V2 is open in
Cn with n being the dimension of M ;

2). (σ ◦ φ−1)(·,y) : (V0)(·,y) → G is a constant function for all y ∈ Cn; and

3). (σ ◦ φ−1)(x,·) : (V0)(x,·) → G is a holomorphic function for all x ∈ X.

The proof is omitted, because it is a direct consequence of the definitions.

Definition (2.14). LetG be a complex Lie group. We say that a right action of
G on a transversely complex manifold P is a transversely holomorphic action if
the action map P×G→ P is transversely holomorphic, where the transversely
complex structure on the product P×G is defined as in Remark (2.11). A trans-
versely holomorphic principal G-bundle over a transversely complex manifold
M is a transversely complex manifold P , together with a transversely holomor-
phic surjective map π : P →M , and a transversely holomorphic right action of
G on P , satisfying the usual local triviality condition. Namely, for every point
x in M , there exist an open neighborhood U of x in M and a G-equivariant
transversely biholomorphic map λ : π−1(U) → U × G, where the action of G
on U ×G is defined by (x, g)h = (x, gh), for all x ∈ U, and g, h ∈ G, such that
pr1 ◦ λ = π on π−1(U).

Let π : P → M be a transversely holomorphic principal G-bundle over a
transversely complex manifoldM , andπ′ : P ′ →M a transversely holomorphic
principal G′-bundles on M , where G′ ⊂ G is a complex Lie subgroup. A
transversely holomorphic morphism from P ′ to P is a transversely holomorphic
G′-equivariant map f : P ′ → P such that π ◦ f = π′.

Let OM (G) denote the sheaf of transversely holomorphic maps from a trans-
versely complex manifold M to a complex Lie group G, where the complex
manifold G is considered as a transversely complex manifold in the natural
manner (see Remark (2.8)). Define the Čech cohomology set H1(M,OM (G)) in
the usual manner.
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Let π : P → M be a transversely holomorphic principal G-bundle over
M . Let {Ui}i∈I be an open cover of M , such that for each i ∈ I , there
exists a G-equivariant transversely biholomorphic map λi : Ui → Ui × G as
in Definition (2.14). For each pair (i, j) ∈ I × I , define σij : Ui ∩ Uj −→ G by
σij(x) = pr2 ◦λi ◦λ−1

j (x, e), where e ∈ G is the identity element. By Proposition
(2.13), these transition functions σij are transversely holomorphic functions.
Moreover, they satisfy the standard cocycle conditions, namely, σijσjk = σik
on Ui ∩Uj ∩Uk. Therefore, the family {Ui, σij}i,j∈I defines an element θ(P ) of
H1(M,OM (G)). The cohomology class θ(P ) depends only on the (transversely
holomorphic) isomorphism class of the G-bundle P , and not on the choice of
the family {Ui, σij}i,j∈I . The function which assigns to the isomorphism class
of a G-bundle P , the cohomology class θ(P ) is a bijection from the set of all
isomorphism classes of transversely holomorphic principal G-bundles on M to
the set H1(M,OM (G)).

A transversely holomorphic vector bundle of rank r on a transversely complex
manifoldM is a transversely complex manifoldE, together with a transversely
holomorphic surjective map π : E →M , satisfying the following conditions:

1). For each point x ∈ M , the fiber Ex = π−1(x) is equipped with the
structure of a C-vector space of dimension r.

2). For every point x ∈M , there exist an open neighborhoodU ⊂M of x and
a transversely biholomorphic map λ : π−1(U) → U × Cr such that pr1 ◦ λ = π
on π−1(U), where pr1 is the projection to the first factor, and such that for each
point y ∈ U, the induced map φy : Ey → {y} × Cr ∼= Cr is an isomorphism of
complex vector spaces.

Definition (2.15). Let π : E → M and π′ : E′ → M be transversely holo-
morphic vector bundles on a transversely complex manifold M . A transversely
holomorphic homomorphism from E to E′ is a transversely holomorphic map
f : E → E′ such that π′ ◦ f = π, and such that for each point x ∈ M , the
induced map fx : Ex → E′

x is linear. A transversely holomorphic isomorphism
fromE toE′ is a transversely holomorphic homomorphism f : E → E′ as above
such that for each point x ∈ M , the induced map fx : Ex → E′

x is a linear iso-
morphism. A transversely holomorphic section of a transversely holomorphic
vector bundle E over M is a transversely holomorphic homomorphism to E
from the trivial transversely holomorphic line bundle M ×C (the transversely
complex structure of the product is defined as in Remark (2.11)). Equivalently,
a transversely holomorphic section of E is a transversely holomorphic map
s : M → E such that π ◦ s is the identity map of E.

Let M be a transversely complex manifold of dimension n. Let {(Ui, φi)}i∈I
be an atlas on M . For each i ∈ I , let σi = pr2 ◦ φi : Ui → Cn, and let
Ti = σ∗i TCn be the pull-back of TCn, the holomorphic tangent bundle of
Cn, by σi. Then, the locally defined vector bundles Ti over M glue to form
a transversely holomorphic vector bundle of rank n overM , which is called the
tangent bundle of M , and is denoted by TM .

For any point x ∈M , the fiber (TM)x of TM at x is canonically isomorphic to
the vector space of all C-derivations from OM,x to C. We can now, in the usual
manner, define transversely holomorphic vector fields, differential forms, etc.
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Set Ω1
M to be sheaf of transversely holomorphic sections of (TM)∗, and more

generally, for anyp ≥ 0, set Ωp
M to be sheaf of transversely holomorphic sections

of the exterior power Λp(TM)∗. Therefore, we have the sheaf of differential
graded algebra Ω1

M :=
⊕n

p=0 Ωp
M of all transversely holomorphic differential

forms, with the differential @ : Ωp
M → Ωp+1

M (transversely holomorphic sections
are defined in Definition (2.15)).

Remark (2.16). Using real local models (Remark (2.3)), we can define —
imitating the definitions of transversely complex manifolds and transversely
holomorphic bundles — transversely differentiable manifolds, transversely
differentiable principal bundles, etc. All the assertions above carry over to this
category, with “differentiable” replacing “holomorphic” and with “R” replacing
“C” etc.

Remark (2.17). It can be shown, as done in [MS88], Proposition 2.8, that ev-
ery transversely differentiable manifold M admits transversely differentiable
partitions of unity. Therefore, the sheaf A

p
M of transversely differentiable p-

forms on a transversely differentiable manifold M is a fine sheaf, for every
integer p.

Example (2.18). If P is a holomorphic principal G-bundle on a complex
manifold Z of dimension n, then the pull-back of P to X × Z is a transversely
holomorphic principal G-bundle on the transversely complex manifold X × Z
of dimension n.

Example (2.19). Let M be a complex manifold of dimension m+n equipped
with a nonsingular holomorphic foliation F of complex dimension m, and let
π : P −→ M be a holomorphic principal G-bundle over M . Let F̃ be a
nonsingular holomorphic foliation on the total space of P of complex dimension
n such that dπ(F̃) = π∗F, where

dπ : T 1,0P −→ π∗T 1,0M

is the differential of the projection π. Further assume that the action of G on
the principal G-bundle P preserves the subbundle F̃ ⊂ T 1,0P . Then P has a
natural structure of a transversely holomorphic principal G-bundle over the
transversely complex manifold M .

Example (2.20). Take (X,Z,Γ) as in Example (2.9). Let P be a holomorphic
principal G-bundle over Z. Assume that the G-bundle P is equipped with a
lift of the action of Γ on Z. This means that Γ acts on the total space of P
through biholomorphisms, that the actions of G and Γ on P commute, and
that the bundle projection from P to Z is Γ-equivariant. Let P̃ := p∗ZP be
the pullback of P to X × Z by the obvious projection pZ : X × Z → Z. Then
the quotient P̃/Γ is a principal G-bundle over (X × Z)/Γ. This principal G-
bundle has a structure of a transversely holomorphic principal G-bundle over
the transversely complex manifold (X × Z)/Γ.

3. Holomorphic structures on transversely differentiable bundles

We earlier defined the holomorphic tangent bundle of a transversely complex
manifold. Note that the sheaf of sections of the holomorphic tangent bundle of
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a transversely complex manifoldM is identified with the sheaf of derivations of
transversely holomorphic functions on M . From now onwards, to distinguish
the holomorphic tangent bundle from the real tangent bundle, we will denote
the holomorphic tangent bundle of M by T 1,0M .

The (real) tangent bundle of a transversely differentiable manifold M is de-
fined to be the sheaf of derivations of transversely differentiable real valued
functions onM . The real tangent bundle ofM will be denoted by TM . The con-
jugate bundle of T 1,0M will be denoted by T 1,0M . We have the decomposition
Λ(TCM) =

⊕
p,q Λp,q(TM), where

Λp,q(TM) = Λp(T 1,0M)⊗ Λq(T 1,0M) .

We will denote the spaces of transversely differentiable forms on a transversely
complex manifoldM by Ap,q(M) and Ap(M). So Ap,q(M) (respectively, Ap(M)) is
the space of all global sections of the transversely differentiable vector bundle
(Λp,q(TM))∗ (respectively, (ΛpTM)∗).

If E is a transversely differentiable vector bundle over M , we will denote
by Ap,q(E) the space of all globally defined transversely differentiable homo-
morphisms from Λp,q(TM) to E. Similarly, define Ap(E) to be the space of all
globally defined transversely differentiable homomorphisms from ΛpTM to E.

Let G be a Lie group, and let g denote its Lie algebra. Let π : P → M be
a transversely differentiable principal G-bundle over M . Then we have the
adjoint bundle

ad(P ) = (P × g)/G,

which is the vector bundle associated to P for the adjoint representation
ad : G → GL(g); in the above quotient, the action of any g ∈ G sends a point
(z, v) ∈ P×g to (zg, ad(g−1(v)). Note that ad(P ) is a transversely differentiable
vector bundle over M .

There is a natural short exact sequence of transversely differentiable vector
bundles

(3.1) 0 → ad(P ) → πG
∗ TP → TM → 0,

where πG
∗ TP = TP/G is the vector bundle corresponding to the G-invariant

direct image of TP ; it is easy to see that πG
∗ TP is a transversely differentiable

vector bundle over M . The construction and properties of this short exact
sequence are analogous to its construction and properties in the usual case,
i.e., in the category of differentiable principal bundles. See [At57] and [Kos86],
Section 5.5 for the details. We shall refer to the above exact sequence as the
Atiyah sequence of P .

Definition (3.2). Let π : P → M be a transversely differentiable principal
G-bundle, where G is a Lie group. A connection on P is a transversely differ-
entiable splitting

γ : πG
∗ TP −→ ad(P )

of the Atiyah exact sequence of P .

If γ and γ′ are connections, then using (3.1) it follows that

ω = γ− γ′



TRANSVERSELY HOLOMORPHIC BUNDLES 249

is a well defined transversely differentiable homomorphism from πG
∗ TP to

ad(P ). Moreover, ω(X) = 0 for all X ∈ ad(P ). Therefore, ω induces a trans-
versely differentiable homomorphism from TM to ad(P ), or in other words, ω is
a transversely differentiable 1-form onM with values in ad(P ). We will denote
this form also by γ − γ′. The space of all connections on P is, thus, an affine
space modeled after the vector space A1(ad(P )).

Let G be a complex Lie group, and let π : P → M be a transversely differ-
entiable principal G-bundle on a transversely complex manifold M . The space
of ad(P )-valued forms Ap,q(ad(P )) was defined above.

Definition (3.3). Let G be a complex Lie group, and let π : P → M be
a transversely differentiable principal G-bundle on a transversely complex
manifold M . Let us say that connections γ and γ′ on P are equivalent if

γ− γ′ ∈ A1,0(ad(P )) .

This defines an equivalence relation on the space of all connections on P .
We will denote the equivalence class of γ by γ itself. An almost holomorphic
structure on P is an equivalence class, with respect to the above relation, of
connections on P .

The space of all almost holomorphic structures on P is an affine space mod-
eled after the vector space A0,1(ad(P )). Indeed, for any two almost holomorphic
structures on P γ and γ′, the difference γ′−γ is an element of A0,1(ad(P )), and
conversely, for any θ ∈ A0,1(ad(P )) and any almost holomorphic structure γ on
P

γ′ := γ + θ

is again an almost holomorphic structures on P .
Let π : P →M be a transversely differentiable principalG-bundle, whereG

is a complex Lie group. If γ is a connection on P , we will define its curvature,
in analogy with the usual case, as follows. The transversely differentiable
homomorphism of vector bundles on M , γ : πG

∗ TP → ad(P ), gives rise to a
transversely differentiable 1-form on P with values in g. We will denote this
g-valued 1-form also by γ. By definition, the curvature is the 2-form on P with
values in g, given by

K(γ) = d γ + [γ, γ] .

The form K(γ) descends to an ad(P )-valued 2-form K(γ)′ ∈ A2(ad(P )) on M .
When there is no risk of confusion, we will denote the 2-form K(γ)′ also by
K(γ).

Definition (3.4). Let G be a complex Lie group, and let π : P → M be
a transversely differentiable principal G-bundle on a transversely complex
manifold M . Let γ be an almost holomorphic structure on P by a connection
γ′ on P . Consider its curvature K(γ′) ∈ A2(ad(P )) of γ′. We say that the
almost holomorphic structure γ is integrable if the (0, 2)-component, K(γ′)0,2 ∈
A0,2(ad(P )), of K(γ′) is zero. This condition on γ is independent of the choice
of the representative γ′ of the equivalence class of connections defined by γ.
An integrable almost holomorphic structure is also known as a holomorphic
structure.
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LetM be a transversely differentiable manifold, and let E be a transversely
differentiable real vector bundle on M of even rank. An almost complex struc-
ture on E is a transversely differentiable homomorphism of vector bundles,
J : E → E, such that

J 2 = −1E .

An almost complex structure onM is, by definition, an almost complex structure
on the real tangent bundle TM . A transversely differentiable almost complex
manifold is a transversely differentiable manifold together with a transversely
differentiable almost complex structure on it.

On every transversely differentiable almost complex manifold (M,J ), we
have a decomposition TM ⊗R C = T 1,0M ⊕ T 0,1M , where T 1,0M is the

√
−1-

eigenspace of J ⊗ 1C, and T 0,1M = T 1,0M . This induces a decomposition
Γ(TM ⊗C) = Γ(T 1,0M)⊕Γ(T 0,1M) of the vector space of transversely differen-
tiable complex vector fields on M .

We say that a transversely differentiable almost complex structureJ : TM→
TM on a transversely differentiable manifold M is integrable if Γ(Λ1,0(TM)) is
a Lie subalgebra of Γ(TM ⊗R C), where the Lie bracket of two transversely
differentiable (complex) vector fields on M is defined in the same way as in the
usual case. An integrable almost complex structure is also known as a complex
structure.

Every transversely complex manifold M carries a natural transversely dif-
ferentiable almost complex structure, which is integrable. Conversely, using
the Newlander-Nirenberg Theorem [NN57], we can prove the following result.

Proposition (3.5). Let M be a transversely differentiable manifold, and let

J : TM −→ TM

be a transversely differentiable almost complex structure on M . Suppose that
J is integrable. Then, there exists a unique structure of a transversely complex
manifold on M , that induces the almost complex structure J .

Let π : P → M be a transversely differentiable principal G-bundle, where
G is a complex Lie group, and M is a transversely complex manifold. Let γ be
a connection on P . Then γ induces a G-equivariant splitting of the short exact
sequence of transversely differentiable G-vector bundles

(3.6) 0 → OP ⊗R g → TP → π∗TM → 0.

We will denote this G-equivariant splitting also by γ. Since G is a complex Lie
group, the vector bundle OP ⊗R g carries a transversely differentiable almost
complex structure. Since M is a transversely complex manifold, the pull-
backπ∗TM also carries a transversely differentiable almost complex structure.
Therefore, using the splitting γ of the Atiyah exact sequence (3.6), we can define
a transversely differentiable almost complex structure Jγ : TP → TP on P .

Let π : P → M be a transversely differentiable principal G-bundle, where
G is a complex Lie group, and M is a transversely complex manifold. Let γ
be a connection on P . Then the transversely differentiable almost complex
structure

Jγ : TP −→ TP
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in the transversely differentiable real vector bundle TP is called the almost
complex structure induced by γ.

We now have, as in [Kos86], Section 6.4, Propositions 2 and 3, the following
result. The proof is an exact analogue of the proof in that reference.

Proposition (3.7). Let π : P →M be a transversely differentiable principal
G-bundle, where G is a complex Lie group, and M is a transversely complex
manifold. Let γ be a connection on P . Then, the following are true.

1).If γ′ is a connection that is equivalent to γ in the sense of Definition (3.3),
then the induced almost complex structures Jγ : TP → TP and Jγ′ : TP → TP
are equal.

2). The almost complex structure Jγ on P is a complex structure if and only
if the almost holomorphic structure γ is a holomorphic structure in the sense of
Definition (3.4).

We thus see that almost holomorphic (respectively, holomorphic) structures
on a transversely differentiable principal G-bundle P correspond bijectively to
almost complex (respectively, complex) structures on P .

Let E be a transversely differentiable complex vector bundle over a trans-
versely differentiable manifold M . A connection in E is a C-linear map

∇ : A0(E) −→ A1(E) ,

which satisfies the Leibniz identity:

(3.8) ∇(fs) = d f ⊗ s + f∇s

for all f ∈ A0(OM ) and s ∈ A0(E).

Definition (3.9). Let E be a transversely differentiable complex vector bun-
dle over a transversely complex manifold M . An almost holomorphic structure
inE is a C-linear mapD : A0(E) → A0,1(E), which satisfies the Leibniz identity

(3.10) D(fs) = @f ⊗ s + fDs

for all f ∈ A0(OM ) and s ∈ A0(E). Given an almost holomorphic structure in
E, we can extend it naturally to a C-linear map D(p,q) : Ap,q(E) → Ap,q+1(E),
satisfying the generalized Leibniz identity

(3.11) D(p+p′,q+q′)(ω ∧ τ) = @ω⊗ τ + ω ∧Dτ

for all ω ∈ Ap,q(M) and τ ∈ Ap,q(M). We will, as usual, drop the superscripts
from Dp,q, and denote it by just D. We will say that the almost holomorphic
structure D in E is integrable if D2 := D ◦D = 0. A holomorphic structure in
E is an integrable almost holomorphic structure.

4. Secondary invariants

Fix a nonnegative integer k. Let G be a complex Lie group with Lie algebra
g, and let B be an G-invariant symmetric form on g of degree k + 1. In other
words,

(4.1) B ∈ (Symk+1
g∗)G ,

with G acting on Symk+1
g∗ through the adjoint action of G on g.
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Let π : P → M be a transversely differentiable principal G-bundle over a
transversely complex manifold M . Let ρ : G → GL(V ) be a representation
of G on a finite dimensional complex vector space V . Proceeding as in the
usual case, one defines the associated transversely differentiable vector bundle
Eρ = (P × V )/G. As usual, we identify sections of Eρ with transversely
differentiable functions from P to V satisfying an automorphy condition.

Note that the G-invariant (k+ 1)-form B on g defines a smooth (k+ 1)-form

Symk+1(ad(P )) −→ AC
M

on the adjoint bundle ad(P ) of any smooth transversely differentiable principal
P overM , where AC

M is the sheaf of transversely differentiable complex valued
functions on M . For notational convenience, this form on ad(P ) will also be
denoted by B.

We say that a transversely differentiable vector field X on P is projectable
if there exists a transversely differentiable vector field Y on M , such that
dπx(Xx) = Yπ(x) for all x ∈ P , where dπ is the differential of the projection π
from P to M .

Proposition (4.2). Let notation be as above. If γ is a connection on P , then
there exists a unique connection ∇ in Eρ such that, for every projectable vector
field X on P , we have

(4.3) ∇X(σ) = Xσ + (ρ(γ(X)))(σ)− σ for all σ ∈ A0(Eρ).

Moreover, the (0, 1)-part,D, of the connection∇ depends only on γ. The operator
D is an almost holomorphic structure on Eρ. It is integrable if and only if γ is
integrable.

The proof of this result is analogous to that of [Kos86], Section 5.6, Theorem
3.

Let γ0 and γ1 be two holomorphic structures on P , and let ω = γ1−γ0. Note
that

ω ∈ A0,1(ad(P )) .
Define

γt = γ0 + tω

for all t ∈ [0, 1]. Note that γt is an almost complex structures on P (almost
complex structures form an affine space). The almost complex structure γt
need not be integrable if 0 < t < 1, so let

Θt = γt ◦ γt ∈ A0,2(ad(P ))

be the obstruction to the integrability of the Dolbeault operator γt on P , where
t ∈ [0 , 1].

Let @t denote the almost holomorphic structure in ad(P ) that is induced by γt
following Proposition (4.2). Then, we note that the standard Bianchi identity
says that @t(Θt) = 0 for all t. Define

(4.4) Dk(γ0, γ1) =
∫ 1

0
B(ω ∧Θk

t ) d t ,

where B is the earlier defined (k + 1)-form on the adjoint vector bundle ad(P )
(obtained from the G-invariant form on g). To explain the integral, note that
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B(ω∧Θk
t ) is a transversely differentiable (0, 2k+1)-form onM for each t ∈ [0 , 1].

So for each point x ∈M , we have∫ 1

0
B(ω ∧Θk

t )(x) d t ∈ Λ2k+2(T 0,1
x M)∗ .

The integral Dk(γ0, γ1) is a transversely differentiable (0, 2k + 1)-form on M ,
and

(4.5) Dk(γ0, γ1)(x) =
∫ 1

0
B(ω ∧Θk

t )(x) d t

for each point x ∈M .

Lemma (4.6). The form Dk(γ0, γ1) is @-closed.

Proof. For any t ∈ [0 1], consider the transversely differentiable (0, 2k+2)-form
B(Θk+1

t ) on M . So the integral

D̂k(γ0, γ1) :=
∫ 1

0
B(Θk+1

t ) d t

is a transversely differentiable (0, 2k + 2)-form on M . Using the Bianchi
identity it is straight-forward to check that

@Dk(γ0, γ1) =
1

k + 1
D̂k(γ0, γ1)

(see [Ch95], p. 114, Lemma 3.1, for a very similar computation). This com-
pletes the proof of the lemma.

Let (A·,·
M ,d) be the Dolbeault complex of transversely differentiable complex-

valued forms on M ; so Ap,q
M is the space of all global sections of A

p,q
M . The

complex

(4.7) 0 → OM → A0,0
M

@−→ A0,1
M

@−→ · · ·

is an acyclic resolution (see Remark (2.17)) of OM , the sheaf of transversely
holomorphic functions onM . Therefore, the @-closed (0, 2k+1)-formDk(γ0, γ1)
defines an element of H2k+1(M,OM ). We will denote this cohomology class by
Dk(γ0, γ1).

Example (4.8). Suppose thatE is a transversely differentiable vector bundle
of rank r over a transversely complex manifold M . By considering frames as
usual, E gives rise to a transversely differentiable principal G-bundle on M ,
where G = GL(r,C). There is a natural linear form B ∈ (g∗)G = (Sym1

g∗)G,
namely the trace form B(g) = trace(g). Using this linear form B in the above
procedure, we get for every pair of holomorphic structures γ0 and γ1 on E, a
cohomology class D0(γ0, γ1) ∈ H1(M,OM ). In particular, if L = Λr(E) is the
determinant line bundle of E, we get a class D0(γL0 , γ

L
1 ) ∈ H1(M,OM ), where

γLi is the holomorphic structure on L induced by the holomorphic structure γi
on E. We use this notion in Lemma (5.1).

Let Dol(P ) denote the set of almost holomorphic structures on the G-bundle
P . We have seen that it is an affine space modeled after A0,1(ad(P )). There
is a natural topology on A0,1(ad(P )) that makes it a Fréchet space. Therefore,
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Dol(P ) becomes a topological affine space in a natural way. Let Hol(P ) denote
the space of all holomorphic structures on P . So Hol(P ) is a subspace of Dol(P ).

Theorem (4.9). As in Lemma (4.6), take two holomorphic structures γ0 and
γ1 on P . Let

f : [0 , 1] −→ Dol(P )

be a smooth map such that f (0) = γ0 and f (1) = γ1. Define

Df (γ0, γ1) :=
∫ 1

0
B(ω ∧ (f (t) ◦ f (t))k) d t ∈ A0,2k+1(M) ,

where ω as before is γ1 − γ0, and f (t) ◦ f (t) is the obstruction to integrability of
the Dolbeault operator f (t) on P . Then the form Df (γ0, γ1) is @-closed, and the
cohomology class in H2k+1(M,OM ) represented by Df (γ0, γ1) coincides with the
cohomology class Dk(γ0, γ1) constructed earlier.

Proof. Let
F : [0 , 1]× [0 , 1] −→ Dol(P )

be the smooth map defined by

F (s, t) := (1− s)(γ0 + tω) + sf (t) .

Therefore, F (s, 0) = γ0 and F (s, 1) = γ1 for all s ∈ [0 , 1]; similarly, we have
F (0, t) = γt and F (1, t) = f (t).

Using this function F , there is a Dolbeault operator on the principal G-
bundle q∗P over M × [0 , 1]× [0 , 1], where

q : M × [0 , 1]× [0 , 1] −→ [0 , 1]× [0 , 1]

is the natural projection. The Dolbeault operator on q∗P is uniquely deter-
mined by the following two conditions:

1. for any point x ∈ M , the Dolbeault operator on (q∗P )|{x}×[0 ,1]×[0 ,1]
coincides with the one given by the natural trivialization of (q∗P )|{x}×[0 ,1]×[0 ,1]
(since (q∗P is pull-back from M , any trivialization of the fiber Px gives a
trivialization of the G-bundle (q∗P )|{x}×[0 ,1]×[0 ,1]), and

2. for any point (s, t)∈[0, 1]×[0, 1], the Dolbeault operator on (q∗P )|M×{s}×{t}
coincides with Dolbeault operator F (s, t) on P .

Let D denote the Dolbeault operator on q∗P constructed above. Let

(4.10) D2 ∈ A0,2(q∗ ad(P ))

be the obstruction to integrability of the Dolbeault operator D.
Consider the infinite dimensional vector space

(4.11) V := A0,2k+1(ad(P )) ,

the space of all ad(P )-valued transversely differentiable forms of type (0, 2k+1)
on M . There is a natural V-valued (0, 1)-form on [0 , 1] × [0 , 1] which will be
constructed below.

Take any point (s, t) ∈ [0 , 1] × [0 , 1], and also take any point x ∈ M . Now
we have a smooth function on [0 , 1] × [0 , 1] with values in (T 0,1

x M)∗ ⊗ ad(P )x
that sends any point (s′, t′) ∈ [0 , 1]× [0 , 1] to (F (s′, t′)− F (s, t))(x); recall that

F (s′, t′)− F (s, t) ∈ A0,1(ad(P )) ,
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and hence (F (s′, t′) − F (s, t))(x) ∈ (T 0,1
x M)∗ ⊗ ad(P )x. This (T 0,1

x M)∗ ⊗ ad(P )x-
valued smooth function on [0 , 1] × [0 , 1] will be denoted by φs,t,x. Now take
any tangent vector v ∈ T 0,1

(s,t)([0 , 1]× [0 , 1]), and set

(4.12) ψ(s, t, x)(v) := B(v(φs,t,x)(D2(x, s, t))k) ∈ (T 0,2k+1
x M)∗ ,

where v(φs,t,x) is the derivation of the function φs,t,x in the direction v. Let ψ
denote the V-valued (0, 1)-form on [0 , 1]× [0 , 1] which is defined as follows: for
any point

(s , t) ∈ [0 , 1]× [0 , 1]

and any tangent vector v ∈ T 0,1
(s,t)([0 , 1]× [0 , 1]), define

(4.13) ψ(v)(x) := ψ(s, t, x)(v) ,

where ψ(s, t, x)(v) is constructed in (4.12).
Since F (s, 0) = γ0, F (s, 1) = γ1, F (0, s) = γs and F (1, s) = f (s) for all

s ∈ [0 , 1], we conclude that

(4.14)
∫
@([0 ,1]×[0 ,1])

ψ = Df (γ0, γ1)−Dk(γ0, γ1) ,

where Df (γ0, γ1) is defined in the statement of the theorem and Dk(γ0, γ1)
is defined in (4.4), and @([0 , 1] × [0 , 1]) denotes the oriented boundary of
[0 , 1]× [0 , 1] (the boundary has the anti-clockwise orientation). Using Stokes’
theorem, from (4.14) we conclude that

(4.15) Df (γ0, γ1)−Dk(γ0, γ1) =
∫

[0 ,1]×[0 ,1]
d ψ .

In view of (4.15), to prove the theorem it suffices to show that the (0, 2k+1)-
form

∫
[0 ,1]×[0 ,1] d ψ is @-exact, or in other words, there is a form α ∈ A0,2k(M)

such that

@α =
∫

[0 ,1]×[0 ,1]
d ψ .

Set

(4.16) V′ := A0,2k(ad(P )) ,

the space of all ad(P )-valued transversely differentiable forms of type (0, 2k) on
M . To prove that

∫
[0 ,1]×[0 ,1] d ψ is @-exact we will construct below a V′-valued

(0, 2)-form on [0 , 1]× [0 , 1].
Take any point (s, t) ∈ [0 , 1] × [0 , 1], and also take any point x ∈ M . We

earlier constructed the (T 0,1
x M)∗⊗ad(P )x-valued functionφs,t,x on [0 , 1]×[0 , 1].

Now take any two tangent vectors

v, w ∈ T 0,1
(s,t)([0 , 1]× [0 , 1]) ,

and set

β(s, t, x)(v, w) := B(v(φs,t,x)w(φs,t,x)(D2(x, s, t))k−1) ∈ (T 0,2k
x M)∗ ,

wherew(φs,t,x), as in (4.12), is the derivation of the functionφs,t,x in the direction
w. Let β denote the V′-valued (0, 2)-form on [0 , 1]× [0 , 1] which is defined as
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follows: for any point (s, t) ∈ [0 , 1] × [0 , 1] and any ordered pair of tangent
vectors v, w ∈ T 0,1

(s,t)([0 , 1]× [0 , 1]), define

(4.17) β(v, w)(x) := β(s, t, x)(v, w) ,

where β(s, t, x)(v, w) is constructed above.
It is a straight-forward computation to see that the form ψ in (4.13) co-

incides with the Künneth component of type (2k + 1, 1) of B((D2)k+1), where
D2 ∈ A0,2(q∗ ad(P )) is the obstruction of integrability in (4.10); by Künneth
component of type (2k + 1, 1) of a differential form of degree 2k + 2 on
M × [0 , 1]× [0 , 1] we mean the Künneth component which is a combination of
a form of degree 2k + 1 on M and a form of degree one on [0 , 1]× [0 , 1].

Consider V and V′ defined in (4.11) and (4.16) respectively. Let

ν : V′ −→ V

be the homomorphism defined by ω 7−→ @ω. Using ν, if θ is a V′-valued
differential form of degree c, then ν(θ) is a V-valued differential form of degree
c in a natural way.

Using the Bianchi identity for the Dolbeault operator D (see (4.10)) it is a
straight-forward computation that

(4.18) ν(β) =
1
k

d ψ ,

where β is defined in (4.17).
Since the image of the homomorphism ν is the space of @-exact forms,

from (4.18) it follows immediately that the integral
∫

[0 ,1]×[0 ,1] d ψ is a @-exact
form. Finally, from (4.15) we conclude that the form Df (γ0, γ1) is @-closed (as
Dk(γ0, γ1) is @-closed), and the cohomology classes represented by Df (γ0, γ1)
and Dk(γ0, γ1) coincide. This completes the proof of the theorem.

The above theorem has the following corollary:

Corollary (4.19). Assume that k ≥ 1. Let γ1 and γ2 be holomorphic
structures on P , which lie in the same path component of Hol(P ). Then the
cohomology classes in H2k+1(M,OM ) represented by Dk(γ0, γ1) and Dk(γ0, γ2)
coincide.

By Theorem (4.9), to computeDk(γ0, γ2) we can use a path connecting γ2 with
γ0 which is a composition of two segments of the following type: one segment
connects γ1 with γ0 and the other segment lies in Hol(P ) connecting γ2 with
γ1. Since the integral vanishes identically on the second path, the cohomology
classes represented by Dk(γ0, γ1) and Dk(γ0, γ2) coincide.

5. Some examples

In this section, we specialize the structure groupG in Section (4) to GL(r,C).
Thus, the Lie algebra g is the matrix algebraMr(C). We take the the symmetric
form B in (4.1) to be the trace form, that sends any matrix A ∈ Mr(C) to
trace(A) ∈ C.

Let E be a transversely differentiable vector bundle of rank r over a trans-
versely complex manifold M . Let L = det(E) :=

∧r E be the determinant
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line bundle corresponding to E. Any holomorphic structure on E induces a
holomorphic structure on L.

The following lemma shows that for k = 0, to compute the invariants in
Theorem (4.9) for vector bundles, it is enough to compute it for line bundles.

Lemma (5.1). Take two holomorphic structures γ0 and γ1 on E. Let γL0
(respectively, γL1 ) be the holomorphic structure on the determinant line bundle
L :=

∧r E induced by γ0 (respectively, γ1). Let

D0(γ0 , γ1) ∈ H1(M,OM )

and
D0(γL0 , γ

L
1 ) ∈ H1(M,OM )

be the cohomology classes defined in Example (4.8). Then

D0(γ0 , γ1) = D0(γL0 , γ
L
1 ) .

Proof. Take any θ ∈ A0,1(End(E)). Let

trace(θ) ∈ A0,1(OM )

be the form obtained by taking the trace of θ. The almost holomorphic struc-
tures γθ := γ0 + θ on E has the following property: the almost complex struc-
ture on the determinant line bundle L := det(E) induced by γθ coincides with
the almost complex structure γL0 + trace(θ). Using this observation the lemma
follows.

In view of Lemma (5.1), we may restrict ourselves to line bundles to inves-
tigate the case of k = 0. In Lemma (4.6), set G = GL(1,C) = C∗, and also
set B to be the natural identification of the Lie algebra of C∗ with C.

Proposition (5.2). Let θ ∈ H1(M,OM ) be any Dolbeault cohomology class.
Let γ0 be the trivial holomorphic structure on the trivial differentiable line
bundle M × C over M . There is a holomorphic structure γ on the trivial
differentiable line bundle M × C on M such that

D0(γ0 , γ1) = θ ,

whereD0(γ0 , γ1) is the Dolbeault cohomology class constructed in Lemma (4.6).

Proof. Let θ̃ ∈ A0,1(OM ) be a @-closed (0 , 1)-form representing the Dolbeault
cohomology class θ. Let

γ1 := γ0 + θ̃

be the holomorphic structure on the trivial differentiable line bundle M × C
over M , where γ0 is the trivial holomorphic structure. Note that as the form
θ̃ is closed, the almost complex structure on M × C given by γ1 is integrable.
Consider the path of holomorphic structures on L defined by t 7−→ γ0 + t · θ̃.
For this path, the form in (4.5) evidently coincides with θ̃. This completes the
proof of the proposition.

Remark (5.3). If M is a compact Kähler manifold with H1(M, Q) 6= 0, then
we have H1(M, OM ) 6= 0. Therefore, if we take the transversely complex
manifold X ×M , where X is any topological space and M a compact Kähler
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manifold with H1(M, Q) 6= 0, then for the transversely complex manifold
X ×M we have

H1(X ×M, OM ) 6= 0 ,

and furthermore,H1(M, Q) sits insideH1(X×M, OM ). Therefore, Proposition
(5.2) provides examples where the invariant in Theorem (4.9) does not vanish.

We have a more precise formulation of the relationship between the holo-
morphic structures on line bundles and the invariant in Theorem (4.9).

Lemma (5.4). Let L be a transversely differentiable line bundle over a trans-
versely complex manifold M . Take two holomorphic structures γ0 and γ1 on L.
Let

D0(γ0 , γ1) ∈ H1(M,OM )

be the cohomology class defined ed in Example (4.8). Then the following two
are equivalent:

1. The two holomorphic line bundles (L , γ0) and (L , γ1) are holomorphically
isomorphic.

2. The Dolbeault cohomology classD0(γ0 , γ1) is represented by the (0 , 1)-part
of a closed one-form θ ∈ A1(M × C) such that the periods of θ are integers.

Proof. Let θ be a closed one-form as above with integral periods such that
the Dolbeault cohomology class D0(γ0 , γ1) is represented by the (0 , 1)-part of
θ. We will show that the two holomorphic line bundles (L , γ0) and (L , γ1) are
holomorphically isomorphic.

Let f be the multi-valued function on M obtained by integrating θ along
oriented paths starting from a base point in M . Since the periods of θ are
integers,

g := exp(2π
√
−1f )

is a single-valued smooth function onM which is nowhere vanishing. Now from
the construction of D0(γ0 , γ1) it follows that the smooth automorphism of L
given by the pointwise multiplication with the function g gives an isomorphism
between the two holomorphic line bundles (L , γ0) and (L , γ1).

To prove the converse, assume that the two holomorphic line bundles (L , γ0)
and (L , γ1) are isomorphic. Let g denote a nowhere zero smooth function onM
such that the smooth automorphism ofL given by the pointwise multiplication
with the function g gives an isomorphism between the two holomorphic line
bundles (L , γ0) and (L , γ1). Therefore, the (0 , 1)-form

θ := @ log g ∈ A0,1(OM )

is well-defined. Considering the path of holomorphic structures on L defined
by t 7−→ γ0 + tθ we conclude that the Dolbeault cohomology class D0(γ0 , γ1) is
represented by the (0 , 1)-part of a closed one-form with integral periods. This
completes the proof of the lemma.
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ALGEBRAIC TEST FOR THE HURWITZ STABILITY OF A GIVEN
SEGMENT OF POLYNOMIALS

BALTAZAR AGUIRRE AND RODOLFO SUÁREZ

Abstract. For the robust stability analysis of a linear system, due to the
nonconvexity of the set of Hurwitz stable polynomials, it is important to have
available computational methods to verify the stability of a convex combina-
tion of polynomials. In this paper, given two Hurwitz stable polynomials p0
and p1, a simple algebraic test (a matrix inequality) for the stability of the
segment of polynomials determined by p0 and p1 is proposed. Based on this
result the problem of estimating of the minimum left extreme is addressed.

1. Introduction

Motivated by the robustness analysis of systems with uncertain parame-
ters, different approaches to study the stability of segments of polynomials
have been proposed ([4], [5], [8], [9], [16]). The question is to find conditions on
the stable polynomials p0(t) and p1(t) such that the segment of polynomials de-
scribed by p(t, λ) = λp0(t)+(1−λ)p1(t) is stable for all λ ∈ [0, 1]. The first result
where necessary and sufficient conditions were obtained was Bialas’s Theorem
which establishes that if p0 is Hurwitz stable and deg(p0) > deg(p1) then p(t, λ)
is Hurwitz stable for all λ ∈ [0, 1] if and only if the matrix H−1(p0)H(p1) has
no eigenvalues in (−∞, 0), where H(p) is the Hurwitz matrix of the polyno-
mial p (see [2], [4] and [11] ). A different approach in terms of the frequency
domain which is known as the Segment Lemma was established by Chapellat
and Bhattacharyya (see [3] and [9]). In this lemma the stability of p(t, λ) is
equivalent to certain conditions that must be satisfied by the odd and even de-
gree polynomials associated with the polynomials p0(t) and p1(t). On the other
hand, a method to determine the stability of segments of complex polynomials
was obtained by N. Bose and is known as Bose’s Test [6].

Based on the above criteria, several algorithms have been developed to test
efficiently the stability of segments of polynomials. The Segment Lemma has
been used to develop an algorithm in [8]. In the same direction, more recently,
in [14] there was obtained a procedure to check the Hurwitz stability of convex
combinations of polynomials in a finite number of operations. Related to Bose’s
work [7], in [5] there is a test that can be used to determine the stability of
segments of complex polynomials. Furthermore, in [16] there were obtained
the well-known Rantzer conditions (see also [13]).

2000 Mathematics Subject Classification: Primary: 93D09. Secondary: 34D99.
Keywords and phrases: Hurwitz stable polynomials, segments of polynomials, minimum left

extreme, matrix inequalities.
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Following the ideas exposed in [1] this work address the problem of obtaining
simple algebraic conditions for checking the stability of a segment of polynomi-
als. It is important to note that the approach proposed in this paper provides
sufficient conditions used when deg p0 = n and deg p1 = n, n− 1, n− 2 in con-
trast to the Segment Lemma where it is supposed that deg p0 = deg p1. As can
be seen in [13], it is not necessary to study the cases when deg(p1(t)) < n− 2.

Our approach for the case deg p0 = deg p1 is as follows: Given a Hurwitz
stable polynomial p0(t) = tn+a1tn−1+· · ·+an which is the nominal polynomial,
let p1(t) = c1tn + c2tn−1 + · · · + cn+1 be an arbitrary polynomial of degree n.
Define the matrix E(n,n) ∈ M(n+1)×(n+1) by

(1.1) E(n,n) =


1 0 0 0 . . . 0 0
−a2 a1 −1 0 . . . 0 0
a4 −a3 a2 −a1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . an−1 −an−2

0 0 0 0 . . . 0 an

 .

If the polynomials p0(t) and p1(t) are Hurwitz stable and the vector c =
(c1, c2, . . . , cn+1)T � 0 satisfies the system of linear inequalities

(1.2) E(n,n)c � 0 ,

then the convex combination λp0(t) + (1 − λ)p1(t) is Hurwitz stable for every
λ ∈ [0, 1]. Here the symbol � 0 (� 0) means that every component of a given
vector is nonnegative (nonpositive) and the symbol � 0 means that every
component of a given vector is nonnegative but there is at least one positive
component.

A similar result can be obtained for the case deg(p1(t)) = n− 1. In this case
the matrix E(n,n−1) ∈ Mn×n is defined by

(1.3) E(n,n−1) =


a1 −1 0 0 . . . 0 0
−a3 a2 −a1 1 . . . 0 0
a5 −a4 a3 −a2 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . an−1 −an−2

0 0 0 0 . . . 0 an


and the corresponding inequality is

(1.4) E(n,n−1)c � 0.

We also we study the situation when only one Hurwitz polynomial, say p0(t),
is known and the problem is to find all possible p1(t) such that λp0(t)+(1−λ)p1(t)
is Hurwitz for every λ ∈ [0, 1].

Finally, we use the same approach to estimate the minimum left extreme
of a stable segment, that is, given the Hurwitz stable polynomials p0(t) and
p1(t) such that the vector of coefficients of p1 satisfies (1.2) or (1.4) then we find
a number k0 < 0 such that p0(t) + kp1(t) is Hurwitz stable for every k > k0.
The problem of calculating the minimum left extreme was solved by Bialas [4].
Although k0 is only an estimate of kmin, the novelty of our approach is that k0

is obtained by a simple algebraic calculation. Contrary to stability of segments
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where a good deal of work has been reported about the minimum left extreme
we can only mention Bialas’ work, hence Section 5 might be interesting.

The paper is organized as follows: in Section 2 sufficient conditions assuring
that a segment of polynomials consists of Hurwitz stable polynomials are given
when it is known that the extremes p0(t) and p1(t) are Hurwitz stable. In
Section 3 we compare our approach with other known sufficient conditions
and two computational methods. In Section 4 we suppose that p0(t) is Hurwitz
stable and we see that the matrix inequality (1.2) is a sufficient condition on
the vector of coefficients of p1(t) = c1tn + c2tn−1 + · · · + cn+1 to establish that
[p0, p1] is a segment of Hurwitz polynomials and we characterize the solution
set of (1.2). Finally, in Section 5 the minimum left extreme of a stable segment
is estimated.

2. Hurwitz Stable segments

The aim of this section is to obtain conditions for the stability of segments
of polynomials. The main results are based on the following lemma where
sufficient conditions are given for a real polynomial to be Hurwitz stable.

Lemma (2.1). Let F (t) and f (t) be real polynomials of degree n, such that
f (t) has positive coefficients, f (0) 6= 0 and the roots of F (t) are contained in C+.
Consider the polynomial of degree 2n given by F (t)f (t). If F (iω)f (iω) 6= 0 and
F (iω)f (iω) does not intersect L for all ω > 0, where L is a straight line in the
complex plane that passes through the origin, then all the roots of f (t) are in
C−.

Proof. Suppose n is even (the odd case is analogous). Let n = 2m and let
F (t), f (t) be given by

F (t) = b0t2m + b1t2m−1 + · · ·+ b2m, f (t) = d0t2m + d1t2m−1 + · · ·+ d2m .

Without loss of generality we may suppose that b0 > 0, and then b2m > 0 also
since the roots of F (t) are in C+. Let l and r be the number of roots of F (t)f (t)
contained in C− and C+, respectively. Let θ(ω) be the argument of F (iω)f (iω).
Denote by ∆∞0 θ(ω) = θ(∞)−θ(0) the net change in the argument. Since F (t)f (t)
does not have roots on the imaginary axis we get that ∆∞0 θ(ω) = π

2 (l− r) ([15],
p. 406; [12], p. 174). The fact that F (iω)f (iω) does not intersect L for ω > 0
implies |∆∞0 θ(ω)| ≤ π.

Now we will analyze θ(ω)−θ(0) when ω is large. First, we have that for large
ω, F (iω)f (iω) ≈ b0d0ω4m− i[b1d0 + b0d1]ω4m−1. Therefore Re

[
F (iω)f (iω)

]
> 0

and Im[F (iω)f (iω)]
Re[F (iω)f (iω)]

→ 0 when ω → ∞. Since F (0)f (0) = b2md2m > 0 it follows

that ∆∞0 θ(ω) = θ(∞) − θ(0) = 2sπ, where s is an integer. Since F (iω)f (iω)
does not intersect L for ω > 0 then |∆∞0 θ1(ω)| ≤ π, and therefore we get that
∆∞0 θ(ω) = 0.

Consequently, the polynomial F (t)f (t) has as many roots in C− as in C+.
Since such a polynomial has degree 2n, there are n roots in C+. In fact the
roots in C+ correspond to the roots of F (t). Hence, the n roots in C− correspond
to the roots of f (t), which means that f (t) is Hurwitz stable.
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Remark (2.2). Particular cases of Lemma (2.1) are the situations in which
L is the real or the imaginary axis. When L is one of the axis, the associated
matrices are easy to calculate. Our main results are based on these two cases.

In the following theorem we apply Lemma (2.1) when L is the imaginary
axis.

Theorem (2.3). Consider the Hurwitz stable polynomials p0(t) = tn +
a1tn−1+· · ·+an and p1(t) = c1tn+c2tn−1+· · ·+cn+1. If c = (c1, c2, . . . , cn+1)T � 0
is a solution to (1.2), then, for all λ ∈ [0, 1], the polynomial λp0(t) + (1− λ)p1(t)
is Hurwitz stable.

Proof. Suppose n is even (the odd case is analogous). Let n = 2m and
λ ∈ [0, 1]. Let p, q, P, Q denote the polynomials

(2.4)

p(L) = c2m+1 − c2m−1L + c2m−3L2 + . . . + (−1)mc1Lm,
q(L) = c2m − c2m−2L + . . . + (−1)m−1c2Lm−1,
P (L) = a2m − a2(m−1)L + . . . + (−1)m−1a2Lm−1 + (−1)mLm,
Q(L) = a2m−1 − a2m−3L + . . . + (−1)m−1a1Lm−1.

Then it holds that
[λp0 + (1− λ)p1](iω) = [λP + (1− λ)p](ω2) + iω[λQ + (1− λ)q](ω2),

p0(iω) = P (ω2) + iωQ(ω2).

Consider the polynomial p0(−t)
[
λp0(t) + (1− λ)p1(t)

]
. Thus we get

p0(−iω)[λp0 + (1− λ)p1](iω) = P (ω2)
[
λP (ω2) + (1− λ)p(ω2)

]
+

+ω2Q(ω2)
[
λQ(ω2) + (1− λ)q(ω2)

]
+

+iω(1− λ)
[
P (ω2)q(ω2)−Q(ω2)p(ω2)

]
That is,

p0(−iω)[λp0 + (1− λ)p1](iω) = λ
[
P 2(ω2) + ω2Q2(ω2)

]
+

+(1− λ)
[
P (ω2)p(ω2) + ω2Q(ω2)q(ω2)

]
+

+iω(1− λ)
[
P (ω2)q(ω2)−Q(ω2)p(ω2)

]
.(2.5)

Since P (ω2)p(ω2) + ω2Q(ω2)q(ω2) =
n+1∑
i=1

(Ei
(n,n)c)ω2(n+1−i) and the vector c � 0

is a solution to the system of the linear inequalities (1.2), the polynomial
P (ω2)p(ω2) + ω2Q(ω2)q(ω2) does not have positive roots. Consequently, for
all ω > 0, p0(−iω)[λp0 + (1 − λ)p1](iω) does not intersect the imaginary axis.
Finally, since p0(−t) and λp0(t) + (1− λ)p1(t) satisfy the hypothesis of Lemma
(2.1) we have that the polynomial λp0(t) + (1− λ)p1(t) is Hurwitz stable for all
λ ∈ [0, 1].

Remark (2.6). Theorem (2.12) can be extended to the case when deg p1(t) =
n − 1. To prove this result we need to redefine the polynomials p(L) and q(L)
by

p(L) = c2m − c2(m−1)L + . . . + (−1)m−1c2Lm−1,

q(L) = c2m−1 − c2m−3L + . . . + (−1)m−1c1Lm−1,

and the proof follows the same steps as the proof of Theorem (2.3).
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On the other hand, using the same method, Theorem (2.3) cannot be ex-
tended to the case when deg(p1(t)) = n − 2 since the corresponding matrix
E(n,n−2) in Mn×(n−1) is given by

(2.7) E(n,n−2) =


−1 0 0 0 . . . 0 0
a2 −a1 1 0 . . . 0 0
−a4 a3 −a2 a1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . an−1 −an−2

0 0 0 0 . . . 0 an


but the first inequality implies that−c1 ≥ 0 which is not satisfied since c1 > 0.

Remark (2.8). In [1] we obtain a condition like (1.2) for the stability of rays
of polynomials. There is an obvious relation between stable rays and stable
segments of polynomials: if p0(t) + kg(t) is a Hurwitz stable polynomial for
every k ≥ 0 then

( 1
1+k

)
p0(t) +

(
k

1+k

)
g(t) is a Hurwitz stable polynomial for

every k ≥ 0, which means that the stability of the ray p0(t)+kg(t) is equivalent
to the stability of the open segment

[
p0(t), g(t)

)
. Observe that for g(t) Hurwitz

stable we get the stability of the closed segment [p0(t), g(t)].

In the proof of Theorem (2.3), when we analyze the complex function p0(−iω)
[λp0 +(1−λ)p1](iω) defined in (2.5), the straight line L was the imaginary axis.
A different possibility is to consider L as the real axis. Such an analysis was
done in [1] and the results were given in terms of a similar inequality Dc � 0
given by the following matrices:

(2.9) D(n,n) =


a1 −1 0 0 . . . 0 0
−a3 a2 −a1 1 . . . 0 0
a5 −a4 a3 −a2 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . −an−2 an−3

0 0 0 0 . . . an −an−1


for the case deg(p1(t)) = n, while

(2.10) D(n,n−1) =


1 0 0 0 . . . 0 0
−a2 a1 −1 0 . . . 0 0
a4 −a3 a2 −a1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . an−2 −an−3

0 0 0 0 . . . −an an−1


for the case deg(p1(t)) = n−1, and for deg(p1(t)) = n−2, the matrix D(n,n−2) ∈
M(n−1)x(n−1) is

(2.11) D(n,n−2) =


a1 −1 0 0 . . . 0 0
−a3 a2 −a1 1 . . . 0 0
a5 −a4 a3 −a2 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . an−2 −an−3

0 0 0 0 . . . −an an−1

 .
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Rewriting the results in [1] for segments of polynomials instead of rays, we
obtain the next result.

Theorem (2.12). Consider the Hurwitz stable polynomial p0(t) = tn +
a1tn−1 + · · · + an. If p1(t) is a Hurwitz stable polynomial with deg(p1(t)) =
n, n − 1, or n − 2, and its vector of coefficients c satisfies the system of linear
inequalities

(2.13) Dc � 0

where the matrix D depending on deg(p1(t)) is one of the matrices D(n,n), D(n,n−1)
or D(n,n−2), then the polynomial λp0(t) + (1 − λ)p1(t) is Hurwitz stable for all
λ ∈ [0, 1].

3. Comparison with other methods

In this section we present the qualities of our approach comparing it with
other known methods.

(3.1) Comparison with the Method in Aguirre et al. There are segments
of stable polynomials such that the stability can be verified using the approach
introduced here, but it is not possible to check such stability with the test given
in [1].

Example (3.1.1). Consider the Hurwitz stable polynomial p0(t) = t3 + 2t2 +
t + 1. The vector of coefficients c of the polynomial p1(t) = t3 + 8t2 + 13t + 1 is
a solution to the system of linear inequalities (1.2):

E(3,3)c =


1 0 0 0
−1 2 −1 0
0 −1 1 −2
0 0 0 1




1
8
13
1

 =


1
2
3
1

 .

Consequently the segment [p0, p1] is stable. However, c is not a solution to
(2.13) since

D(3,3)c =

 2 −1 0 0
−1 1 −2 1
0 0 1 −1




1
8
13
1

 =

 −6
−18
12

 .

(3.2) Comparison with the Rantzer-type conditions. Here we compare
our approach with the known Rantzer-type conditions. Such conditions are
explained in [13] and they are the following: Suppose that p0 is a Hurwitz
polynomial and p1 is a semistable1 polynomial. Then the ray of polynomials
p0(t) + kp1(t) consists of Hurwitz polynomials if one of the following four
conditions holds:

(i) The difference d = p1 − p0 satisfies

@ arg(d(iω))
@ω

< 0, ω ∈ {w > 0/d(iw) 6= 0} .

1A polynomial is semistable if the real parts of its roots are not positive.
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(ii) Each of the polynomials p0, p1 has at least one root in the open left
half-plane and

@ arg(d(iω))
@ω

<

∣∣∣∣∣sin
(
2 arg[d(iω)]

)
2ω

∣∣∣∣∣ , ω ∈ {w > 0/d(iw) 6= 0} .

(iii) Each of the polynomials p0, p1 has at least one root in the open left
half-plane and

@ arg(d(iω))
@ω

≤ 0, ω ∈ {w > 0/d(iw) 6= 0} .

(iv) Each of the polynomials p0, p1 has at least two roots in the open left
half-plane and

@ arg(d(iω))
@ω

≤

∣∣∣∣∣sin
(
2 arg[d(iω)]

)
2ω

∣∣∣∣∣ , ω ∈ {w > 0/d(iw) 6= 0} .

Although the Rantzer-type conditions offer four options to check the stability
of segments of polynomials, they can not cover all the possibilities, as is
illustrated by the following example.

Example (3.2.1). Consider the Hurwitz stable polynomial p0(t) = t3 + 2t2 +
t + 1. The vector of coefficients c of the polynomial p1(t) = t3 + 7t2 + 12t + 2 is
a solution to the system of linear inequalities (1.2):

E(3,3)c =


1 0 0 0
−1 2 −1 0

0 −1 1 −2
0 0 0 1




1
7
12
2

 =


1
1
1
2

 .

Therefore the segment [p0, p1] is stable. Furthermore, we will see that this
example does not satisfy the Rantzer-type conditions (see [13], [16]).

For this example p0(t) and p1(t) are Hurwitz polynomials, and d(t), d(iw) and
arg(d(iω)) are given by d(t) = (p1−p0)(t) = 5t2 +11t+1, d(iω) = 1−5ω2 +i11ω,

arg(d(iω)) = arctan
(

11ω

1− 5ω2

)
.

It is not difficult to verify that i)− iv) are not satisfied:

1) Since
@ arg(d(iω))

@ω
=

11 + 55ω2(
1− 5ω2

)2
+ 121ω2

> 0 for all ω ∈ {w > 0/d(iω) 6=

0} = (0,∞), i) is not satisfied.

2) sin
(
2 arg[d(iω)]

)
=

2ω
(
11− 55ω2

)(
1− 5ω2

)2
+ 121ω2

, hence

@ arg(d(iω))
@ω

<

∣∣∣∣∣sin
(
2 arg[d(iω)]

)
2ω

∣∣∣∣∣
is satisfied if and only if

11 + 55ω2(
1− 5ω2

)2
+ 121ω2

<

∣∣11− 55ω2
∣∣(

1− 5ω2
)2

+ 121ω2
.
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If ω = 1 we have that 66
137 < 44

137 , which is a contradiction. Consequently ii)
is not satisfied.

3) From the above inequalities it is immediate that iii) and iv) are not
satisfied either.

Consequently, although the segment
[
p0(t), p1(t)

]
consists of Hurwitz poly-

nomials, it is not possible to verify that using the Rantzer-type conditions
obtained in [13].

Remark (3.2.2). With respect to the method in [1] and the Rantzer-type
conditions we believe that the main contribution of our new approach is that it
can be applied to cases where the others do not succeed. However this does not
mean that our approach subsumes the other methods and in a given segment
our method could fail and some of the other methods could work.

(3.3) Comparison with the Algorithm of Hwang-Yang. Now we compare
our approach with the computational method given in [14].

Example (3.3.1). Consider the polynomials p0(t) = t5 + 6t4 + 14 t3 + 16t2 +
9t+2 and p1(t) = 2.16t5 +6.47t4 +8.58t3 +6.57t2 +3.38t+1.08. The polynomial
p0(t) is Hurwitz stable and the vector of coefficients c of the polynomial p1(t) is
a solution to the system of linear inequalities (1.2) since

E(5,5)c =


1 0 0 0 0 0
−14 6 −1 0 0 0

9 −16 14 −6 1 0
0 2 −9 16 −14 6
0 0 0 −2 9 −16
0 0 0 0 0 2


 2.16

6.47
8.58
6.57
3.38
1.08

 =

 2. 16
0
0
0
0

2. 16

 .

Then we can conclude that the segment with extremes p0(t) and p1(t) consists
of Hurwitz polynomials.

On the other hand, if we apply the approach given in [14] we begin with the
following calculations:

p0 + λ[p1 − p0] = [1 + 1.16λ]t5 + [6 + 0.47λ]t4 + [14 − 5.42λ]t3

+ [16− 9.43λ]t2 + [9− 5.62λ]t + 2− 0.92λ,

a0,0(λ) = a0(λ) = 2− 0.92λ

a0,1(λ) = a2(λ) = 16− 9.43λ

a0,2(λ) = a4(λ) = 6 + 0.47λ

a1,0(λ) = a1(λ) = 9− 5.62λ

a1,1(λ) = a3(λ) = 14 − 5.42λ

a1,2(λ) = a5(λ) = 1 + 1.16λ

a2,0(λ) = 116− 151.07λ + 48.01λ2

a2,1(λ) = 52− 30.89λ− 1.5742λ2

a3,0(λ) = 1156− 2173.5λ + 1331.5λ2 − 269.06λ3

a3,1(λ) = 116− 16.51λ− 127.23λ2 + 55.692λ3

a4,0(λ) = 5184 − 11128.5λ + 8745.6λ2 − 3048.7λ3 + 400.39λ4

To finish the algorithm one must check that a4,0(λ) > 0 for every λ ∈ [0, 1] .



ALGEBRAIC TEST FOR THE HURWITZ STABILITY 269

Remark (3.3.2). In general, to apply the algorithm of Hwang-Yang one must
calculate the all aj,k ’s. Next one must check whether an−1,0(λ) > 0 for λ ∈ [0, 1] .
That is, this algorithm reduces the problem of determining the stability of
a segment of polynomials to checking the positivity of a polynomial, which
is usually verified by using Sturm sequences. But note that the number
of calculations increases with the degree of the extremes of the segment of
polynomials since the degree of an−1,0(λ) is n− 1.

(3.4) Comparison with the Algorithm of Bouguerra et al. Now we com-
pare the calculations of our approach with the algorithm given in [8].

Example (3.4.1). Consider the Hurwitz polynomial p0(t) = t6 + 7t5 + 20t4+
30t3 +25t2 +11t+2 and let p1(t) = 15t6 +58t5 +100t4 +100t3 +65t2 +29t+7.5
be a polynomial. The vector of coefficients c of the polynomial p1(t) is a solution
to the system of linear inequalities (1.2) since

E(6,6)c =


1 0 0 0 0 0 0
−20 7 −1 0 0 0 0
25 −30 20 −7 1 0 0
−2 11 −25 30 −20 7 −1
0 0 2 −11 25 −30 20
0 0 0 0 −2 11 −25
0 0 0 0 0 0 2




15
58
100
100
65
29
7.5

 =


15
6
0

3. 5
5.0
1. 5
15.0

 .

Consequently the segment [p0, p1] is stable.
On the other hand, if we apply the algorithm posed in [8] first we have to

determine the polynomials

â(x) = 2− 25x + 20x2 − x3

b̂(x) = 11− 30x + 7x2

ĉ(x) = 7.5− 65x + 100x2 − 15x3

d̂(x) = 29− 100x + 58x2

Next we must make the following calculations:

1) Find the positive real roots of â(x), b̂(x), ĉ(x) and d̂(x).

2) From these positive roots, one looks for intervals where both â(x)ĉ(x) and
b̂(x)d̂(x) are negative.

3) If such intervals exist, one needs to check for the existence of positive real
roots of â(x)d̂(x)− b̂(x)ĉ(x) = 0 inside these intervals. If â(x)d̂(x)− b̂(x)ĉ(x) = 0
admits roots inside these intervals, then the segment is unstable, and stable
otherwise.

Remark (3.4.2). In this algorithm one uses Sturm sequences as well. Ob-
serve that if the degrees of p0 and p1 are increased, the degrees of â(x), b̂(x),
ĉ(x), d̂(x), â(x)ĉ(x), b̂(x)d̂(x) and â(x)d̂(x)− b̂(x)ĉ(x) are also increased.

Hence if the degrees of p0 and p1 are large, the application of 1), 2) and 3)
requires costly effort.

Remark (3.4.3). It is natural that the algorithms of Hwang-Yang and Bou-
guerra require more work that our condition since they are based on necessary
and sufficient conditions and consequently can check both situations: stable
or unstable segments.
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4. Stability of a segment when only a extreme is given

Now we study a different problem: a Hurwitz polynomial p0(t) is given
and we ask whether there exist polynomials p1(t) such that

[
p0(t), p1(t)

]
is a

segment of Hurwitz polynomials.

Remark (4.1). Let Hn denote the set of Hurwitz stable polynomials of degree
n. If the vector of coefficients of the polynomial p1(t) = c1tn−1 +c2tn−1 + · · ·+cn

is a solution to the system of linear inequalities E(n,n−1)c � 0, then it can be
proved that the segment of polynomials [p0(t), p1(t)) is Hurwitz stable. Observe
that p1 /∈ Hn since deg(p1) = n − 1. However it is clear that p1(t) is on the
boundary of Hn.

Remark (4.2). Consider the Hurwitz polynomial p0(t) = tn+a1tn−1+· · ·+an.
Let E(n,n) be the corresponding matrix defined by (1.1). If p1(t) is given by
p1(t) =

∑n+1
i=1 cit

n+1−i and the vector c = (c1, c2, . . . , cn+1)T � 0 is a solution to
the system of linear inequalities (1.2), then following a idea similar to that
of Theorem (2.3) it can showed that

[
p0(t), p1(t)

]
is a segment of Hurwitz

polynomials. Contrary to Remark (4.1) we have in this case that p1 ∈ Hn

since deg(p1) = n. But the question is whether there exists any polynomial
p1(t) that fulfills this property. In the following subsection we work on this
problem. First we describe an example.

In the following example we present a segment of Hurwitz stable polynomi-
als
[
p0(t), p1(t)

]
such that the vector of coefficients of p1(t) does not satisfy the

linear inequalities (1.2) and (2.13). This example proves that conditions (1.2)
and (2.13) are only sufficient.

Example (4.3). Consider the Hurwitz stable polynomials p0(t) = t3 + 2t2 +
t + 1 and p1(t) = t3 + 5

2 t2 + 2t + 19
4 . First, observe that the linear matrix

inequality (1.2) is not satisfied:

E(3,3)c =


1 0 0 0
−1 2 −1 0
0 −1 1 −2
0 0 0 1




1
5
2
2
19
4

 =


1
2

−10
19
4

 .

On the other hand, the segment
[
p0(t), p1(t)

]
is a segment of Hurwitz stable

polynomials since the Routh-Hurwitz conditions ( 5
2 −

1
2 λ), (2− λ), 19

4 −
15
4 λ > 0

and ( 5
2−

1
2 λ)(2−λ)t− 19

4 + 15
4 λ = 1

2 λ2+ 1
4 λ+ 1

4 > 0 associated with the polynomial
λp0(t) + (1− λ)p1(t) = t3 + ( 5

2 −
1
2 λ)t2 + (2− λ)t + 19

4 −
15
4 λ are satisfied for all

λ ∈ [0, 1].
Furthermore, this example does not satisfy the condition (2.13) either, since

D(3,3)c =

 2 −1 0 0
−1 1 −2 1
0 0 1 −1




1
5
2
2
19
4

 =

 − 1
2

9
4

− 11
4

 .

This example and the Remark (4.2) illustrate the relevance of studying the
problem of characterizing the solution set of (1.2), which will be addressed in
the next subsection.
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(4.1) Characterization of the set of solutions of (1.2). In this subsection,
given the Hurwitz stable polynomial p0(t), we will find the polynomials p1(t)
whose vector of coefficients satisfies the linear inequalities (1.2).

As was proved in [1] for the matrix D(n,n−1), it can be seen that the matrix
E(n,n) is of monotone kind (i.e., E(n,n)z � 0 implies z � 0), which implies that
it is invertible and E−1

(n,n) � 0, where E−1
(n,n) � 0 means that all its entries

are nonnegative (see [10]). Denote by V = {z ∈ Rn+1/{0} | zi ≥ 0,∀i =
1, 2, . . . , n + 1}. The following result characterizes the solution set of (1.2).

Theorem (4.1.1). The set H of solutions of the system of linear inequalities
(1.2) can be written as H = E−1

(n,n)V.

Proof. First we prove that H ⊆ E−1
(n,n)V. Let u ∈ H, then u � 0 and E(n,n)u �

0. Consequently, u = E−1
(n,n)E(n,n)u with E(n,n)u ∈ V. That is, u ∈ E−1

(n,n)V.

Now, we prove H ⊇ E−1
(n,n)V. Let u ∈ E−1

(n,n)V, then u = E−1
(n,n)v with v � 0 and

v 6= 0. Hence, E(n,n)u = v � 0 and Ei
(n,n)u > 0 for some row Ei

(n,n) with 1 ≤ i ≤ n,
that is, u ∈ H.

Corollary (4.1.2). Let p0(t) = tn + a1tn−1 + · · · + an be a Hurwitz stable
polynomial. Let E(n,n) be the corresponding matrix defined by (1.1). If the vector
c = (c1, c2, . . . , cn + 1)T ∈ E−1

(n,n)V , then
[
p0(t), p1(t)

]
is a segment of Hurwitz

polynomials, where the polynomial p1(t) is given by p1(t) =
∑n+1

i=1 cit
n+1−i.

Remark (4.1.3). Observe that the set of vectors that satisfies (1.2) is given
by the polyhedral cone C generated by w1 = E−1

(n,n)e1, w2 = E−1
(n,n)e2, . . . , wn+1 =

E−1
(n,n)en+1, where e1, e2, . . . , en+1 are the canonical vectors in Rn+1. Given the

vector of coefficients w0 = (1, a1, . . . , an) of the Hurwitz stable polynomial p0(t),
the vectors w ∈ C are vectors of coefficients of polynomials p1(t) such that[
p0(t), p1(t)

]
is a segment of Hurwitz polynomials.

Example (4.1.4). Consider the Hurwitz stable polynomial p0(t) = t3 + 2t2 +
t + 1. The matrices E(3,3) and E−1

(3,3) are given by

E(3,3) =
( 1 0 0 0
−1 2 −1 0

0 −1 1 −2
0 0 0 1

)
, E−1

(3,3) =
(

1 0 0 0
1 1 1 2
1 1 2 4
0 0 0 1

)
.

From Theorem (4.1.1), the set of vectors that satisfy E(3,3)c � 0 can be seen as
the polyhedral cone C generated by

{(1, 1, 1, 0)T , (0, 1, 1, 0)T , (0, 1, 2, 0)T , (0, 2, 4, 1)T } .

5. The minimum left extreme

In this section, given the Hurwitz stable polynomials p0(t) and p1(t), we are
concerned with the problem of estimating the minimum kmin < 0 such that
p0(t) + kp1(t) is a Hurwitz stable polynomial ∀k > kmin(see [4]). Using the
results presented in the above sections, we will find a number k0 < 0 such that
p0(t) + kp1(t) is Hurwitz stable for every k > k0, if the vector of coefficients of
p1 satisfies (1.2) or (1.4). Here k0 is an estimate of kmin (k0 ≥ kmin) because
we do not know if k0 is the smallest number with this property. The problem
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of calculating the minimum left extreme kmin was solved by Bialas [4]. In our
approach k0 is obtained by an algebraic calculation.

Consider the polynomial

(5.1) p(t, k) = p0(t) + kp1(t)

where p0(t) = tn + a1tn−1 + · · · + an is the nominal polynomial. Assume p0(t)
is a Hurwitz stable polynomial, and let E(n,n) be the corresponding matrix
defined as in (1.1). If the vector of coefficients c = (c1, c2, . . . , cn+1)T � 0
of the polynomial p1(t) =

∑n+1
i=1 cit

n+1−i is a solution to the system of linear
inequalities (1.2), then p0(t) + kp1(t) is a Hurwitz stable polynomial ∀k ≥ 0. In
[4] it was proved that

(5.2) kmin =
1

λ−min[−H−1(p0)H(p1)]

where H(p0), H(p1) are the Hurwitz matrices of p0 and p1 respectively and
λ−min[−H−1(p0)H(p1)] is the minimum negative eigenvalue of the matrix
−H−1(p0)H(p1). Observe that numerically (5.2) is not easy to calculate be-
cause the calculation implies solving an nth-order eigenvalue problem. In
what follows we give an algebraic procedure to obtain an estimate of kmin.

Define the matrix

(5.3) Z(n,n) =


1 0 0 0 . . . 0 0
0 a1 −2 0 . . . 0 0
0 0 a2 −2a1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . an−1 −2an−2

0 0 0 0 . . . 0 an


and denote by Zi

(n,n) the i-th row of the matrix Z(n.n) and let a = (1, a1, . . . , an)T .

Theorem (5.4). Let p0(t) = tn + a1tn−1 + · · · + an be a Hurwitz stable
polynomial. Let E(n,n) be the corresponding matrix defined by (1.1). If the
vector c = (c1, c2, . . . , cn+1)T � 0 is a solution to the system of linear inequalities
(1.2) and each component of E(n,n)c is positive and the polynomial p1(t) is given
by p1(t) =

∑n+1
i=1 cit

n+1−i then, p0(t) + kp1(t) is a Hurwitz stable polynomial for
all k > k0, where

k0 = max
i=1,...,n+1

(
−

Zi
(n,n)a

Ei
(n,n)c

)
.

Proof. In a similar way to the proof of Theorem (2.3) we get

p0(−iω)[p0 + kp1](iω) =
[
P 2(ω2) + ω2Q2(ω2)

]
+

+k
[
P (ω2)p(ω2) + ω2Q(ω2)q(ω2)

]
+

+iωk
[
P (ω2)q(ω2)−Q(ω2)p(ω2)

]
.

Note that the expression P 2(ω2) + ω2Q2(ω2) + k
[
P (ω2)p(ω2) + ω2Q(ω2)q(ω2)

]
can be rewritten as ω2(n+1) +

n+1∑
i=1

(Zi
(n,n)a + kEi

(n,n)c)ω2(n+1−i). If k > k0 then
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k > −
Zi

(n,n)a

Ei
(n,n)c

∀i = 1, . . . , n + 1. Since Ei
(n,n)c > 0 ∀ i = 1, . . . , n + 1 it follows

that kEi
(n,n)c > −Zi

(n,n)a and then Zi
(n,n)a + kEi

(n,n)c > 0 ∀i = 1, . . . , n + 1.
Consequently, for all ω > 0, p0(−iω)[p0 + kp1](iω) does not intersect the
imaginary axis, from which we have that p0(−t) and p0(t) + kp1(t) satisfy the
hypotheses of Lemma (2.1). This implies that the polynomial p0(t) + kp1(t) is
Hurwitz stable for all k > k0, and the theorem is proved.

Remark (5.5). The extension of Theorem (5.4) to the case where deg p1(t) =
n− 1 turns out to be as follows: p0(t) + kp1(t) is Hurwitz stable for all k > k0,

if k0 = max
i=1,...,n,n

(
−

Zi
(n,n−1)a

Ei
(n,n−1)c

)
and

(5.6) Z(n,n−1) =


a1 −2 0 0 . . . 0 0
0 a2 −2a1 2 . . . 0 0
0 0 a3 −2a2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . an−1 −2an−2

0 0 0 0 . . . 0 an

 .

Remark (5.7). For the segment of polynomials p(t, q) = p0(t)+q[p1(t)−p0(t)]
for q ∈ [0, 1], it follows from Theorem (5.4) that p(t, q) is Hurwitz stable for all

q ≥ q0, where q0 =
k0

1 + k0
. If k0 ≤ −1, it results that p(t, q) is Hurwitz stable

for all k ∈ (−∞, 1].

Next we present an example where k0 = kmin.

Example (5.8). Let p0(t) = t3 +7t2 +14t +8, p1(t) = t2 +4t +6. To calculate
k0, we first have that

Z(3,2)a =

 7 −2 0
0 14 −14
0 0 8

 7
14
8

 =

 21
84
64

 ,

E(3,2)c =

 7 −1 0
−8 14 −7
0 0 8

 1
4
6

 =

 3
6
48

 .

Then k0 = max
(
− 21

3 ,− 84
6 ,− 64

48

)
= − 4

3 .
To calculate kmin, we find that

H(p0) =

 7 8 0
1 14 0
0 7 8

 , H(p1) =

 1 6 0
0 4 0
0 1 6


and

H−1(p0)H(p1)=

 7
45

26
45 0

− 1
90

11
45 0

7
720 − 4

45
3
4

 , σ
(
−H−1(p0)H(p1)

)
={− 3

4 ,− 1
5 ±

1
15 i } .

Therefore λmin = − 3
4 , and thus kmin = − 4

3 = k0.
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Example (5.9). For the polynomials p0(t) = t3 + 7t2 + 14t + 8, p1(t) =
26t2 + 137t + 90 we obtain k0 > kmin. Defining the matrices Z(3,2), E(3,2) as
in (5.6) and (1.3) respectively, we have

Z(3,2)a =

 21
84
64

 , E(3,2)c =

 45
1080
720

 .

From which k0 = max
(
− 21

45 ,− 84
1080 ,− 64

720

)
= − 7

90 = −0.07778. On the other
hand, given the Hurwitz matrices H(p0) and H(p1), σ

(
−H−1(p0)H(p1)

)
=

{−11.25,−4.1399,−9.5601}, and λmin = −11.25. Finally, kmin = −0.088889 <
k0 = −0.07778.
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México
bahe@xanum.uam.mx

References

[1] B. Aguirre, C. Ibarra and R. Suarez, Sufficient algebraic conditions for stability of cones
of polynomials, Systems & Control Letters 46 (2002) 255–263.

[2] B. R. Barmish, New Tools for Robustness of Linear Systems. Macmillan Publishing Co., New
York, NY, 1994.

[3] S. P. Bhattacharyya, H. Chapellat and L. H. Kell, Robust Control. The Parametric
Approach. Prentice Hall, Upper Saddle River, NJ, 1995.

[4] S. Bialas, A necessary and sufficient condition for the stability of convex combinations of stable
polynomials or matrices, Bulletin of the Polish Academy of Sciences, Technical Sciences, 33,
(1985) 473–480.

[5] B.S. Bollepalli and L.R. Pujara, On the stability of a segment of polynomials, IEEE Trans.
on Circuits & Systems I, 41, No. 12 (1994) 898-901.

[6] N. K. Bose, Tests for Hurwitz and Schur properties of convex combination of polynomials,
IEEE Trans. on Circuits & Systems 36, 9 (1989) 1245-1247.

[7] N. K. Bose, Argument conditions for Hurwitz and Schur polynomials from network theory,
IEEE Trans. on Automatic Control, 39, (1994) 345-346.

[8] H. Bouguerra, B.C. Chang, H.H. Yeh and S.S. Banda, Fast stability checking for the
convex combination of stable polynomials, IEEE Trans. on Automatic Control, 35, no. 5 (1990)
586-588.

[9] H. Chapellat and S. P. Bhattacharyya, An alternative proof of Kharitonov’s theorem, IEEE
Trans. on Automatic Control, 34, No. 4, (1989) 448-450.

[10] L. Collatz, Functional Analysis and Numerical Mathematics. Academic Press, New York,
1966.

[11] M. Fu and B. R. Barmish, Maximal unidirectional perturbation bounds for stability of
polynomials and matrices. Systems and Control Letters, 11, (1988) 173-179.
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