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ON THE POLYNOMIAL PARAMETRIC FAMILY OF THE SETS
WITH THE PROPERTY D(−1; 1)

ALAN FILIPIN

Abstract. In this paper we prove that if a positive integer d has the property
that for an integer k ≥ 1 each of (k12 + 1)d + 1, (k12 + 2k6 + 2)d + 1 and
(4k12 + 4k6 + 5)d + 1 is a perfect square, then

d = 16k36 + 48k30 + 100k24 + 120k18 + 112k12 + 60k6 + 24.

1. Introduction

Let n be an integer. A set of m positive integers is called a Diophantine
m-tuple with the property D(n) or simply D(n)-m-tuple, if the product of any
two of them increased by n is a perfect square.

The first one who studied the problem of finding such sets was Diophantus
in the case n = 1. He found a set of four positive rational numbers with the
above property: { 1

16 ,
33
16 ,

17
4 ,

105
16 }. However, Fermat was the first who found a

D(1)-quadruple, which was the set {1, 3, 8, 120}. Euler was later able to add
the fifth positive rational, 777480

8288641 , to the Fermat’s set (see [6], [7] pp. 103–
104, 232). Recently, Gibbs [21] found several examples of D(n)-sextuples. It is
conjectured that there does not exist a D(1)-quintuple. This is an immediate
consequence of the following stronger version of conjecture (see [1]).

Conjecture (1.1). If {a, b, c, d} is a D(1)-quadruple such that a < b < c <
d, then

d = d+ = a + b + c + 2(abc +
√

(ab + 1)(ac + 1)(bc + 1)).

The first result that supports Conjecture (1.1) was proven by Baker and
Davenport [2]. Precisely, they proved if {1, 3, 8, d} is a D(1)-quadruple, then
d = 120.There are some generalization of this result. First, Dujella [11] proved
that if k ≥ 2 and d are integers and {k − 1, k + 1, 4k, d} is a D(1)-quadruple,
then d = 4k(4k2−1). Secondly, Dujella and Pethö [15] proved that if {1, 3, c, d}
such that c < d is a D(1)-quadruple, then d = cν+1, where

c = cν =
1
6

((2 +
√

3)2ν+1 + (2−
√

3)2ν+1 − 4), ν = 1, 2, . . . ,
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and finally, Dujella [8] proved that if {F2k, F2k+2, F2k+4, d}, where k ≥ 1 is an
integer and Fν denotes the ν-th Fibonacci number, is a D(1)-quadruple, then
d = 4F2k+1F2k+2F2k+3. The first two results have been generalized and it has
been proven [5, 19] that if {k − 1, k + 1, c, d} is a D(1)-quadruple such that
c < d, then d = cν+1, where

c = cν =
1

2(k2 − 1)
((k +

√
k2 − 1)2ν+1 + (k −

√
k2 − 1)2ν+1 − 2k), ν = 1, 2, . . . .

In general, in the case n = 1, Dujella [12] proved that there does not exist
a D(1)-sextuple and that there exist only finitely many D(1)-quintuples.

In the case n = −1, Dujella [9] proved that the pair {1, 2} cannot be ex-
tended to a D(−1)-quadruple. Moreover, Dujella and Fuchs [14] proved that if
{a, b, c, d} is a D(−1)-quadruple such that a < b < c < d, then a = 1. There
are also results on non-extendibility of D(−1)-triples of the form {1, b, c} for
b ≥ 5 (see [16, 18, 22]). Recently Dujella et al. [13] proved that there exist
only finitely many D(−1)-quadruples.

Even a D(−1)-triple {a, b, c} such that a < b < c cannot be conjecturally
extended to a D(−1)-quadruple, there exist a positive integer d such that each
of ad + 1, bd + 1 and cd + 1 is a perfect square. Moreover, d = d+ has such
property, where

d+ = 2abc − (a + b + c) + 2
√

(ab − 1)(ac − 1)(bc − 1).

This leads us to the following definition.

Definition (1.2). A set {a, b, c, d} of positive integers is said to have a prop-
erty D(−1; 1) if {a, b, c} is a D(−1)-triple and each of ad+ 1, bd+ 1 and cd+ 1
is a perfect square.

Let us mention that a D(−1)-triple {a, b, c} can be extended to a D(−1)-
quadruple {a, b, c,−d} in the ring Z[i] of Gaussian integers (see [10], Example
1), which corresponds to our quadruple {a, b, c, d}having the propertyD(−1; 1).
In this paper we prove that if a = k12 + 1, b = k12 + 2k6 + 2 and c = 4k12 +
4k6 + 5, for an integer k ≥ 1, then such a d is unique. For k = 0 it was
already proven by Fujita [17]. There are some similar results on the sets with
the property D(−1; 1). Precisely, Fujita [17] recently proved if a set {1, 2, c, d}
has the property D(−1; 1), then d = s(3s ± 2t), where s =

√
c − 1 and t =√

bc − 1. The same author [20] also proved that if {F2k+1, F2k+3, F2k+5, d} has
the property D(−1; 1), where k ≥ 0 is an integer and Fν denotes the ν-th
Fibonacci number, thend = 4F2k+2F2k+3F2k+4.Our main result is the following
theorem.

Theorem (1.3). Let k ≥ 0 be an integer. If the set

{k12 + 1, k12 + 2k6 + 2, 4k12 + 4k6 + 5, d}
has the property D(−1; 1), then

d = 16k36 + 48k30 + 100k24 + 120k18 + 112k12 + 60k6 + 24 .

In the proof of theorem we will use already known methods for solving
similar problems on extension of D(n)-m-tuples. More precisely, we prove our
theorem along the same lines as in [13], [17], [20] and we use some useful
results which are already proven there.
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2. System of Pellian equations

Let us assume that {a, b, c, d} has the property D(−1; 1). Then there exist
positive integers r, s and t such that

ab − 1 = r2, ac − 1 = s2, bc − 1 = t2.

There also exist positive integers x, y, z such that

ad + 1 = x2, bd + 1 = y2, cd + 1 = z2.

If we eliminate d we obtain the following system of simultaneous Pellian equa-
tions:

(2.1) az2 − cx2 = a − c,

(2.2) bz2 − cy2 = b − c.

In the following lemma we describe the sets of solutions of (2.1) and (2.2).

Lemma (2.3) (cf. [20], Lemma 3). Let (z, x) and (z, y) be positive solutions
of (2.1) and (2.2) respectively. Then there exist solutions (z0, x0) and (z1, y1) of
(2.1) and (2.2) respectively such that

(i) the following inequalities are satisfied:

0 < x0 ≤
√
a(c − a), |z0| <

√
c(c − a) ,

0 < y1 ≤
√
b(c − b), |z1| <

√
c(c − b) .

(ii) There exist integers m,n ≥ 0 such that

(2.4) z
√
a + x

√
c = (z0

√
a + x0

√
c)(2ac − 1 + 2s

√
ac)m,

(2.5) z
√
b + y

√
c = (z1

√
b + y1

√
c)(2bc − 1 + 2t

√
bc)n.

From (2.4) we conclude that z = vm for some (z0, x0) with the above properties
and integer m ≥ 0, where

(2.6) v0 = z0, v1 = (2ac − 1)z0 + 2scx0, vm+2 = (4ac − 2)vm+1 − vm.

In the same manner from (2.5) we conclude that z = wn for some (z1, x1) with
the above properties and integer n ≥ 0, where

(2.7) w0 = z1, w1 = (2ac − 1)z1 + 2tcy1, wn+2 = (4bc − 2)wn+1 − wn.

So our system of equations (2.1) and (2.2) is thus transformed to finitely
many equations of the form z = vm = wn. Let us mention that here we have
the exactly same recurrences as in [13], but with different initial values. So
we can use all results proven there that are independent of the fundamental
solutions. Also in our case we have

a = k12 + 1, b = k12 + 2k6 + 2, c = 4k12 + 4k6 + 5 ,

which yields

r = k12 + k6 + 1, s = 2k12 + k6 + 2, t = 2k12 + 3k6 + 3 .

In the following lemma we can describe fundamental solutions of (2.1) and
(2.2).
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Lemma (2.8). Let (x, y, z) be a positive solution of the system of equations
(2.1) and (2.2). Then we have

(z0, x0) = (±1, 1), (z1, y1) = (±1, 1).

Proof. The proof of this is exactly the same as the proof of [20], Lemma 5.
The only thing one has to be aware of is that in our case we also have b < 3a
and c < 4b which was used there.

Now we have the following properties.

Lemma (2.9) (cf. [13], Lemma 2). If vm = wn, n 6= 0, then

(i) m ≡ n (mod 2),
(ii) n ≤ m ≤ 2n,

(iii) ±am2 + sm ≡ ±bn2 + tn (mod 4c).

Using the last lemma, we have in our case that vm = wn, n ≥ 2 implies

±(k12 + 1)m2 + (2k12 + k6 + 2)m ≡ ±(k12 + 2k6 + 2)n2 + (2k12 + 3k6 + 3)n

(mod 16k12 + 16k6 + 20).

If we multiply this congruence by 16 we get

(16k6 + 4)m2 ∓ (16k6 + 8)m + (16k6 + 12)n2 ∓ (16k6 + 8)n ≡ 0

(mod 16k12 + 16k6 + 20) .

Now from m ≥ n ≥ 2 we conclude

(16k6 + 4)m2 ∓ (16k6 + 8)m + (16k6 + 12)n2 ∓ (16k6 + 8)n > 0,

which yields

(16k6 + 4)m2∓ (16k6 + 8)m+ (16k6 + 12)n2∓ (16k6 + 8)n ≥ 16k12 + 16k6 + 20.

Now we have

(64k6 + 32)m2 > (32k6 + 16)m2 + (32k6 + 16)m

> (16k6 + 4)m2 ∓ (16k6 + 8)m + (16k6 + 12)n2 ∓ (16k6 + 8)n

≥ 16k12 + 16k6 + 20,

which implies

m >
k3

2
.

So we have just proved the following lemma.

Lemma (2.10). If vm = wn, n ≥ 2, then m > k3

2 .
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3. Linear forms in logarithms

In this section we apply Baker’s theory to linear forms in three logarithms
arising from the sequences (vm) and (wn).

Lemma (3.1). If vm = wn, n ≥ 2, then

0 < m log α1 − n log α2 + log α3 < 2α−m1 ,

where

α1 = (s +
√
ac)2, α2 = (t +

√
bc)2, α3 =

√
b(
√
c ±
√
a)

√
a(
√
c ±
√
b)
.

Proof. Let

P =
√
c ±
√
a√

a
(s +
√
ac)2m, Q =

√
c ±
√
b√

b
(t +
√
bc)2n.

Then vm = wn implies

P − c − a
a

P−1 = Q− c − b
b

Q−1.

We get

Q− P =
c − b
b

Q−1 − c − a
a

P−1 <
c − b
b

(Q−1 − P−1) =
c − b
b

(P −Q)P−1Q−1,

and therefore P > Q. Furthermore, for m ≥ n ≥ 2, we have

Q > P − c − a
a

P−1 > P − 1.

So
P −Q
P

< P−1 <
1
2
.

Hence,

0 < log
P

Q
= − log

Q

P
= − log

(
1− P −Q

P

)
<
P −Q
P

+
(
P −Q
P

)2

.

From this we conclude that

0 < log
P

Q
<

1
P

+
1
P 2 <

2
P

=
2
√
a√

c ±
√
a

(s +
√
ac)−2m

< 2(s +
√
ac)−2m = 2α−m1 ,

which finishes the proof of the lemma.

Now we give the upper bound for m in the equation vm = wn. First we need
Baker-Wüstholz theorem.

Theorem (3.2) (cf. [3]). Let Λ = b1 log α1 + . . . + bl log αl 6= 0 be a linear
form of l logarithms of algebraic numbers α1, . . . , αl with integer coefficients
b1, . . . , bl. Then

(3.3) log Λ > −18(l + 1)!ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2ld) logB,

where B = max{|bj | : 1 ≤ j ≤ l}, d is a degree of the extension of algebraic
number field generated by α1, . . . , αl, and h′(α) = 1

d max{h(α), log |α|, 1}, where
h(α) denotes the standard logarithmic Weil height of α.
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We will now apply this theorem to our linear form in logarithms from Lemma
(3.1). In the notation of the theorem we have d = 4, l = 3 and B = m, and
minimal polynomials of α1, α2 and α3 are given by

α2
1 − (4ac − 2)α1 + 1 = 0,

α2
2 − (4bc − 2)α2 + 1 = 0,

a2(c − b)2α4
3 + 4a2b(c − b)α3

3 + 2ab(3ab − c(a + b + c))α2
3

+ 4ab2(c − a)α3 + b2(c − a)2 = 0.

Now we have

h′(α1) =
1
2

log α1 <
1
2

log 4ac,

h′(α2) =
1
2

log α2 <
1
2

log 4bc.

We can also easily bound the conjugates of α3. We have
√
b(
√
c ±
√
a)

√
a(
√
c +
√
b)

<

√
b

a
,

√
b(
√
c ±
√
a)

√
a(
√
c −
√
b)

< 2

√
b

a
.

This implies

h′(α3) <
1
4

log
(
a2(c − b)2 · 4 b

2

a2

)
=

1
4

log 4b2(c − b)2 <
1
2

log 2bc.

Finally using Theorem (3.2) together with Lemma (3.1) we get

(3.4)
m

logm
< 2.39 · 1014 log 4bc log 2bc .

Now can get upper bounds for b and c in terms of m, using Lemma (2.10), and
if we insert that in (3.4), we get m < 2 · 1021. So we have just proved the
following proposition.

Proposition (3.5). If vm = wn, n ≥ 2, then m < 2 · 1021.

We can also see from Lemma 2.10 that we have proven our main theorem
for k ≥ 1.59 · 107.

4. Reduction

In order to deal with the remaining cases k < 1.59 · 107, we will use a Dio-
phantine approximation algorithm, so-called the Baker-Davenport reduction
method. The following lemma is a slight modification of the original version
of the Baker-Davenport reduction method.

Lemma (4.1) (cf. [15], Lemma 5a). Assume that M is a positive integer. Let
P
Q be the convergent of the continued fraction expansion of κ such that Q > 6M
and let

η = ‖µ′Q‖ −M · ‖κQ‖ ,
where ‖ · ‖ denotes the distance from the nearest integer. If η > 0, then there is
no solution of the inequality

0 < mκ− n + µ′ < AB−m
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in integers m and n with

log
(
AQ/η

)
log B

≤ m ≤M .

We apply Lemma (4.1) with

κ =
log α1

log α2
, µ′ =

log α3

log α2
, A =

2
log α2

, B = α1,

and M = 2 · 1021.
We have done it in Mathematica 5.2. In the first step of reduction for all

k < 1.59 ·107 we getm ≤ 11. Then we can apply Lemma (4.1) with newM = 11
and we getm ≤ 2. So we only have to see what is happening with small indices
in equation vm = wn. But it becomes a polynomial equation in k which are
easy to solve. The only solutions we get are z = v0 = w0 = ±1, which implies
d = 0, which is no real extension of our D(−1)-triple to a D(−1; 1)-quadruple,
and z = v1 = w1 = 8k24 + 16k18 + 26k12 + 18k6 + 11, which yields

d = 16k36 + 48k30 + 100k24 + 120k18 + 112k12 + 60k6 + 24 .

This finishes the proof of our main theorem.

5. Concluding remarks

In this paper we have proved the uniqueness of the extension of one paramet-
ric polynomial family of D(−1)-triples to D(−1; 1)-quadruples. It is somewhat
different from the work done by Fujita [20], where he has considered exponen-
tial families which grow much faster for a parameter k. It was the first problem
here, because it would be much more interesting to consider a family ofD(−1)-
triples of the form {k2 + 1, k2 + 2k + 1, 4k2 + 4k + 5}. But using the methods
we have used, we would then get a much larger upper bound for k, and then
it would not be possible to do the reduction with a computer program. Also
here we cannot use the Bennett’s theorem ([4], Theorem 3.2) on simultaneous
approximations of algebraic numbers which are close to 1, or any similar result
of this type, to get better upper bounds for m and k, because b and c are too
close to each other in our case.

Let us mention at the end, that using the same Baker-Davenport reduction
and ([13], Theorem 1), we can prove that there does not exist aD(−1)-quadruple
of the form {1, k12 + 1, k12 + 2k6 + 2, d}, for any positive integer k.
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TROPICAL GEOMETRY FOR FIELDS WITH A KRULL
VALUATION: FIRST DEFINITIONS AND A SMALL RESULT

FUENSANTA AROCA

Abstract. Given an algebraically closed field with a Krull valuation, we
study the image, via the valuation, of an affine algebraic variety. We de-
fine the tropical semi-ring associated with the value group and the tropical
variety associated to an ideal of the ring of polynomials with coefficients in
the field. We prove the so called “Kapranov’s theorem” in the discrete case.

Introduction

For a and b in R∪{∞} define the operations a⊕b := min{a, b} and a�b :=
a + b. The semi-ring T := (R ∪ {∞},⊕,�) is called the tropical semi-ring. A
Laurent polynomial F ∈ T[x1, x

−1
1 , . . . , xN , x

−1
N ] is called a tropical polynomial

and the non-linearity locus of the map F : RN → R induced by F is called the
tropical hypersurface associated to F . Tropical geometry is currently a rapidly
growing subject. See for example [3], [2], [8].

Let (K, val) be a valued field with values in R. A Laurent polynomial
f =

∑
α∈Λ⊂ZN

ϕαx
α ∈ K[x1, x

−1
1 , . . . , xN , x

−1
N ] induces a tropical polynomial T f :=

⊕
α∈Λ⊂ZN

val(ϕα)� xα called the tropicalization of f .

Let I ⊂ K[x1, x
−1
1 , . . . , xN , x

−1
N ] be an ideal. Denote by V(I) the affine alge-

braic variety of (K∗)N defined by I and consider the map

val : (K∗)N −→ RN

(ϕ1, . . . , ϕN ) 7→ (valϕ1, . . . , valϕN )

where K∗ := K \ {0}.
A well known result in tropical geometry called Kapranov’s theorem states

that the closure in RN of val(V(I)) equals the intersection of the tropical hy-
persurfaces associated to every polynomial in I. See [1], [6], [5].

The theory of valuations started at the beginning of the XXth century. Val-
uations into the reals are just a special type of valuations called classical or
archimedean (see for example [7]). Given a valued field K with values in a
totally ordered group Γ we want to describe the set of values val(V) ⊂ ΓN of
an affine algebraic variety V ⊂ KN .

In this note we extend the basic definitions of tropical geometry (R,≤) to
an arbitrary ordered group (Γ,≤). Then we give, in the discrete case, a very

2010 Mathematics Subject Classification: 14Txx,13A18.
Keywords and phrases: Krull valuations, tropical geometry, algebraic variety.
Partially supported by CONACyT 55084 and UNAM: PAPIIT IN 105806 .
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simple proof of the extension of Kapranov’s theorem for a valued field K with
values in an arbitrary ordered group (Γ,≤).

1. Ordered groups and semi-rings

A totally ordered group is an abelian group (Γ,+) equipped with a total order
such that for all x, y, z ∈ Γ if x ≤ y then x + z ≤ y + z. A totally ordered group
is torsion free.

A totally ordered group is isomorphic to a subgroup of R if and only if given
a > 0 and b there exists a positive integer k such that b < ka (see for example
[4], page 243).

Example (1.1). Through this note we will work with the group Γ = R2 with
the lexicographical order. That is (a, b) ≤l (a′, b′) if and only if a < a′ or a = a′

and b ≤ b′.

A totally ordered group (Γ,+,≤) induces an idempotent semi-ring G :=
(Γ ∪ {∞},⊕,�). Where
• a ⊕ b := min{a, b} and a ⊕∞ := a for a, b ∈ Γ
• a � b := a + b and a �∞ :=∞ for a, b ∈ Γ.

A semi-ring induced by a totally ordered set will be called a tropical semi-
ring.

Example (1.2). Consider the group Γ of example (1.1) with tropical multi-
plication given by standard sum in Γ. We have (−1, 0)⊕ (1,−8) = (−1, 0) and
(−1, 0)� (1,−8) = (0,−8).

2. Polynomials with coefficients in a tropical semi-ring

Let G be the tropical semi-ring induced by the group (Γ,≤). A non-zero
Laurent polynomial F ∈ G[x1, x

−1
1 , . . . , xN , x

−1
N ] is an expression of the form

F =
∑

α∈E(F )⊂ZN
aαx

α, aα ∈ Γ, #E(F ) <∞, xα := x1
α1 · · · xNαN .

F induces a map F : ΓN → Γ given by

F : γ 7→ ⊕α∈Λaα �
α1 times︷ ︸︸ ︷

γ1 � · · · � γ1� · · · �
αN times︷ ︸︸ ︷

γN � · · · � γN .

For k ∈ N and a ∈ Γ set ka :=

k times︷ ︸︸ ︷
a + · · ·+ a and for α ∈ ZN and γ ∈ ΓN set

α · γ := α1γ1 + · · ·+ αNγN .

Example (2.1). (1, 2) · ((1, 1), (0,−1)) = (1,−1).

With this notation
F : γ 7→ min

α∈E(F )
{aα + α · γ}.

For each α ∈ E(F ) set

Cα := {γ ∈ ΓN | valϕα + α · γ ≤ valϕα′ + α′ · γ, ∀α′ ∈ E(F )}.

We have F |Cα (γ) = valϕα + α · γ is a linear function on Cα.
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Definition (2.2). The hypersurface associated to F is the set

V(F ) :=
⋃

α 6=α′⊂E(F )

Cα ∩ Cα′ .

Example (2.3). For F := (0, 1)xy2 + (4, 0)x2 + (0, 6) we have

VF = {((a, b), (c, d)) | (4, 0) + 2(a, b) = (0, 6) ≤ (0, 1) + (a, b) + 2(c, d)}
∪ {((a, b), (c, d)) | (0, 1) + (a, b) + 2(c, d) = (0, 6) ≤ (4, 0) + 2(a, b)}
∪ {((a, b), (c, d)) | (4, 0) + 2(a, b) = (0, 1) + (a, b) + 2(c, d) ≤ (0, 6)}

= {((−2, 3), (λ, µ)) | λ, µ ∈ R, (1, 1) ≤ (λ, µ)}
∪ {((−2λ, 5− 2µ), (λ, µ)) | λ, µ ∈ R, (λ, µ) ≤ (1, 1)}
∪ {((−4 + 2λ, 1 + 2µ), (λ, µ)) | λ, µ ∈ R, (λ, µ) ≤ (1, 1)}

= {((−2, 3), (1, 1)) + γ(0, 1) | γ ≥ (0, 0)}
∪ {((−2, 3), (1, 1)) + γ(−2, 1) | γ ≥ (0, 0)}
∪ {((−2, 3), (1, 1)) + γ(−2,−1) | γ ≥ (0, 0)} .

3. Valuations

The following definition of valuation was introduced by W. Krull in 1932. It
is the one given in most books on commutative algebra (see for example [9]).

A valued field with values in Γ is a field K together with a map val : K →
Γ ∪ {∞} called valuation such that

1. val x =∞⇔ x = 0,

2. val(xy) = val x + val y for all x, y ∈ K, and

3. val(x + y) ≥ min{val x, val y}.

Example (3.1). Consider K = C(t, s) the field of two variable complex ration-
al functions and val the only valuation with val(tisj) = (i, j). That is:

val

∑
i,j ai,jt

isj∑
i,j bi,jt

isj
:= min

ai,j 6=0
(i, j)− min

bi,j 6=0
(i, j)

where min is taken using the lexicographical order and we set min ∅ =∞.
For example, val(3t2s + 7ts7 + 2ts3 + t5) = (1, 3).

Lemma (3.2). LetE ⊂ K be a finite set. If
∑

ϕ∈E ϕ = 0 then the set of elements
where the valuation attains its minimum has at least two elements.

Proof. Let F be the subset of E consisting of elements where the valuation
attains its minimum. We have F = {ϕ ∈ E | valϕ = minϕ∈E valϕ}. Therefore∑

ϕ∈E ϕ = 0 implies val
(∑

ϕ∈F ϕ
)
> minϕ∈E valϕ. And then

∑
ϕ∈E ϕ = 0 ⇒

#F ≥ 2.
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4. The tropicalization of a polynomial.

Let (K, val) be a valued field with values in a group Γ and letG be the tropical
semi-ring induced by Γ.

A Laurent polynomial in N variables with coefficients in K,

f ∈ K[x1, x
−1
1 , . . . , xN , x

−1
N ] ,

is a finite sum of the form:

(4.1) f =
∑

α∈Λ⊂ZN
ϕαx

α ϕα ∈ K, xα = x1
α1 · · · xNαN .

The set of exponents of f is the set

E(f ) := {α ∈ ZN | ϕα 6= 0}.
The set of exponents of f ∈ K[x] is a finite set contained in ZN .

The polynomial f via the valuation val induces an element of G[x1, x
−1
1 , . . . ,

xN , x
−1
N ]

T f :=
∑

α∈Λ⊂ZN
val(ϕα)xα.

This polynomial will be called the tropicalization of f .

Example (4.2). For f = (t + s)xy2 + t4x2 + s6 we have T f = (0, 1)xy2 +
(4, 0)x2 + (0, 6).

Definition (4.3). The tropical hypersurface associated to a polynomial f ∈
K[x1, x

−1
1 , . . . , xN , x

−1
N ] is the hypersurface associated to the tropicalization of

f :
TVf := VT f.

Example (4.4). For f = (t + s)xy2 + t4x2 + s6 we have

TVP = {((−2, 3), (1, 1)) + γ(0, 1) | γ ≥ (0, 0)}
∪ {((−2, 3), (1, 1)) + γ(−2, 1) | γ ≥ (0, 0)}
∪ {((−2, 3), (1, 1)) + γ(−2,−1) | γ ≥ (0, 0)}.

5. Weighted order and initial parts

Let f ∈ K[x1, x
−1
1 , . . . , xN , x

−1
N ] \ {0} be as in (4.1). For γ ∈ ΓN the γ-order

of f is the element of Γ

ordγ f := min
α∈E(f )

val(ϕα) + α · γ

and ordγ 0 :=∞.
That is ordγ f = T f (γ).

Example (5.1). For γ = ((1, 1), (0,−1)) ∈
(
R2
)2

andP = (t+s)xy2+t4x2+s6 ∈
C(t, s)[x, y]. We have ordγ P = min{(1, 0), (6, 2), (0, 6)} = (0, 6).

Remark (5.2). Consider a binomial xα − ϕ with ϕ ∈ K

ordγ (xα − ϕ) =
{

γ · α if γ · α ≤ valϕ
valϕ if valϕ ≤ γ · α.

Remark (5.3). ordγ : K[x] −→ Γ is a valuation.
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The γ-initial part of f is the polynomial

Inγ f :=
∑

val(ϕα)+γ·α=ordγ f

ϕαx
α .

Example (5.4). For γ = ((1, 1), (0,−1)) ∈
(
R2
)2

andP = (t+s)xy2+t4x2+s6 ∈
C(t, s)[x, y]. We have Inγ P = s6.

Remark (5.5).

Inγ (xα − ϕ) =

 xα if γ · α < valϕ
xα − ϕ if γ · α = valϕ
−ϕ if valϕ < γ · α.

Remark (5.6). Inγ gh = Inγ

(
Inγ g Inγ h

)
.

Lemma (5.7). Let Γ be an ordered group and let K be a valued field with
values in Γ. Given a polynomial f ∈ K[x1, x

−1
1 , . . . , xN , x

−1
N ] the tropical hyper-

surface defined by f is the subset of ΓN

TVf = {γ ∈ ΓN | Inγ f is not a monomial}.

6. Tropical Varieties.

Definition (6.1). Let I ⊂ K[x1, x
−1
1 , . . . , xN , x

−1
N ] be an ideal. The set of

common zeroes of the elements of I is called the algebraic variety defined
by I. That is

V(I) := {x ∈ KN | f (x) = 0 ∀ x ∈ I}.

Definition (6.2). Let Γ be an ordered group and let K be a valued field with
values in Γ. Given an ideal I ⊂ K[x1, x

−1
1 , . . . , xN , x

−1
N ] the tropical variety

defined by I is the subset of ΓN

TVI :=
⋂
f∈I

TVf .

Let I be an ideal of K[x1, x
−1
1 , . . . , xN , x

−1
N ] and γ ∈ ΓN . The γ-initial part of

I is the set of γ-initial parts of its elements:

Inγ I = {Inγ f | f ∈ I} .

By lemma (5.7) we have

TVI = {γ ∈ ΓN | Inγ I does not contain a monomial}.

7. The values of a discrete affine variety

Proposition (7.1). Let f be a polynomial in K[x1, x
−1
1 , . . . , xN , x

−1
N ]. If φ =

(φ1, . . . , φN ) ∈ KN is a zero of f , then γ = valφ := (valφ1, . . . , valφN ) is in the
tropical hypersurface defined by f .

Proof. For f =
∑

ϕαxα we have
∑

ϕαφα = 0. Then, by lemma (3.2), the set
of elements α where valϕαφα attains its minimum has at least two elements.
Since ordγ ϕαxα = valϕαφα we have that Inγ f has at least two summands.
Hence Inγ f is not a monomial.
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Theorem (7.2). Let (K, val) be an algebraically closed valued field with val-
ues in Γ.

Let I ⊂ K[x1, x
−1
1 , . . . , xN , x

−1
N ] be an ideal with a finite number of algebraic

zeros. We have that
TVI = val(VI) .

Proof. Set
VI = {φ(1), . . . , φ(s)} ⊂ KN .

We want to see that

TVI = {valφ(1), . . . , valφ(s)} .
The fact that TVI ⊃ {valφ(1), . . . , valφ(s)} is direct consequence of proposi-

tion (7.1).
Now suppose that, for i = 1, . . . , s , γ 6= γ(i) := valφ(i). Let ji ∈ {1, . . . ,N}

be such that γji 6= γ(i)
ji

and set

g :=
s∏
i=1

(
yji − φ

(i)
ji

)
.

Since g vanishes on V(I) there exists k ∈ N with gk ∈ I.
Now, by remarks (5.5) and (5.6), Inγ gk is a monomial. This implies that γ

is not in the tropical variety.
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México
fuen@matcuer.unam.mx

References

[1] M. Einsiedler, M. Kapranov, and D. Lind, Non-Archimedean amoebas and tropical vari-
eties, J. Reine Angew. Math. 601, (2006), 139–157.

[2] A. Gathmann, Tropical algebraic geometry, Jahresber. Deutsch. Math.-Verein., 108 (1), (2006),
3–32.

[3] I. Itenberg, G. Mikhalkin, and E. Shustin, Tropical algebraic geometry, 35 of Oberwolfach
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CHARACTERISTIC SUBGROUPS ARE NOT PRESERVED BY
ISOMORPHISMS OF TABLES OF MARKS

VÍCTOR NOZAIR GARCÍA-RÍOS, ALBERTO GERARDO RAGGI-CÁRDENAS AND LUIS
VALERO-ELIZONDO

Abstract. We construct two non-isomorphic groups G and Q of order 96
which have isomorphic tables of marks, but such that the centre ofG is mapped
to a non-characteristic subgroup of Q under this isomorphism of tables of
marks.

1. Introduction

Groups with isomorphic tables of marks may not be isomorphic groups (as
proved by Thévenaz in [5]), but one still expects them to have many attributes
in common. Indeed, if G and Q are groups with isomorphic tables of marks,
then they have isomorphic composition factors (see [2]), and they also have
isomorphic Burnside rings (the converse is still an open problem, put forward
also in [2]); if two groups have isomorphic Burnside rings and one of them
is abelian/Hamiltonian/minimal simple, then the two groups are isomorphic
(see [3]), and a similar result is known for several families of simple groups
(see [1]).

It is also easy to prove that an isomorphism between tables of marks pre-
serves normal subgroups, maximal subgroups, Sylow p-subgroups, cyclic sub-
groups, elementary abelian subgroups, the commutator subgroup, and the
Frattini subgroup. However, it has been shown that abelian subgroups and
the centres of the groups are not always preserved. In this paper we show that
characteristic subgroups may not be preserved under an isomorphism between
tables of marks.

2. Tables of marks

Let G be a finite group. Let C(G) be the family of all conjugacy classes of
subgroups ofG. We usually assume that the elements of C(G) are ordered non-
decreasingly. The matrix whoseH,K-entry is #(G/K)H (that is, the number of
fixed points of the set G/K under the action of H) is called the table of marks
of G (where H,K run through all the elements in C(G)).

The Burnside ring of G, denoted B(G), is the subring of ZC(G) spanned by
the columns of the table of marks of G.

Definition (2.1). Let G and Q be finite groups. Let ψ be a function from
C(G) to C(Q). Given a subgroup H of G, we denote by H ′ any representative of

2010 Mathematics Subject Classification: 19A22.
Keywords and phrases: table of marks, characteristic subgroup.
This work was partially funded by CONACYT’s project Funtores de Tipo Burnside.
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ψ([H]). We say that ψ is an isomorphism between the tables of marks of G and
Q if ψ is a bijection and if #(Q/K ′)H

′
= #(G/K)H for all subgroups H,K of G.

3. Two non-isomorphic groups of order 96 with isomorphic tables of
marks

This is a summary of [4].
Let S3 be the symmetric group or order 6. Let C8 be the cyclic group of order

8, generated by x, and let C2 be the cyclic group of order 2, generated by y.
Let δ be the only non-trivial homomorphism from S3 toC8. LetW denote the

group S3 × C8. Let α be the automorphism of W given by α(λ, xi) = (λ, xiδ(λ)),
and let β be the automorphism of W given by β(λ, xi) = (λ, x5iδ(λ)).

Since α has order two, we can define the group G as the semidirect product
of W with C2 by α, that is, in G we have that y(λ, xi)y = α(λ, xi). Similarly,
we define the group Q as the semidirect product of W and C2 by β; in Q we
have that y(λ, xi)y = β(λ, xi). We shall denote the elements of both G and Q as
λxiyj .

Note that in G, x and y commute, and the centre of G is therefore the
subgroup generated by x, which is a subgroup of order 8; however, x and y
do not commute in Q, and the centre of Q is the subgroup generated by x2,
which is a subgroup of order 4. In particular, we also have that G and Q are
non-isomorphic groups of order 96.

The following theorem can be found in [4].

Theorem (3.1). Let S be a subset of G (and therefore S is also a subset of
Q). Then S is a subgroup of G if and only if S is a subgroup of Q. Moreover,
two subgroups are conjugate in G if and only if they are conjugate in Q, and
the identity map on the family of conjugacy classes of subgroups defines an
isomorphism between the tables of marks of G and Q.

We use this fact to prove our main result.

Theorem (3.2). The subgroup of Q generated by x is not a characteristic
subgroup. In particular, the isomorphism of tables of marks between G and Q
maps the centre of G to a non-characteristic subgroup of Q.

Proof. We construct an automorphism of Q that does not preserve the sub-
group generated by x. Let η : Q −→ Q be given by

η(λxiyj) = λx3i+6i2+
(

1−Sgn(λ)
)

(2i+3)yi+j+
1−Sgn(λ)

2 .

We claim that for a generator g of Q and an arbitrary λxiyj we have that
η(gλxiyj) = η(g)η(λxiyj), where g can be (1, 2), (1, 2, 3), x, y, so η is indeed a
homomorphism.

g = (1, 2):

η
(
(1, 2)(λxiyj)

)
= η

(
(1, 2)λxiyj

)
= (1, 2)λx5i+6i2−2iSgn((1,2)λ)−3Sgn((1,2)λ)+3yi+j+

1−Sgn((1,2)λ)
2

= (1, 2)λx5i+6i2+2iSgn(λ)+3Sgn(λ)+3yi+j+
1+Sgn(λ)

2 .
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On the other hand:

η
(
(1, 2)

)
η
(
λxiyj

)
=

(
(1, 2)x6y

)(
λx5i+6i2−2iSgn(λ)−3Sgn(λ)+3yi+j+

1−Sgn(λ)
2

)
= (1, 2)λx6+5[5i+6i2−2iSgn(λ)−3Sgn(λ)+3]+2(1−Sgn(λ))y1+i+j+ 1−Sgn(λ)

2

= (1, 2)λxi+6i2−2iSgn(λ)−Sgn(λ)+7y1+i+j 1−Sgn(λ)
2 .

These two expressions coincide, because:(
5i + 2iSgn(λ) + 3Sgn(λ) + 3

)
−
(
i− 2iSgn(λ)− Sgn(λ) + 7

)
= 4i + 4iSgn(λ) + 4Sgn(λ) + 4

= 4
(
(1 + Sgn(λ))(i + 1)

)
.

g = (1, 2, 3):

η
(
(1, 2, 3)(λxiyj)

)
= η

(
(1, 2, 3)λxiyj

)
= (1, 2, 3)λx5i+6i2−2iSgn((1,2,3)λ)−3Sgn((1,2,3)λ)+3yi+j+

1−Sgn((1,2,3)λ)
2

= (1, 2, 3)λx5i+6i2−2iSgn(λ)−3Sgn(λ)+3yi+j+
1−Sgn(λ)

2 .

On the other hand:

η
(
(1, 2, 3)

)
η
(
λxiyj

)
=

(
(1, 2, 3)

)(
λx5i+6i2−2iSgn(λ)−3Sgn(λ)+3yi+j+

1−Sgn(λ)
2

)
= (1, 2, 3)λx5i+6i2−2iSgn(λ)−3Sgn(λ)+3y1+i+j+ 1−Sgn(λ)

2 .

g = y:

η(yλxiyj) = η(λx5i+2−2Sgn(λ)y1+j)

= λx5[5i+2−2Sgn(λ)]+6[5i+2−2Sgn(λ)]2−2[5i+2−2Sgn(λ)]Sgn(λ)−3Sgn(λ)+3y1+i+j+ 1−Sgn(λ)
2

= λxi+6i2−2iSgn(λ)−Sgn(λ)+1y1+i+j+ 1−Sgn(λ)
2 .

On the other hand:

η(y)η(λxiyj) = y
(
λx5i+6i2−2iSgn(λ)−3Sgn(λ)+3yi+j+

1−Sgn(λ)
2

)
= λx5[5i+6i2−2iSgn(λ)−3Sgn(λ)+3]+2[1−Sgn(λ)]y1+i+j+ 1−Sgn(λ)

2

= λxi+6i2−2iSgn(λ)−Sgn(λ)+1y1+i+j+ 1−Sgn(λ)
2 .

g = x

η(xλxiyj) = η(λx1+iyj)

= λx5(1+i)+6(1+i)2−2(1+i)Sgn(λ)−3Sgn(λ)+3 · y1+i+j+ 1−Sgn(λ)
2

= λxi+6i2−2iSgn(λ)−5Sgn(λ)+6y1+i+j+ 1−Sgn(λ)
2 .

On the other hand:

η(x)η(λxiyj) = (xy)
(
λx5i+6i2−2iSgn(λ)−3Sgn(λ)+3yi+j+

1−Sgn(λ)
2

)
= λx1+5[5i+6i2−2iSgn(λ)−3Sgn(λ)+3]+2(1−Sgn(λ))y1+i+j+ 1−Sgn(λ)

2

= λx2+i+6i2−2iSgn(λ)−Sgn(λ)y1+i+j+ 1−Sgn(λ)
2 .
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These two expressions coincide because:(
6− 5Sgn(λ)

)
−
(
2− Sgn(λ)

)
= 4(1− Sgn(λ)) .

Therefore η is a group homomorphism.
Moreover,

(1, 2) = η((1, 2)x6y), (1, 2, 3) = η(1, 2, 3),

x = η(xy), y = η(y)

so η must be an automorphism. Finally, note that η(x) = xy, so the subgroup
generated by x is not a characteristic subgroup of Q.
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AN EXAMPLE OF A TWISTED FUSION ALGEBRA

ALI NABI DUMAN

Abstract. The aim of this paper is to exhibit an explicit non-trivial example
of the twisted fusion algebra for a particular finite group. The product is
defined for the group G = (Z/2)3 via the pairing θg (φ)R(G)⊗θh(φ) R(G)→θgh(φ)

R(G) where θ : H4(G,Z) → H3(G,Z) is the inverse transgression map and
φ is a carefully chosen cocycle class. We find the rank of the fusion algebra
X (G) =

∑
g∈G

θg (φ)R(G) as well as the relation between its basis elements.
We also give some applications to topological gauge theories.

1. Introduction

Inspired by the Chen-Ruan cohomology for orbifolds, it has been shown by
Adem, Ruan, Zhang [3] that there is also an internal product in twisted orbifold
K-theory αKorb(X ). The information determining this stringy product lies in
H4(BX ,Z) instead of H3(BX ,Z): Given a class φ ∈ H4(BX ,Z), it induces a
class θ(φ) ∈ H3(B ∧ X ,Z) where

∧
X is the inertia stack. As a result one can

define a twisted K-theory on θ(φ)K(
∧
X ). The map θ can be thought as the

inverse of the classical transgression map.
This construction of this internal product is motivated by the so-called Pon-

tryagin product on KG(G), for a finite group G. Indeed, if the orbifold is
X =

∧
[∗/G] one gets the same product for the orbifold K-theory in the un-

twisted case. There is also an explicit calculation of the inverse transgression
map θ for the cohomology of finite groups (see [3]). Using this result we ex-
hibit a non-trivial product structure in the case of G = (Z/2)3. We use an
integral cohomology class φ ∈ H4(G,Z) such that under the inverse transgres-
sion it maps non-trivially for every twisted sector, yielding a product structure
on the algebra θ(φ)KG(G) = X (G) =

∑
g∈G

θg (φ)R(G) defined via the pairing
θg (φ)R(G) ⊗θh(φ) R(G) →θgh(φ) R(G). In this paper we derive the relations be-
tween the basis elements of the algebra X (G) and we prove the uniqueness of
this product in this particular case. G = (Z/2)3 is indeed the abelian group of
smallest rank such that it has non-trivial transgressions (see [3], section 5).

These twisted rings have also been worked out in the conformal field theory
literature. In [12], the modular invariant (i.e. S and T matrices) of this group
G = (Z/2)3 is calculated. As a result, one can calculate the relations between
basis elements of X (G) using the Verlinde formula. Moreover, the same exam-
ple is considered in [5] where a decomposition formula for twisted K-theory is
given and the product is calculated after tensoring by rational numbers.

2010 Mathematics Subject Classification: Primary 19L47, 55N15; Secondary 20C25, 81T45.
Keywords and phrases: fusion algebra, twisted K-theory.
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There is also a physical counterpart of this theory. In [8] Dijkgraaf and
Witten defined a correspondence between Chern-Simons theories in three di-
mensions and Wess-Zumino terms in two dimensions via a natural map from
H4(G,Z) to H3(G,Z). In our case this map is the inverse transgression map,
which is actually the map coming from the correspondence between the Chern-
Simons action and the Wess-Zumino terms that arise in connecting a specific
three dimensional quantum field theory to its related two dimensional quan-
tum field theory. One can see that the Chern-Simons theory associates to
each group element gi ∈ G a 2-cocycle βi of the stabilizer group Ngi , which is
G = (Z/2)3 in our abelian case. We use the formulations in [8] to calculate
the partition function Z(S1 × S1 × S1). It is also worth mentioning that the
algebra X (G) corresponds to a fusion algebra in this physical context.

In this paper we first give some preliminaries and the definition of our fusion
algebra. In the second section, we calculate the rank and the uniqueness of
this algebra as well as the relation between the basis elements which are the
projective representations of G = (Z/2)3. Finally, we give an application to
topological gauge theories by using the formulation in [8].

2. The Twisted Fusion Product for Finite Groups

In this section we review a special case for the product in twisted orbifold
K-theory which is defined by Adem, Ruan and Zhang in [3]. We consider the
inertia orbifold

∧
[∗/G] where G is a finite group. In this case the untwisted

orbifold K-theory of
∧

[∗/G] is simply KG(G), which is additively isomorphic
to

∑
(g) R(ZG(g)), where ZG(g) denotes the centraliser of g in G, and the sum

is taken over conjugacy classes. The product in KG(G) is defined as follows.
An equivariant vector bundle over G can be thought of as a collection of finite
dimensional vector spaces Vg with aG-module structure on

∑
g∈G Vg such that

gVh = Vghg−1 . The product is defined as

(V ? W )g =
⊕

g1g2=g

Vg1 ⊗Wg2 .

One can give an alternative definition. We first define the maps e1 : G ×
G → G, e2 : G × G → G and e12 : G × G → G as e1(g, h) = g , e2(g, h) =
h and e12(g, h) = gh respectively, which are G-equivariant when G acts by
conjugation in all coordinates. If α, β are elements in KG(G) the product is
defined as

α ? β = e12∗(e∗1 (α)e∗2 (β)) .

We now need to review the inverse transgression map for finite groups to
extend latter definition to twisted K-theory. In order to define the product in
twisted K-theory, Adem, Ruan and Zhang [3] define a map to match up the
levels which appear in the twistings. This cochain map θ is called inverse
transgression map and it induces a homomorphism

θ∗ : Hk+1(BG,Z)→ Hk(B ∧ G,Z).

If the orbifold G is [∗/G] where G is a finite group, the inverse transgression
has a classical interpretation in terms of shuffle product. Recall that

∧
[∗/G] is

equivalent to
⊔

(g)[∗/ZG(g)] (see [3]). Hence we would like to focus on the map
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θg : Ck(G,U(1)) → Ck−1(ZG(g), U(1)). If G is a finite group then the cochain
complex C∗(G,U(1)) is in fact equal to HomG(B∗(G), U(1)), where B∗(G) is the
bar resolution for G (see [6], page 18). If t is the generator of Z the shuffle
product is Bk(ZG(g))⊗ B1(Z)→ Bk+1(G) given by

[g1|g2| . . . |gk] ? [ti] =
∑
σ

σ[g1|g2| . . . |gk|gk+1],

where gk+1 = g i, σ ranges over all (k, 1)–shuffles and

σ[g1|g2| . . . |gk+1] = (−1)sign(σ)[gσ(1)|gσ(2)| . . . |gσ(k+1)].

A (k, 1)-shuffle is an element in symmetric group σ ∈ Sk+1 such that σ(i) < σ(j)
for 1 ≤ i < j ≤ k.

We can dualize this using integral coefficients. Given a cocycleφ∈Ck+1(G,Z),
one can see that the inverse transgression θg (φ) ∈ Ck(ZG(G),Z) can be defined
as

θg (φ)([g1|g2| . . . |gk]) = φ([g1|g2| . . . |gk] ? [g]),
where g1, g2, . . . , gk ∈ G. Hence it induces a map in integral cohomology.

We can now induce the inverse transgression map forH∗(G,F2) in the case of
G = (Z/2)3 using the Bockstein homomorphism. We want to find a non-trivial
cocycle in the image of inverse transgression map. Notice that H∗(G,F2) is
a polynomial algebra on three degree one generators x, y and z. In general,
for an elementary abelian 2-group, the mod 2 reduction map for k > 0 is
a monomorphism Hk(G,Z) → Hk(G,F2) whose image is the kernel of the
Bockstein homomorphism Sq1 : Hk(G,F2) → Hk+1(G,F2). In order to get a
nontrivial cocycle in the image of the inverse transgression map we choose
α = Sq1(xyz) = x2yz + xy2z + xyz2 which represents a non-square element in
H4(G,Z). The following lemma is proved in [3] by analyzing the multiplication
map in cohomology.

Lemma (2.1). Let g = xaybzc be an element in G = (Z/2)3, where we are
writing it in terms of the standard basis (identified with its dual). Let us
consider α = Sq1(xyz) = x2yz + xy2z + xyz2 which represents a non-square
element in H4(G,Z). Then

θ∗g (α) = a(y2z + z2y) + b(x2z + xz2) + c(x2y + xy2)

and so it is non-zero on every component except the one corresponding to the
trivial element in G.

Proof. See [3], lemma 5.2.
This implies that for all g, h ∈ G, θ∗g +θ∗h = θ∗gh in cohomology up to cobound-

aries. This also implies that the correspondence g 7→ θg (α) defines a homo-
morphism. In the case of G = (Z/2)3 we have the isomorphism θ?(α) : G →
H3(G,Z) = G.

We now define the product as follows:

Definition (2.2). Let τ be a 2-cocycle for the orbifold defined by the conju-
gation action of a finite group G on itself which is in the image of the inverse
transgression. The product on τKG(G) is defined by the following formula: if
α, β ∈τ KG(G), then

α ? β = e12∗(e∗1 (α)e∗2 (β)) .
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If τ = θ(φ) then we have the following formula proved in [3]:

e∗1τ + e∗2τ = e∗12τ

up to coboundary. Hence the product e1(α)e2(β) lies in
e∗1 τ+e

∗
2 τKG(G) =e∗12τ KG(G) .

Applying e12∗ this is mapped to τKG(G) which gives the product in the twisted
K-theory.

Using this identification θ∗g + θ∗h = θ∗gh the following product is defined on
the algebra

θ(φ)KG(G) = X (G) =
∑
g∈G

θg (φ)R(G)

via the pairing
θg (φ)R(G)⊗ θh(φ)R(G)→ θgh(φ)R(G) .

As a result of the formula e12∗(e∗1 (α)e∗2 (β)) this pairing turns out to be the tensor
product of projective representations. In the next section we investigate the
properties of this algebra while calculating its rank and the relations between
the irreducible projective representations.

3. Calculations

(3.1) 2-cocycles in G with values in U(1). In the rest of the paper we will
always assume that G = (Z/2)3. Recall that for finite dimensional complex
vector space a mapping ρ : G → GL(V ) is called a projective representation of
G if there exists a U(1) valued 2-cocycle α ∈ Z2(G;U(1)) such that ρ(x)ρ(y) =
α(x, y)ρ(x, y) for all x, y ∈ G and ρ(1) = IdV . Hence in order to compute θg (φ)R(G)
we first need to find the 2-cocycles in H2(G,U(1)) corresponding to θg (φ) in
H3(G,Z) where both cohomology groups are isomorphic to G. For this purpose
we consider the following isomorphism

H2(G,U(1))→ H3(G,Z)

induced by the natural coefficient sequence 0 → Z → R → U(1) → 1. As
H3(G,Z) ∼= Gwe need to find the 8 non-cohomologous 2-cocycles inH2(G,U(1))
corresponding to each θg (φ) for all g ∈ G.

We now determine the relations in order to obtain the 2-cocycles in
C2(G,U(1)). Any 2-cocycle β in C2(G,U(1)) should satisfy:

δβ = 1 .

By the boundary formula of the bar resolution of G we derive:

β(g2, g3)β(g1g2, g3)−1β(g1, g2g3)β(g1, g2)−1 = 1

for all gi ∈ G, i = 1, 2, 3. To get some neat relations we plug in g1 = g3 = g
and g2 = 1 into this formula and we get

(3.1.1) β(g, 1) = β(1, g).

Moreover for g1 = g2 = g we have

(3.1.2) β(1, g3)β(g, g) = β(g, g3)β(g, gg3).
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As β is defining a projective representation, say ρ, it should satisfy ρ(1)ρ(g) =
β(1, g)ρ(g). This implies β(1, g) = 1 for all g ∈ G. Now we consider the follow-
ing tables for 2-cocycles βi : G×G→ U(1) which satisfies the identities (3.1.1)
and (3.1.2). We choose β1 as the trivial co-cycle. We call these cocycles funda-
mental cocycles. Here xi, yi and zi’s are in U(1) and they will be determined
later.

β2 1 g2 g3 g4 g5 g6 g7 g8

1 1 1 1 1 1 1 1 1
g2 1 1 x1 x2 x1 x2 x3 x3

g3 1 x1 −1 x4 −x1 x6 −x4 −x6

g4 1 x2 −x4 1 x5 x2 −x4 x5

g5 1 x1 −x1 −x5 −1 x8 −x8 x5

g6 1 x2 −x6 x2 −x8 1 −x8 −x6

g7 1 x3 x4 x4 x8 x8 1 x3

g8 1 x3 x6 −x5 −x5 x6 x3 1

β3 1 g2 g3 g4 g5 g6 g7 g8

1 1 1 1 1 1 1 1 1
g2 1 −1 y1 y2 −y1 −y2 y3 −y3

g3 1 y1 1 y4 y1 y6 y4 y6

g4 1 −y2 y4 1 y5 −y2 y4 y5

g5 1 −y1 y1 −y5 −1 y8 −y8 y5

g6 1 y2 y6 y2 −y8 1 −y8 y6

g7 1 −y3 y4 y4 y8 y8 1 −y3

g8 1 y3 y6 −y5 −y5 y6 y3 1

β4 1 g2 g3 g4 g5 g6 g7 g8

1 1 1 1 1 1 1 1 1
g2 1 −1 z1 z2 −z1 −z2 z3 −z3

g3 1 −z1 1 z4 z1 z6 z4 z6

g4 1 z2 z4 −1 z5 −z2 −z4 −z5

g5 1 z1 z1 z5 1 z8 z8 z5

g6 1 −z2 z6 −z2 −z8 1 −z8 z6

g7 1 −z3 z4 −z4 −z8 z8 −1 z3

g8 1 z3 z6 −z5 z5 −z6 −z3 −1

As the multiplication of two cocycles gives us another cocycle, one can
construct 5 more cocycles one of which is the trivial one. Recall that for
β ∈ Z2(G;U(1)) an element g ∈ G is called β-regular if β(g, x) = β(x, g) for
all x ∈ CG(g) (see [9], page 107). Thus all of the 2-cocycles have 2 β-regular
elements one of which is 1 the other one is different for each cocycles. For
example, one can immediately see that the β-regular elements for β2, β3 and
β4 are g2, g3 and g4, respectively.
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On the other hand from the boundary formula a 2-coboundary should satisfy
β(g1, g2) = σ(g1)σ(g2)σ(g1g2)−1 where σ is inC1(G,Z). AsG is abelian we have

β(gi, gj) = β(gj , gi)

for all gi and gj in G. This implies that all of these 8 cocycles represents differ-
ent cohomology classes as multiplication with a coboundary does not change
the β-regular elements. Thus, we have following proposition.

Proposition (3.1.3). The rank of θg (φ)R(G) are 2 if θg (φ) is nontrivial.

Proof. A basic result of projective representations states that αR(G) is a
free abelian group of rank equal to the number of distinct α-regular conjugacy
classes of G (see [9], theorem 6.7). So, the ranks of βiR(G) is 2 for non-trivial
βi’s.

On the other hand we obtained 8 non-cohomologous cocycles which should
correspond to θg (φ)’s because H2(G,U(1)) and H3(G,Z) are isomorphic to G.
The result follows.

We can therefore conclude:

Corollary (3.1.4). The rank of X (G) is equal to 22.

(3.2) The projective representations. In order to compute the irreducible
projective representations of G it is helpful to determine the xi, yi and zi’s.
Again from the boundary formula we have the following relations in β2.

−1 = x1x3x4x5

−1 = x2x3x5x8

1 = x6x8x3x1 .

By a routine calculation one can check that the other relations depend on
these three relations. We can choose x1 = x2 = x3 = x4 = −x5 = x6 = x7 =
x8 = 1 that obviously satisfy these relations. Similarly, we find yi’s and zi’s.
The other cocycles are computed by multiplying β2, β3 and β4. We will later
show that the choice of xi, yj and zk from the set {±1} does not change our
representations.

By considering the 2-cocycles that we obtained it is obvious that there is no
1-dimensional projective representation whenever the 2-cocycle is not trivial.
For the trivial cocycle we have eight 1 dimensional representations which are
just the irreducible linear representations ofG. For the other cases we find two
2-dimensional irreducible representations for each of the two cocycles (see [9],
Theorem 6.7). Let ρi1 and ρi2 be the irreducible representations corresponding
to the cocycle βi.

One question that needs to be answered is whether these representations
depend on the choice of xi, yi and zi. One can check by calculation that the
representations only depend on the values of βi(g, g). More precisely, ρ(g)ρ(g)
should be equal to β(g, g) for all g ∈ G. For example,

ρ(g3)ρ(g8) = β(g3, g8)ρ(g7)

⇔ ρ(g3)β(g2, g7)ρ(g2)ρ(g7) = β(g3, g8)β(g2, g4)ρ(g2)ρ(g4)

⇔ ρ(g3)β(g2, g7)ρ(g2)β(g3, g4)ρ(g3)ρ(g4) = β(g3, g8)β(g2, g4)ρ(g2)ρ(g4)

⇔ ρ(g3)ρ(g3)β(g2, g7)β(g3, g4) = β(g3, g8)β(g2, g4)I
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which is true if and only if ρ(g3)ρ(g3) = β(g3, g3)I by the relations we get from
the boundary formulas. The other elements can be checked similarly.

Thus we have found the basis of our algebra. We will show that this product
is unique up to coboundary. First we prove the following lemma.

Proposition (3.2.1). If φ and φ′ are cohomologous cocycles inH4(G,Z) then
the fusion algebras corresponding to these cocycles are isomorphic to each other.

Proof. If φ and φ′ are cohomologous cocycles then θg (φ) and θg (φ′) represent
the same cohomology class in H3(G,Z). In order to compute the 2-cocycle
corresponding to θg (φ) ∈ H3(G,Z) ∼= G we will use the isomorphism induced
from the short exact sequence

0→ Z→ R→ U(1)→ 1 .

Thus θg (φ) is mapped to a certain class of 2-cocycles in H2(G,U(1)) ∼= G.
As we found 8 non-cohomologous 2-cocycles in G it is enough to check how
the representations change if we multiply our fundamental 2-cocycles by a 2-
coboundary. This is indeed a basic result of projective representation theory
(see page 72 in [9]). After multiplying our fundamental 2-cocycles by a 2-
coboundary the new projective representation of this cocycle becomes linearly
isomorphic to the former one. The result follows from the above argument.

(3.3) The relations. Now we are able to calculate the relation of this basis
using the pairing θ(φ)gR(G) ⊗ θ(φ)hR(G) → θ(φ)ghR(G). The calculations are
nothing but solving linear equations. Namely one should prove that ρki ⊗ ρli ’s
are linearly isomorphic to a sum of some basis elements. Here ρ1

i denotes the
irreducible regular representations of G for i = 1, 2, . . . , 8.

Let us start with ρ1
i ⊗ρ

j
i which is linearly isomorphic to ρjk for some k ∈ {1, 2}

where j 6= 1 because ρ1
i ⊗ρ

j
i should be a 2 dimensional βj representation. Here

are the results of these multiplications:

⊗ ρ1
1 ρ1

2 ρ1
3 ρ1

4 ρ1
5 ρ1

6 ρ1
7 ρ1

8 ρ2
1 ρ2

2 ρ3
1 ρ3

2 ρ4
1 ρ4

2 ρ5
1 ρ5

2 ρ6
1 ρ6

2 ρ7
1 ρ7

2 ρ8
1 ρ8

2

ρ1
1 ρ1

1 ρ1
2 ρ1

3 ρ1
4 ρ1

5 ρ1
6 ρ1

7 ρ1
8 ρ2

1 ρ2
2 ρ3

1 ρ3
2 ρ4

1 ρ4
2 ρ5

1 ρ5
2 ρ6

1 ρ6
2 ρ7

1 ρ7
2 ρ8

1 ρ8
2

ρ1
2 ρ1

2 ρ1
1 ρ1

5 ρ1
6 ρ1

3 ρ1
4 ρ1

8 ρ1
7 ρ2

2 ρ2
1 ρ3

1 ρ3
2 ρ4

1 ρ4
2 ρ5

2 ρ5
1 ρ6

2 ρ6
1 ρ7

1 ρ7
2 ρ8

2 ρ8
1

ρ1
3 ρ1

3 ρ1
5 ρ1

1 ρ1
7 ρ1

2 ρ1
8 ρ1

4 ρ1
6 ρ2

1 ρ2
2 ρ3

2 ρ3
1 ρ4

1 ρ4
2 ρ5

2 ρ5
1 ρ6

1 ρ6
2 ρ7

2 ρ7
1 ρ8

2 ρ8
1

ρ1
4 ρ1

4 ρ1
6 ρ1

7 ρ1
1 ρ1

8 ρ1
2 ρ1

3 ρ1
5 ρ2

1 ρ2
2 ρ3

1 ρ3
2 ρ4

2 ρ4
1 ρ5

1 ρ5
2 ρ6

2 ρ6
1 ρ7

2 ρ7
1 ρ8

2 ρ8
1

ρ1
5 ρ1

5 ρ1
3 ρ1

2 ρ1
8 ρ1

1 ρ1
7 ρ1

6 ρ1
4 ρ2

2 ρ2
1 ρ3

2 ρ3
1 ρ4

1 ρ4
2 ρ5

1 ρ5
2 ρ6

2 ρ6
1 ρ7

2 ρ7
1 ρ8

1 ρ8
2

ρ1
6 ρ1

6 ρ1
4 ρ1

8 ρ1
2 ρ1

7 ρ1
1 ρ1

5 ρ1
3 ρ2

2 ρ2
1 ρ3

1 ρ3
2 ρ4

2 ρ4
1 ρ5

2 ρ5
1 ρ6

1 ρ6
2 ρ7

2 ρ7
1 ρ8

1 ρ8
2

ρ1
7 ρ1

7 ρ1
8 ρ1

4 ρ1
3 ρ1

6 ρ1
5 ρ1

1 ρ1
2 ρ2

1 ρ2
2 ρ3

2 ρ3
1 ρ4

2 ρ4
1 ρ5

2 ρ5
1 ρ6

2 ρ6
1 ρ7

1 ρ7
2 ρ8

1 ρ8
2

ρ1
8 ρ1

8 ρ1
7 ρ1

6 ρ1
5 ρ1

4 ρ1
3 ρ1

2 ρ1
1 ρ2

2 ρ2
1 ρ3

2 ρ3
1 ρ4

2 ρ4
1 ρ5

1 ρ5
2 ρ6

1 ρ6
2 ρ7

1 ρ7
2 ρ8

2 ρ8
1

Another type of multiplication is ρji ⊗ ρji which is linearly isomorphic to
the sum of four irreducible regular representations ρ1

k as βj(g, h)2 = 1 for all
j. We calculate all of these by using associativity of our algebra X (G) and
investigating the eigenvalues of the matrices. Of course one can also calculate
them by defining the linear isomorphism explicitly. As ρi1(gj) = −ρi2(gj) for
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three gj ’s in the definitions of representations we have ρi1⊗ρi1 = ρi2⊗ρi2 as well
as ρi2 ⊗ ρi1 = ρi1 ⊗ ρi2.

⊗ ρ2
1 ρ2

2
ρ2

1 ρ1
1 + ρ1

3 + ρ1
4 + ρ1

7 ρ1
2 + ρ1

5 + ρ1
6 + ρ1

8
ρ2

2 ρ1
2 + ρ1

5 + ρ1
6 + ρ1

8 ρ1
1 + ρ1

3 + ρ1
4 + ρ1

7

⊗ ρ3
1 ρ3

2
ρ3

1 ρ1
1 + ρ1

2 + ρ1
4 + ρ1

6 ρ1
3 + ρ1

5 + ρ1
7 + ρ1

8
ρ3

2 ρ1
3 + ρ1

5 + ρ1
7 + ρ1

8 ρ1
1 + ρ1

2 + ρ1
4 + ρ1

6

⊗ ρ4
1 ρ4

2
ρ4

1 ρ1
4 + ρ1

6 + ρ1
7 + ρ1

8 ρ1
1 + ρ1

2 + ρ1
3 + ρ1

5
ρ4

2 ρ1
1 + ρ1

2 + ρ1
3 + ρ1

5 ρ1
4 + ρ1

6 + ρ1
7 + ρ1

8

⊗ ρ5
1 ρ5

2
ρ5

1 ρ1
1 + ρ1

5 + ρ1
6 + ρ1

8 ρ1
2 + ρ1

3 + ρ1
4 + ρ1

7
ρ5

2 ρ1
2 + ρ1

3 + ρ1
4 + ρ1

7 ρ1
1 + ρ1

5 + ρ1
6 + ρ1

8

⊗ ρ6
1 ρ6

2
ρ6

1 ρ1
1 + ρ1

3 + ρ1
6 + ρ1

8 ρ1
2 + ρ1

4 + ρ1
5 + ρ1

7
ρ6

2 ρ1
2 + ρ1

4 + ρ1
5 + ρ1

7 ρ1
1 + ρ1

3 + ρ1
6 + ρ1

8

⊗ ρ7
1 ρ7

2
ρ7

1 ρ1
3 + ρ1

4 + ρ1
5 + ρ1

6 ρ1
1 + ρ1

2 + ρ1
7 + ρ1

8
ρ7

2 ρ1
1 + ρ1

2 + ρ1
7 + ρ1

8 ρ1
3 + ρ1

4 + ρ1
5 + ρ1

6

⊗ ρ8
1 ρ8

2
ρ8

1 ρ1
2 + ρ1

3 + ρ1
4 + ρ1

8 ρ1
1 + ρ1

5 + ρ1
6 + ρ1

7
ρ8

2 ρ1
1 + ρ1

5 + ρ1
6 + ρ1

7 ρ1
2 + ρ1

3 + ρ1
4 + ρ1

8

The last type of multiplication that we have to consider is ρji ⊗ ρnm where
distinct i, m are in {1, 2} and j and n are in {2, 3, . . . , 8}. As ρji ⊗ ρnm is four
dimensional it should be linearly isomorphic to 2ρl1, 2ρl2 or ρl1 + ρl2. Neither
−2ρl1, −2ρl2 nor −ρl1 − ρl2 is possible as they are not βl representations as one
checks from the list of our representations in the previous section. Besides,
2ρl1 and 2ρl2 are also impossible by the following associativity argument.

Suppose ρji ⊗ ρ
n
m = 2ρl1. By the table above we can always find ρ1

k such that
ρ1
k⊗ ρ

j
i = ρji and ρ1

k⊗ ρl1 = ρl2. This gives us a contradiction if we multiply each
side of ρji ⊗ ρ

n
m = 2ρl1 by ρ1

k.
We can conclude ρji ⊗ ρnm = ρl1 + ρl2. We have finished calculating all the

relations.

4. Topological Gauge Theories

Dijkgraaf and Witten show that three dimensional Chern-Simons gauge the-
ories with a compact gauge group can be classified by the integer cohomology
group H4(BG,Z). Wess-Zumino interactions of such groups G are classified
by H3(G,Z). The relation between three dimensional sigma models involves a
certain natural map H4(BG,Z) to H3(G,Z) which is the inverse transgression
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map defined in the second section. Our calculations provide an example of
three dimensional topological theories with finite gauge group. In this con-
text our algebra X (G) is a fusion algebra. In QFT (Quantum field theory) one
can associate to a d + 1 dimensional manifold M a certain number Z(M), the
partition function. For a detailed discussion one can consult [8].

Consider the partition function of the 3-torus S1 × S1 × S1. If g, h and k
are three commuting gauge fields the partition function is evaluated to give

Z(S1 × S1 × S1) =
1
|G|

∑
g,h,k∈G

W (g, h, k),

where [g, h] = [h, k] = [k, g] = 1 which is not important in our abelian case.
Define W as

W (g, h, k) =
α(g, h, k)α(h, k, g)α(k, g, h)
α(g, k, h)α(h, g, k)α(k, h, g)

.

for α ∈ H3(BG,U(1)).
The Chern-Simons theory associates to each group element gi ∈ G a 2-

cocycle βi, which we calculated above. Again by the result of Witten and Dijk-
graaf [8] we can express βi in terms of 3-cocycle α ∈ H3(G,U(1)):

βi(h1, h2) =
α(gi, h1, h2)α(h1, h2, gi)

α(h1, gi, h2)
.

This can also be obtained by the formula for inverse transegression map on
page 3:

βi(h1, h2) = θgi (α)([h1|h2]) = α([h1|h2] ? [gi]) =
α([gi|h1|h2])α([h1|h2|gi])

α([h1|gi|h2])
.

Note that the shuffle product on page 3 is defined via additive notation.
Thus the action W can be written in terms of 2-cocycles:

W (gi, h, k) = βi(h, k)βi(k, h)−1 .

For fixed g, εg (h) is defined as εg (h) = β(g, h)β(h, g)−1 which is a 1-dimen-
sional representation of G. Thus an element g is β-regular iff εg = 1. This
implies

r(G,β) =
1
|G|

∑
g,h∈G

β(g, h)β(h, g)−1

where r(G;β) denotes the number of irreducible projective representations
βR(G). Our 2-cocycles defined in the second section satisfies this condition.

Comparing all these results we obtain the following result for the partition
function of the 3-torus where G = (Z/2)3:

Proposition (4.1).

Z(S1 × S1 × S1) =
∑
i

r(G;βi) = 22 .

Using our representations we can find the basis elements να of Hilbert space
corresponding to a 3-torus in QFT. These basis elements are given in [8] as

να(gi, h) = Trρi(h) .
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In this context our algebra X (G) can be regarded as the smallest twisted
non-trivial fusion algebra for abelian groups.
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GEOMETRIC DIFFERENCES BETWEEN THE USE OF LIE
ALGEBRAS AND LIE SUPERALGEBRAS

J. R. CERVANTES POLANCO AND O. A. SÁNCHEZ-VALENZUELA

Abstract. Let V = U⊕W be a complex vector space. Then End(U⊕W ) has
natural Lie algebra and Lie superalgebra structures. With given geometries
BU : U×U → C, andBW : W×W → C, a geometryB can be defined on V via
BU⊕BW . We address the question of what determines the choice in using the
Lie algebra or the Lie superalgebra structure of End(U ⊕W ) by considering
the linear maps that preserve B. It is found that if nontrivial maps U → W
and W → U are to be included, then the Lie algebra structure of End(U⊕W )
requires geometries on U and W of the same type —that is, both orthogonal,
or both symplectic, or both unitary, or both anti-unitary— whereas the Lie
superalgebra requires to combine the geometry-types of U and W in such a
way that one is orthogonal and the other symplectic, or one is unitary and the
other anti-unitary. The question of defining a geometry B on U ⊕W of odd
degree is also addressed, and the Lie algebra and Lie superalgebra structures
of the subspace of End(U ⊕W ) that preserve such a B are determined.

Introduction

The purpose of this note is to identify exactly to what extent the geometry
defined on a given vector space formed as the direct sum of two subspacesU and
W , decides what is the best-suited algebraic structure to use in End(U ⊕W ):
either its Lie algebra structure, or its Lie superalgebra structure. It turns out
that if a geometryB is defined onU⊕W viaB = BU⊕BW , whereBU andBW are
geometries onU, andW , respectively, the Lie algebra structure on End(U⊕W )
closes nicely with nontrivial maps U → W and W → U that are consistent
with the given geometries on them, exactly when these geometries are of the
same type; namely, both orthogonal, or both symplectic, or both unitary, or both
anti-unitary. On the other hand, the Lie superalgebra structure of End(U⊕W )
provides nontrivial maps U → W and W → U consistent with the geometries
on the subspaces, exactly when these geometries are mixed in the following
way: BU and BW are one symplectic and the other orthogonal, or one unitary
and the other anti-unitary. From this point of view both, the Lie algebra and
the Lie superalgebra structures of End(U ⊕ W ) are natural, and somehow
complementary to each other, depending only on the way the geometries on U
and W are combined. Even though the proof is elementary (see §2 below), this
observation makes the result quite illuminating. Besides, the Lie subalgebra
and the Lie ‘subsuperalgebra’ of End(U ⊕W ) that preserve the resulting B,

2000 Mathematics Subject Classification: Primary: 22E60, 17B70, 15A63, 17B81 Secondary:
22E70, 51F25, 81R05 .

Keywords and phrases: orthogonal and symplectic Lie groups and Lie algebras; orthosymplec-
tic Lie superalgebras.
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both have gBU
⊕gBW

⊕Hom(U,W ) as its underlying space, where gBZ
is the Lie

algebra {T ∈ End(Z) | BZ(Tu, v) + BZ(u, Tv) = 0}.
Now, in the Lie superalgebra setting, geometries on U ⊕ W of the form

B = BU ⊕BW are called even, or of zero Z2-degree. There are also the so called
odd geometries that are defined on U ⊕ W when U ' W , so as to make U
and W totally isotropic. To round up this note, we review the conditions to
define a geometry B on U ⊕U in terms of a given geometry BU : U ×U → C,
in such a way that the U direct summands in U ⊕U become totally isotropic
with respect to B. It turns out that in order to preserve such a geometry
defined by B through elements from End(U ⊕U), either from its Lie algebra
structure or from its Lie superalgebra structure, we deduce the existence of
a constant λ satisfying λ2 = 1 when BU is bilinear and |λ|2 = 1 when BU is
sesquilinear, and the overall geometryB onU⊕U is given byB(u+w, u′+w′) =
BU (u,w′) +λBU (u′, w), when BU is bilinear, and is given by B(u+w, u′+w′) =
BU (u,w′) + λ̄ BU (u′, w), when BU is sesquilinear. In particular, the overall
geometry is orthogonal, or symplectic, depending on whether BU is bilinear
and λ = 1, or λ = −1, respectively, and it is unitary, if BU is sesquilinear. It
is quite interesting to note that in any case the geometry defined by B under
the imposed conditions becomes isomorphic to the geometry defined onU⊕U∗
by the well-known natural orthogonal, symplectic, or unitary forms. Finally,
the underlying space of the Lie subalgebra of End(U ⊕ U∗) that preserves
B has the form gl(U) ⊕ (Aλ(U) ⊕ Aλ(U)), with Aλ(U) being identified with
either the skew-symmetric or the symmetric maps U → U, depending on
whetherB is orthogonal or symplectic, and being identified with the hermitian
(or skew-hermitian) maps U → U, when B is unitary. On the other hand, the
underlying space of the Lie subsuperalgebra of End(U ⊕ U∗) that preserves
B gets decomposed as gl(U) ⊕ (Aλ(U) ⊕ Bλ(U)), with Aλ(U) and Bλ(U) being
respectively identified with the symmetric and skew-symmetric maps U → U,
when B is either orthogonal or symplectic, and being respectively identified
with the hermitian and skew-hermitian maps, when B is unitary.

1. Algebraic preliminaries and notation

(1.1) The setting. Let V be a complex vector space with the given direct
sum decomposition U ⊕W . Then, the associative algebra End(U ⊕W ) gets
decomposed into the direct sum End(U)⊕Hom(U,W )⊕Hom(W,U)⊕End(W )
in such a way that a linear transformation T ∈ End(U⊕W ) corresponds to the
quadruple (α, β, γ, δ), as follows: For any u ∈ U and any w ∈ W , T (u + w) =
(α(u) + β(w)) + (γ(u) + δ(w)), with α(u) + β(w) ∈ U, and γ(u) + δ(w) ∈ W .
If T ′ ∈ End(U ⊕ W ) corresponds to the quadruple (α′, β′, γ′, δ′), then T ◦ T ′
corresponds to (α ◦ α′ + β ◦ γ′, α ◦ β′ +β ◦ δ′, γ ◦ α′ + δ ◦ γ′, γ ◦ β′ + δ ◦ δ′), which
provides the well-known identifications

U ⊕W 3 u + w ↔
(
u
w

)
and End(U ⊕W ) 3 T ↔

(
α β
γ δ

)
,

so that

T (u + v) ↔
(
α β
γ δ

)(
u
w

)
and T ◦ T ′ =

(
α β
γ δ

)
◦
(
α′ β′

γ′ δ′

)
.
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The associative algebra End(U ⊕W ) admits an obvious Z2-grading decompo-
sition (cf, [2]) End(U ⊕W ) = End(U ⊕W )0 ⊕ End(U ⊕W )1, where

End(U ⊕W )0 =
{(

α 0
0 δ

)
| α ∈ End(U), and, δ ∈ End(W )

}
and

End(U ⊕W )1 =
{(

0 β
γ 0

)
| β ∈ Hom(W,U), and, γ ∈ Hom(U,W )

}
.

Identifying Z2 with the set {0, 1} and equipping it with its usual ring structure,
it is immediate to check that for any r and s in Z2, (End(U ⊕W ))r ◦ (End(U ⊕
W ))s ⊂ (End(U ⊕W ))r+s. We further define a map

| · | : (End(U ⊕W ))0 ∪ (End(U ⊕W ))1 −
{(

0 0
0 0

)}
→ Z2

in such a way that |T | = r if and only if T ∈ (End(U ⊕W ))r. Moreover, there
are only two possibilities for defining a map ε : Z2 × Z2 → C in such a way
that ε(r, s)ε(r, t) = ε(r, s + t), ε(r, s)ε(t, s) = ε(r + t, s), and ε(r, s)ε(s, r) = 1 (cf,
[1]); namely, either ε(r, s) = 1 for all r, s, or else ε(r, s) = (−1)rs for all r, s. It
is well known that defining

[T, T ′]ε = T ◦ T ′ − ε(|T |, |T ′|)T ′ ◦ T,

on any pair of elements T and T ′ on the domain of | · |, and extending this def-
inition bilinearly to all of End(U ⊕W ), one obtains either a Lie algebra struc-
ture, or a Lie superalgebra structure on End(U ⊕W ), depending on whether
ε(r, s) = 1 for all r, s, or ε(r, s) = (−1)rs for all r, s (cf, [1], or [2]). It is immediate
to verify that the difference between these structures comes down to[(

α β
γ δ

)
,

(
α′ β′

γ′ δ′

)]
ε

=
(
α ◦ α′ + β ◦ γ′ α ◦ β′ + β ◦ δ′
γ ◦ α′ + δ ◦ γ′ γ ◦ β′ + δ ◦ δ′

)
−
(
α′ ◦ α + |ε|β′ ◦ γ α′ ◦ β + β′ ◦ δ
γ′ ◦ α + δ′ ◦ γ |ε|γ′ ◦ β + δ′ ◦ δ

)
=
(

[α, α′] + β ◦ γ′ − |ε|β′ ◦ γ α ◦ β′ − β′ ◦ δ + β ◦ δ′ − α′ ◦ β
δ ◦ γ′ − γ′ ◦ α + γ ◦ α′ − δ′ ◦ γ [δ, δ′] + γ ◦ β′ − |ε|γ′ ◦ β

)
,

where we have written |ε| in the right hand side to distinguish the case |ε| = 1
obtained when ε(r, s) = 1 for all r, s, from the case |ε| = −1 obtained when
ε(r, s) = (−1)rs for all r, s. Note that [ · , · ] with no further marks stands for
the ordinary Lie algebra bracket on End(U), or End(W ), respectively, and the
context makes it clear which one is being used. In summary, the vector space
End(U⊕W ) can be equipped with either a Lie algebra structure (case |ε| = 1),
or with a Lie superalgebra structure (case |ε| = −1). When referring to the
first one, we shall denote it by gl(U ⊕W ), and when referring to the second
one, by gl(U|W ), as it is customary.

(1.2) Notation and conventions. Let X be either U or W , and let B : X ×
X → C be a geometry defined on it. Thus, either B is nondegenerate bilinear
or nondegenerate sesquilinear. Let X∗ be the dual space. We shall follow the
convention of letting B[ : X → X∗ be given by x 7→ B(x, · ), so that B[ becomes
a C-antilinear map when B is sesquilinear. The map B[ has a left inverse
(which is also C-antilinear when B is sesquilinear) given by B] : X∗ → X and
characterized by the propertyB(B](ϕ), x) = ϕ(x) for any ϕ ∈ X∗ and any x ∈ X.
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If B is bilinear, B[ and B] are both C-linear. If X is finite-dimensional, B[ and
B] are inverses of each other. For any C-linear map β : X → Y we denote by
β∗ the C-linear map Y ∗ → X∗ given by ϕ 7→ β∗(ϕ) = ϕ ◦ β. We shall use the
same notation, β∗ : Y ∗ → X∗, even when β : X → Y is C-antilinear, but in this
case β∗ is given by ϕ 7→ ϕ ◦ β. It is a well-known fact that when B is bilinear
(resp., sesquilinear), the subset

gB(X) = {η ∈ End(X) | B[ ◦ η + η∗ ◦ B[ = 0}

is a complex (resp., real) subspace of End(X) which is furthermore, closed
under the Lie bracket [η, η′] = η ◦ η′ − η′ ◦ η. It is thus a complex (resp., real)
Lie subalgebra of gl(X).

Now, in the bilinear case we will assume that there exists a nonzero complex
constant, εB, such that,

B(x1, x2) = εBB(x2, x1)

for any pair of vectors x1, and x2 in X. This readily implies that εB must be
either +1 or−1. It also implies that, gB(X) ' o(n), or gB(X) ' sp(n), depending
on whether εB is either +1 or−1; in any case, n = dim(X). On the other hand,
in the sesquilinear case we will assume that there exists a nonzero complex
constant εB, such that

B(x1, x2) = εBB(x2, x1),

for any pair of vectors x1, and x2 in X. In particular, this implies that εB
lies in the unit circle of the complex plane. It also implies that there is an
hermitian form H : X × X → C and a complex constant ζ depending on εB
only, such that H = ζ B; actually ζ̄2 = εB (and similarly, one may obtain an
anti-hermitian form H ′ = iH = iζ B). In any case gB(X) is isomorphic to the
unitary Lie algebra u of the appropriate hermitian form H. Convention: In
what follows it will always be assumed that when B is sesquilinear, one can
find an appropriate ζ = ζ(εB) in the unit circle of the complex plane so as to
make H = ζB hermitian, or so as to consider the associated anti-hermitian
form H ′ = iH, as needed.

2. Statement of the problems

(2.1) The so called ‘even’ geometries. Let V = U ⊕W as before, and as-
sume we are given nondegenerate bilinear mapsBU : U×U → C, andBW : W×
W → C, satisfying BU (u, u′) = εBU

BU (u′, u), and BW (w,w′) = εBW
BW (w′, w),

respectively, or nondegenerate sesquilinear maps satisfying BU (u, u′) = εBU

BU (u′, u), and BW (w,w′) = εBW
BW (w′, w), respectively. Define B : V × V → C

by means of

(2.1.1) B(u + w, u′ + w′) = BU (u, u′) + BW (w,w′)

for all u, u′ ∈ U and all w,w′ ∈ W . Let T ∈ End(U ⊕W ) be identified with(
α β
γ δ

)
∈ End(U) ⊕ End(W ) ⊕ Hom(U,W ) ⊕ Hom(W,U) as before. One may

then consider, on the one hand, the vector subspace

(2.1.2) gB(U ⊕W ) =
{
T =

(
α β
γ δ

)
∈ gl(U ⊕W ) | B[ ◦ T + T ∗ ◦ B[ = 0

}
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(with B[ = B[
U ⊕B[

W ). On the other hand, given T ∈ End(U⊕W ), we may first
decompose it in the form T = T0 + T1 with T0 =

(
α 0
0 δ

)
∈ (End(U ⊕W ))0, and

T1 =
(

0 β
γ 0

)
∈ (End(U⊕W ))1, and consider the Lie subsuperalgebra gB(U|W ) =

gB(U|W )0 ⊕ gB(U|W )1, where
(2.1.3)

gB(U|W )0 =
{
T =

(
α 0
0 δ

)
∈ gl(U|W ) | B[ ◦ T ( uw ) + T ∗ ◦ B[( uw ) = 0

}
,

gB(U|W )1 =
{
T =

(
0 β
γ 0

)
∈ gl(U|W ) | B[ ◦ T ( uw ) + T ∗ ◦ B[

(
u
−w
)

= 0
}
.

We have written the arguments u ∈ U and w ∈ W so as to emphasize the
fact that the difference with gB(U ⊕W ) only occurs in that B[ ◦ T and T ∗ ◦ B[

might be evaluated on different arguments, depending on whether |T | = 0 or
|T | = 1. The customary way to write the defining condition on the elements of
gB(U|W )µ (µ = 0, 1) is this (cf, [2]): T ∈ (End(U ⊕W ))µ such that B[ ◦ T (z) +
(−1)µ |z|T ∗ ◦ B[(z) = 0, with the understanding that |z| is equal to either 0 or
1, depending on whether z ∈ U, or z ∈ W , respectively.

We now want to find necessary and sufficient conditions on the geometries BU

and BW so that gB(U|W ) becomes a Lie subalgebra of gl(U ⊕W ), and gB(U|W )
becomes a Lie subsuperalgebra of gl(U|W ), excluding in both cases the trivial
situation in which all maps T satisfy β = 0, and γ = 0.

Proposition (2.1.4). Under the assumption that B[ = B[
U ⊕ B[

W as above,

the linear map T =
(
α β
γ δ

)
belongs to:

(a) gB(U ⊕W ) if and only if its entries α, β, γ, δ satisfy

B[
U ◦ α + α∗ ◦ B[

U = 0, B[
W ◦ δ + δ∗ ◦ B[

W = 0, B[
U ◦ β + γ∗ ◦ B[

W = 0.

(b) gB(U|W ) if and only if its entries α, β, γ, δ satisfy

B[
U ◦ α + α∗ ◦ B[

U = 0, B[
W ◦ δ + δ∗ ◦ B[

W = 0, B[
U ◦ β − γ∗ ◦ B[

W = 0.

Furthermore, we respectively have:

(a’) If εBU
= εBW

, then gB(U⊕W ) ' gBU
(U)⊕gBW

(W )⊕Hom(U,W ); otherwise,
gB(U ⊕W ) ' gBU

(U)⊕ gBW
(W ).

(b’) If εBU
= −εBW

, then gB(U|W ) ' gBU
(U)⊕gBW

(W )⊕Hom(U,W ); otherwise,
gB(U|W ) ' gBU

(U)⊕ gBW
(W ).

Remark (2.1.5). It follows from Proposition (2.1.4) that the vector space
structures of gB(U ⊕ W ) and gB(U|W ) are essentially identical. The actual
difference lies in the fact that, for gB(U⊕W ) to be a Lie subalgebra of gl(U⊕W )
containing the full subspace Hom(U,W ), the geometries BU and BW have to be
both orthogonal, or both symplectic, or be both associated to hermitian forms
HU and HW on U and W , respectively, so as to have εBU

= εBW
. In particular,

the direct sum gBU
(U) ⊕ gBW

(W ) in this case is isomorphic to the direct sum
of two orthogonal, or two symplectic, or two unitary Lie algebras. On the
other hand, for gB(U|W ) to be a Lie subsuperalgebra of gl(U|W ) containing the
full subspace Hom(U,W ), the geometries BU and BW must be one orthogonal
and the other symplectic, or be one associated to a hermitian form and the
other associated to an anti-hermitian form, so as to satisfy εBU

= −εBW
. The
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fact that the subspace Hom(U,W ) appears in both gB(U ⊕ W ) and gB(U|W )
reflects the fact that it suffices to know β in order to completely determine γ
(or viceversa). The dependence of γ on β is different, depending on whether
one is looking at the Lie algebra structure or the Lie superalgebra structue,
and of course so does the way of computing the bracket [·, ·]ε, but otherwise
they are complementary to each other as far as the geometries defined on U
and W are concerned.

Note: All proofs are given in §3 below.

(2.2) The so called ‘odd’ geometries. When dimU = dimW , there are
other (equally natural and simple) ways to define non-degenerate, bilinear
(resp., sesquilinear) maps B : (U ⊕W )× (U ⊕W )→ C; namely, require U and
W to become totally isotropic subspaces. Thus, set

B(u + w, u′ + w′) = Ω(u,w′) + Φ(w, u′)

with Ω: U×W → C, and Φ: U×W → C being both nondegenerate and bilinear
(resp., sesquilinear). We may define the C-linear (resp., C-antilinear) maps
Ω[ : U → W∗ and Φ[ : W → U∗, so that Ω[(u) = Ω(u, · ), and Φ[(w) = Φ(w, · ),
respectively. In particular, (Ω[)∗ : W → U∗, and (Φ[)∗ : U → W∗. It is easy to
see that (Ω[)∗(w)(u) = Ω(u,w) in the bilinear case and (Ω[)∗(w)(u) = Ω(u,w) in
the sesquilinear case. Now setB[ := Ω[⊕Φ[ (followed by the identificationW∗⊕
U∗ → U∗⊕W∗, ϕ+ψ 7→ ψ+ϕ), and look for necessary and sufficient conditions
under which the vector subspace (1) yields a Lie subalgebra gB(U ⊕ W ) of
gl(U⊕W ) and also look for necessary and sufficient conditions for the subspaces
(3) to fit together defining a Lie subsuperalgebra gB(U|W ) of gl(U|W ).

Proposition (2.2.1). Under the assumption that B[ := Ω[⊕Φ[ as above the
linear map T =

(
α β
γ δ

)
belongs to:

(a) gB(U ⊕W ) if and only if its entries α, β, γ, δ satisfy

Φ[ ◦ δ + α∗ ◦ Φ[ = 0, Ω[ ◦ β + β∗ ◦ Φ[ = 0, Φ[ ◦ γ + γ∗ ◦ Ω[ = 0 .

(b) gB(U|W ) if and only if its entries α, β, γ, δ satisfy

Φ[ ◦ δ + α∗ ◦ Φ[ = 0, Ω[ ◦ β − β∗ ◦ Φ[ = 0, Φ[ ◦ γ + γ∗ ◦ Ω[ = 0.

In any case, there is a constant λ ∈ C, such that (Ω[)∗ = λΦ[, and either
γ = β = 0 or else λ2 = 1 whenB is bilinear, and |λ|2 = 1 whenB is sesquilinear.
Furthermore, we respectively have:

(a’) gB(U ⊕W ) ' gl(U)⊕
(
Aλ

Φ(W,U)⊕Aλ
Φ(U,W )

)
, where

Aλ
Φ(W,U) = {β ∈ Hom(W,U) | β∗ ◦ Φ[ + λ̄(Φ[)∗ ◦ β = 0 },

Aλ
Φ(U,W ) = {γ ∈ Hom(U,W ) | γ∗ ◦ (Φ[)∗ + λΦ[ ◦ γ = 0 }.

(b’) gB(U|W ) ' gl(U)⊕
(
Aλ

Φ(U,W )⊕ Bλ
Φ(W,U)

)
, where Aλ

Φ(U,W ) is defined
as in (a’), and

Bλ
Φ(W,U) = {β ∈ Hom(W,U) | β∗ ◦ Φ[ − λ̄(Φ[)∗ ◦ β = 0 }.
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Remark (2.2.2). Since Proposition (2.2.1) applies only in the caseU ' W , we
might as well start with a given isomorphism, say P : U → W , and define the
nondegenerate bilinear form BU (u1, u2) = Φ(P (u1), u2). Since Ω is completely
determined by Φ itself, this means that the data to start with can also be a
geometry BU on U, and then define a geometry B on U ⊕U (or in U ⊕U∗) in
such a way so as to make each direct summand into a totally isotropic subspace.
The results of Proposition (2.2.1) remain essentially the same, except for the
fact that β∗ ◦ Φ[ + λ̄(Φ[)∗ ◦ β = 0, for some β : W → U, will be replaced by
β∗ ◦ B[

U + λ̄ (B[
U )∗ ◦ β = 0, this time with β : U → U, and similarly for γ.

Remark (2.2.3). On the other hand, taking into account that U ' W , we
might as well choose the bases on U and W in such a way that the associated
matrix to Φ is simply the unit matrix. We may also assume that λ is±1, so that
the subspaces Aλ

Φ(W,U) and Aλ
Φ(U,W ) in (2.2.1).(a’) both become isomorphic

to
Aλ(U) = {β ∈ End(U) | β∗ + λβ = 0 } ,

whereas Bλ
Φ(W,U) in (2.2.1).(b’) becomes isomorphic to

Bλ(U) = {β ∈ End(U) | β∗ − λβ = 0 } .

3. The proofs

(3.1) Proof of Proposition (2.1.4). The linear map T =
(
α β
γ δ

)
∈ End(U⊕W )

belongs to gB(U ⊕W ) if, and only if, for any u, ũ ∈ U and any w, w̃ ∈ W ,

(i) (B [ ◦ T + T ∗ ◦ B [)(u)(ũ) = 0, (ii) (B [ ◦ T + T ∗ ◦ B [)(w)(w̃) = 0,

(iii) (B [ ◦ T + T ∗ ◦ B [)(u)(w) = 0, (iv) (B [ ◦ T + T ∗ ◦ B [)(w)(u) = 0.

It is a straightforward matter to check that

(i) ⇐⇒ (B [
U ◦ α + α∗ ◦ B [

U )(u)(ũ) = 0 ⇐⇒ B [
U ◦ α + α∗ ◦ B [

U = 0.

(ii) ⇐⇒ (B [
W ◦ δ + δ∗ ◦ B [

W )(w)(w̃) = 0 ⇐⇒ B [
W ◦ δ + δ∗ ◦ B [

W = 0.

(iii) ⇐⇒ (B [
W ◦ γ + β∗ ◦ B [

U )(u)(w) = 0 ⇐⇒ B [
W ◦ γ + β∗ ◦ B [

U = 0.

(iv) ⇐⇒ (B [
U ◦ β + γ∗ ◦ B [

W )(w)(u) = 0 ⇐⇒ B [
U ◦ β + γ∗ ◦ B [

W = 0.

Furthermore, (iii) and (iv) must define the same equation for β and γ. From
(iii), we have β∗ = −B [

W ◦ γ ◦ (B [
U )−1, whereas from (iv), we obtain, β∗ =

−(B [
W )∗ ◦ γ ◦ ( (B [

U )∗)−1. In order to compare them we must determine the
relationship between (B [

U )∗ and B [
U , and similarly between (B [

W )∗ and B [
W . We

shall work in detail the case when BU is sesquilinear. The bilinear case is
similar and slightly simpler. Now, B [

U : U → U∗ is C-antilinear, and so is
(B [

W )∗ : (U∗)∗ → U∗. Using the natural identification iU : U → (U∗)∗, it easily
follows from the definitions that

(B [
U )∗(iU (ũ)) = iU (ũ) ◦ B [

U = BU ( · , ũ) = εBU
BU (ũ, · ).

That is

(B [
U )∗ ◦ iU = εBU

B [
U , and similarly (B [

W )∗ ◦ iW = εBW
B [
W .

The only difference with the bilinear case is that the maps involved are all
linear and no complex conjugations appear; not in the definition of (B [

U )∗, nor
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in reversing the arguments in BU . Since (B [
U )∗ is C-antilinear, it is easy to see

that
εBU

iU ◦ (B [
U )−1 = ((B [

U )∗)−1

and since B [
W is C-antilinear too, we obtain (ommitting the identifications iU

and iW ),
β∗ = −(B [

W )∗ ◦ γ ◦ ((B [
U )∗)−1

= −εBW
B [
W ◦ γ ◦

(
εBU

(B [
U )−1

)
= −εBW

εBU
B [
W ◦ γ ◦ (B [

U )−1 = εBW
εBU

β∗.

Therefore, εBW
εBU

= 1, hence εBU
= εBW

, or else β = γ = 0 as claimed. The
proof of the second statement is completely analogous.

Assume we have defined the geometry B = BU ⊕ BW on U ⊕ W . The
following result states that the conditions εBU

= εBW
for the Lie algebra gB(U⊕

W ), and εBU
= −εBW

for the Lie superalgebra gB(U|W ) are also necessary for
consistency in the computation of the Lie brackets in each case.

Proposition (3.1.1). (a) Let βi ∈ Hom(W,U), γi ∈ Hom(U,W ), i = 1, 2,
with B [

U ◦ βi + γ∗i ◦ B [
W = 0. Then[(

0 β1

γ1 0

)
,

(
0 β2

γ2 0

)]
∈ gB(U ⊕W ) ⇐⇒ εBU

= εBW
.

(b) On the other hand, if B [
U ◦ β − γ∗ ◦ B [

W = 0. Then[[(
0 β1

γ1 0

)
,

(
0 β2

γ2 0

)]]
∈ gB(U|W ) ⇐⇒ εBU

= −εBW
.

Proof. We shall only prove statement (a) in the sesquilinear case. The bi-
linear case can be proved similarly, except that complex conjugations do not
arise. Statement (b) is completely analogous. Note first that Proposition (2.1.4)
states that[(

0 β1

γ1 0

)
,

(
0 β2

γ2 0

)]
∈ gB(U⊕W ) ⇐⇒

{
β1 ◦ γ2 − β2 ◦ γ1 ∈ gBU

(U).
γ1 ◦ β2 − γ2 ◦ β1 ∈ gBW

(W ).

Now

β1 ◦ γ2 − β2 ◦ γ1 ∈ gBU
(U)

⇔ B [
U ◦ (β1 ◦ γ2 − β2 ◦ γ1) + (β1 ◦ γ2 − β2 ◦ γ1)∗ ◦ B [

U = 0

⇔ −γ∗1 ◦ B [
W ◦ γ2 + γ∗2 ◦ B [

W ◦ γ1 + (β1 ◦ γ2 − β2 ◦ γ1)∗ ◦ B [
U = 0

⇔ −εBW
(γ∗1 ◦ (B [

W )∗ ◦ γ2 + γ∗2 ◦ (B [
W )∗ ◦ γ1) + (β1 ◦ γ2 − β2 ◦ γ1)∗ ◦ B [

U = 0

⇔ εBW
(γ∗1 ◦ β∗2 ◦ (B [

U )∗ − γ∗2 ◦ β∗1 ◦ (B [
U )∗) + (β1 ◦ γ2 − β2 ◦ γ1)∗ ◦ B [

U = 0

⇔ εBW
εBU

(β2 ◦ γ1 − β1 ◦ γ2)∗ ◦ B [
U + (β1 ◦ γ2 − β2 ◦ γ1)∗ ◦ B [

U = 0

⇔ (−εBW
εBU

+ 1)(β1 ◦ γ2 − β2 ◦ γ1)∗ ◦ B [
U = 0

⇔ εBW
εBU

= 1

⇔ εBU
= εBW

.
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We shall now assume that U ' W and define a geometry B on U ⊕W as in
2.2 above. We thus proceed to prove Proposition (2.2.1).

(3.2) Proof of Proposition (2.2.1). Just as in the proof of Proposition (2.1.4)
in 3.1 above, a direct computation leads to the set of equations shown in the
statements (a) and (b) of Proposition (2.2.1). Now the equations Φ[ ◦ δ + α∗ ◦
Φ[ = 0 and Ω[ ◦ α + δ∗ ◦ Ω[ = 0 immediately imply that there is a non-zero
complex constant λ such that (Ω[)∗ = λΦ[, as ( (Ω[)∗)−1 ◦ Φ[ must commute
with any δ : W → W . Note that the equations Ω[ ◦ β ± β∗ ◦ Φ[ = 0 and
Φ[ ◦ γ+γ∗ ◦ Ω[ = 0 now imply that either β = γ = 0 or |λ|2 = 1. In particular,
the equations that β and γ satisfy can now be written in terms of Φ and λ as

λ̄(Φ[)∗ ◦ β ± β∗ ◦ Φ[ = 0 and Φ[ ◦ γ + λ̄ γ∗ ◦ (Φ[)∗ = 0,

where in the first equation the plus sign corresponds to (a) while the minus
sign corresponds to (b).

The analogue of Proposition (3.1.1) for the geometries described in (2.2), is
given by the following

Proposition (3.2.1). (a) Let βi ∈ Hom(W,U), γi ∈ Hom(U,W ), i = 1, 2,
with Φ [ ◦ γi + γ∗i ◦Ω [ = 0 and Ω [ ◦ βi + β∗i ◦Φ [ = 0. Then,[(

0 β1

γ1 0

)
,

(
0 β2

γ2 0

)]
∈ gB(U ⊕W ).

(b) On the other hand, if Φ [ ◦ γi + γ∗i ◦ Ω [ = 0 and Ω [ ◦ βi − β∗i ◦ Φ [ = 0.
Then [[(

0 β1

γ1 0

)
,

(
0 β2

γ2 0

)]]
∈ gB(U|W ).

Proof. This is also a straightforward computation using the results of Propo-
sition (2.2.1):

Ω[ ◦ (β1 ◦ γ2 ∓ β2 ◦ γ1) = ∓β∗1 ◦Φ[ ◦ γ2 + β∗2 ◦Φ [ ◦ γ1

= ±β ∗1 ◦ γ ∗2 ◦Ω [ − β ∗2 ◦ γ ∗1 ◦Ω [

= (±β∗1 ◦ γ∗2 − β∗2 ◦ γ∗1) ◦Ω[

= −(γ1 ◦ β2 ∓ γ2 ◦ β1)∗ ◦Ω[.
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SINGULAR POINTS AND AUTOMORPHISMS OF UNSTABLE
FOLIATIONS OF CP

CLAUDIA R. ALCÁNTARA

Abstract. Let Fd be the space of holomorphic foliations of CP of degree d.
We study the linear action PGL(3,C)×Fd → Fd given by gX = DgX ◦ (g−1)
in the sense of Mumford in [3]. In this paper we prove that an unstable
foliation X of degree d ≥ 2 satisfies one of the following conditions: it is
a Riccati foliation, or its automorphism group Aut(X) is finite abelian or it
is isomorphic to a transitive finite subgroup of GL(2,C). We also prove the
existence of degenerate singularities for unstable foliations; and we give a
characterization of foliations on CP with an infinite automorphism group.

1. Introduction

According to the Geometric Invariant Theory (GIT), it is possible to study
the action of a reductive group G on a projective variety V by stratifying the
points of the variety in two categories: semistable points and unstable points.
By restricting the action of G to the semistable points we obtain what is called
a good quotient.

In most of the cases the variety V consists of certain geometric objects such
as algebraic curves, hypersurfaces, or pencils of curves. The usual action of G
onV is such that objects are in the same orbit if and only if they are isomorphic.

The unstable points inV are in some sense degenerate objects. For example:
If we consider the natural action of PGL(3,C) on CP9, where CP9 is the space
of plane curves of degree 3, then a cubic plane curve is unstable if and only if
it has a triple point, or a cusp, or two components tangent at a point (see [12]).

Another example is the action of PGL(2,C) in the space of binary forms of
degree d. In this case a binary form of degree d is semistable if and only if it
has no root of multiplicity greater that d

2 (see [12]).
The last example we will mention is the classification of pencils of cu-

bic curves in CP, up to projective automorphism, i.e., the natural action of
PGL(3,C) in the space of pencils of cubic curves. For this case the unstable
pencils of cubic are those whose associated elliptic fibration has singularities
of types I∗, II∗, III∗ in the Kodaira classification (see [11]).

The set which consists of unstable points on V is closed in the Zariski topol-
ogy. By very well known techniques developed by D. Hilbert and D. Mumford
(see [6] and [3]) it is possible to characterize these kind of points. These tech-
niques make use of the 1-parameter subgroups of G, recall that a 1-parameter
subgroup of G is a homomorphism, λ : C∗ → G.

2000 Mathematics Subject Classification: Primary 37F75, 14L24.
Keywords and phrases: holomorphic foliation, unstable foliation, Riccati foliation, singular

point, automorphism group.
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For a fixed unstable point there exists a set of 1-parameter subgroups, such
that these 1-parameter subgroups are, in some sense, special to show the in-
stability of the point (see Theorem (2.8)).

From this set of 1-parameter subgroups, we can get a unique parabolic
subgroup of G, which gives us information of the stabilizer of the unstable
point (see Corollary (2.10)).

In this work the variety V is the space of holomorphic foliations of CP of
degree d, the group is the automorphism group of CP and the action is given
by the change of coordinates.

We obtain properties of unstable foliations related to the multiplicity and
Milnor number of the singular points, the transversality of the foliation respect
to a rational fibration (in this case we will say that the foliation is Riccati), and
in the existence of algebraic solutions.

We also describe the automorphism group for unstable foliations through
the unique parabolic group associated to a special 1-parameter subgroup for
the foliation. Finally we give a characterization of foliations on CP with an
infinite automorphism group.

Let T CP(d − 1) = T CP ⊗ OCP(d − 1), the space of holomorphic foliations
of CP of degree d is Fd := PH0(CP, T CP(d − 1)). The group PGL(3,C) of
automorphisms of CP acts linearly on Fd:

PGL(3,C)×Fd → Fd
(g,X) 7→ gX = DgX ◦ (g−1).

We study this action in the sense of the Geometric Invariant Theory (GIT)
and we obtain the following:

Theorem (1.1). Let X be an unstable foliation of degree d ≥ 2 with isolated
singularities. Then one of the following holds:

1. X is a Riccati foliation;

2. the automorphism group Aut(X) of X is finite abelian, X has a singular
point p of multiplicity greater than d−1

3 , and a line solution which contains p,
both invariant by Aut(X);

3. the automorphism group Aut(X) of X is finite abelian, X has a singular
point of multiplicity greater than d

2 , which is invariant by Aut(X);
4. the automorphism group Aut(X) of X, is isomorphic to a transitive finite

subgroup of GL(2,C) and X has a singular point of multiplicity greater than
2d+1

3 , which is invariant by Aut(X).

Theorem (1.2). Let X be a foliation of degree d ≥ 2 with isolated singular-
ities. Then X has an infinite automorphism group Aut(X) if and only if:

1. there exists a 1-PS, λ, such that X is λ-invariant. If this is the case, X is
transversal with respect to the rational fibration associated to λ. Or,

2. X is in the orbit of the foliation

Y = P (y, z)
@

@x
+ R(y, z)

@

@z
=

 P (y, z)
0

R(y, z)

.
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The foliation Y is λ(2,−1)-unstable, has a singular point with Milnor number
greater or equal to d2 + d and Y is transversal with respect to the rational
fibration associated to λ(2,−1).

2. Geometric Invariant Theory

The following is a summary of the Geometric Invariant Theory, which will
be required for the sequel. All the definitions and results can be found in [12]
and [8].

LetV be a projective variety in CPn, and consider a reductive groupG acting
linearly on V .

Definition (2.1). Let x ∈ V ⊂ CPn, and consider x ∈ Cn+1 such that x ∈ x.
Denote by O(x) the orbit of x in the affine cone of V . Then

(i) x is unstable if 0 ∈ O(x).
(ii) x is semi-stable if 0 /∈ O(x). The set of semi-stable points will be denoted

by V ss.
(iii) x is stable if it is semistable, the orbit of x, O(x), is closed in V ss and

dimO(x) = dimG. The set of stable points will be denoted by V s.

The main result in GIT is the following:

Theorem (2.2) (see page 74 in [12]). (i) There exists a good quotient (Y,φ)
of V ss by G, where Y is projective.

(ii) There exists an open set Y s ⊂ Y such that φ−1(Y s) = V s and (Y s, φ) is a
good quotient and an orbit space of V s by G.

(iii) If x1, x2 ∈ V ss then φ(x1) = φ(x2) if and only if O(x1) ∩O(x2) ∩ V ss 6= ∅.

Now we describe the Hilbert-Mumford criterion for finding the unstable
points for a linear action.

Let λ : C∗ → G be a 1-parameter subgroup (1-PS). Then

C∗ → GL(n + 1,C)

t 7→ λ(t) : Cn+1 → Cn+1

v 7→ λ(t)v,

is a diagonal representation of C∗. There exists a basis {v0, . . . , vn} of Cn+1

such that λ(t)vi = trivi, where ri ∈ Z. This integer ri is called the weight of vi
with respect to the action of λ(t) on Cn+1.

Definition (2.3). Let x ∈ V and let λ be a 1-PS. If x ∈ x and x =
∑n

i=0 aivi,
then λ(t)x =

∑n
i=0 t

riaivi. We define the following function:

(2.4) µ(x, λ) := min{ri : ai 6= 0}.

The numerical criterion can now be stated.

Theorem (2.5) (see Theorem 4.9 of [12]). (i) x is stable if and only ifµ(x, λ) <
0 for every 1-PS, λ, of G.

(ii) x is unstable if and only if there exists a 1-PS, λ, ofG such thatµ(x, λ) > 0.

Definition (2.6). If µ(x, λ) > 0 we will say that x is λ-unstable.
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The following is done in order to state a Theorem due to G. Kempf, which
will play an important role in the proof of the results of this paper.

Definition (2.7). Let λ : C∗ → G be a 1-parameter subgroup. The parabolic
subgroup P (λ) of G associated to λ is the subgroup of points g ∈ G such that
limt→0 λ(t)gλ−1(t) exists in G.

Let Γ(G) be the set of the one-parameter subgroups of G. Let’s define a
notion of length ‖ ‖ on Γ(G) as a non-negative real-valued function such that:

1. for all λ ∈ Γ(G) and g ∈ G, ‖gλg−1‖ = ‖λ‖ and
2. ifT is a maximal torus ofG, there exists a positive definite integral-valued

bilinear form ( , ) on Γ(T ) such that (λ, λ) = ‖λ‖2 for all λ ∈ Γ(T ).

Now we are ready to enunciate the Theorem by G. Kempf.

Theorem (2.8) (see Theorem 3.4 of [8]). Let G be a reductive group acting
linearly on a projective variety V , fix x ∈ V and a length ‖ ‖ on Γ(G), then the
function

fx : Γ(G)→ R
defined by

(2.9) fx(λ) =
µ(x, λ)
‖λ‖

has a maximum value Bx on the set |V, x| = {λ ∈ Γ(G) : ∃ limt→0 λ(t)x}, if this
set does not consist only of the trivial subgroup.
Bx exists and is positive if and only if 0 ∈ O(x̄). If this condition is verified,

the set Λx of 1-PS, λ, such that fx(λ) = Bx, satisfies:
1. Λx is not empty.
2. There exists a parabolic subgroup Px such that P (λ) = Px for all λ ∈ Λx.
3. Any maximal torus of Px contains a unique member of Λx.
4. Λx is a principal homogeneous space under the unipotent radical of Px.

Corollary (2.10) (see corollary 3.5 of [8]). In the above situation, suppose
that x is unstable. Then

1. for all g ∈ G, gPxg−1 = Pgx,
2. Px contains the stabilizer in G of x.

The following is a useful tool for the method of 1-PS when G = SL(n,C). We
formulate the result for the case n = 3.

Lemma (2.11) (see [12]). Every 1-parameter subgroup of SL(3,C) can be writ-
ten as

gλ(t)g−1 = g

 tn0 0 0
0 tn1 0
0 0 tn2

g−1 ,

for some g ∈ SL(3,C), where n0 ≥ n1 ≥ n2 and n0 +n1 +n2 = 0. We will denote
the above diagonal 1-PS, λ, by λ(n0,n1) and we will assume that the integers are
relative primes.

Remark (2.12). If n0 ≥ n1 ≥ n2 and n0 + n1 + n2 = 0, then 1
2 ≤ −

n2
n0
≤ 2.
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In this paper we use the group SL(3,C) instead of PGL(3,C) because they

are isogenous, and we will use the length ‖gλ(n0,n1)g
−1‖ =

√
n2

0 + n2
1 + n2

2 given
by the Killing form.

For purposes of this paper we will also need the following concepts and
results related to algebraic groups.

Theorem (2.13) (see [1]). Let G be an affine algebraic group acting on an
algebraic variety and let x ∈ V . Then the stabilizer inG of x is a closed subgroup
of G.

Definition (2.14). Let x ∈ V , then the automorphism group of x is the sta-
bilizer in G of x and we will denote it by Aut(x).

Definition (2.15). Any finite subgroup G of GL(n,C) is called a linear group
in n variables. If the n variables of the group can be separated into two or more
sets, such that the variables of any set are transformed by all the transforma-
tion of G into linear functions of the variables of that set only, we say that G
is intransitive. If such a division is not possible, the group is transitive.

3. Foliations of CP

This section provides the definitions and results that we need to know about
the holomorphic foliations of CP for the development of the paper.

Definition (3.1). A holomorphic foliation X of CP of degree d is a non-trivial
morphism of vector bundles:

X : O(1− d)→ T CP ,

modulo the multiplication by a nonzero scalar. Then the space of foliations of
degree d is Fd := PH0(CP, T CP(d − 1)), where d ≥ 0.

Proposition (3.2) (see [5]). Every foliation X ∈ Fd can be written as

X = P (x, y, z)
@

@x
+ Q(x, y, z)

@

@y
+ R(x, y, z)

@

@z
=

 P (x, y, z)
Q(x, y, z)
R(x, y, z)


where P,Q,R ∈ C[x, y, z] are homogeneous of degree d, modulo multiplication
by a nonzero scalar and if we consider the radial foliation

E = x
@

@x
+ y

@

@y
+ z

@

@z
,

then X and X + F (x, y, z)E represent the same foliation for all F ∈ C[x, y, z]
homogeneous of degree d − 1.

Definition (3.3). A point p = (a : b : c) ∈ CP is singular for the above
foliation X if (P (a, b, c) : Q(a, b, c) : R(a, b, c)) = (ka : kb : kc) for some k ∈ C.
The set of singular points of X will be denoted by Sing(X).

Definition (3.4). Let X ∈ Fd and let p be an isolated singularity of X. Let(
Q(y, z) = Qm(y, z) + Qm+1(y, z) + · · ·
R(y, z) = Rn(y, z) + Rn+1(y, z) + · · ·

)
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be a local generator of X in p = (1 : 0 : 0), where Qi, Ri are forms of degree
i, and Qm, Rn are not identically zero. We define the Milnor number of p by
µp(X) := dimC

Op

<Q,R> and the multiplicity of p by mp(X) := min{m,n}.

Remark (3.5). µp(X) ≥ mn ≥ mP (X)2.

Proposition (3.6) (see [2]). Let X be a foliation of degree d with isolated
singularities then

d2 + d + 1 =
∑
p∈CP

µp(X).

Definition (3.7). An irreducible plane curve defined by a polynomialF (x, y, z)
is an algebraic solution for X or invariant by X if and only if there exists a
polynomial H(x, y, z) such that:

P (x, y, z)
@F (x, y, z)

@x
+ Q(x, y, z)

@F (x, y, z)
@y

+ R(x, y, z)
@F (x, y, z)

@z
=

F (x, y, z)H(x, y, z).

Definition (3.8). A foliation X is a Riccati foliation if there exists a rational
fibration on a surface S, obtained from CP after a finite number of blow-ups,
whose generic fiber is transverse to the lifted foliation of X in S.

The following result is about foliations without algebraic solutions, a Theo-
rem by Jouanolou and completed by Lins Neto and Marcio Soares (see [7] and
[10]).

Theorem (3.9). For d ≥ 2, the subset {X ∈ Fd : X has no algebraic
solutions} is not empty and dense in Fd and it contains an open and dense
subset.

The next Theorem give us an open set of stable foliations. This set consists
of foliations with d2 + d + 1 different singular points, i.e., every singularity
has Milnor number equal to one.

Theorem (3.10) (see [4]). If a foliationX of degree d has d2 +d+1 different
singular points, then X is stable and every line L ⊂ CP has at most d + 1
singular points.

Remark (3.11). If a foliation X of degree d has d2 +d+ 1 different singular
points then X has a line solution L if and only if L has d + 1 singular points.

Proof. If the line L = ax + by + cx has d + 1 singular points of

X = P (x, y, z)
@

@x
+ Q(x, y, z)

@

@y
+ R(x, y, z)

@

@z
,

then the polynomial of degree d, aP (x, y, z)+bQ(x, y, z)+cR(x, y, z) andL have
d + 1 common zeros. Hence by Bézout L is a factor of this polynomial.

Suppose that z is a solution for X, then we can write X = P (x, y, z) @
@x +

Q(x, y, z) @
@y , so SingX ∩ {(x : y : z) ∈ CP : z 6= 0}=V (P (x, y, 1), Q(x, y, 1)) has

at most d2 different points. Hence SingX ∩V (z)=V (yP (x, y, z)− xQ(x, y, z), z)
has d + 1 points.
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4. Proof of Theorem (1.2)

Suppose that X has an infinite automorphism group Aut(X). Since Aut(X)
is algebraic and infinite, it contains an algebraic group H of dimension one,
then H is either unipotent or a torus.

If H is a torus then it defines a 1-PS, λ : C∗ → Aut(X) such that X is λ-
invariant, i.e., λ(t)X = X for all t ∈ C∗.

Using the Lie derivative, it is easy to prove thatX is transversal with respect
to the rational fibration associated with the flow given by λ.

In case λ = λ(n0,n1) for some n0, n1 ∈ Z we have that the associated foliation
is Xλ = n0x

@
@x + n1y

@
@y + n2z

@
@z , which has degree 1. This foliation admits a

holomorphic first integral f : CP → CP1. The irreducible components of the
fibers of f are rational curves which are the leaves of Xλ.

Using a Theorem by Seidenberg (see [9]) we can reduce the singularities of
Xλ and we obtain a rational fibration f̃ : S → CP1 (where S is CP with a finite
number of blow-ups) such that the fibers are the separated leaves of Xλ. If X̃
is the lifting of X on S, then the generic fiber of f̃ is transverse to the leaves
of X̃.

Obviously, if the weight of X with repect to the action of λ is not zero, then
X is unstable.

IfH is unipotent, then it is isomorphic to (C,+), and there exists a morphism
φ : C→ Aut(X), this morphism must be of the form φ(t) = exp(At). Since φ is
an algebraic morphism, then A must be a nilpotent matrix with trace zero, so
A is similar to  0 1 0

0 0 0
0 0 0

, or to

 0 1 0
0 0 1
0 0 0

.
The possible morphisms are

φ1(t) = g

 1 t 0
0 1 0
0 0 1

g−1, or φ2(t) = g

 1 t t2

2
0 1 t
0 0 1

g−1,

where g ∈ Aut(X).
Since C is a unipotent group then its group of characters is trivial, therefore

φ(t)X = X in the affine cone of Fd for all t ∈ C.
We can easily see that the foliation invariant by φ2(t) for all t ∈ C does not

have isolated singularities and the unique foliation invariant by φ1(t) for all
t ∈ C is Y = P (y, z) @

@x + R(y, z) @
@z , where P,R are homogeneous of degree d in

C[y, z].
In the chart U0 = {(1 : y : z) ∈ CP} we have that the local vector field which

generates this foliation is (
−yP (y, z)

R(y, z)− zP (y, z)

)
,

so µ(1:0:0)(Y ) ≥ d2 + d.
The associated foliation to λ(2,−1) isXλ(2,−1) = 2x @

@x−y
@
@y−z

@
@z and k1y−k2z =

0 is a solution for Xλ(2,−1) for all ki ∈ C. After blowing-up the point (0, 0) ∈ U0
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we obtain:

Ỹ =
(

w2
1P (1, w2)
−Q(1, w2)

)
,

where w1 = 0 is the exceptional divisor and the solutions of X̃λ(2,−1) are w2 = k
for all k ∈ C, therefore Y is transversal with respect to the flow given by λ(2,−1).

The converse of the theorem is obvious.

5. Proof of Theorem (1.1)

The Theorem will be a consequence of the following lemmas and proposi-
tions.

To state the first Lemma, we need to define the following types of subgroups
of SL(3,C):

(I) An infinite linear algebraic group.

(A) A diagonal finite group: the elements of this group are of the following
form a 0 0

0 b 0
0 0 c

,
where abc = 1.

(B) Consider the following matrices:

ψk =

1 0 0
0 ρk 0
0 0 ρ−1

k

, τ =

1 0 0
0 0 i
0 i 0

, φk =

ρ−2
k 0 0
0 ρk 0
0 0 ρk

,
σ =

1 0 0
0 0 −1
0 1 0

,
where ρk is a k−root of the unity, and

ω =

1 0 0
0 ρ3

5 0
0 0 ρ2

5

, o =
1√
5

√5 0 0
0 ρ4

5 − ρ5 ρ2
5 − ρ3

5
0 ρ2

5 − ρ3
5 ρ5 − ρ4

5

,
η =

1
2

2 0 0
0 1 + i −1 + i
0 1 + i 1− i

.
(B1a) The group generated by ψ2q, τ, φ2m, where m = n− q ≡ 1 mod 2.

(B1b) The group generated by ψ2q, τ ◦ φ24m, where m ≡ 0 mod 2.

(B2a) The the group generated by ψ4, τ, η, φ2m, where m ≡ 1, 5 mod 6.

(B2b) The the group generated by ψ4, τ, η ◦ φ6m, where m ≡ 3 mod 6.

(B3) The group generated by ψ8, τ, η, φ2m, where (6,m) = 1.

(B4) The group generated by σ, ω, o, φ2m, where (m, 30) = 1.



AUTOMORPHISMS OF UNSTABLE FOLIATIONS OF CP 47

Lemma (5.1). Let V be a projective variety with a linear action:

SL(3,C)× V → V.

Then the automorphism group for an unstable point for this action is, up to
linear equivalence, one of the above types (I), (A) or (B).

Proof. Using the classification of finite subgroups ofSL(3,C) made in [15] we
have a list of 12 groups: (A)−(L). This classification is up to linear equivalence.

Let x ∈ V , since Aut(x) is a closed subgroup of SL(3,C), then this group is
one of the above list or an infinite linear algebraic group.

On the other hand, for the one parameter subgroup λ(n0,n1), where n0 ≥
n1 ≥ n2 and n0 + n1 + n2 = 0, we have that the associated parabolic subgroup
P (λn0,n1 ) is the group of upper triangular matrices if n0 > n1 > n2 and

P (λ(2,−1)) =


 a11 a12 a13

0 a22 a23

0 a32 a33

 ∈ SL(3,C)

 ,

P (λ(1,1)) =


 a11 a12 a13

a21 a22 a23

0 0 a33

 ∈ SL(3,C)

 .

If x is unstable and fx (see Theorem (2.8)) has a maximum positive value
in λ(n0,n1), then by the second part of Corollary (2.10) we obtain that Aut(x) ⊂
P (λn0,n1 ). Therefore, up to linear equivalence, the automorphism group Aut(x)
could be an infinite linear group or a finite group of the type (A) or (B). The
case (B) can occur only if fx has a maximum value in λ(2,−1).

Proposition (5.2). Let X be a foliation of degree d such that µ(X, λ(n0,n1)) >
0, where n0 ≥ n1 ≥ n2. Then the multiplicity of the singular point p = (1 : 0 : 0)
of X is greater than d−1

3 .

Proof. The foliation:

X = P (x, y, z)
@

@x
+ Q(x, y, z)

@

@y
+ R(x, y, z)

@

@z
=

 P (x, y, z)
Q(x, y, z)
R(x, y, z)


is represented in affine coordinates (y, z) ∈ U0 by a vector field of the form:

X0 =
(

Q0(y, z) + Q1(y, z) + Q2(y, z) + · · ·+ Qd(y, z)− yPd(y, z)
R0(y, z) + R1(y, z) + R2(y, z) + · · ·+ Rd(y, z)− zPd(y, z)

)
,

where Qj , Rj and Pd are homogeneous polynomials of degree j and d respec-
tively, in C[y, z].

Suppose that Qj(y, z) =
∑

i aijy
j−izi is not identically zero. The weight of

the monomial field with coefficient aij respect to λ(n0,n1) is n1−n0(d−j)−n1(j−
i)−n2i = n0(2j− i− 1) +n2(j− 2i− 1)−n0d and this weight is positive if and
only if n2

n0
(j − 2i− 1) + (2j − i− 1) > d.

If there exist i, j such that aij 6= 0 and j − 2i− 1 ≥ 0, then

d < 2j−i−1+
n2

n0
(j−2i−1) ≤ 2j−i−1−j − 2i− 1

2
=

3
2
j−1

2
i.e.,

2d + 1
3

< j.
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If for all i, j such that j − 2i − 1 ≥ 0, we have aij = 0, then for all i, j with
aij 6= 0 we have j − 2i− 1 < 0, therefore

d < 2j−i−1− n2

n0
(2i−j+1) ≤ 2j−i−1+2(2i−j+1) = 3i+1 i.e.,

d − 1
3

< i.

Similarly forRj(y, z) =
∑

i bijy
j−izi: If there exist i, j such that bij 6= 0, then

j + 1− 2i ≥ 0, therefore

d < 2j − i +
n2

n0
(j + 1− 2i) ≤ 2j − i− j + 1− 2i

2
=

3
2
j − 1

2
, i.e.,

2d + 1
3

< j,

in the other case we have:

d < 2j − i− n2

n0
(2i− j − 1) ≤ 2j − i + 2(2i− j − 1) = 3i− 2 i.e.,

d + 2
3

< i.

We have always j > d−1
3 . Then the multiplicity of the singular point p =

(1 : 0 : 0) is greater than d−1
3 .

Proposition (5.3). A foliation X of degree d has a point p of multiplicity
greater than 2d+1

3 if and only ifX is gλ(2,−1)g
−1−unstable for some g ∈ SL(3,C).

Proof. We will follow the notation of the above proposition, then the weight
of the monomial vector field with coefficient aij , bij with respect to λ(2,−1) is
positive if and only if j > 2d+1

3 .

Lemma (5.4). Let X be a foliation of degree d such that µ(X, λ(n0,n1)) with
n1 ≥ 0. Then z defines an algebraic solution for X.

Proof. The weight of the monomial field xd−jyj @
@z is n2 − n0(d − j) − n1j.

Since n1 ≥ 0 and n0 > 0, n2 < 0; this weight is negative or zero. Therefore z
divides R(x, y, z), then it is an algebraic solution for X.

Lemma (5.5). LetX be a foliation of degree d. Suppose that µ(X, λ(n0,n1)) > 0
for some λ(n0,n1), with n1 ≤ 0. Then the multiplicity of the singular point p =
(1 : 0 : 0) of X is greater than d

2 .

Proof. The proof is similar to that of Proposition (5.2). We must note than
n1 ≤ 0 if and only if −n2

n0
≤ 1:

If there exists i, j, such that aij 6= 0 and j − 2i− 1 < 0 therefore

d < 2j− i−1− n2

n0
(2i− j+ 1) ≤ 2j− i−1 + 2i− j+ 1 = j+ i ≤ 2j i.e.,

d

2
< j.

Similarly, for bij we have:

d < 2j−i− n2

n0
(2i−j−1) ≤ 2j−i+2i−j−1 = j+i−1 ≤ 2j−1 i.e.,

d + 1
2

< j.

Now we are ready to prove Theorem (1.1).



AUTOMORPHISMS OF UNSTABLE FOLIATIONS OF CP 49

Proof. Suppose thatX is an unstable foliation. Then, for someλ∈Γ(SL(3,C)),
fX(λ) (see Theorem (2.8)) has a maximum positive value.

We will need the following trivial facts:
Let g ∈ SL(3,C). Then p is a singular point of X with multiplicity m if and

only if g(p) is a singular point of gX with multiplicity m.
F (x, y, z) is an algebraic solutions for X if and only if F ◦ g is an algebraic

solution for X for all g ∈ Aut(X).
Therefore, for our purposes, we can assume that λ = λ(n0,n1) for some integers

n0 ≥ n1. We have the following cases:
1. Aut(X) is infinite, in this case we apply Theorem (1.2).
Now suppose that Aut(X) is finite:
2. If n1 ≥ 0 we use Proposition (5.2) and Lemmas (5.1), (5.4). Since the

singular point is (1 : 0 : 0), the line solution is z and Aut(X) is of type (A), we
obtain that the point is in the line and both are invariant by Aut(X).

3. If n1 < −1 we use again Proposition (5.2) and Lemmas (5.1), (5.5).
4. For n1 = n2 = −1 we have Proposition (5.3). In this case Aut(X) is of

type (B).

With Proposition (5.2) we also obtain the following.

Corollary (5.6). Let X be an unstable foliation of degree d with isolated
singularities. Then there exists p ∈ CP such that µp(X) ≥ ([d+2

3 ]+1)([d−1
3 ]+1).

Proof. This is a consequence of Remark (3.5). In the proof of Proposition
(5.2) we have that m ≥ [d−1

3 ] + 1 and n ≥ [d+2
3 ] + 1.

The next Corollary is a generalization of Theorem (3.10).

Corollary (5.7). Let X ∈ Fd, where d ≥ 2. The foliation X is stable if for
all p ∈ CP we have:

µp(X) <
(d + 2)(d − 1)

9
when d ≡ 1 modulo 3, and

µp(X) < ([
d + 2

3
] + 1)([

d − 1
3

] + 1) when d ≡ 0, 2 modulo 3.

Proof. If X is not a stable foliation, there exists λ ∈ Γ(SL(3,C)) such that
µ(X, λ) ≥ 0, so we can suppose that λ = λ(n0,n1) for some n0 ≥ n1.

Using again proposition (5.2) we have that m ≥ d−1
3 and n ≥ d+2

3 if d ≡ 1
(mod 3), and m ≥ [d−1

3 ] + 1 and n ≥ [d+2
3 ] + 1 if d ≡ 0, 2 (mod 3).

Here [r] denotes the interger part of r.

6. Final Remarks

1. The converse of the corollary (5.6) is not necessarily true: The foliation
X = −z2 @

@x + (y2 + xz) @
@y + (y2 + xz) @

@z is semistable and it has a singularity
with Milnor number 5 in (1 : 0 : 0).

2. We are interested in studying the relation between the set of unstable
foliations and the set of foliations with algebraic solutions because every known
example of foliation without algebraic solution is stable with a finite but rich
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automorphism group (see [7] and [16]). In this context Pereira and Sánchez
proved the following:

Theorem (6.1) (see [13]). Let X be a foliation of CP. If Aut(X) is finite
and acts without nontrivial fixed points on the space of cofactors, then either X
admits liouvillian first integral or X does not admit an algebraic solution.

In this paper we obtain that the automorphism group of an unstable foliation
is, in some sense, small.

3. In [14] the authors proved the following

Theorem (6.2) (see [14]). Let X be a codimension q holomorphic foliation
on a projective variety M . Suppose that Aut(X) contains an infinite linear
algebraic group. Then X belongs to one of the following classes:

1. X has codimension one and it is birationally equivalent to a Riccati
foliation.

2. There exists a projective variety N and a rational map(possibly with
indeterminacy points) π : M → N whose fibers are rational curves and such
that X is the pull-back of a holomorphic foliation Y on N .

3. X has codimension at least 2 and is tangent to a holomorphic foliation Y
of codimension q − 1.

In this paper we obtain a characterization of foliations of CP with Aut(X)
infinite.
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THE HOMOTOPY GROUPS OF L2-LOCALIZATION OF THE
RAVENEL SPECTRA T (m)/v1 AT THE PRIME TWO

IPPEI ICHIGI, KATSUMI SHIMOMURA, AND RINKO TAKEDA

Abstract. The Ravenel spectra T (m) for non-negative integersm interpolate
between the sphere spectrum and the Brown-Peterson spectrum. It admits
an essential self-map α : Σ2p−2T (m) → T (m), whose cofiber we denote by
T (m)/v1. In this note we work in the two-local stable homotopy category
and study the homotopy groups of the Bousfield localization of T (m)/v1 with
respect to the v2-inverted Brown-Peterson spectrum.

1. Introduction

In the stable homotopy category of spectra localized at an odd prime number
p, the second author, A. Yabe and X. Wang ([11], [9]) determined the structure
of the homotopy groups of the sphere spectrum L2S0 localized with respect to
the v2-localized Brown-Peterson spectrum v−1

2 BP by use of the Adams-Novikov
spectral sequence

E∗2 (X) = Ext∗BP∗(BP )(BP∗, BP∗(X)) =⇒ π∗(X).

Here theE2-term is the Ext group in the category ofBP∗(BP )-comodules. At the
prime two, the second author and X. Wang ([10]) determined only the E2-term
of the Adams-Novikov spectral sequence converging to the homotopy groups
π∗(L2S0), and we are interested in the stable homotopy category of spectra
localized at the prime two. In his book [8], Ravenel constructed the spectrum
T (m) for each m ≥ 0 characterized by

(1.1) BP∗(T (m)) = BP∗[t1, . . . , tm] ⊂ BP∗(BP ) = BP∗[t1, t2, . . . ]

as a BP∗(BP )-comodule. These spectra admit maps T (m)→ T (m+1) inducing
the inclusion on BP∗-homology, and T (0) and T (∞) are the sphere and the
Brown-Peterson spectra, respectively. The homotopy groups of L2T (∞) are
determined by Ravenel as BP∗ ⊕ BP∗/(2∞, v∞1 , v∞2 ) in [7]. We have partial
results [2] and [4] on subgroups of the homotopy groups π∗(L2T (1)). We use
the 2- and the v1- Bockstein spectral sequences to determine it for m ≥ 1 in
two different orders:

1) the v1-Bockstein spectral sequence first and then the 2-Bockstein spectral
sequence,

2) the 2-Bockstein spectral sequence first and then the v1-Bockstein spectral
sequence.

As the first step in the order 1), the v1-Bockstein spectral sequence is com-
puted in [3], and we obtain the homotopy groups of L2T (m)∧M for the modulo

2000 Mathematics Subject Classification: Primary 55Q99; Secondary 55Q51, 55Q45.
Keywords and phrases: homotopy groups, Bousfield-Ravenel localization, Ravenel spectrum.
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two Moore spectrum M . In this paper we consider the first step of the order
2).

Let T (m)/v1 denote the cofiber of α : Σ2T (m) → T (m) for m > 0 such that
BP∗(α) = v1 − 2t1, whose existence is shown in section two. We then define a
spectrum C by the cofiber sequence

(1.2) T (m)/v1
η // 2−1T (m)/v1

// C // ΣT (m)/v1

for the localization map η : T (m)/v1 → 2−1T (m)/v1. We first determine the
Adams-Novikov E2-term of L2C in Proposition (3.8) by use of the 2-Bockstein
spectral sequence associated to the cofiber sequence

(1.3) D
ι // C

2 // C
κ // ΣD,

where D denotes the spectrum T (m)/v1 ∧M for the mod 2 Moore spectrum
M . The E2-term of the Adams-Novikov spectral sequence for π∗(L2D) is de-
termined by Ravenel (cf. [8]) as follows:

(1.4) E∗2 (L2D) = Km(2)∗ ⊗ ∧(g10, g11, g20, g21),

where

(1.5) Km(2)∗ = v−1
2 Z/2[v2, . . . , vm+2],

and gij denotes the element of bidegree (1, 2j+1(2m+i−1)), which is denoted by
hm+i,j in [8]. Next, we show that every element of the Adams-Novikov E2-term
E∗2 (L2C) is a permanent cycle in Lemma (3.12), and the extension problem of
the spectral sequence is trivial in Lemma (3.13). These show the homotopy
groups of L2C are isomorphic to the E2-term.

In order to state our result, we introduce following notations: the algebra

Em(2)∗ = v−1
2 Z(2)[v1, v2, . . . , vm+2]

such that Km(2)∗ = Em(2)∗/(2, v1), the elements

ui = vm+i ∈ BP∗ for i ≥ 1,

the algebras
R = Em−2(2)∗/(v1) = v−1

2 Z(2)[v2, . . . , vm],

Rn = R
[
u2n

1 , u
2n
2

]
and

R(n)
j = R

[
u2n
j

]
,

and the submodules of Em(2)∗/(2∞, v1) = R[u1, u2]⊗Q/Z(2):

M(i) =
2⊕

j=1

R(i+1)
j /(2i+1)

{
u2i
j /2i+1

}
,

M0(i) = Ri+1/(2i+1)
{
u2i

1 u
2i+1

2 /2i+1, u2i
2 u

2i+1

1 /2i+1, u2i
1 u

2i
2 /2i+1

}
and

M1(i) = Ri+1/(2i+1)
{
u2i

2 u
2i+1

1 g10/2i+1, u2i
1 u

2i+1

2 g20/2i+1,

u2i
1 u

2i
2 g10/2i+1 = u2i

1 u
2i
2 g20/2i+1

}
.
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Here gj0 is an element such that gj0/2 = u−1
j gj0/2, whose existence is shown

in Lemma (3.2).

Theorem (1.6). The homotopy groups π∗(L2C) for m > 1 are isomorphic,
as an R-module, to the tensor product of ∧(g11, g21) and the direct sum of the
modules R/(2∞), M(i), M0(i) and M1(i) for i ≥ 0.

Since the E2-term E∗2 (2−1T (m)/v1) is isomorphic to HQ∗(L2T (m)/v1) =
Q[v2, v3, . . . , vm] by [8], (6.5.7), the homotopy groups of L2T (m)/v1 are obtained
by observing the homotopy exact sequence associated to the cofiber sequence
(1.2).

Corollary (1.7). The homotopy groups π∗(L2T (m)/v1) for m > 1 are iso-
morphic to the direct sum of the modules Z(2)[v2, v3, . . . , vm], Σ−1R/(2∞)
{g11, g21, g11g21} and

⊕
i≥0 Σ−1(M(i) ⊕ M0(i) ⊕ M1(i)) ⊗ ∧(g11, g21). Here Σ

denotes a shift of dimension.

We note that the homotopy groups of L2T (1)/v1 are given in [6]. The struc-
ture of π∗(L2T (m)/v1) form > 1 in Corollary (1.7) is less complicated than that
of the case for m = 1. So it seems that it is useful to determine the homotopy
groups π∗(L2T (m)) for m > 1 completely. For m = 1, we know the structure of
subgroups of π∗(L2T (1)) (cf. [2], [4]).

2. A change of rings theorem and structure maps

We work in the stable homotopy category of spectra localized at the prime
two. Let BP denote the Brown-Peterson ring spectrum, and consider the Hopf
algebroid (A,Γ) associated with it, where

A = π∗(BP ) = BP∗ = Z(2)[v1, v2, . . . ],

Γ = BP∗(BP ) = BP∗[t1, t2, . . . ].

The Hopf algebroid Γ gives rise to another one

(A,Γm) = (A,Γ/(t1, . . . , tm)) = (A,BP∗[tm+1, tm+2, . . . ]).

Recall the Ravenel spectrum T (m) in (1.1) for m ≥ 0, which is a ring spectrum
with multiplication µ : T (m)∧T (m)→ T (m). Ravenel showed in [8] the change
of rings theorem

E∗2 (T (m) ∧X) = Ext∗Γm (A,BP∗(X))

for a spectrum X. If X is the sphere spectrum S0, then we have an element
v1 ∈ Ext0,2

Γm (A,A) for m > 0. This element is represented by v1 − 2t1 in the
cobar complex Ω0

ΓBP∗(T (m)) for computing E∗2 (T (m)). Since Es,1+s
2 (T (m)) = 0

by observing the reduced cobar complex, the element v1 survives to a homotopy
element α′ ∈ π2(T (m)). We now let T (m)/v1 denote the cofiber of the composite

α : Σ2T (m) = T (m) ∧ S2 1∧α′ // T (m) ∧ T (m)
µ // T (m).

Let M and M∞ be the modulo two Moore spectrum and the cofiber of the
localization map S0 → SQ, respectively. In this paper we consider the spectra

D = T (m)/v1 ∧M and C = T (m)/v1 ∧M∞.
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These fit in the cofiber sequence (1.3). The BP∗-homologies of the L2-localiza-
tions of these spectra are

BP∗(L2D) = v−1
2 BP∗/(2, v1)[t1, . . . , tm] and

BP∗(L2C) = v−1
2 BP∗/(2∞, v1)[t1, . . . , tm].

Consider a spectrum

Em(2) = v−1
2 BP 〈m + 2〉

for the Johnson-Wilson spectrum BP 〈m + 2〉 such that π∗(BP 〈m + 2〉) =
Z(2)[v1, v2, . . . , vm+2]. Since

v−1
2 BP∗/J

1⊗ηR−→ Em(2)∗/J ⊗A Γm

for an invariant regular ideal J of length two is a faithfully flat extension, we
have an isomorphism

(2.1) Ext∗Γm (A, v−1
2 BP∗/J ) ∼= Ext∗Σm(2)(Em(2)∗, Em(2)∗/J )

shown by the same way as the proofs of the change of rings theorem in [1].
Here

Σm(2) = Em(2)∗ ⊗A Γm ⊗A Em(2)∗

is the induced Hopf algebroid, and

(2.2) Σm(2) = Em(2)∗[t1, t2, . . . ]/(ηR(vm+k) : k > 2).

Note that m + 2 is the smallest number n such that

v−1
2 BP∗/J

1⊗ηR−→ v−1
2 BP 〈n〉∗/J ⊗A Γm

is a faithfully flat extension.

Proposition (2.3). The Adams-Novikov E2-terms for computing π∗(L2C)
and π∗(L2D) are isomorphic to

E∗2 (L2C) = Ext∗Σm(2)(Em(2)∗, Em(2)∗/(2∞, v1)) and

E∗2 (L2D) = Ext∗Σm(2)(Em(2)∗, Em(2)∗/(2, v1)).

Proof. The isomorphism on E∗2 (L2D) follows from (2.1). Since L2C = hoco-
limkL2T (m) ∧ Mk for the mod 2k Moore spectrum Mk, the change of rings
theorem (2.1) also shows the isomorphism on E∗2 (L2C).

Consider the Hopf algebroid (Em(2)∗,Σm(2)) (see (2.2)). We read off the
behavior of the right unit ηR : Em(2)∗ → Σm(2) and the diagonal ∆: Σm(2) →
Σm(2) ⊗Em(2)∗ Σm(2) from that of Γm. Hereafter we set v2 = 1 and use the
notation

ui = vm+i and si = tm+i
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for i = 1, 2. Recall the Hazewinkel and the Quillen formulas:

vn = 2`n −
n−1∑
k=1

`kv
2k
n−k ∈ Q⊗A = Q[`1, `2, . . . ],

ηR(`n) =
n∑

k=0

`kt
2k
n−k ∈ Q⊗ Γ = Q⊗A[t1, t2, . . . ], and

∑
i+j=n

`i∆(t2
i

j ) =
∑

i+j+k=n

`it
2i
j ⊗ t2

i+j

k ∈ Q⊗ Γ⊗A Γ.

Then a routine computation shows

Lemma (2.4). The right unit ηR : A→ Γm and the diagonal ∆: Γm → Γm⊗A
Γm act on generators as follows:

ηR(vn) = vn for n ≤ m,

ηR(u1) = u1 + 2s1,

ηR(u2) ≡ u2 + 2s2 mod (v1),

∆(s1) = s1 ⊗ 1 + 1⊗ s1,

∆(s2) ≡ s2 ⊗ 1 + 1⊗ s2 mod (v1).

3. The Adams-Novikov E2-term for π∗(L2C)

We begin introducing the cocycles of cobar complexes that represent gener-
ators gj1 and gj0.

Lemma (3.1). The elements s2
j + ujsj for j = 1, 2 are cocycles of the cobar

complex Ω1
ΓmEm(2)∗/(v1).

Proof. Since d(uj) ≡ 2sj and d(sj) ≡ 0,

d(s2
j + ujsj) ≡ −2sj ⊗ sj + 2sj ⊗ sj ≡ 0 mod (v1).

Lemma (3.2). There are elements

2wj =
∑
n>0

(−1)n−1 1
n

(2u−1
j sj)n ∈ Ω1

Γmu
−1
j Em(2)/(2k, v1)

for j = 1, 2 such that d(wj) = 0.

Proof. Note that
∑

n>0(−1)n−1 1
n (2u−1

j sj)n = log(1 + 2u−1
j sj) = log(ηR(uj))

− log(uj). Since

log(ηR(uj)) ≡ log(1− (1− ηR(uj))) = −
∑
n>0

1
n

(1− ηR(uj))n

≡ −
∑
n>0

ηR(
1
n

(1− uj)n) = −ηR(
∑
n>0

1
n

(1− uj)n)

≡ ηR(−
∑
n>0

1
n

(1− uj)n) = ηR(log(1− (1− uj)))

≡ ηR(log(uj)),
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we see that d(2wj) = d(log(1 + 2u−1
j sj)) = dd(log(uj)) = 0. Therefore, d(wj) =

0 as desired.

Note that u2k−1

j wj in Ω1
ΓmEm(2)/(2k, v1) for each k > 0. Let

gj1 and u2k−1

j gj0 ∈ E1
2(L2T (m)/v1 ∧Mk)

denote the homology classes of the cocycles of Lemma (3.1) and u2k−1

j wj , re-
spectively, for each k > 0, where Mk denotes the mod 2k Moore spectrum.

Consider the subalgebras

(3.3)

F ≡ Km−2(2)∗ = R/(2) = v−1
2 Z/2[v2, . . . , vm],

F (n) ≡ F
[
u2n

1 , u
2n
2

]
, and

F (n)
j ≡ F

[
u2n
j

]
,

and the submodules

N(i) ≡
2⊕

j=1

u2i
j F

(i+1)
j and

N0(i) ≡ F (i+1)
{
u2i

1 u
2i+1

2 , u2i
2 u

2i+1

1 , u2i
1 u

2i
2

}
of the polynomial algebra Km(2)∗ = F [u1, u2]. Then, as an F -module,

(3.4)

Km(2)∗ ≡ (F [u1] + F [u2])⊕
⊕
i≥0

N0(i)

≡ F ⊕
⊕
i≥0

(
N(i)⊕N0(i)

)
,

ujKm(2)∗ ≡ ujF [uj]⊕
⊕
i≥0

N0(i) and

u1u2Km(2)∗ ≡
⊕
i≥0

N0(i)

for j = 1, 2. Under these notations, we rewrite (1.4) as follows:

(3.5) E∗2 (L2D) = ∧(g11, g21)⊗
(
Km(2)∗ ⊗ ∧(u1g10, u2g20)

)
.

The factor Km(2)∗ ⊗ ∧(u1g10, u2g20) is decomposed into the direct sum

(3.6) Km(2)∗ ⊕ g10(u1Km(2)∗)⊕ g20(u2Km(2)∗)⊕ g10g20(u1u2Km(2)∗).

We consider the connecting homomorphism δ : Es
2(L2C) → Es+1

2 (L2D) on the
factorKm(2)∗⊗∧(u1g10, u2g20). The behavior of δ is read off from the following
lemma:

Lemma (3.7). The connecting homomorphism δ acts as an R-module map
on the elements of E0

2(L2C) as follows:

δ(1/2i) ≡ 0 and

δ(u2is
1 u2it

2 /2i+1) ≡ su2is
1 u2it

2 g10 + tu2is
1 u2it

2 g20,

where s, t and i are non-negative integers.
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Proof. Note that ua−1
j sj represents uajgj0. The lemma follows then immedi-

ately from the relations d(uj) ≡ 2sj and the binomial coefficient theorem.

Proposition (3.8). The Adams-Novikov E2-term E∗2 (L2C) is isomorphic to
the module given in Theorem (1.6).

Proof. Put E∗ = Km(2)∗ ⊗ ∧(u1g10, u2g20), B0 = R/(2∞) ⊕
L

i≥0

“
M(i)⊕M0(i)

”
andB1 =

⊕
i≥0 M

1(i). By [5], Remark 3.11, it suffices to show that the sequence

(3.9) 0 // E0 // B0 2 // B0 δ // E1 // B1 2 // B1 δ // E2 // 0

is exact. In fact, B∗ ⊗ ∧(g11, g21) ⊂ E∗2 (L2C) by Lemma (3.7), and the exact
sequence (3.9) induces a commutative diagram

(E∗ ⊗ Λ)s // (B∗ ⊗ Λ)s //

��

(B∗ ⊗ Λ)s
δ //

��

(E∗ ⊗ Λ)s+1

Es
2(L2D)

ι∗ // Es
2(L2C) 2 // Es

2(L2C) δ // Es+1
2 (L2D)

of exact sequences, where Λ = ∧(g11, g21). Then, the middle maps are isomor-
phisms by [5], Remark 3.11.

By (3.6) and (3.4),

E0 ≡ F ⊕
⊕
i≥0

(
N(i)⊕N0(i)

)
,

E1 ≡

 2⊕
j=1

gj0ujF [uj]

⊕⊕
i≥0

(
E1,I (i)⊕ E1,C(i)

)
≡
⊕
i≥0

(
N

1
(i)⊕ E1,I (i)⊕ E1,C(i)

)
,

E2 ≡
⊕
i≥0

g10g20N
0(i),

where

E1,I (i) ≡ F (i+1)
{
u2i

1 u
2i+1

2 g10, u
2i
2 u

2i+1

1 g20, u
2i
1 u

2i
2 g10

}
,

E1,C(i) ≡ F (i+1)
{
u2i

1 u
2i+1

2 g20, u
2i
2 u

2i+1

1 g10, u
2i
1 u

2i
2 g20

}
, and

N
1
(i) ≡

2⊕
j=1

gj0u
2i
j F

(i+1)
j .

Note that ujF [uj] =
⊕

i≥0 u
2i
j F

(i+1)
j . Each summand of E0 fits in one of the

exact sequences

0 // F // F/(2∞) 2 // F/(2∞) // 0,

0 // N(i) // M(i)
2 // M(i)

δ //
N

1
(i) // 0, and
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0 // N0(i) // M0(i)
2 // M0(i)

δ // E1,I (i) // 0

by Lemma (3.7), and the direct sum of these shows the exact sequence

(3.10) 0 // E0 // B0 2 // B0 δ // E1 // ⊕
i≥0 E

1,C(i) // 0.

Lemma (3.7) also shows the exact sequence

0 // E1,C(i) // M1(i)
2 // M1(i)

δ // g10g20N
0(i) // 0

and the direct sum yields the exact sequence

(3.11) 0 // ⊕
i≥0 E

1,C(i) // B1 2 // B1 δ // E2 // 0.

Splice the exact sequences (3.10) and (3.11) and we obtain the desired exact
sequence (3.9).

Since the Adams-NovikovE2-termEs
2(L2C) for s > 3 is trivial by Proposition

(3.8), every element of Es
2(L2C) for 0 < s ≤ 3 is a permanent cycle in the

Adams-Novikov spectral sequence. For s = 0, we have

Lemma (3.12). Every element of E0
2(L2C) is a permanent cycle in the Adams-

Novikov spectral sequence.

Proof. Let x/2i ∈ E0
2(L2C). Suppose that d3(x/2i) = y/2j 6= 0. If x/2i+1 ∈

R/(2∞), then there exist elements yk = d3(x/2k) for k > i such that 2yk = yk−1

and 2yi+1 = y/2j 6= 0, and so the yk ’s generate a module isomorphic to R/(2∞)
in E3

2(L2C). This contradicts Proposition (3.8). So we may assume that x/2i+1

belongs to M(i) or M0(i). Then, d3(x/2l) = y/2 6= 0 for l = i − j + 1. Since
x ∈ E0

2(L2D) is a permanent cycle by Ravenel [8], the integer l is greater than
one. Then, the element x/2l−1 is a permanent cycle and survives to a homotopy
element [x/2l−1] such that κ∗([x/2l−1]) = [y] ∈ π∗(L2D), where κ is the map
in (1.3), and [z] denotes the homotopy element detected by an element z in
the E2-term. Since y ∈ E3

2(L2D), there is an element h ∈ {gji : j = 1, 2, i =
0, 1} such that yh 6= 0 ∈ E4

2 (L2D). Note that it detects [yh] 6= 0 ∈ π∗(L2D).
By Proposition (3.8), we see that xh/2l ∈ E1

2(L2C), which is a permanent
cycle since Es

2(L2C) = 0 for s > 3. This implies a contradiction: 0 6= [yh] =
κ∗([xh/2l−1]) = κ∗2∗([xh/2l]) = 0. We notice here that xgj0/2i+1 ∈ E1

2(L2C)
since the cochain xsj/2i+1 is a cocycle.

Lemma (3.13). In the Adams-Novikov spectral sequence, the extension prob-
lem as an R-module is trivial.

Proof. Let ξ ∈ π∗(L2C) be elements detected byx/2j ∈ E0
∞(L2C) = E0

2(L2C).
It suffices to show that 2jξ = 0. Indeed, the relation 2j(x/2j) = 0 in the E2-
term gives that of the homotopy. Since x ∈ E0

2(L2D) is a permanent cycle (cf.
[8]) and 2j−1ξ is detected by x/2, 2j−1ξ is in the image of the induced map
ι∗ : π∗(L2D) → π∗(L2C) from the map in (1.3). It follows that 2j(ι∗([x])) =
ι∗([2x]) = 0 as desired.
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