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A TRIBUTE TO LEOPOLDO GARCÍA-COLÍN SCHERER

On 8th October 2012, Professor Leopoldo García-Colín Scherer, one of the most
relevant mexican physicists passed away. His influence in the academic life in
Mexico was notorious. During his trajectory he was a Professor in the most im-
portant universities and scientific institutes in Mexico City and Puebla.

He was deeply involved in the foundation of the Centro de Investigación y de
Estudios Avanzados del IPN. He was also a founder member of the Escuela Supe-
rior de Física y Matemáticas del IPN and the Universidad Autónoma Metropoli-
tana, creating an active research group in statistical mechanics, where he was a
world leader. Nevertheless, he also ventured in several other branches of physics.
He was both the first Distinguished Professor and the first Emeritus Professor of
the Universidad Autónoma Metropolitana.

He was elected member of the “Colegio Nacional” in 1977, honored with the
1988 National Prize for Arts and Sciences from Mexico, and awarded an Honoris
Causa Doctorate from the Universidad Nacional Autónoma de México in 2007.
In this volume, as a tribute to Professor García-Colín, the Boletín de la Sociedad
Matemática Mexicana has included some papers in honor of his work and memory.

The Editorial Board
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LEOPOLDO GARCíA-COLíN’S CONTRIBUTIONS IN THE KINETIC
THEORY OF MODERATELY DENSE GASES

R. M. VELASCO

ABSTRACT. This paper is written as a tribute to Leopoldo García-Colín Scherer,
with the spirit to give emphasis to his scientific contribution in the kinetic theory
of moderately dense gases. I have chosen a set of papers representing what I
consider his most relevant contribution. It should be mentioned that those papers
represent only a small sample of his legacy and, I regret that my limitations,
prevent myself to be more ambitious in the review of the great quantity of papers
published by him along more than fifty years of his academic life.

Foreword

The 8th of October 2012, a day which at a first sight seemed as any other one,
has marked the scientific life in Mexico with the loss of our professor, colleague,
mostly friend, Leopoldo García-Colín Scherer. He was the example to be followed
by me and I am sure that he was the compass for a lot of my colleagues who
undertook their academic life under his guidance. However, not only some of us
miss him, but the statistical physics school in Mexico feels a vacuum which will
last forever.

1. Introduction

In an effort to put García-Colín’s work in perspective, let me recall some im-
portant concepts in the kinetic theory of gases according to the periods of devel-
opment in kinetic theory pointed out by Ernst [22]:

1. Classic Era (1855-1945)
2. Renaissance (1946-1964)
3. Modern Era (1965-1985)
4. Post-modern Era ( > 1985)
The Classic Era began with Clausius who introduced the mean free path idea

in 1858 [12]. Afterwards, Maxwell derived the distribution function of velocities
for molecules in a gas in thermal equilibrium [39] up to Boltzmann, who in 1872
formulated his famous equation for the time evolution of the single particle dis-
tribution f (x, t) = f (r,v, t) for a dilute gas in equilibrium [3]. Such a long history
has been rewieved in an excelent book by Brush, going from the original and main
ideas to the equations which allow the transport coefficients calculation [7]. To be
specific, let us consider a simple fluid out of the thermodynamic equilibrium state,
then one of our goals will be the description of phenomena occuring in such a sys-
tem. To do that we have different approaches: first, a phenomenological approach
which describes the system in a purely macroscopic way. It means that we need a
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selection of relevant variables, such as (n,u, e) where n is the number density, u
the hydrodynamic velocity and e the total specific energy. All these variables are
local ones, so they depend on position r and time t. Once the variables are chosen
it is necessary to write the balance equations for them, which are based on the
general conservation principles, namely: the continuity equation for the number
density (the mass density is obtained by mutiplication of n by the masss m of
the particles), a generalization of Newton’s second law driving to a balance equa-
tion for the momentum density and the equation for the conservation of energy.
This procedure drives us to a non closed system of partial differential equations
(PDEs) in which it it necessary to introduce the constitutive equations (taken form
the corresponding experiments) for the heat flux and the viscous tensor, as well
as the local equation of state and the local caloric equation. The last step men-
tioned above introduces in the balance equations, the properties of the gas under
consideration, then the transport coefficients such as the thermal conductivity,
shear and bulk viscosities and, some others in more complicated system appear
in the theory. Besides this, the complete solution needs the specification of the
initial and boundary conditions. The program we have just described is done by
the Classical Hydrodynamics, where the behavior of molecules constituting the
system does not play any role in the description.

As a second approach we focus our attention on the behavior of the molecules
in the system, in order to study some problems that are out of the validity limits
of hydrodynamics. In addition, the calculation of transport coefficients from the
interaction between particles can be done, at least in principle. It is this approach
the one we will develop in what follows.

Let us consider a monatomic gas in which the interaction between particles oc-
curs through molecular collisions, since this one is the most important mechanism
in the description of phenomena occuring in the system. To give a qualitative dis-
cussion we will relate the molecular collisions with the mean free path, which is
the average distance traveled by the molecules without a collision between them-
selves or with the walls containing the gas. Let σ be the cross section for collision
between molecules, if the particles have a typical size a (for example the hard
sphere diameter, or the range of the intermolecular potential) the cross section
is σ ∼ a2. If we call n the number of molecules per unit volume in the gas and,
L the typical macroscopic length (volume V = L3) the quantity nLa2 will be the
number of collisions occurring within the distance L. Then the mean free path
can be estimated as

(1.1) λ∼ L
na2L

∼ 1
na2 ,

also, λ/L gives us the frequency of collisions and it is known in the literature as
the Knudsen number Kn =λ/L [44].

The qualitative elements given above allow us to identify three characteristic
lengths: (a) The microscopic distance which can be the hard sphere diameter, or
the range of the intermolecular potential. (b) The mean free path λ and (c) the
macroscopic lenght L. In a dilute gas, those distances are of different order of
magnitude: a ¿ λ¿ L, for a typical diluted gas at temperature T = 273K and
atmospheric pressure we have a ∼ 10−8cm,λ ∼ 10−5cm,L ∼ 1cm. Also, this com-
parison can be made in terms of the characteristic times, which are well separated
tmicro ∼ 10−12s ¿ τ∼ 10−9s ¿ tmacro ∼ 10−4s, here τ is the mean free time.
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The existence of well separated lenght/time scales gives place to describe the
time evolution of our system in terms of well defined stages:

1. The kinetic stage which occurs in times 0 < t ≤ τ, and we will describe
the system behavior in term of a single particle distribution function. In
the case of a dilute gas, such distribution function satisfies the Boltzmann
equation. Then, the particles interact via uncorrelated binary collisions and
the molecular chaos hypothesis is valid.

2. The hydrodynamic stage describes the system for times t À τ in terms
of hydrodynamic variables, those variables correspond to quantities which
do not change drastically because of the collisions between molecules, as is
the case of conserved variables. For a simple fluid the variables chosen are
n(r, t),u(r, t), e(r, t).

3. Thermodynamic equilibrium. After the hydrodynamical stage, the sys-
tem reaches the thermodynamic equilibrium and all variables become con-
stant.

In a schematic way, the time evolution of the system is described as:

kinetic stage→ hydrodynamic stage→ thermodynamic equilibrium

f (r,v, t)=⇒
n(r, t)

u(r, t)
e(r, t)

=⇒
n = constant

u= 0
T = constant

 .(1.2)

In a diluted gas such stages are well defined and it is possible to go from the
kinetic stage to the hydrodynamical one and then to equilibrium. The kinetic
equation which makes such a task is the Boltzmann equation and its momentum
averages drive to the hydrodynamical balance equations. Then the transport co-
efficients can be caculated from the intermolecular potential. The problem comes
when we consider a dense gas, it is clear that in this case the stages are not well
defined and it has been shown that the kinetic stage does not exist. It is at this
point where the most important contibution of Leopoldo García-Colín was done.

In section 2 we will present the Boltzmann equation, then in section 3 the gen-
eralized Boltzmann equation will be discussed. In section 4 we present the treat-
ment done for the kinetic stage in a moderately dense gas, whereas in section 5 we
discuss the hydrodynamical stage. In section 6 some discussion is pointed about
the study of binary mixtures and finally in section 7 we give some concluding
remarks.

2. The Boltzmann equation

To describe a macroscopic system with N ∼ 1023 particles from their dynam-
ics, it is necessary to introduce statistical concepts. Therefore we consider a one
species monatomic gas formed with particles of mass m described through the
phase space coordinates xi = (ri,vi). The quantity f (v,r, t)drdv represents the
number of molecules in v+dv, r+dr at time t. The time evolution of the distri-
bution function f (v,r, t) is described with the equation introduced by Boltzmann
in 1872 in a heuristic way; in fact it is a balance equation in which the time vari-
ation of the distribution function is given through its drift in phase space and the
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interaction between molecules,

(2.1)
∂ f
∂t

+v ·∇ f =J ( f , f ),

where it is considered that there is no external force acting on the system and,
J ( f , f ) represents the so called collision kernel. It contains the effect of the binary
collisions. Aside of this, the collision kernel which in principle must contain the
distribution function associated to the two colliding particles is factorized, so

(2.2) f (2)(x1, x2, t)→ f (x1, t) f (x2, t)∼ f (r,v1, t) f (r,v2, t),

which is an expression based on the “molecular chaos” hypothesis. It is clear that,
the binary collision assumption and the molecular chaos hypothesis are both valid
only for dilute gases. The collision kernel can be written as follows,

(2.3) J ( f , f )=
∫ ∫

( f ′ f ′1 − f f1)gσ(φ, g)dv1dê,

where f ′ = f (v′,r, t), f ′1 = f (v′
1,r, t) and v′,v′

1 correspond to the velocities of par-
ticles after the collision and the velocities without a prime are the ones before the
collision. The quantity g = gê is the relative velocity between particles and g its
magnitude, φ is the dispersion angle in the collision, σ(φ, g) the cross section.

It is well known that the Boltzmann equation (2.1) has a solution representing
the local equilibrium state, which is the Maxwell distribution function

(2.4) f (0) = n
( m
2πkT

)3/2
exp

[
−m|v−u2|

2kT

]
,

where the macroscopic variables (n,u,T) are functions of (r, t) and in the thermo-
dynamic equilibrium state they become (n = constant,u = 0,T = constant). Also,
it has been shown that the functional

(2.5) H[ f ]=
∫

f (v,r, t)(Ln f (v,r, t)−1)dvdr,

written in terms of the distribution function f satisfies the H−theorem which is
given as

(2.6)
dH[ f ]

dt
≤ 0,

for f (v,r, t) a solution of the Boltzmann equation (see [45], [9] and references
therein, for rigorous proofs and mathematical properties concerning the Boltz-
mann equation). Some consequences of the H−theorem can be seen immediately:
for finite kinetic energy, H is bounded when t →∞ and this limit correspond to
the case when dH/dt = 0. In such a case the distribution function corresponds to
the Maxwell distribution function we have just quoted in Eq. (2.4). Besides if we
calculate H[ f (0)] it gives us the negative of the ideal gas thermodynamic entropy.

Starting with the Boltzmann equation it is possible to construct the transport
equations as was done by Maxwell [10], [25] for any functionΨ(v,r, t) of the molec-
ular velocity, then we define the average of such a function as

(2.7) n(r, t)Ψ(r, t)=
∫
Ψ(v,r, t) f (v,r, t)dv.
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If we take Ψ = 1 we obtain the number density, with Ψ = v the hidrodynamic
velocity, lastly when we take Ψ= m(v−u)2/2, the energy is obtained

n(r, t)=
∫

f (v,r, t)dv,(2.8)

n(r, t)u(r, t)=
∫

v f (v,r, t)dv,(2.9)

n(r, t)e(r, t)=
∫

1
2

m(v−u)2 f (v,r, t)dv= 3
2

n(r, t)kT(r, t).(2.10)

Notice that the local temperature T(r, t) is now defined through the local energy,
essentially as the average of the kinetic energy, a fact which will be very important
in dense gases. Once this procedure is done, a set of definitions must be advanced
the pressure tensor is written as

(2.11) P =
∫

m(v−u)(v−u) f (v,r, t)dv,

and the heat flux

(2.12) q=
∫

1
2

[
m(v−u)2 −5kT

]
f (v,r, t)dv.

Now, to obtain the general transport equations, we multiply the Boltzmann equa-
tion (2.1) by the function Ψ and integrate over the velocity

(2.13)
∂(nΨ)
∂t

+∇r · (nvΨ)−n
[
∂Ψ

∂t
+v ·∇rΨ

]
=

∫
Ψ(v)J ( f , f )dv.

The corresponding balance equations obtained from here, are then written as
∂n
∂t

+∇r ·nu= 0,(2.14)

∂

∂t
nmu+∇r · (nmuu+P)= 0,(2.15)

∂

∂t
nme+∇r(nmeu+q)=−P :∇ru,(2.16)

and they are valid in absence of external forces. Also, it should be noted that the
tensor P contains the hydrostatic pressure and the viscous tensor. On the other
hand, the local Maxwell distribution function when substituted in the balance
equations (2.14, 2.15, 2.16) yields to the Euler equations of classical hydrody-
namics. This fact means that the description done with the Maxwell distribution
function will correspond to a fluid in which the viscosity and thermal conductivity
vanish, i. e. a fluid in which there are not any dissipative effects.

To go further, the Chapman-Enskog method to solve, albeit in an approximate
way, the Boltzmann equation is needed [10], [25]. In this method the distribution
function is expressed as an expansion around the local equilibrium described by
the Maxwell distribution function, so

(2.17) f (v,r, t)= f (0)(v,r, t)
[
1+Φ(1)(v,r, t)+ . . .

]
.

In addition an assumption called the “functional hypothesis” is also done, it says
that the time and spatial dependence in the distribution function occurs only
through the time dependence in the local variables n,u, e, so f (v,r, t)= f (v|n(r, t),
u(r, t), e(r, t)). With this assumption we are going from the kinetic to the hydrody-
namic stage, in which the system is described by the variables (n,u, e). Then the
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expansion (2.17) and the functional hypothesis allow us to find a solution valid up
to first order in the spatial gradients in the macroscopic variables chosen. Once
this long procedure is done, the distribution function obtained is susbtituted in
the expressions for the pressure tensor and the heat flux,in order to obtain the
shear viscosity η0 and the thermal conductivity λ0 in the gas, defined as

(2.18) p0 =−2η0(∇ru)0, q=−λ0∇rT.

Obviously, such results will be valid only for dilute gases (the zeroth density limit)
and, it must be said that their comparison with experimental data for monatomic
gases, taken at the low density regime are very good.

Not withstanding the strong limitations in the Boltzmann equation and its
method of solution, the results provided by this theory have been the corner stone
in the kinetic theory of dilute gases.

3. The generalized Boltzmann equation

The Renaissance in kinetic theory began essentially in 1946 when Bogoliubov
[2], [25] and almost simultaneously Born, Green, Kirkwood and Yvon used the
now called BBGKY-hierachy, [11]. It is constructed from the Liouville equation
for a classical infinite system of N →∞ particles with mass m in a volume V →∞
with N/V = n =constant, interacting via an additive pairwise potential V (|r12|),
by means of the integration over the xN−s particle phase space coordinates to
obtain the s−particle distribution function. With this procedure, the Fs-particle
distribution function satisfies an equation coupled to the Fs+1 and so on. Then the
complete infinity hierarchy of equations are equivalent to the Liouville equation.
Besides, Bogoliubov’s theory assumes: (a) The s−particle distribution function is
a time independent functional of the single particle distribution function F1(x1, t).
(b) The long time decay of the initial correlations are expressed as

(3.1) lim
t→∞

[
S (s)

t (Fs|S(1)
t F1)−Πs

i=1S(1)
t F1

]
= 0.

These two assumptions in Bogoliubov’s theory deserve some physical explana-
tion, the first one is consistent with the description made in section (1) about
the different stages to reach equilibrium. It means that after some characteristic
time, the time evolution of the s−particle distribution function is expressed only
in terms of the evolution of the single-particle one, consistently with the existence
of the kinetic stage. The second assumption tells us that the long time behavior is
such that the time evolution in the s−particle distribution function is factorized in
terms of single particle distribution functions. A fact, which is consistent with the
absence of corrrelations between particles after some characteristic time. Both
assumptions imply that the system cannot be far from the equilibrium state [17].

The first two hierarchy equations read as(
∂

∂t
+v1 ·∇1

)
F1 = n

∫
θ12F2(x1, x2, t)dx2,(3.2) (

∂

∂t
+L12

)
F2 = n

∫
[θ13 +θ23]F3(x1, x2, x3, t)dx3,(3.3)
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where

θ12 = ∂V (r12)
∂r12

· 1
m

(
∂

∂v1
− ∂

∂v2

)
,(3.4)

L12 = v1 ·∇1 +v2 ·∇2 −θ12,(3.5)

here θ12 is the weak scattering operator and L12 is the two-particle Liouville op-
erator.

In fact, the so called Generalized Boltzmann Equation (GBE) corresponds to
the first hierarchy equation (3.2) which is closed with the second assumption in
Bogoliubov’s theory, then

∂ f (1)

∂t
+ p1

m
· ∂ f (1)

∂q1
=Φ(x1| f (1)),(3.6)

Φ(x1| f (1))=
∫

∂V
∂q1

· ∂

∂p1
f (2)(x1, x2| f (1))dx2.(3.7)

To establish the conection with the hydrodynamic variables we will use the defi-
nitions given in (2.14, 2.15) and the energy must be modified in order to take into
account the interaction potential, so

(3.8) e(r, t)=
∫

f1
(v−u)2

2
dp+ 1

2

∫
V (|r12|) f2(x1, x2, t)dx2dp.

Also, the definitions of the pressure tensor and the heat flux become different due
to the presence of the interaction potential, then

PK = 1
m

∫
f1ppdp,(3.9)

PV =−1
2

∫
dpdx2

V ′

r
rr

∫ 1

0
dµ f2(r+µr, (µ+1)r),(3.10)

qK =
∫

dp
p2

2m
p
m

f1,(3.11)

qV1 =−1
4

∫
dpdx2 V ′ rr

r
·
( p

m
+ p2

m

)∫ 1

0
dµ f2(µr, (µ+1)r),(3.12)

qV2 = 1
2

∫
dpdx2

p
m

V (r) f2,(3.13)

where we have written r = r12 to shorten the notation and, the dependence on
momenta in the distribution functions is not written out explicitly, though it is
present. The balance equations are the same as the ones valid for a dilute fluid,
however the pressure tensor and the heat flux must be calculated according to the
definitions given above.

Once the kinetic equation is given we need to obtain a solution and calcu-
late the transport coefficients. In section (2) we mentioned the Chapman-Enskog
method to perform such a task. However, it is well known that the properties of
dense fluids in the equilibrium state can be expressed as expansions in density,
in such a way that the first order in the density represents the contribution of
clusters with two particles, the second order corresponds to clusters with three
particles and so on. Then it is natural to ask for the corresponding density ex-
pansion in the transport coefficients. These considerations can be sinthesized by
saying that we need a solution for the GBE which will reproduce the gradient and
the density expansions in transport coefficients.
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4. The kinetic stage in a moderately dense gas

As a first intent to solve the BBGKY hierarchy, Bogoliubov [2], Choh [11] and
Cohen [14] expanded the distribution function in powers of the density

(4.1) Fs(x1, . . . , xs|F1)= F (0)
s (x1, . . . , xs|F1)+nF (1)

s (x1, . . . , xs|F1)+ . . . ,

where the superindex indicates the order of approximation in the density. Conse-
quently the GBE now reads as

(4.2)
∂F1

∂t
+ p

m
· ∂F1

∂r
= n

∫
dx2 θ12

[
F (0)

2 (x1, x2|F1)+nF2(x1, x2|F1)+ ...
]
,

which is similar to the density expansions in the study of gases in the equilibrium
state. Though this expansion exists in dilute gases at the equilibrium state it is
assumed that it also does for the dynamical behavior in dense gases, an assump-
tion which cannot be taken for granted. It should be noticed that the method of
solution proposed in Eq. (4.2) does the expansion in powers of the density, be-
fore undertaking its solution for the single particle distribution function F1. Then
the Chapman-Enskog method, up to first order in the gradients of the hydrody-
namical velocity and the temperature, allowed them to find expressions for the
transport coefficients.

On the other hand García-Colín in a series of papers [32], [29], [27], [28] found
a solution up to first order in the gradients by means of the Chapman-Enskog
method valid to all orders in the density. That is, he and his collaborators con-
sidered the solution up to first order in the gradients before the expansion in the
density. Though the first order correction in the density coincided with the results
calculated by Choh et al. At the same time, several authors were working on the
same problem [23], [13], [14], [20] [24], [37] and their results and discussions have
shown that the expansion in density diverges after the second order, even though
all approaches coincide to the first order in density [15], [16], [20], [19], [24] [43].
Even Prigogine’s theory was taken into account [6], [26] and it was shown that
the results in this theory agree with the other approaches. Going back to the
periods identified in the development of kinetic theory we can see that all these
calculations and discussions were done just at the end of the Renaissance and the
begining of the Modern Era.

(4.1) The definition of temperature. At first sight, all the calculations men-
tioned above must give the same result for transport coefficients, however it was
not the case. In particular the bulk viscosity was not the same when calculated
with the Choh’s assumption as when calculated by García-Colín. Also, Ernst [23]
calculated transport coefficients by means of autocorrelation method and the re-
sult was the same as García-Colín’s. The discrepancy was an important one, and
it was necessary to go deeper in both methods to discover that though the expres-
sions for the bulk viscosity were different, the results were completely equivalent.
Let us go now into some details about this problem.

First of all, let us recall Eq. (2.10) where the local temperature was defined
as the average of the kinetic energy in a diluted gas. Taking such a temperature
definition as a valid one in dense gases, some authors took the kinetic energy av-
erage as a definition of temperature, simply making an extension from the dilute
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gas behavior. However in a dense or a moderately dense gas the transport of en-
ergy is not purely kinetic, so the definition of temperature must be taken with
the complete average of energy. It means that the temperature must contain the
contribution of the average potential energy as well as the kinetic contribution.
In a very important paper García-Colín and Green [31] have shown that there is
a complete equivalence of results in the trasnport coefficients, no matter the tem-
perature definition. In fact, once we adopt a temperature definition the consistent
calculation gives a result for the bulk viscosity which is equivalent to the other
one, even though the expressions seem to be different. The translation between
themselves shows the equivalence.

In fact, there exists a one-to-one relation between the macroscopic variables in
both methods in such a way that

(4.3) F1(x|n,u,T)= F1(x|n,u, e),

where T is the local temperature defined only in terms of kinetic energy. The vari-
ables (n,u, e) recomend themselves because they are approximate single-valued
integrals of motion of the system.

5. The hydrodynamic stage in a moderately dense gas

The study of the hydrodynamical stage in dense gases means that the single-
particle distribution function is a functional of the macroscopic variables (n,u, e).
In other words, we need the solution of the GBE (3.6) in terms of such variables
and their spatial gradients. As we said above, García-Colín [32] proposed to find
such a solution making an expansion in the gradients valid to all orders in the
density, this means that

(5.1) Φ(x1| f1)=Φ(x1| f1(q))+
∫

dx′Φ′(x1, x′| f1(q))(q′−q) ·
(
∂ f1

∂q′

)
q′=q

,

where f1 = nF1 and, Φ′ denotes the functional derivative of Φ. Then an expansion
similar to Eq. (2.17) is done with the conditions imposed by Eqs. (2.14, 2.15,2.16).
As a result the Maxwell distribution function is found to describe the total equi-
librium and, the two-particle distribution function is found to satisfy

(5.2) f2(x1, x2| f (0)
1 (q))= f (0)

1 (p1) f (0)
1 (p2)G(|r12|),

here the quantity G(|r12|) is the pair correlation function. The following step is
done by means of the application of the Chapman-Enskog method, which gives
us a solution expressed in terms of some functions satisfying a pair of integral
equations. After a cumbersome but direct algebra, the thermal conductivity and
the shear viscosity as defined in eqs. (2.18) can be constructed:

λ=λK +λV1
1 +λV2

1 +λV1
2 +λV2

2 ,(5.3)

η= ηK +ηV1 +ηV2 ,(5.4)

ζ= ζK +ζV1 +ζV2 ,(5.5)

where the contributions with superindexes K , V1, V2 correspond to the kinetic
part and to the potential parts respectively. The complete expressions are given
in reference [32]. It should be noticed that such expressions are only formal, that
is without the use of any particular intermolecular potential, in such a way that
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when we take a specific potential the solution of some integral equations as well
as all integrations must be performed.

On the other hand, the expansions in powers of the density can also be done
and in fact it was shown that all methods give the same thermal conductivity,
shear and bulk viscosities only up to first order in the density. Besides, the bulk
viscosity is quantity of second order in the density [28].

(5.1) The challenges involved in the transport coefficients calculation.
The program we have summarized above sounds almost finished in the sense
that the formal expressions are given and all we have to perform is a calculation
of the elements involved. However, it was soon discovered that the expansions
in the density are divergent [43]. In fact, the expansions in the density take into
account the contributions of the dynamics of clusters of particles and it has been
shown [20] that they cannot be used for two purposes, the computation of the long-
time behavior of F2 beyond O(n) and the demonstration of the decay of the initial
state beyond O(n2). Similar divergences were encountered in the computation
of the transport coefficients from time-correlation functions. The nature of those
divergences suggest (a) there is no kinetic stage in the approach of a dense gas to
equilibrium,in the Bogolyubov sense, (b) a weak logarithmic density dependence
of the transport coefficients. The explicit calculation lead to expressions like

(5.6) η(n,T)= η0(T)+η1(T)n∗+η′2(T)n∗Ln n∗+η′′2(T)n2
∗Ln n∗+ . . . ,

where all coefficients have been computed for a gas of hard spheres, and n∗ is a
dimensionless density. Similar behavior appears for the thermal conductivity.

The understanding of such divergences in the density expansion for transport
coefficients has taken several years, first it was necessary to be sure that the di-
vergences were present no matter the method employed to solve the GBE. Then,
in a second step to identify the divergent contributions and study why such con-
tributions diverge [19]. Essentially, the divergences problem comes from the dy-
namical aspects of collisions for three or more particles. Let us think in a cluster
of three particles and let us name the particles as 1, 2, 3, then there can be simul-
taneous collisions between all the three particles (genuine 3-particle collision) but
also the collision occur in the sequence (21) → (13) → (12) called as a recollision.
Also, the sequence (21)→ (13)→ (32) is possible and it is called as a cyclic collision.
In the first case, the phase space available to the genuine collision is finite and is
determined by the potential range, however in the other cases and when bigger
clusters of particles occur, the available phase space diverges logarithmically.

The solution for this problem has been discussed in the literature [16], [17]
where the consideration of the cage and vortex diffusion effects lead to a non
divergent calculation. No matter this fact, there are some unsolved problems in
the kinetic theory of dense gases.

6. Binary mixtures

So far, we have studied a simple fluid composed by one species of molecules
meaning that all molecules have the same mass. An interesting problem is pointed
when we consider multicomponent fluids due to the fact that new transport phe-
nomena can take place. Let us concentrate in a binary mixture, then diffusion,
Dufour and Soret effects can be present in a neutral mixture. When the mixture
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is a chemically active one, there can be some chemical reactions in the system and
consequently there are more transport phenomena to be described.

On the other hand, let us say that the GBE is not the only approach which has
been developed to study dense gases. The Enskog equation was constructed in
1922 by Enskog [8] and it is based on a heuristic generalization of the Boltzmann
equation, in contrast with the GBE which comes from the Liouville equation. For
a multicomponent system it can be written as follows

(6.1)
∂ f i

∂t
+vi ·∇r f i =

2∑
j=1

∫ [
χi j(r j + yi jk) f ′j(ri +σi jk) f ′i (ri)−

χi j(ri − yi jk) f j(ri −σi jk) f i(ri)
]
σ2

i j(g ji ·k)dkdv j.

The Enskog equation contains the following hipotheses: (1) Only binary collisions
are taken into account. (2) The molecular chaos assumption is made, i.e., the
correlations between positions and velocities of two particles in phase space are
neglected. (3) The function χi j accounts for the shielding and the excluded volume
in collisions between molecules of species i and j. This function is evaluated at
an arbitrary point located between the centers of the colliding molecules [1], [33],
[40], [41].

In a first set of papers García-Colín studied the compatibility of kinetic theory
as described by the Enskog equation with hamiltonian dynamics, thermodynam-
ics, hydrodynamics and the thermodynamics of a chemically reacting fluid [34],
[35], [36]. In fact, the compatibility was shown by answering several questions,
such as: Is it possible to derive the kinetic equation from a more microscopic view
of the system considered, for example, from the Hamiltonian dynamics of the par-
ticles composing the system? What error we make by replacing the Hamilton
dynamics by the kinetic equation? Does there exist an approach, as the time goes
to infinity, of solutions of the kinetic equation to a time-independent state as con-
sidered in thermodynamics? What is the equation of state implied by the kinetic
equation? Is it possible to replace the kinetic equation by the hydrodynamic equa-
tions if our interest is focused only on the long-time behavior of solutions to the
kinetic equation? What is the error that we make by this replacement? What are
the kinetic coefficients in the hydrodynamic equations? All questions were stud-
ied for the Enskog equation and some important answers such as the validity of
an H−theorem, the conditions that the function χi j (measures the correlation be-
tween particles in a binary collision) must satisfy, the Onsager-Casimir symmetry
for transport coefficients among others, were given.

Also, the generalization of the GBE for binary mixtures was studied in some
other papers [4], [30], [5] together with problems which were in the literature at
the same time [18], [21]. Coming back to the classification in the development in
kinetic theory, we can say that we are now in the Post Modern Era, though a lot of
problems remain to be solved. Also, some other approaches have been developed
to study the phenomena in dense gases, as an example of such alternatives we
have the so called Kinetic Variational Theory (KVT). In this approach we have two
main ingredients to work with, the first one is based on the hierarchy equations as
writen in (3.2, 3.3) and a definition of the Shanon information entropy. Then the
maximization of the entropy and the equations of motion allow the construction
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of a set of closed equations in which we have taken all the available information
for the system [38], [42], see references therein for a detailed description.

7. Concluding remarks

To summarize, let us give some emphasis to the García-Colín’s main contribu-
tions by saying that he was a pioneer in the development of the Statistical Physics
School in Mexico. His works in the kinetic theory of moderately dense gases were
the corner stone in the construction of a very big group of researches interested in
phenomena occuring out of the equilibrium. Besides, this interest has been diver-
sified to other specialities related directly or indirectely with the kinetic theory.
He was not only the promoter of such themes but an enthusiastic participant in
several related fields. No matter his main interest, he was always able to give a
suggestion in the solution of problems, going from physics, teaching at all levels,
applied physics like pollution or biological problems, up to politics of science. His
work as a pioneer as well as his legacy has given an exceptional example of a full
scientific life.
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CONTRIBUTIONS OF LEOPOLDO GARCÍA-COLÍN SCHERER ON
GLASS TRANSITION

Dedicated to the memory of our friend and teacher Leopoldo García-Colín Scherer

PATRICIA GOLDSTEIN AND LEONARDO DAGDUG

ABSTRACT. A review work on some of the most important contributions made
by Leopoldo García-Colín Scherer on relaxation phenomena that occur both in
fragile and strong glass-formers is presented.

1. Introduction

In the mid 80’s, Prof. Leopoldo García-Colín was working on relaxation phe-
nomena in several kinds of systems. Particularly, he had been studying the re-
sponse function to an external perturbation in viscous and viscoelastic fluids. One
evening in 1988, he began to discuss with his co-workers a paper that he had been
reading, written by W. H. Saslow [20], on the temperature dependence of the av-
erage relaxation time in relaxation processes in a supercooled liquid in the glass
transition region. García-Colín became interested in the temperature dependence
of the Logarithmic Shift Factor (LSF), logaT , that may be expressed in terms of
the average relaxation time τ or the viscosity of the supercooled liquid η,

(1.1) LSF ≡− logaT = log
τ(T)
τ(Ts)

= log
η(T)
η(Ts)

where Ts is a reference temperature.
Ever since, Prof. García-Colín made contributions in this field, both for fragile

and strong glassformers [8], for almost twenty years, as it will be presented in the
following sections.

2. Theoretical basis for the Vogel-Fulcher-Tammann equation

Back in 1989, García-Colín, del Castillo and Goldstein [3] studied the depen-
dence on temperature of the average relaxation time in supercooled fragile liquids
in the vicinity of the glass transition temperature Tg.

The response function to external perturbations in a system, particularly on a
supercooled fluid in the glass transition region, is given by the stretched exponen-
tial form proposed by Kohlrausch-Williams-Watts [11],

(2.1) φ(t)=φ0 exp
{
− (t/τ)β

}
,

with 0 < β < 1 , where φ0 = φ(t = 0), and τ is the average relaxation time of the
relevant processes that occur in the fluid.

2010 Mathematics Subject Classification: 01-02, 01A70.
Keywords and phrases: Glass transition, viscosity, transport processes.
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An important behavior of a supercooled liquid, approaching the glass transi-
tion, is the rapid increase of its viscosity. Theoretically, many efforts had been
undertaken to study the temperature dependence of the viscosity and other ther-
modynamic properties. The dependence of the average relaxation time τwith tem-
perature was first described empirically by Vogel, Fulcher and Tammann, which
is well known as the Vogel-Fulcher-Tammann (VFT) equation, given by,

(2.2) log
τ(T)
τ(Ts)

= A− B
T −T0

,

with the adjustable parameters A and B, and the temperature T0 has been in-
terpreted as the isoentropic temperature, fact that will be discussed in the next
sections.

A similar empirical relation was proposed by Williams, Landel and Ferry to
account the influence of the thermal history on the relaxation time. The so called
Williams-Landel-Ferry (WLF) equation is given by

(2.3) logaT = C1(T −Ts)
C2 +T −Ts

where Ts is a reference temperature and C1 and C2 are constants. In the original
work, the WLF considers that the values of C1 and C2 are the same for all the
substances considered.

Both the WLF and the VFT equations describe the temperature dependence of
the relaxation time or the viscosity in the case of supercooled fragile liquids.

García-Colín et al. [11] derived a Vogel-Fulcher-Tammann type equation using
the expression proposed by Adam and Gibbs [1] for the relaxation time. In 1965,
Adam and Gibbs studied the temperature dependence of the relaxation processes
in glass formers and obtained the relationship between the logarithmic shift fac-
tor and the configurational entropy of the system, the well known Adam-Gibbs
equation. Both authors proposed an expression for the relaxation time in terms of
the average transition probability, W(T), as a function of the temperature, given
by the form

(2.4) W(T)= D exp
[ −K

TSc(T)

]
where D is a constant, K is a quantity to be defined in Eq. (2.6), and Sc is the
molar configurational entropy of the system. Since the relaxation time τ(T) is
reciprocally proportional to W(T), one may arrive to the expression,

(2.5) logaT =− log
τ(T)
τ(Ts)

= K
[

1
TsSc(Ts)

− 1
TSc(T)

]
Ts is an appropriately chosen reference temperature, and

(2.6) K = 2.303
∆µs∗c

kB

In this expression, ∆µ is the chemical potential, mainly the potential energy
involved in the cooperative rearrangement of the segments in their model, s∗c is
a critical configurational entropy, and kB is Botzmann’s constant. The problem of
obtaining the explicit form for the relaxation time in terms of the temperature was
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solved by García-Colín et al. calculating the configurational entropy by means of
the well-known thermodynamic equation,

(2.7) Scb −Sca =
∫ Tb

Ta

[
∆Cpc

T

]
dT

where ∆Cp is the change of the configurational specific heat in the glass transi-
tion.

In order to evaluate the configurational entropy given by Eq. (2.7), García-
Colín and co-workers [11] used the expression for ∆Cp obtained by di Marzio and
Dowell using the Gibbs-di Marzio microscopic model for the glass transition that
evaluates the configurational entropy [12]. The expression for ∆Cp given by di
Marzio and Dowell may be written as,

(2.8) ∆Cp = A
T2 +BT −CT2

The structure and values of the coefficients A, B, and C for different polymers
are given in Ref. [11]. Using the form for the configurational entropy, Eq. (2.7),
evaluated by means of the configurational specific heat, eq. (2.8), the authors
arrive to an expression for the relaxation time in terms of the temperature given
by,

(2.9) τ(T)= τ0 exp
[

K
F(T)(T −T0)

]
that may also be rewritten as,

(2.10) − logaT = log
τ(T)
τ0

=
[

K
F(T)(T −T0)

]
where T0 is the temperature where the configurational entropy vanishes, and,

(2.11) F(T)= A
2T2

0
γ+BT − CT2

2
γ

where γ= 1+ (T0/T).
García-Colín et al. found that the function F(T) behaves practically as a con-

stant within experimental error, thus Eq. (2.9) has the form of a VFT equation for
the polymers under study.

3. The Williams-Landel-Ferry equation and the determination of the
isoentropic temperature

In the case of polymers, the LSF may be described in terms Williams-Landel-
Ferry equation [27],

(3.1) logaT = C1(T −Ts)
C2 +T −Ts

where Ts is a reference temperature and C1 and C2 are constants.
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(3.1) Determination of the isoentropic temperature in polymeric liquids
in the glass transition. In 1993, using the results of their previous work [11],
Goldstein, del Castillo and García-Colín [14] obtained an expression for the relax-
ation time that was compared with the WLF equation, and found the value of the
isoentropic temperature.

Using Eqs. (2.5) and (2.7) , the LSF may be rewritten as,

(3.2) logaT = K
[

1
F ′(Ts)(Ts −T0)

− 1
G(T)

1
T2

]
with,

(3.3) F ′ (T)=
(
1+ T0

T

)(
A

2T2
0
− CT2

2

)
+BT

and,

(3.4) G (T)=
(
1− T2

0

T2

)(
A

2T2
0 T

− CT
2

)
+B

(
1− T0

T

)
where K is given by Eq. (2.6), and A, B and C are the coefficients of ∆Cp given by
Eq. (2.8).

On the other hand, the WLF equation may be rewritten as,

(3.5) logaT = C1(T −Ts)(T +Ts −C2)

1− (Ts−C2)2
T2

1
T2

The form for the LSF given by Eq. (3.2) depends strongly on the isoentropic
temperature T0. The authors compared both Eqs. (3.2) and (3.5), and, from this
comparison, they found the isoentropic temperature for five polymers. It is impor-
tant to point out that these values are similar to those reported in other works,
Eq. (3.5) may be represented as a linear relation of (T0/T)2, that is,

(3.6) LSF = m
(

T0

T

)2
+b(Ts)

where the intercept b depends on Ts, the reference temperature, and the slope m
is independent of this temperature.

(3.2) On the generalization of the Williams-Landel Ferry equation. In
1998, Dagdug and García-Colín [4] extended the results of Ref. [14] and calcu-
lated the isoentropic temperature T0 for non polymeric glass formers using the
generalization of the WLF equation proposed by Adam and Gibbs. This equation
may be rewritten as

(3.7) logaT = a
′
1(T −Ts)

a′
2 + (T −Ts)

,

where

(3.8) a
′
1 =

(2.303)−1

TsSc(Ts)

(
∆µs∗c

kB

)
and

(3.9) a
′
2(T)= TsSc(Ts)

Sc(Ts)+ T(Sc(T)−Sc(Ts))
T−Ts

.
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Dagdug and García-Colín compute T0 setting Ts = Tg, T = T0, and using the
fact that the coefficient a

′
2 must be equal to C2, where C2 = Ts −T0. Thus,

(3.10)
Tg

T0
= 1+ C2

Tg −C2
.

Furthermore, comparing a
′
1 with the coefficient C1 of the original WLF equa-

tion, a
′
1 = C1 = 8.86 [6], they obtain the relation,

(3.11)
∆µs∗c

kB
= 2.303C1TgSc(Tg).

The authors find, on one hand, the value of the critical configurational entropy
s∗c defined by Adam and Gibbs, given in Eq. (2.6) in terms of the configurational
entropy evaluated in Tg, namely,

(3.12) s∗c =
T0

C2
Sc(Tg).

On the other hand, they were able to write an expression to evaluate the free
energy ∆µ given by

(3.13) ∆µ= 2.303C1C2kB
Tg

T0
.

They report both the values for s∗c and ∆µ for six polymeric glassformers.

4. On the Stokes-Einstein relation in glass forming liquids

In 2000, Goldstein, García-Colín and del Castillo [15] studied the relationship
between the diffusion coefficient of a tracer and the viscosity of a fragile glass-
former liquid where the diffusion process takes place. The relaxation phenomena
described by the VFT or WLF equations correspond to the very slow α-relaxation
processes. One may find, however, that fast relaxation processes occur in the
vicinity of Tg, namely the β-relaxation processes. Relaxation and diffusion mech-
anisms present drastic changes around a cross-over temperature Tc which lies
within the interval [1.15Tg, 1.28Tg]. There are two important aspects that char-
acterize this cross-over region. Both the VFT and the WLF empirical equations
do no longer describe the experimental results for the viscosity below Tc, and,
furthermore, the diffusion mechanisms undergo changes.

One of the most significant features of a supercooled liquid approaching the
glass transition is the rapid increase of the viscosity.

As it has been discussed in the previous sections, one of the most important
empirical equations, that deals with the behavior of the viscosity as the system
approaches Tg, is the VFT equation, eq. (2.2).

The Stokes-Einstein (SE) equation establishes that the diffusion coefficient of
a sphere of radius a moving in a fluid whose viscosity is η, is given by

(4.1) D = kBT
6πaη

where kB is Boltzmann’s constant. In the case of a glassformer at temperatures
above Tc, the SE equation works. However, for temperatures below Tc, the SE
equation breaks down, and the diffusion process is enhanced. In this region, the
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influence of the viscous relaxation upon the diffusion coefficient may be expressed
in terms of the relation

(4.2) D ∼ η−ξ

where 0< ξ< 1.
In fact, both experimental and theoretical results have indicated that as a su-

percooled glass forming liquid is cooled towards Tg, its dynamics becomes increas-
ingly heterogeneous presenting magnified diffusion mechanisms.

In this work, they presented a form for the viscosity for temperatures below
Tc, and obtained the value of the exponent ξ for temperatures below and above
the cross-over temperature.

They examined the experimental results for the viscosity of three fragile glass-
former liquids, salol, phenolphthaleine-dimethyl-ether (PDE) and orthoterphenil
(OTP), as a function of temperature. They used the method proposed by Stickel
et al. [23, 24], in terms of the time derivative analysis for the quantities,

(4.3) x = {
f /Hz,σdcε0/s−1,poise/η

}
where f is the frequency of the peak of the loss function, the imaginary part of
the complex dielectric function, σdc is the dc conductivity, and η the viscosity. The
method consists on the evaluation of three derivatives of a given empirical form
for log x, namely,

(4.4)
[

d log x
dT

]−1/2
,

(4.5)
d

dT

[(
d log x

dT

)−1/2
]

,

(4.6) Θ=
d log x

dT
d2 log x

dT2

.

In the case that logη is given by the VFT equation, the derivatives are given
by

(4.7)
[

d logηV FT

dT

]−1/2
= B−1/2(T −T0),

(4.8)
d

dT

[(
d logηV FT

dT

)−1/2
]
= B−1/2,

(4.9) ΘV FT =−T −T0

2
.

Through the analysis of the experimental values for the viscosity, they found
that for temperatures above Tc, the derivatives (4.7) and (4.8) are valid. Never-
theless, for temperatures below Tc, the values of these derivatives are not satis-
fied. Goldstein et al. propose a form for the viscosity, whose derivatives satisfy
the experimental values given by,

(4.10) log
η(T)
η(Ts)

= A′(Ta −T)2 +B′.
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Figure 1. The viscosity of OTP [15]. The dashed line corresponds to
the expression for the viscosity above Tc given by Eq. (4.11), namely
the VFT equation. The full line represents the viscosity obtained using
eq. (4.10) below Tc.

For temperatures above the crossover temperature, the viscosity is well de-
scribed by a VFT form,

(4.11) log
η(T)
η(Ts)

= C′− D′

T −T0

where the values of A′ ,B′ C′,D′ and Ta, T0 are reported in Ref. [15].
On the other hand, the value of Tc may be evaluated using the derivative Θ,

given in eq. (4.9), evaluated for the expressions given by eqs. (4.10) and (4.11).
Both values of Θ intersect each other at a temperature T ′

c

ΘT<Tc (T
′
c)=ΘT>Tc (T

′
c)

that is in a very good agreement with the experimental values of Tc.
In Figure 1 one may see the dependence on temperature of the viscosity of OTP,

where for T > Tc , eq. (4.11) is valid, while for T < Tc, the viscosity is given by eq.
(4.10).

Finally, they studied the dependence of the diffusion coefficient in terms of the
viscosity and found that the Stokes-Einstein relationship broke down for T < Tc,
eq. (4.2). In the case of temperature above Tc, the exponent ξ is nearly one. On
the other side, for temperatures below Tc, ξ is less than one. As an example, in
Figure 2, one may see different tracers in OTP and the values of ξ, which are the
values of the slopes of each straight line.
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Figure 2. Diffusion coefficients for tracers in OTP in terms of the vis-
cosity. Experimental values for TTI (�), rubrene (■) and tetracene (N)
[15]. The full, dotted and dashed lines represent respectively the linear
fits for TTI, rubrene and tetracene, respectively, where ξ is the slope in
each case.

5. Strong glasses, the relaxation time or viscosity

Between 1998 and 2000 García-Colín and Dagdug derived a theoretical VFT
equation for the viscosity of strong glasses inspired in a previous works by R.
A. Barrio, R. Kerner, M. Micoulat and G. G. Naumis [16, 2]. In this section we
shall discuss this results using as example the strong glass forming B2O3, [5, 6],
and for covalent networks [7]. The main idea of this work is to take the average
relaxation time (or viscosity) as inversely proportional to the average transition
probability using a Markov chain.

(5.1) Boroxol. Through a Markov chain it is possible to describe the growth pro-
cess of a solid [16]. With this method such process can be described by a matrix
acting on a vector. The matrix components are the probabilities of finding a given
site at the border (rim) of a glass cluster of a certain size. The vector components
represent the probabilities of finding a given site on the rim of such cluster. The
matrix transforms this vector onto a new one after adding one new unit to the
cluster. The transformation of the rim depends on the site on which the new unit
sticks to. Each sticking process has a certain probability of occurring, in this aim
the matrix elements contain the probabilities of transforming each kind of site
into others. The probability factors must include two contributions: (i) The sta-
tistical weight for each process, that is the number of ways leading to the same
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final result, and (ii) the Boltzmann factor taking into account the energy barrier
necessary to form a certain kind of bond.

The elementary unit, dictated by the bond chemistry, is a triangle B(O1/2)3, a
singlet. Two singlets can be connected only using one bond to form a doublet.
The energy cost to form this bonding es E1. After a doublet is produced, two
situations can occur if a new singlet is added: the newly arriving singlet forms
a longer chain (a triplet) or it can close a ring with an energetic cost E2. The
agglomeration process occurs at a given temperature T, at which the individual
bonds reach equilibrium. With this idea in mind one can write the matrix M,
modeling the growth of clusters by a successive application on an arbitrary initial
vector v0. Thus the evolution of the probabilities on the rim after j steps is given
by v j = M jv0. One also can derive an expression for the probability of forming
a ring, P ′

B, before many steps, obtained by counting the proportion of rings that
were formed during the precess.

The final configuration depends only on the eigenvectors of the stochastic ma-
trix. It is easy to prove that a matrix with all the columns normalized to one has at
least one eigenvalue equal to one, while the others can be real, complex or imagi-
nary, depending on the values of the parameters involved. Only eigenvectors with
norm one remain after many successive applications of the stochastic matrix. If
one assumes that M has only one such eigenvalue (λ = 1), with eigenvector e1,
then, in the limit of large j, v j converges to this eigenvector, independently of the
initial condition.

As a consequence, the evolution of the rim attains a stable statistical regime
after successive steps of growth and this regime is governed solely by the statistics
represented by the eigenvector with eigenvalue one. Barrio et al found for the
B2O3 that the eigenvector is given by [2],

(5.1) e1 = 1
84ξ2 +107ξ+25



1+4ξ
24ξ2 +34ξ+9

24ξ2 +34ξ+10
12ξ+15

3ξ(4ξ+3)
2ξ(12ξ+7)

 ,

where,

(5.2) ξ= exp
[ 4E

kB(T −T ′)

]
,

and 4E = E1 −E2. In this model the only free parameter is ξ, the excess free
energy used when closing a ring.

Up to now, the probability of sticking a new unit in the bulk at any tempera-
ture T is taken to be proportional to exp(−E i/kBT), where E i is the energy cost of
sticking a unit in the i form at temperature T. To generalize this results we use
the fact that below Tg the glass system is unable to displace any unit to stick in to
the bulk, and because of that a temperature T ′ is introduced such that the proba-
bility to stick a unit to the bulk is equal to zero. Thus, the probability of sticking
anew unit in the bulk may be generalized to exp(−E i/kB(T−T ′)). To identify T ′ as
a physical property of the system, the relaxation time (or viscosity) for the growth
of the system is calculated as inversely proportional to the probability of forming
a ring, P ′

B, before many steps, obtained by counting the proportion of rings that
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were formed during the process.

(5.3) τ∝ 1/P(ξ).

Particularly for the B2O3 the probability of forming a ring when passing form
the jth layer to the ( j +1)th one, is simply given by counting the proportion of
rings that were formed between the step j and the step j+1. If it is calculated for
a large number of steps of growth, P ′

B can be replaced by its limiting value which
according to Barrio et al for B2O3, from equation (5.1), is given by [2],

(5.4) P ′
B = 24ξ2 +16ξ

84ξ2 +107ξ+25
.

As our main hypothesis we take the transition probability as the probability of
forming a ring for the B2O3.

Taking the derivatives dn log x/dxn, and d log x/d(1/T), for n = 1,2 of Eq. (5.4)
where x = τ, we have,

(5.5)
[ d lnP ′

B
dT

]− 1
2 = (T −T0)

[E2 −E1

kB

]− 1
2 L

− 1
2

B2O3
,

(5.6)
[ d lnP ′

B

dT−1

]− 1
2 =

(
1− T

T0

)[E2 −E1

kB

]− 1
2 L

− 1
2

B2O3
,

where,

(5.7) LB2O3 ≡
48ξ2 +16ξ
24ξ2 +16ξ

− 168ξ2 +107ξ
84ξ2 +107ξ+25

.

Taking typical values fort he activation energy as quoted in reference [24], we
know that for τ¿ 1 and LB2O3 ≈ 1, the temperature dependence of LB2O3 can be
neglected so that Eqs. (5.5) and (5.6) can be written as:

(5.8)
[ d lnP ′

B
dT

]− 1
2 = (T −T0)

[E2 −E1

kB

]− 1
2 ,

(5.9)
[ d lnP ′

B

dT−1

]− 1
2 =

(
1− T

T0

)[E2 −E1

kB

]− 1
2 .

From equation (5.4) we can also calculate Θ≡ [d ln(x)/dT][d2 ln(x)/dT2] and if
LB2O3 is a constant we get that,

(5.10) Θ=−(T −T0)/2.

If equations (5.8) - (5.10) are integrated, the method of the temperature derivative,
a theoretical VFT-like equation is obtained, namely,

(5.11) τ= τ0 exp
[ E2 −E1

kB(T −T0)

]
= τ0 exp

[ DT0

kB(T −T0)

]
.

Here T ′ can be identified as T0, because when T0 goes to zero, Eq. (5.11) reproduce
the Arrhenius equation. It is important to note that in this theoretical context,
T0 is interpreted not only as the temperature that yields an infinite relaxation
time, but it also is the temperature at which the probability of sticking a unit into
the bulk of the glass system is zero. The constant τ0 is the preexponential factor
and D is a constant equal to (E2 −E1)/kBT0 which can be determined comparing
it with the experimental VFT equation. The experimental values are given by
D ≈ 35, T0 ≈ Tg/2 and τ(Tg)= 1013P [21]. Using this values the activation energy
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turns out to be E2 −E1 = 18.207 kcalmol−1, which is in excellent agreement with
the experimental values [3].

(5.2) Covalent Network. In this subsection we shall follow the same steps as
the previous subsection to obtain the VFT-like equation for covalent network glass
systems. To this end we shall proceed as follows. First we identify the aver-
age transition probability with the average transition probability of forming some
kind of preferential link, the link that gives the largest probability of occurring
in the glass transition. In fact, only the weakest bonds are broken or rearranged
initially in the glass transition region [9]. Then we take the relaxation time (or
viscosity) as inversely proportional to the form of the relaxation time (or viscos-
ity) as inversely proportional to the transition probability. Finally we apply the
method of the temperature derivative to obtain the form of the relaxation (or vis-
cosity).

To illustrate the method, with out loss of generality, we take as an example
a covalent network system from atoms of valences two and three: the AsxSe1−x
system for example. The main property derived from the experimental relation
between the composition and the transition temperature is: if the Se content in-
creases, the transition temperature decreases [22, 10] and, adding the fact that
x-ray and neutron scattering measurements as well as studies of the infrared and
Raman spectra have shown that the short-range order in the glass-forming sys-
tem AsxSe1−x is given by chain-like connected Se atoms and the structural units
AsSe3/2 in the given range of composition [18], we consider the transition probabil-
ity to be directly proportional to form SeSe bonds. Further, we are also assuming
that the Se chains determine Tg [18]-[26].

The probability of forming the weakest bond when passing from the jth layer
to the ( j+1)th one is simply given by counting the proportion of Se atoms formed
between the step j and the step j+1 linked by another Se. If for a large number
of steps of growth we calculate the probability of forming the weakest bond, we
find that it is given by [7],

(5.12) PSe−Se =
8(1− x)2

4(1− x)[2(1− x)+3xζ]+9x[2(1− x)+3xµ]
,

where ζ= exp((E1 −E2)/kBT) and µ= exp((E1 −E3)/kBT) and E1, E2, and E3 the
corresponding energy barriers for the energetic unions of Se-Se, Se-As, and As-As,
respectively.

Moreover, since the viscosity is inversely proportional to the average transition
probability, η∝ 1/PSe−Se, taking the derivative d lnη−1/dT, we find that,
(5.13)[ d lnPSe−Se

dT−1

]− 1
2 = (T −T0)

[ 3x
kB

4(1− x)(E2 −E1)ζ+9(E3 −E1)µ
4(1− x)[2(1− x)+3xζ]+9x[2(1− x)+3xµ

]− 1
2 .

Equation (5.13) is a non trivial equation that depends on the activation ener-
gies, and remarkable, predicts theoretically that the viscosity should be a func-
tion of the concentration. Experimentally it is observed that energy differences
involved in equation (5.13) are nearly zero or at most ∼ 10 kcal mol [19]. This re-
sult gives us four situations: |E2−E1|À |E3−E1|, |E2−E1|¿ |E3−E1|, |E2−E1| ≈
|E3 −E1|¿ 1, and |E2 −E1| ≈ |E3 −E1|À 1. We analyze each case individually.
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5.2.1. Case I, |E2 −E1| À |E3 −E1|. With this approximation, ζ→ 0 and µ→ 1,
and equation (5.13) can be written as,

(5.14)
[ d lnPSe−Se

dT−1

]− 1
2 = (T −T0)

[ (E3 −E1)
kB

27x2

8(1− x)2 +9x(x+2)

]− 1
2 .

If equation (5.14) is integrated, a theoretical VFT-like equation is obtained,
namely,

(5.15) η= η0 exp
[ (E3 −E1)

kB(T −T0)
27x2

8(1− x)2 +9x(x+2)

]
= exp

[ D∗T0

(T −T0)

]
.

where the constant η0 is the pre-exponential factor and may be obtained from a
plot of η against 1/T . In this equation, D∗(x) is not a constant but depends on the
concentration:

(5.16) D∗ = 27x2

8(1− x)2 +9x(x+2)
D.

Equation (5.16) predicts that for these systems, fragility (inversely propor-
tional to D) decreases when the concentration x increases, see Figure 3.

5.2.2. Case II, |E2−E1|¿ |E3−E1|. A typical material with these characteristics
of its activation energies is AsxSe1−x , and in this approximation one has ζ→ 1
and µ→ 0, so equation (5.13) can be written as,

(5.17)
[ d lnη−1

dT

]− 1
2 = (T −T0)

[ (E3 −E1)
kB

12x
22x+8

]− 1
2 .

If equation (5.17) is integrated, a theoretical VFT-like equation is obtained, as
in the preceding cases,

(5.18) η= η0 exp
[ (E3 −E1)

kB(T −T0)
3x

x+2

]
= exp

[ D∗T0

(T −T0)

]
and

(5.19) D∗ = 3x
x+8

D.

Equation (5.19) predicts that the largest value for D∗ occurs at x = 1, see Figure
3.

5.2.3. Case III, |E2−E1| ≈ |E3−E1|¿ 1. With this approximation for the energies,
ζ→ 1 and µ→ 1, equation (5.13) can be written as,

(5.20)
[ d lnη−1

dT

]− 1
2 = (T −T0)

[ (E3 −E1)
kB

3x
x+2

]− 1
2 .

If equation (5.17) is integrated, a theoretical VFT-like equation is obtained,

(5.21) η= η0 exp
[ (E3 −E1)

kB(T −T0)
12x

22x+8

]
= exp

[ D∗T0

(T −T0)

]
.

and as in the last case this equation depends on the concentration, and now,

(5.22) D∗ = 12x
22x+8

D.

Equation (5.22) predicts that if x increases, the fragility decreases, and as in
equations (5.16) and (5.19) the largest value for D∗ occurs at x = 1, see Figure 3.
Also in Figure 3 one can see that cases I and III are more fragile than case II.
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Figure 3. D∗ as a function of x from equations (5.16).

5.2.4. Case IV, |E2−E1| ≈ |E3−E1|À 1. When ζ→ 0 and µ→ 0 equation (5.17) is
equal to zero and predicts that the viscosity is independent of temperature, which
it is well known is not a physical solution for vitreous systems. In fact, our model
predicts that it is not possible to form an amorphous system with this physical
properties.

6. Contribution of floppy modes to configurational and excess entropy

In this section we shall show how García-Colín, Goldstein and Dagdug, follow-
ing Naumi’s ideas included the floppy modes as a free energy in order to obtain
the configurationl and excess entropy as well as the jump of the heat capacity of
the chalcogenide glasses as function of the coordination number 〈r〉.

As we discussed in the introduction one of the most successful theoretical ef-
forts to deal with the description os structural relaxation processes in supercooled
liquids was developed by Adams and Gibbs [1]. In their theory the mean struc-
tural viscosity η depends both on the temperature and on the configurational en-
tropy Sc of the liquid or glass, namely,

(6.1) η= η0 exp
[ K

TSc

]
where η0 and K are constants, the last is related with the activation energy given
by K =4µs∗c /kB. Here 4µ is the energy barrier per particle opposing a cooperative
rearrangement of the liquid/glass structure, and s∗c is the critical configurational
entropy.

In Eq. (6.1), it has often been assumed that the configurational entropy, Sc,
can be approximated by the difference in entropy between liquid and crystal, the
excess entropy (Sex), but it has been known since Goldstein’a analysis of entropy
change in glasses between Tg and 0 K that this is a rather poor approximation in
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many cases [13]. Experimentalist have tested Eq. (6.1) successfully for temper-
atures not too fa from Tg, using the excess entropy of Kauzmannńs plot in place
of Sc. Even the two quantities are not the same, namely Sex and Sc, Matínez
and Angell pointed out that Eq. (6.1) would be valid for both if a proportionality
constant between Sex and Sc exist [17].

In this work accomplished between 2005 and 2006 we show theoretically that
the proportionality constant, A = Sex/Sc, exist and ranges from 1.5 for strong
liquids, 〈r〉 = 2, to 2 for fragile ones, 〈r〉 = 2.4. To this end, we include the floppy
modes as a free energy to calculate the internal energy. The knowledge of the
internal energy allow us to calculate Sc. Moreover, using Sc in the Adam-Gibbs
equation in the Adam-Gibbs equation we obtain a VFT-like equation. This VFT-
like equation let us to understand why D ia larger for strong glasses than for
fragile ones.

(6.1) The internal energy. We start by evaluating the internal energy of the
liquid melt as the sum of various contributions,

(6.2) Uconf =Unl +Uvib +Utrans +U f .

Using the equipartition theorem

(6.3) Utrans = 3
2

NkBT.

The non-linear, Unl , contribution is due to small deviations from linearity in a
polyatomic molecules, which may generate rotations as well as slight shifts of the
atoms from their equilibrium position and may be express as,

(6.4) Unl = NkBT.

Following Naumis, floppy energy is taken to be proportional to the floppy modes
[1], where these modes are the number of possible independent deformations in
the network, the zero frequency modes. According to the equipartition theorem
the floppy energy is given by,

(6.5) U f = 3 f NkBT

where f = 2−5〈r〉/6 is the fraction of floppy modes available in the network.
Because in a glass system the translational degrees of freedom are frozen, us-

ing Eqs. (6.3)-(6.3) into Eq. (6.2) we can see that the configurational energy is
given by,

(6.6) Uconf =
(
7− 5〈r〉

2
NkBT

)
.

From equation (6.6) we can obtain the configurational specific heat and entropy,
namely,

(6.7) 4Cpc =
(
7− 5〈r〉

2

)
NkB

and,

(6.8) Sc =
(
7− 5〈r〉

2

)
NkB ln

T
TK

where Sc = Sex −Svib.
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Figure 4. Sc/Sex (continues line) calculated by Eqs.(6.8) and (6.12) as
a function of T. Experimental data (circles) taken from Ref. [25]

(6.2) The viscocity. Introducing the configurational entropy given in Eq. (6.8)
into the Adam-Gibbs equation, Eq. (6.1), we are able to write an expression for
the viscosity. To this end we may expand the logarithm in Eq. (6.8) taking into
account that T/TK = x > 1/2,

(6.9) ln x = x−1
x

+ 1
2

( x−1
x

)2 + 1
3

( x−1
x

)3 +·· ·

Keeping only the first term in the expansion and replacing the Kauzmann tem-
perature TK by T0 (equality well known from the experiment [25]), a VFT-like
equation can be obtained,

(6.10) η= η0 exp
[ DT0

T −T0

]
,

where,

(6.11) D = C(
7− 5〈r〉

2 NkBT0

) .

In this last equation, the viscosity depends explicitly on the average coordi-
nation number 〈r〉 and predicts that when 〈r〉 increase D decrease. as it is well
known from the experiment [25].

(6.3) The excess entropy. In order to calculate the excess entropy we simply
add the vibrational contribution to the configurational entropy. We shall perform
this calculation for selenium, one of the best known chalcogenide glass formers.
For Se the experimentalist found that the vibrational contribution is one third of
the excess entropy, Svib = (1/3)Sex [26]. Also for this element, 〈r〉 = 2, using this
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Figure 5. A as a function of 〈r〉 from equation (6.13).

into Eq. (6.8), we found that Sc = 2kB ln(T/T0). Therefore, the vibrational term
can be approximated by Svib = NkB ln(T/T0). Thus, the excess entropy reads,

(6.12) Sex =
(
8− 5〈r〉

2

)
NkB ln

T
TK

.

The predicted ration Sc/Sex, given by Eqs. (6.8) and (6.12), compared with the
experimental data are shown in Figure 4.

From Eqs. (6.8) and (6.12) we find that the ratio A is given by,

(6.13) A = 16−5〈r〉
14−5〈r〉 .

In Figure 5 is shown the dependence of A on the average coordination number.

7. Challenges and open questions in the glass transition

The glassy state is ubiquitous in nature and technology and has been consid-
ered as one of the deepest and most interesting challenges in physics, understand-
ing quantitatively the extraordinary viscous slow-down that accompanies super-
cooling and glass formation is a major scientific interrogation. It is crucial in the
processing of foods, protein function and naturalization, the commercial stabiliza-
tion of labile biochemicals, and the preservation of insect life under extremes of
cold or dehydration. In medicine, polymer-based materials are commonly used
as excipients of poorly water-soluble drugs, the success of the encapsulation, as
well as the physicochemical stability of the products, is often reflected on their
glass transition temperature. Dry products obtained from most of the common
drying processes are predominantly in a glassy amorphous form. Optical fibres
are made of very pure amorphous silica deliberately doped. Window glass, com-
posed mostly of sand, lime and soda, is the best-known example of an engineered
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amorphous solid. Most engineering plastics are amorphoussolids, as are some
metallic glasses and alloys of interest because of their soft magnetism and corro-
sion resistance. Moreover, it is possible that most water in the Universe may be
glassy.

Most of the available information on the experimental data for a supercooled
liquid, that ultimately becomes a glass, still remains in a phenomenological frame-
work. Calorimetric and transport properties are reported for a large number of
glass formers, and physicists try to do their best to reproduce the behavior of these
liquids by means of statistical physics models or computer simulations. Existing
theories seem incapable of explaining the most basic questions. A great challenge
appears ahead in the description of the glass transition: the contribution of math-
ematical models to describe a supercooled liquid, with such a large viscosity, that
it turns out to become a “frozen” liquid characterized by a topological disorder
and a total absence of translational symmetry. The authors invite mathemati-
cians to work in this field to try to find together an insight of a formal theory, both
physically and mathematically valid; to arrive to a new vision to solve this prob-
lem that has been present in nature since the first glass was produced in ancient
civilizations.

8. Complete works of Leopoldo García-Colín Scherer on glass transition

1. L. F. Del Castillo and L. S. García-Colín, Thermodynamic basis for dielectric
relaxation in complex materials, Phys. Rev. B, 33 (1988), 4944–4951.

2. L. F. Del Castillo and L. S. García-Colín, Dielectric relaxation thermodynam-
ics: Comparison with experiment, Phys. Rev. B, 47 (1988), 448–453.

3. L. S. García-Colín, L. F. Del Castillo, and P. Goldstein, Dependencia del re-
lajamiento en materiales amorfos con la temperatura, Proceedings IV Con-
greso Nal. de Polímeros, (1988), 123–129.

4. L. S. García-Colín, La transición vítrea, Contactos, 4 (1989), 39–47.
5. L. S. García-Colín, L. F. Del Castillo, and P. Goldstein, A Theoretical basis

for the Vogel-Fulcher-Tammann equation, Phys. Rev. B, 40 (1989), 7040–
7044.

6. L. S. García-Colín and Rosalío Rodríguez Zepeda, Líquidos exóticos, Colec-
ción la ciencias desde México 104, Capítulo IV, México, (1991), 72–82.

7. P. Goldstein, L. F. Del Castillo, and L. S. García-Colín, Determination of the
isoentropic temperature in the glass transition, Macromolecules, 26 (1993),
655–658.

8. L. S. García-Colín, Avances recientes en la transición vítrea, Memoria del El
Colegio Nacional, (1997), 93–113.

9. L. Dagdug and L. S. García-Colín, Generalization of the Williams-Landel-
Ferry equation, Physica A, 250 (1998), 133–141.

10. L. S. García-Colín, Remarks on the glass transition, Revista Mexicana de
Física, 45 sup. I, (1999), 11–17.

11. L. Dagdug and L. S. García-Colín, Theoretical framework for the Arrhenius
equation in strong glasses, J. Phys.: Condens. Matter, 11 (1999), 2193–2198.

12. L. Dagdug and L. S. García-Colín, Generalization of the stochastic matrix
method and a theoretical framework for the VFT equation in strong glasses,
J. Phys.: Condens. Matter, 11 (1999), 4575–4582.



32 PATRICIA GOLDSTEIN AND LEONARDO DAGDUG

13. P. Goldstein, L. F. Del Castillo, and L. S. García-Colín, On the Stokes-Einstein
relations in glass forming liquids, Physica A, 275 (2000), 325–335.

14. L. S. García-Colín and P. Goldstein, La física de los procesos irreversibles:
tomo 2, El Colegio Nacional, Capítulo XIX, México, (2003), 539-581.

15. L. Dagdug, L. S. García-Colín, and P. Goldstein, An entropy based theory
for the viscosity of strong glasses, Revista Mexicana de Física, 51 (2005),
144–148.

16. L. Dagdug, L. S. García-Colín, and P. Goldstein, Contribution of floppy modes
to configurational and excess entropy in chalcogenide glasses, J. of Non-
Crystaline Solids, 352 (2006), 5399–5402.

Received January 6, 2013

Final version received February 23, 2013

PATRICIA GOLDSTEIN

DEPARTAMENTO DE FÍSICA, FACULTAD DE CIENCIAS,
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO,
CIUDAD UNIVERSITARIA, 04510,
MÉXICO, D. F. MÉXICO

patricia.goldstein@ciencias.unam.mx

LEONARDO DAGDUG

DEPARTAMENTO DE FÍSICA,
UNIVERSIDAD AUTÓNOMA METROPOLITANA-IZTAPALAPA,
09340, MÉXICO, D. F. MÉXICO

dll@xanum.uam.mx

REFERENCES

[1] G. ADAM AND J. H. GIBBS, On the Temperature Dependence of Cooperative Relaxation Properties
in Glass-Forming Liquids, J. Chem. Phys. 43 (1965), 139–146.

[2] R. A. BARRIO, R. KERNER, M. MICOULAT, AND G. G. NAUMIS, Evaluation of the concentration
of boroxol rings in vitreous B2O3 by the stochastic matrix method, J. Phys.: Condens. Matter 9
(1997), 9219–9234.

[3] N. P. BANSAL AND R. H. DOREMUS, Handbook of glass properties, Academic Press, 1986.
[4] L. DAGDUG AND L. S. GARCÍA-COLÍN, Generalization of the Williams-Landel-Ferry equation,

Physica A 250 (1998), 133–141.
[5] L. DAGDUG AND L. S. GARCÍA-COLÍN, Theoretical framework for the Arrhenius equation in

strong glasses, J. Phys.: Condens. Matter 11 (1999), 2193–2198.
[6] L. DAGDUG AND L. S. GARCÍA-COLÍN, Generalization of the stochastic matrix method and a

theoretical framework for the VFT equation in strong glasses, J. Phys.: Condens. Matter 11 (1999),
4575–4582.

[7] L. DAGDUG, A theoretical framework for the Vogel-Fulcher-Tammann equation for covalent net-
work glasses derived by the stochastic matrix method, J. Phys.: Condens. Matter 12 (2000), 9573–
9589.

[8] S. R. ELLIOTT, Physics of amorphous materials (2nd edition), Longman, Scientific & Technical,
New York, 1990.

[9] A. FELTZ, Amorphous Inorganic Materials and Glasess, New York VCH, 1993.
[10] A. FELTZ, H. AUST, AND A. BLAYER, Glass formation and properties of chalcogenide systems

XXVI: Permittivity and the structure of glasses AsxSe1 − x and GexSe11 − x , J. Non-Cryst. Solids
55 (1983), 179–190.

[11] L. S. GARCÍA-COLÍN, L. F. DEL CASTILLO, AND P. GOLDSTEIN, A theoretical basis for the Vogel-
Fulcher-Tammann equation, Phys. Rev. B 40 (1989), 7040–7044.



CONTRIBUTIONS OF LEOPOLDO GARCÍA-COLÍN SCHERER . . . 33

[12] J. H. GIBBS AND E. A. DI MARZIO, Nature of the glass transition and the glassy state, J. Chem.
Phys. 28 (1958), 373–383.

[13] M. GOLDSTEIN, Liquid water as a lone-pair amorphous semiconductor, J. Chem. Phys. 64 (1976),
1549–1554.

[14] P. GOLDSTEIN, L. F. DEL CASTILLO, AND L. S. GARCÍA-COLÍN, Determination of the isoentropic
temperature in the glass transition, Macromolecules 26 (1993), 655–658.

[15] P. GOLDSTEIN, L. F. DEL CASTILLO, AND L. S. GARCÍA-COLÍN, On the Stokes-Einstein relation
in glass forming liquids, Physica A 275 (2000), 325–335.

[16] R. KERNER, Two simple rules for covalent binary glasses, Physica B 215 (1996), 267–272.
[17] L. M. MARTÍNEZ AND C. A. ANGELL, A thermodynamic connection to the fragility of glass-

forming liquids, Nature 410 (2001), 663–667.
[18] G. G. NAUMIS, Stochastic matrix description of glass transition in ternary chalcogenide systems,

J. Non-Cryst. Solids 231 (1998), 111–119.
[19] G. G. NAUMIS AND R. KERNER, Modelling of growth and agglomeration processes leading to

various non-crystalline materials, J. Non-Cryst. Solids 232-234 (1998), 600–606.
[20] W. M. SASLOW, Scenario for the Vogel-Fulcher law, Phys. Rev. B 37 (1988), 676–678.
[21] D. SIDEBOTTOM, R. BERGMAN, L. BÖRJESSON, AND L. M. TORELL, Two-Step Relaxation Decay

in a Strong Glassformer, Phys. Rev. Lett. 71 (1993), 2260–2263.
[22] F. STICKEL, E. W. FISCHER, AND R. RICHTER, Dynamics of glass-forming liquids. I.

Temperature-derivative analysis of dielectric relaxation data, J. Chem. Phys. 102 (1995), 6251–
6257.

[23] F. STICKEL, E. W. FISCHER, AND R. RICHERT, Dynamics of glass forming liquids. I. Time deriv-
ative analysis of dielectric relaxation data, J. Chem. Phys. 102 (1995), 6251–6257.

[24] F. STICKEL, E. W. FISCHER, AND R. RICHTER, Dynamics of glass-forming liquids. II. Detailed
comparison of dielectric relaxation, dc-conductivity, and viscosity data, J. Chem. Phys. 104 (1996),
2043–2055.

[25] M. TATSUMISAGO, B. L. HALIPAP, J. L. GREEN, S. M. LINDSAY, AND C. A. ANGELL, Fragility
of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox,
Phys. Rev. Lett. 64 (1990), 1549–1542.

[26] L. TICHY AND H. TICHÁ, Covalent bond approach to the glass-transition temperature of chalco-
genide glasses, J. Non-Cryst. Solids 189 (1995), 141–146.

[27] M. L. WILLIAMS, R. F. LANDEL, AND J. D. FERRY, The temperature dependence of relaxation
mechanisms in amorphous polymers and other glass-forming liquids, J. Am. Cer. Soc. 77 (1955),
3701–3707.





Bol. Soc. Mat. Mexicana (3) Vol. 19, 2013

HAMILTONIAN TENSORIAL SPECIAL RELATIVISTIC MECHANICS
OF INTERACTING POINT PARTICLES

In honor of Prof. Leopoldo García-Colín Scherer

E. PIÑA

ABSTRACT. This paper starts with the presentation of a Hamiltonian dynamics
in terms of 4-vectors in Minkowski space which was developed to describe the
dynamics of interacting relativistic point particles through a field. The indepen-
dent parameter (replacing time in the classical theory) is associated to a family of
surfaces corresponding to the Dirac-form of the dynamics. By a canonical param-
eter dependent Lorentz–Poincaré transformation, this Hamiltonian formalism
treats the Lie–Dirac generators for any form of relativistic dynamics as coeffi-
cients of a first degree polynomial in the ten translation and rotation velocities
of the Lorentz–Poincaré transformation. The Currie’s world line conditions are
generalized to any Dirac-form of the dynamics. The formalism is illustrated with
the electromagnetic interaction. The explicit relation between the covariant field
variables and the more usual 3-dimensional Fourier variables associated to the
instant form of the dynamics is exhibited.

Introduction

In the first part of this paper, I solve the mathematical problem of the con-
struction of a Hamiltonian formulation of the relativistic dynamics of interacting
particles in terms of a tensorial notation that is evidently invariant with respect
to Lorentz transformations. A first answer to this problem was published in the
Bulletin de l’Académie Royale de Belgique [1]. The purpose here is to present
those ideas in a more formal way, stressing the challenge solved, although using
traditional physics notation.

The discovery of the Lorentz group and its physical meaning happened with
the birth of the Twentieth Century on the shoulders of Lorentz, Poincaré, Ein-
stein, Minkowski, etc. [2]. The time (multiplied by the velocity of light, c, which,
in this paper, is taken to be the unit of velocity: c = 1) is a fourth coordinate, form-
ing, together with the three coordinates of space, Minkowski’s space-time. The
coordinates of this space are xµ in R4, Greek indices running over 0,1,2,3.

The basic philosophy at first was to find a 4-vector covariant Hamiltonian pro-
viding the equations of motion for particles and fields. For the particles, the non-
interacting case obtains an interaction by means of the replacement of the non-
interacting 4-momentum of particle j, pµj , by the difference pµj − e j A

µ

j (x j) of the
previous 4-vector and the potential 4-vector for the field.
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The inspiration for describing Maxwell’s equations for the electromagnetic field
as a Hamiltonian dynamics was born from considering the Fourier transforma-
tion of the space (not time) coordinates and thinking of the transformed Maxwell
equations in terms of the Fourier transformation of the 4-vector potential. There
comes about an infinite set of harmonic oscillators coupled to the Fourier trans-
formation of the 4-vector current density as a function of the particles’ positions
and velocities. This is easily set as a Hamiltonian formalism, which however has
lost its full 4-vector notation because of the asymmetric roles of position and time.
To recover the symmetry of the four coordinates of the particles, one introduces
an arbitrary parameter for describing the space-time position of any particle, and
one looks for a formal solution of the field equations with some similarity to the
harmonic oscillator model.

Two coordinate systems, one moving with respect to the other at a constant
velocity, transform the four coordinates of a particle by means of a linear Lorentz
transformation that preserves in both frames Maxwell’s electromagnetic theory
[3, 4, 5]. The equations of motion of the particles should be invariant with respect
to the same group.

Denote x̂µ in R4, the transformed coordinates (xµ → x̂µ) by the Lorentz trans-
formation represented by the matrix Lµ

λ
in R4×4,

(0.1) x̂µ =Lµ

λ
xλ

(the Greek indices when repeated are summed from 0 to 3). A Lorentz transfor-
mation is characterized by leaving invariant the metric matrix ηαβ

(0.2) ηαβLα
µL

β
ν = ηµν ,

where ηαβ is the metric tensor, equal to its inverse, denoted by ηαβ

(0.3) ηαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

= ηαβ .

To prove the invariance of the Maxwell theory in a trivial way, it is expressed
in terms of coordinates and 4-vectors (that transform as the coordinates) [5].

(0.4) äAµ(x)= 4πJµ(x) .

ä is the D’Alembertian

(0.5) ä= ηαβ ∂

∂xα
∂

∂xβ
,

Aβ(x) in R4 is the β-component of the 4-vector electromagnetic potential: this is a
4-vector field at the point xµ in space-time. Jµ is the 4-vector current density

(0.6) Jµ(x)=
N∑

j=1
e j

∫ ∞

−∞
dτδ4(x− x j(τ))

dxµj (τ)

dτ
;

where xµj in [(R)4]N is the µ-component of the position of the particle j; e j in
RN is the charge of the same particle; and τ in R is an arbitrary parameter to
define the trajectories of the particles, such that the 0 component of particle j, x0

j ,
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representing the time of this particle, is a monotonic increasing function of τ. The
dot denotes the derivative with respect to the parameter τ.

The differential equations of motion for the particle j (1≤ j ≤N) [5] are

(0.7) m jηαβ
d
dτ

ẋβj
[ηµν ẋµj ẋνj ]

1/2
= e j ẋ

β

j

[
∂Aβ(x j)
∂xα

− ∂Aα(x j)
∂xβ

]
,

where m j, positive, is the mass of the particle j.
The equations for the particles have a Lorentz force in the right hand side

which is a function of the electromagnetic potential. Maxwell’s equations for the
field have as a source term the current density 4-vector that is a function of the
positions of the particles.

However, for Quantum Theory and/or Statistical Mechanics, it is convenient to
derive these equations of motion from a Hamiltonian theory. The first Hamilton-
ian dynamics for relativistic particles [6] was formulated assuming time t as the
independent parameter, instead of the general parameter τ. The 0 component of
a position in space-time and for all the particles is the time

(0.8) x0 = t , x0
j = t (1≤ j ≤ N) .

This Hamiltonian dynamics is formulated in a particular system of coordinates.
The Lorentz invariance is not evident a priori, although it is implicit because
the frame is particular, but otherwise arbitrary. No preferential frame has been
chosen.

One introduces the Fourier expression in 3-space for the 4-vector potential

(0.9) Aβ(r)=
∫

d3k
|k| {Aβ

k exp[−ik ·r]+ A†β
k exp[ik ·r]} ,

where

(0.10) r= (x1, x2, x3)

are the components of the 3-space coordinates, and

(0.11) k= (k1,k2,k3)

are the components of the plane wave vector.
There results a Fourier transformation of the (0.5) form of the field equations.
The field coordinates Aβ

k and A†β
k satisfy a system of non-homogeneous har-

monic oscillator equations, which allows a Hamiltonian formulation with the
Hamiltonian

(0.12) H =
N∑

j=1

{
e jA0(q j)+

√
[p j − e jA(q j)]2 +m2

j

}
−4π2

∫
d3kAλ

k A†
kλ ,

where we use a different notation for the 4-vector potential to stress that it is now
considered a functional of the field Fourier variables

(0.13) Aβ(q j, [A
β

k], [A†β
k ])=

∫
d3k
|k| {Aβ

k exp[−ik ·q j]+ A†β
k exp[ik ·q j]} ,

where the 3-coordinates for the particles are

(0.14) q j = (q1
j ,q

2
j ,q

3
j )
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with its canonical conjugated coordinates

(0.15) p j = (p1
j ,p

2
j ,p

3
j )

and where Aβ

k and A†β
k are the instant form field variables. The Poisson brackets

of these variables are given by

(0.16) [Aµ

k, A†ν
k′ ]=− i

4π2 η
µνδ3(k−k′) ,

(0.17) [Aµ

k, Aν
k′ ]= [A†µ

k , A†ν
k′ ]= 0,

and

(0.18) A(q j)= (A1(q j),A2(q j),A3(q j)) .

The Hamiltonian is one of the ten generators of the Lie algebra of the Lorentz–
Poincaré group. The other nine generators are

(0.19) P= (P1,P2,P3)=
N∑

j=1
p j −4π2

∫
d3k
|k| kAλ

k A†
kλ ,

(0.20) J= (M23, M31, M12)=
N∑

j=1
q j ×p j

−4π2
∫

d3k
|k|

{
A†µ

k

(
k× ∂

∂k

)
Aµ

k +Ak ×A†
k

}
,

and

(0.21) K= (M10, M20, M30)=
N∑

j=1
q j

{
e jA0(q j)+

√
[p j − e jA(q j)]2 +m2

j

}
+

+4π2 i
∫

d3k
|k|

{
A†

kµ|k|
∂

∂q
Aµ

k −Ak A†0
k +A†

k A0
k

}
,

where

(0.22) Ak = (A1
k, A2

k, A3
k) , A†

k = (A†1
k , A†2

k , A†3
k ).

A useful reference for this Hamiltonian formalism, with many additional details
and remarks, is Balescu, Kotera, and Piña [7, 8].

In the first part of the present paper we prove two propositions:

PROPOSITION (0.23). It is possible to construct a Hamiltonian function, as gen-
eralized by Dirac [9, 10], using only tensorial quantities, whose Hamiltonian equa-
tions of motion provide the equations of motion for the particles and for the field,
making evident the covariant character of this Hamiltonian with respect to Lorentz
transformations.

We have used the electromagnetic field only for simplicity, but it is possible to
generalize this theory to the Van Dam–Wigner interaction [11]. The equations
of motion for this system are Lorentz-like equations of motion for the particles
with an action-at-distance Van Dam–Wigner interaction [11]. A particular case
of this interaction is the case of electric charges in the presence of an external
field obeying the Maxwell equations, which are easily written in Minkowski space
with a tensorial notation [5] showing immediately their invariant character for all
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coordinate systems related by Lorentz transformations. As is well known, these
last equations were formulated in terms of action-at-distance equations of motion
in classical papers by Wheeler and Feynman [12, 13]. The Lorentz invariance of
the action-at-distance interaction is equally evident.

It has been assumed that the Van Dam–Wigner equations cannot be written in
terms of a Hamiltonian formalism, and that action-at-a-distance would exclude a
field theory [14]. Both assumptions are shown to be non sequiturs in this paper.
The second proposition is

PROPOSITION (0.24). It is possible to reformulate the Van Dam–Wigner action-
at-a-distance equations of motion [11] as a Hamiltonian theory of particles inter-
acting through a field.

The proof is at the end of the second section.
In the third section is presented a smooth transition from the previous tenso-

rial notation to the canonical formalism where the Lie algebra of the Lorentz–
Poincaré group emerges, establishing the connection between them.

It is possible to take into account the covariant aspect of the relativistic theory
by working with a set of canonical generators for the Lorentz group [7, 8]. The
origin for this other formalism is also due to Dirac [15], who constructed several
sets of generators, relating each set to a constraint on the particle coordinates. He
calls each set “a form” (of dynamics).

This point of view has been adopted by several authors to study various aspects
of relativistic mechanics.

With this formalism, many authors, beginning with Bakamjian–Thomas [16]
and Foldy [17], have constructed generators, depending only on the canonical co-
ordinates for the particles. Currie [18], and Currie, Jordan and Sudarshan [19]
showed that these generators may be consistent with invariant trajectories only
for the non-interacting case.

Balescu, Kotera and Piña [7, 8] worked with Dirac’s instant form of dynamics,
introducing canonical variables for the field. The non-interaction Currie theorem
does not apply for this case, and they developed an interesting formalism for rel-
ativistic statistical mechanics on this basis.

They showed that the Currie world line condition is an essential requirement
to prove that the macroscopic 4-vector current density transforms as a 4-vector
field vis a vis the Lorentz transformation generated by the canonical generators
of the Lorentz–Poincaré group. Their proof uses the fact that the 4-vector current
density obeys the characteristic system of differential equations of 4-vectors with
respect to the Lie parameters, a system which is trivially integrated.

In order to avoid Currie’s non-interaction theorem, we have always used canon-
ical variables for the field. This selection requires renormalization techniques in
order to suppress the singularities in the field. But these difficulties are not fun-
damental ones [20].

These field variables are very useful from the physical point of view, when one
wishes to express in a simple form many of the electromagnetic phenomena such
as radiation, absorption, dispersion, etc.

In the third section by means of a parameter-dependent canonical transforma-
tion one proves the theorem
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THEOREM (0.25). The Lie algebra of the Lorentz group corresponding to a par-
ticular “form” of the dynamics is obtained as the compatibility between the Hamil-
tonian and the Routhian formalisms associated to a parameter dependent Lorentz
transformation.

As a consequence, we prove the proposition

PROPOSITION (0.26). It is possible to generalize Currie’s world-line condition
to an arbitrary “form” of the dynamics.

In the last section, we reconsider the “instant form” to transform explicitly
the tensorial formalism developed in this paper to the more usual formalism pre-
sented in this introductory section.

1. Dirac’s Hamiltonian formulation

This section is devoted to the proof of the first proposition and to the description
of the proof of the second. For this purpose we use the generalized Hamiltonian
dynamics developed by Dirac [9, 10].

Our system will be a collection of particles interacting through a field.
We look for a formal solution of eq. (0.4). Let us introduce the Fourier trans-

formation qµκ of the 4-vector potential

(1.1) Aµ(x)=
∫

d4κ
1√

4π3κακα
qµκ exp[iκβ xβ] .

The formal solution of eq. (0.4) is

(1.2) qµκ =− 1√
4π3κακα

N∑
j=1

e j

∞∫
−∞

dτẋµj (τ)exp[−iκβ xβj (τ)] .

We define the canonical variables for the field, the coordinates

(1.3) yµκ =− 1√
4π3κακα

N∑
j=1

e j

τ∫
−∞

dτẋµj (τ)exp[−iκβ xβj (τ)]

and the canonical momenta

(1.4) pµκ =− 1√
4π3κακα

N∑
j=1

e j

∞∫
τ

dτẋµj (τ)exp[iκβ xβj (τ)] .

They are related to the Fourier transformation of the 4-vector potential by the
expression

(1.5) qµκ = yµκ + pµ−κ .

From definitions (1.3) and (1.4) we obtain the differential equations of motion
for the field variables

(1.6) ẏµκ =− 1√
4π3κακα

N∑
j=1

e j ẋ
µ

j (τ)exp[−iκβ xβj (τ)]

and

(1.7) ṗµκ =
1√

4π3κακα

N∑
j=1

e j ẋ
µ

j (τ)exp[iκβ xβj (τ)] .
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(1.8) Aµ(x)=
∫

d4κ
1√

4π3κακα
{yµκ exp[iκβxβ]+ pµκ exp[−iκβ xβ]} .

We are going to consider Dirac’s formalism [9, 10] introduced to generalize the
Hamiltonian formulation of dynamics; it is particularly useful for the case where
the Lagrangian is a first order homogeneous function of the velocities.

For this situation, the ordinary Hamiltonian is identically equal to zero and
one finds a family of constraints among the canonical variables

(1.9) φn(x, p)= 0 (n = 1,2, . . . ) .

Dirac then introduces the generalized Hamiltonian

(1.10) H =∑
n

vnφn(x, p) ,

where the vn ’s are Lagrange multipliers.
We will work out a formalism of this type for the simple situation in which the

functions φn that determine the constraints of the system satisfy the restriction
that the Poisson bracket between any two of them is equal to zero:

(1.11) [φn,φm]= 0 .

Let us introduce the constraints (one for each particle)

(1.12) φ j = [pαj − e j Aα(x j)]ηαβ[pβj − e j Aβ(x j)]−m2
j = 0 .

Let us prove the first proposition: Dirac’s Hamiltonian now becomes

(1.13) H =
N∑

j=1
v j{pαj − e j Aα(x j)]ηαβ[pβj − e j Aβ(x j)]−m2

j } ,

where Aµ(x) is given explicitly in terms of the canonical field variables as in (1.8).
From Hamilton’s equations associated to the Hamiltonian (1.13), making use of
the constraints (1.12), it is possible to determine the v j as follows.

(1.14) v j = 1
2m j

[ηαβ ẋαj ẋβj ]1/2 .

This means that the Lagrange multipliers v j are proportional to the “velocity”
along the world line of the respective particle, measured in τ-units.

Substituting (1.14) into Hamilton’s equations for the particles and field vari-
ables, we recover the equations of motion (0.7), (1.6) and (1.7) for the particles
and field.

In order to arrive at the field equation (0.4) we must use the boundary condi-
tions

(1.15) lim
τ→−∞ yµκ (τ)= 0

and

(1.16) lim
τ→∞ pµκ(τ)= 0 .

ä
It is interesting to note that the equations of motion are invariant with respect

to a change of parameter τ

(1.17) τ−→ F(τ) .
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This property implies an undetermined character of the equations of motion, as
long as the τ parameter is not fixed by additional restrictions. In the next section
we will introduce a different dynamical approach to give a determinate aspect to
the equations of motion.

The following gives a sketch of the proof of the second proposition. It is based
on the particular case of the electromagnetic field. This is formulated as explained
before in terms of field variables that are Fourier transformations of the 4-vector
potential.

As shown by Wheeler and Feynmann [12, 13] the field is replaced by an action-
at-a-distance theory by a formal solution of the Maxwell equations. The Wheeler
and Feynman equations of motion are a particular case of the Van Dam–Wigner
equations [11]. In the place where Van Dam and Wigner introduced an arbitrary
function of ηαβ(xα−yα)(xβ−yβ), Wheeler and Feynmann have the Green’s function
corresponding to the D’Alembertian operator ä defined in (0.5).

On the other hand, in the expressions (1.1) for the 4-vector potential and (1.2)
and (1.3) one finds the square root of the Fourier transform of the Green’s function
of the same operator. To generalise the previous Hamiltonian with field variables
to the Van Dam–Wigner interaction, it is sufficient to replace the square root of
the Fourier transformation of the Green’s function of the Maxwell equations by
the square root of the Fourier transformation of the arbitrary Van Dam–Wigner
function. ä

2. Dirac’s canonical formulation

In this section we want to relate the previous formulation to another one asso-
ciated to Dirac’s ideas.

Dirac set up [15] a canonical representation for the Lorentz–Poincaré group

(2.1) [Pµ,Pν]= 0 ,

(2.2) [Mµν,Pλ]= ηλνPµ−ηλµPν ,

(2.3) [Mαβ, Mµν]= ηανMβµ+ηβµMαν+ηαµMνβ+ηβνMµα .

Starting from a trivial (geometrical) representation for this group, he proposed
constructing a new one, where the ten generators Pν, Mαβ, must obey the Lie alge-
bra restrictions of this group, using as Lie bracket the canonical Poisson bracket.
He also requires the ten generators to have zero Poisson bracket with a particular
function of the coordinates which specifies the “form” of the dynamics. He gave
some solutions, but he did not introduce any specific technique for finding these
solutions. For instance, Dirac considers various forms, some of which are listed
below.
The instant form,

(2.4) q0 = 0 .

The light cone form,

(2.5) qαqα = 0 .

The hyperboloid form

(2.6) qαqα− A2 = 0 .
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Etc.
Our main aim will be to give a clearer physical or geometrical meaning to this

formalism, to obtain it systematically from the Hamiltonian formalism developed
in the previous section, and to give a synthetic method for obtaining the solution
to the Dirac’s problem of constructing a canonical representation of the Lorentz–
Poincaré group, consistent with any “form” of the dynamics.

We consider the τ-dependent Lorentz inhomogeneous transformation obtained
by canonical transformation of the Hamiltonian problem presented in last section.
This canonical transformation will be generated by the function [21]

(2.7) F2 =
N∑

j=1
p jν[Lν

µxµj − zν]+
∫

d4kPkβL
β
µ yµκ exp[ikγzγ] ,

where Lα
µ are the components of the Lorentz transformation matrix; zν is a 4-

vector translation; p jν are the new four momenta of the particles; Pkβ are the
new canonical momenta of the field, and kα is a new wave vector related to the
old one κα by the same Lorentz transformation

(2.8) κα =Lν
αkν .

Both quantities Lα
µ and zν will be assumed to be explicit functions of the pa-

rameter τ used to describe the motion. This gives a τ-dependence for the F2 gen-
erating function.

Let us make use of F2 to generate the canonical transformation.
The new particle coordinates are

(2.9) qνj =Lν
µxµj − zν = ∂F2

∂p jν
,

which is a τ-dependent Lorentz–Poincaré transformation of the coordinates of the
particles.

Analogously, we find the old momenta

(2.10) p jµ = p jνLν
µ =

∂F2

∂xµj
.

The new coordinates for the field are

(2.11) Qβ

k =Lβ
µ yµκ exp[ikγzγ]= δF2

δPkβ

and the old momenta for the field are given by

(2.12) pκµ =PkβL
β
µ exp[ikγzγ]= δF2

δyµκ
.

The new Hamiltonian is found by the prescription [21]

(2.13) H= H+ ∂F2

∂τ
.

In order to calculate this expression we need the result that follows from (2.11)

(2.14)
∂Qβ

k
∂kν

= izνQβ

k +Lβ
µ

∂yµκ
∂κα

Lν
α exp[ikγzγ] .
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The τ-derivative of the Lorentz tensor Lα
µ will be expressed in terms of an

antisymmetric tensor as, similarly, in the theory of a rigid rotating body [22]

(2.15) L̇β
µ =ωβγLγ

µ ,

where ωαβ is an antisymmetric angular velocity tensor.
Let us now calculate the derivative ∂F2/∂τ and afterwards transform it to the

new variables by using equations (2.15), (2.9), (2.11) and (2.14), and the antisym-
metric character of the tensor ωαβ

(2.16)
∂F2

∂τ
=−żν

N∑
j=1

p jν+ żν i
∫

d4kkνPkβQ
β

k+

1
2
ωαβ

∫
d4k

[
(Pα

k Q
β

k −Pβ

kQ
α
k )+Pkγ

(
kα

∂

∂kβ
−kβ

∂

∂kα

)
Qγ

k

]
+

1
2
ωαβ i

∫
d4kPkγ(kαzβ−kβzα)Qγ

k .

In order to get the new Hamiltonian as a function of the new variables, we
transform the 4-vector potential at the position of particle j

(2.17) Aβ(q j)=
∫

d4k
1√

4π3kνkν
{Qβ

k exp[ikγq
γ

j ]+Pβ

k exp[−ikγqγ j]} .

There follows

(2.18) Aβ(q j)=Lβ
µAµ(x j) .

With this result, the old Hamiltonian in the new variables has the same formal
aspect as in the previous formulation

(2.19) H =
N∑

j=1
v j{[p

β

j − e jAβ(q j)]ηβγ[pγj − e jAγ(q j)]−m2
j } .

and the new Hamiltonian is found by adding (2.16) and (2.19) according to (2.13).
The Hamiltonian formulation is completed by taking into account the trans-

formed constraints

(2.20) [pαj − e jAα(q j)]ηαβ[pβj − e jAβ(q j)]−m2
j = 0 .

We are now going to determine the τ-parametrization by imposing a new con-
straint for each particle; these constraints fix the “form” of the dynamics

(2.21) g(qαj )= 0 ,

where g is a point function in the q coordinate space.
This constraint in terms of the old coordinates is

(2.22) g(Lα
µxµj − zα)= 0 ,

which shows more clearly the physical meaning: this constraint fixes the param-
etrization of the particles by the intersection of the world line of each particle with
the τ-dependent family of surfaces

(2.23) g(Lα
µ(τ)xµ− zα(τ))= 0 .

Dirac’s examples [15] are now interpreted as follows. In the instant form,

(2.24) g(qαj )≡ q0
j = 0 ,
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the particles are parametrized by a family of hyperplanes in the original space.
In the light-cone form,

(2.25) g(qαj )≡ qαj ηαβqβ j = 0 ,

the particles are parametrized by a family of light-cones.
Returning to a general constraint, we look now to the preservation, following

the motion, of the constraint

(2.26) 0= dg
dτ

= ∂g
∂qαj

q̇αj = [g,H] .

This equation determines the Lagrange multipliers v j in H as follows

(2.27) v j =
żβ ∂g

∂q
β

j

+ 1
2ωβγ[(qβj + zβ)ηγµ− (qγj + zγ)ηβµ] ∂g

∂q
µ

j

2[pαj − e jAα(q j)]
∂g
∂qαj

.

The Hamiltonian H is now written in Dirac’s form as [20]

(2.28) H=−żνRPν− 1
2
ωαβMαβ ,

where

(2.29) żνR = żα−ωαβzβ =Lα
β

d
dτ

(L β
γ zγ) ,

(2.30) Pν =
N∑
j=i

p jν− i
∫

d4kkνPkβQ
β

k

−
N∑

j=1

∂g
∂qνj

2[pαj − e jAα(q j)]
∂g
∂qαj

{[pβj − e jAβ(q j)]ηβγ[pγj − e jAγ(q j)]−m2
j } ,

and where Mαβ is the antisymmetric tensor

(2.31) Mαβ =
N∑

j=1
(qαj p

β

j −q
β

j p
α
j )+

+
∫

d4k
[
Pβ

kQ
α
k −Pα

k Q
β

k +Pkγ

(
kβ

∂

∂kα
−kα

∂

∂kβ

)
Qγ

k

]

−
N∑

j=1

(qαj η
βγ−q

β

j η
αγ) ∂g

∂q
γ

j

2[pαj − e jAα(q j)]
∂g
∂qαj

{[pµj − e jAµ(q j)]ηµν[pνj − e jAν(q j)]−m2
j } .

It is possible to consider the Hamiltonian H as a Routh function [21], i.e., as a
Lagrangian with respect to the variables zα and Lα

µ.
The Lagrangian equation associated with the zα variable gives us

(2.32) Ṗµ =ωβµPβ ,

which expresses the conservation of the momentum 4-vector

(2.33) Lβ
αPβ .
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Taking into account the Lorentz constraints

(2.34) ηαβLα
µL

β
ν = ηµν ,

the Lagrange equation associated to the variable Lα
β

gives us

(2.35)
d
dτ

(Mµβ+ zµPβ− zβPµ)=

=ωβα(Mµα+ zµPα− zαPµ)−ωµα(Mβα+ zβPα− zαPβ) ,

which represent the conservation of the antisymmetric angular momentum tensor

(2.36) Lµ
αLν

β(Mµν+ zµPν− zνPµ) .

On the other hand, the Hamiltonian equation of motion for Pµ is

(2.37) Ṗµ = [H,Pµ]=−żνR[Pν,Pµ]− 1
2
ωαβ[Mαβ,Pµ] .

Comparing (2.32) and (2.37) it follows that

(2.38) [Pν,Pµ]= 0

and

(2.39) [Mαβ,Pµ]= ηβµPα−ηαµPβ .

Studying the Hamiltonian equation of motion for Mµν and comparing with
(2.35), we also find

(2.40) [Mαβ, Mµν]= ηανMβµ+ηβνMµα+ηαµMνβ+ηβµMαν .

These three equations are the fundamental Lie algebra commutators of the
Lorentz–Poincaré group. We find them as the compatibility conditions between
the Lagrangian and the Hamiltonian formulations associated to the Routhian H
which proves the theorem. ä

Let’s proceed to the proof of Proposition (0.26). The Hamiltonian expression for
the preservation of the g constraint

(2.41) [H, g]= 0 ,

implies the properties

(2.42) [Pν, g]= 0

and

(2.43) [Mαβ, g]= 0 .

In Dirac’s paper [15], these equations are the starting point for the determina-
tion of the ten generators Pν, Mαβ, by an inductive method, different for each con-
straint. In this paper, on the contrary, the general expression for the generators
(2.30) and (2.31) are obtained directly from the tensorial Hamiltonian formulation
by applying a canonical transformation to a moving reference frame and finding
the Lagrange multipliers v j with the aid of the constraints g that determine the
parametrization.

The method here presented has therefore the double advantage of showing
explicitly the connection between the two Dirac formulations and of giving the
general expression for the generators valid for any “form” of the dynamics.
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At first sight, there is a pathological case in Dirac’s paper. The two constraints

(2.44) g(q)= qαqα and g(q)= qαqα− A2

should have equal generators in our formulation; however Dirac gives different
types of generators in the two cases.

The paradox is solved by noting that the generators Pν for Dirac’s hyperboloid
form may be transformed to the other Pγ generators by adding the “strong equa-
tion” (in Dirac’s terminology [9])

(2.45)
{

A2

2pνqν
(pσpσ−m2)

}2

= 0 .

In order to verify directly the two equations (2.42) and (2.43), we found the
interesting results

(2.46) [qµj ,Pγ]=−ηµγ+
ηγν

∂g
∂qνj

[pµj − e jAµ(q j)]

[pαj − e jAα(q j)]
∂g
∂qαj

and

(2.47) [qµj , Mαβ]= (qαj δ
β
γ −q

β

j δ
α
γ )[qµj ,Pγ] .

These expressions are equivalent to Currie’s [18] conditions for the trajectories
of particles, which is the proof of Proposition (0.26). ä

However it is necessary to remark that Currie’s original formulae are related
to Dirac’s instant form studied in the next section, whereas equations (2.46) and
(2.47) are valid for an arbitrary g-constraint. These equations will guarantee
the condition of invariant trajectories of particles, independently of the “form”
selected for the dynamical description.

3. The instant form

We will consider in this section the more usual, relativistic form of dynamics
related to Dirac’s instant form, where the g-constraint is

(3.1) g(qαj )≡ q0
j = 0 .

This “instant form” is specially important because of its physical clearness and
its analogy with the non-relativistic case.

The constraint (3.1) implies therefore

(3.2)
∂g
∂qαj

= δ0
α ,

using Kronecker’s delta.
As a consequence, the generators will take the form

(3.3) Pα =
N∑

j=1
pαj − i

∫
d4kkαPkβQ

β

k (α = 1, 2, 3) ,
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(3.4) P0 =
N∑

j=1
p0

j − i
∫

d4kk0PkβQ
β

k

−
N∑

j=1

1
2[p0

j − e jA0(q j)]
{[pβj − e jAβ(q j)]ηβγ[pγj − e jAγ(q j)]−m2

j } ,

(3.5) Mαβ =
N∑

j=1
(qαj p

β

j −q
β

j p
α
j )

+
∫

d4k
{
Qα

kP
β

k −Qβ

kP
α
k +Pkγ

(
kβ

∂

∂kα
−kα

∂

∂kβ

)
Qγ

k

}
(α 6=β= 1,2,3) ,

(3.6) Mα0 =
N∑

j=1
qαj p

0
j +

∫
d4k

{
Qα

kP
0
k −Q0

kP
α
k +Pkγ

(
k0 ∂

∂kα
−kα

∂

∂k0

)
Qγ

k

}

−
N∑

j=1

qαj

2[p0
j − e jA0(q j)]

{[pβj − e jAβ(q j)]ηβγ[pγj − e jAγ(q j)]−m2
j }

(α= 1,2,3) .

For positive energy, the constraints will take the form

(3.7) p0
j = e jA0(q j)+

√
[p j − e jA(q j)]2 +m2

j ,

where we recovereed the 3-vectorial notation (0.15) and (0.18)
Because q0

j is a constant, according to (3.1), we suppress explicitly the canonical
conjugate variable p0

j by using the constraint equation (3.7).
The generators P0 and Mα0 are modified to the new expressions

(3.8) P0 =
N∑

j=1

{
e jA0(q j)+

√
[p j − e jA(q j)]2 +m2

j

}
− i

∫
d4kk0PkβQ

β

k

and

(3.9) Mα0 =
N∑

j=1
qαj

{
e jA0(q j)+

√
[p j − e jA(q j)]2 +m2

j

}
+

+
∫

d4k
{
Qα

kP
0
k −Q0

kP
α
k +Pkγ

(
k0 ∂

∂kα
−kα

∂

∂k0

)
Qγ

k

}
(α= 1,2,3) .

For this particular choice of g-constraint the equations (2.46) and (2.47) will
give us

[qαj ,Pβ]= δαβ

[qγj , Mαβ]= q
β

j δ
αγ−qαj δ

βγ ,(3.10)

[qγj , Mα0]= qαj [qγj ,P
0]

(α= 1,2,3;β= 1,2,3;γ= 1,2,3) .

These are the conditions obtained by Currie [18], also Currie, Jordan and Su-
darshan [19], for the invariance of the trajectories of particles. These formulae
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are valid only for the formulation that admits the g-constraint (3.1). We previ-
ously found the equations valid for an arbitrary constraint: they are equations
(2.46) and (2.47). Equations (3.10) were obtained by Currie as compatibility con-
ditions between the Lorentz transformation of the Hamiltonian formulation and
the geometrodynamical transformation of the simultaneous positions of the par-
ticles. The method is based on comparing infinitesimal transformations with both
techniques. This calculation was made with the explicit hypothesis that the coor-
dinates of the particles are considered at the same time.

These authors did not remark that these conditions are modified in the case
when a different parametrization is used.

Taking the variables Lα
µ to be constants, so that

(3.11) ωαβ = 0

and choosing the variables zµ defined by the equations

(3.12) z0 =−τ , zα = 0 (α= 1,2,3),

this choice corresponds to a parametrization by the time measured in an arbitrary
frame specified by the constants Lα

µ.
Introducing (3.11) and (3.12) in the Routhian (2.28), we find the remarkable

property

(3.13) H= P0 .

Lastly, we would like to point out the relation between the canonical variables
for the field used in this paper and the formulation employed currently in the
literature [6, 7].

Because of the constraint (3.1), the quantities appearing in the Fourier expres-
sion for the 4-vector potential

(3.14) Aβ(q j)=
∫

d4k
1√

4π3kγkγ
[Qβ

k +Pβ

−k]exp[ikαqαj ] ,

must have a singular character. This remark enables us to diminish the number
of dimensions of the functional dependence of the field variables.

There comes about a first condition: that it is necessary to relate the variables
by the equations

(3.15) Aβ

k =− i
8π2

∫
dk0k

√
4π3(k2

0 −k2)×

×
{
Qβ

k

[
δ(k2

0 −k2)+ i
π

1
k2

0 −k2

]
−Pβ

k

[
δ(k2

0 −k2)− i
π

1
k2

0 −k2

]}
and

(3.16) A†β
−k = i

8π2

∫
dk0k

√
4π3(k2

0 −k2)×

×
{
Qβ

k

[
δ(k2

0 −k2)− i
π

1
k2

0 −k2

]
−Pβ

−k

[
δ(k2

0 −k2)+ i
π

1
k2

0 −k2

]}
.

But these relations are not sufficient to obtain the generators in the new field
variables as in Balescu, Kotera and Piña (0.12)-(0.21) [7, 8].
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We found that in order to be consistent with the restrictions (3.15) and (3.16),
the necessary relations for transforming our generators to the form (0.12), (0.19–
0.21) become possible in two different forms, which were computed solving a very
general linear relation among these variables assuming 32 different terms.

(3.17) Qµ

k =
√

4π3(k2
0 −k2)

k
×

×
{

1
2

A†µ
−kδ+(k0 +k)+ 3

4
Aµ

kδ−(k0 +k)− 1
4

Aµ

kδ+(k0 −k)
}

,

(3.18) Pµ

k =
√

4π3(k2
0 −k2)

k
×

×
{
−1

4
Aµ

−kδ+(k0 +k)+ 1
2

A†µ
k δ+(k0 −k)+ 3

4
Aµ

−kδ−(k0 −k)
}

.

Or

(3.19) Qµ

k =
√

4π3(k2
0 −k2)

k
×

×
{
−1

4
A†µ
−kδ+(k0 +k)+ 1

2
Aµ

kδ+(k0 −k)+ 3
4

A†µ
−kδ−(k0 −k)

}
,

(3.20) Pµ

k =
√

4π3(k2
0 −k2)

k
×

×
{

1
2

Aµ

−kδ+(k0 +k)+ 3
4

A†µ
k δ−(k0 +k)− 1

4
A†µ

k δ+(k0 −k)
}

.

These two possibilities are simply related. The last four equations used the
distributions

(3.21) δ±(x)≡ δ(x)± i
π x

.

4. Conclusions

In this paper there were considered several fundamental aspects of the special
relativistic classical theory of interacting particles.

The first point was to formulate, in Hamiltonian form, equations of motion for
particles and a field in terms of 4-vectors. The Hamiltonian contains an unde-
termined Lagrange multiplier for each particle. This represents an advance with
respect to covariant equations without interaction, and with respect to Hamilton-
ian equations without 4-vectorial covariance and, as well, with respect to integro-
differential equations of motion without a Hamiltonian formulation.

When considering applications to quantum foundations or statistical mechan-
ics, this is a basic point to have settled in order to construct any theory with a
clear connection to the classical realm.

A second task was to find a smooth transition from the former Hamilton-
ian formalism of the particle–field equations of motion to Hamiltonian–Routhian
equations produced when the coordinates of the particles and the field fulfil a
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parameter-dependent Lorentz transformation generated as a canonical transfor-
mation of the phase space variables. The new Hamiltonian is a first degree poly-
nomial in the ten translation and rotation velocities of the parameter-dependent
Lorentz transformation. The coefficients of this polynomial are the ten Dirac in-
finitesimal generators of the Lorentz–Poincaré group by canonical transforma-
tions. Simultaneously, the Dirac-form of the dynamics is imposed as a constraint.
The value of this consists of several facts:
1. One has a technique for constructing the ten generators of the Lie algebra of
the Lorentz–Poincaré group corresponding to any Dirac-form of the dynamics in
terms of the defining constraint. This contrasts with the Dirac method, which
seems to require a different treatment for each form.
2. The proof that these generators obey the Lie algebra equations with structure
constants corresponding to the Lorentz–Poincaré group as a consequence of the
Hamiltonian/Lagrangian equations associated to the Routhian.
3. The generalization to any Dirac-form of the dynamics of the Currie world line
conditions for the trajectories of the particles, which were originally obtained by
Currie for the instant form of parametrization considered in this paper in the
introductory and last sections.
4. The fact that (by construction) these generators are compatible with the Currie
non-interaction theorem, which does not apply to the particle–field interaction.

Finally, one has considered the instant-form of the dynamics. From the rela-
tivistic perspective, this is an obsolete perspective. Nevertheless, many scholars
demand a return to this old perspective in order to fully understand the physics.
Our 4-vector field Fourier transformations should be related to the Fourier trans-
formations in the 3-dimensional plane associated to the instant form of the dy-
namics. The concern was to first see the necessary conditions for allowing the
equality between the corresponding generators. Lastly, one has searched for an
explicit relation between the different Fourier transformations, using the delta
plus and delta minus functions that appear in the quantum field theory.

Compare this formalism for point particles with the similar for finite-size par-
ticles subject to electromagnetic interactions [24], published recently.
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CONCATENATING PERFECT POWERS

FLORIAN LUCA

ABSTRACT. For a positive integer n > 1, we search for two nth powers of positive
integers such that if we concatenate their base b > 1 representations we obtain
again an nth power of an integer.

1. Introduction

For a positive integer b > 1 and positive integers A1, . . . , At, we write A1 . . . At(b)
for the base b concatenation of the base b representations of A1, . . . , At. For a
positive integer m, we write `b(m) for the “length” of m is base b; i.e., the number
of its base b digits. Hence,

A1 . . . At(b) =
t∑

i=1
A ib

∑
j>i `(A j).

In this paper, we let n ≥ 2 be an integer, and we search for two nth powers of
positive integers, say A1 = xn and A2 = yn, where x and y are positive integers,
such that A1 A2(b) = zn. Writing m = `(A2), we get the diophantine equation

(1.1) xnbm + yn = zn and m = `b(yn).

A similar question when the perfect powers are replaced by members of a non-
degenerate binary recurrent sequence of integers (un)n≥0 was studied in [1].

A solution of equation (1.1) is called reduced if b 6 |gcd(yn, zn) and primitive if
gcd(yn, zn) = 1. Clearly, any primitive solution is reduced. It is easy to see that if
(x0, y0, z0) is a solution of equation (1.1), then (x0, y0 · bt, z0 · bt) is also a solution
of equation (1.1) for all t ≥ 1, but none of these solutions is reduced. Hence, any
reduced solution gives rise to infinitely many nonreduced ones. It is for this reason
that in this paper we look only at the reduced solutions of (1.1).

In this paper, we give finiteness results concerning the reduced/primitive solu-
tions of the diophantine equation (1.1).

2. Concatenating squares

In this section, we assume that n = 2.

THEOREM (2.1). When n = 2, equation (1.1) has infinitely many primitive solu-
tions (x, y, z) if and only if b is not of the form p2α with some odd prime number
p and some positive integer α. When b = p2α with some odd prime p and positive
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integer α, then equation (1.1) has infinitely many reduced solutions (x, y, z) when
α> 1 and no reduced solution (x, y, z) when α= 1.

Proof. When b is not a square, the conclusion of Theorem (2.1) follows from the
fact that the Pell equation x2b+1 = z2 has infinitely many positive integer solu-
tions (x, z).

When b = b2
0 is a perfect square, we may relax the requirement that m = `(y2)

in (1.1) to m ≥ `(y2). Indeed, for if we have positive integers x, y, z, n such that

z2 = x2bm + y2 and m ≥ `(y2) := m1,

then
z2 = x2bm + y2 = (xbm−m1

0 )2bm1 + y2,

which gives the solution (x1, y, z) to equation (1.1) with x1 := xbm−m1
0 .

So, for the remaining of this proof, we work under the condition that m ≥ `(y2).
Furthermore, since equation (1.1) is of the form

(2.2) (xbm
0 )2 + y2 = z2,

it follows, by the well–known parametrization of Pythagorean triples, that there
exist positive integers u, v and d, with u and v coprime and of different parities,
such that

(2.3) z = d(u2 +v2) and {xbm
0 , y}= {2duv,d|u2 −v2|}.

Clearly, (x, y, z) is reduced if and only if b 6 |d2, which is equivalent to b0 6 |d.
Assume now that b0 is not a prime power. Then b0 = c0d0 holds with some

coprime positive integers c0 > 1 and d0 > 1. For a fixed positive integer m ≥ 1 let
(u1(m),v1(m)) be the minimal positive integer solution (u1,v1) of the diophantine
equation

(2.4) u1cm
0 −v1dm

0 = 1.

It is well-known and easy to prove that u1(m) ∈ {1, . . . ,dm
0 −1} and also that v1(m) ∈

{1, . . . , cm
0 −1}. Let (u−1(m),v−1(m)) be the minimal positive integer solution (u−1,

v−1) of the equation

(2.5) u−1cm
0 −v−1dm

0 =−1.

Again, u−1(m) ∈ {1, . . . ,dm
0 −1} and v−1(m) ∈ {1, . . . , cm

0 −1}. It is easy to see that
u1(m)+u−1(m)= dm

0 and v1(m)+v−1(m)= cm
0 . Thus,

(u1(m)cm
0 +v1(m)dm

0 )+ (u−1(m)cm
0 +v−1(m)dm

0 )

= (u1(m)+u−1(m))cm
0 + (v1(m)+v−1(m))dm

0

= 2(c0d0)m = 2bm
0 .

It is clear that u1(m)cm
0 + v1(m)dm

0 6= (c0d0)m (otherwise, we would get that dm
0

divides u1(m), which is not possible), therefore there exists ζ ∈ {±1} such that
uζ(m)cm

0 +vζ(m)dm
0 < bm

0 . We take

(2.6) d = 1, u = uζ(m)cm
0 , and v = vζ(m)dm

0

in (2.3). Note that u and v are coprime because of relations (2.4) and (2.5). Note
that with these choices

2duv = 2uζ(m)vζ(m)(c0d0)m = xbm
0 ,
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where x = 2uζ(m)vζ(m), and

y= d|u2 −v2| = |uζ(m)cm
0 −vζ(m)dm

0 ||uζ(m)cm
0 +vζ(m)dm

0 | < bm
0 = bm/2,

therefore y2 < bm, which shows that `(y2) ≤ m. Since m is arbitrary, we have
produced infinitely many solutions of equation (1.1) which are all primitive. This
takes care of the case when b is not of the form p2α for some prime p.

From now on, we suppose that b = p2α for some prime p. Then b0 = pα.
When p = 2, we take m ≥ 2 and

(2.7) d = 1, u = bm
0

2
, and v = bm

0

2
−1

in (2.3). It is clear that u and v are coprime, since they are consecutive. With
these choices, we have

2duv = xbm
0 , where x = bm

0

2
−1,

and
y= d|u2 −v2| = bm

0 −1< bm/2,

therefore y2 < bm, which shows that `(y2) ≤ m. Since m is arbitrary, we have
produced infinitely many solutions of equation (1.1) which are all primitive.

Assume next that p is odd. Let (x, y, z) be a solution of equation (1.1). Assume
that 2duv = xbm

0 = xpα. If gcd(d, p) = 1 (which is the case if the solution is prim-
itive, or if α = 1 and the solution is reduced), then pα|uv, and since u and v are
coprime and p is odd, it follows that either u or v is a multiple of pα. However, in
this case

y= d|u2 −v2| ≥ u+v > pα = bm/2,
therefore y2 > bm, contradicting again the fact that `(y2)≤ m.

Assume now that d|u2 − v2| = xbm
0 = xpα. If gcd(d, p) = 1 (which is again the

case if the solution is primitive, or if α = 1 and the solution is reduced), then
pα|u2−v2, and since u and v are coprime, it follows that either u−v is a multiple of
pα or u+v is a multiple of pα. This easily implies that max{u,v}> pα/2. However,
in this case

y= 2duv ≥ 2max{u,v}> pα = bm/2,
therefore y2 > bm, contradicting the fact that `(y2)≤ m.

The above arguments show, in particular, that there are no reduced solutions
to equation (1.1) when n = 2 and b = p is an odd prime, and that there are no
primitive solutions when b = pα for any odd prime p and any α≥ 1.

It remains to show that if p is odd and α > 1, then there are infinitely many
reduced solutions to equation (1.1). To see this, we take m ≥ 1, and

(2.8) d = p, u = pαm−1, and v = pαm−1 −1,

in (2.3). Note that u and v are coprime because they are consecutive. We get

2duv = 2pαm(pαm−1 −1)= xbm
0 ,

with x = 2(pαm−1 −1), and

y= d|u2 −v2| = p(p2αm−2 − (pαm−1 −1)2)= 2pαm−1 −1< pαm = bm
0 = bm/2,

therefore, y2 < bm, which implies that `(y2) ≤ m. Since m is arbitrary, we have
produced infinitely many solutions of equation (1.1). Clearly, all such solutions
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satisfy gcd(y2, z2) = d2 = p2, and since 1 < p2 < b, we get that these solutions are
not primitive but they are reduced, which is what we wanted.

The proof of Theorem (2.1) is therefore complete.

3. Concatenating nth powers with n > 3

From now on, we assume that n ≥ 3. For every fixed n, and for every solution
(x, y, z) of equation (1.1), let r ∈ {0,1, . . . ,n−1} be such that m ≡ r (mod n). Then
the solution (x, y, z) to equation (1.1) gives rise to the rational point

(X ,Y )= (xb(m−r)/n/z, y/z)

on the curve

(3.1) Cn(b, r) : br X n +Y n = 1.

The curve Cn(b, r) is defined over Q. The following proposition is useful.

PROPOSITION (3.2). Let n ≥ 3 be fixed. If equation (1.1) has infinitely many
reduced solutions (x, y, z), there exists r ∈ {1, . . . ,n−1} such that the curve Cn(b, r)
contains infinitely many rational points.

Proof. If (1.1) has infinitely many reduced solutions, it follows that there exists
r in {0,1, . . . ,n− 1} such that infinitely many of these solutions will have m ≡ r
(mod n). For every prime factor p of b let αp be such that pαp ||b. For every
such solution, there exists p such that the order at which p divides gcd(yn, zn)
is smaller than αp. Since we have finitely many such primes p, and infinitely
many reduced solutions, we may assume that the prime number p with the above
property is the same for infinitely many of them. In particular, the order at which
p divides gcd(y, z) is smaller than αp/n. This shows that the numerator of X =
xb(m−r)/n/z is divisible by p at a power at least (m−r−αp)/n. If m can be arbitrarily
large, the statement of the proposition follows. If m is bounded, then, since y <
bm, it follows that y is bounded. Hence, we may assume that infinitely many
of our solutions have the same fixed value for both y and m. Thus, we get the
equation yn = zn − br(xb(m−r)/n)n, where the only unknowns are now z and x (as
y, n, m, r, b are all fixed). Since n ≥ 3, this last equation is a particular case of a
Thue equation, and it is well–known (see [6]) that such equations can have only
finitely many integer solutions (x, z). This concludes the proof of the proposition.
The fact that we may assume that r 6= 0 comes from the known fact that the
Fermat curve Cn(b,0) has only finitely many (in fact, only three) rational points.

Proposition (3.2) together with Falting’s Theorem (Mordell’s Conjecture) yields
immediately the following result.

COROLLARY (3.3). (i) Let n > 3 be fixed. Then equation (1.1) has only finitely
many reduced solutions (x, y, z).

(ii) Let n = 3. If the Mordell-Weil group of the elliptic curves C3(b, r) is finite for
both r ∈ {1,2}, then equation (1.1) has only finitely many reduced solutions
(x, y, z).
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4. Concatenating cubes

From now on, we concentrate on the case n = 3. We first prove a finiteness
theorem for the number of reduced solutions of equation (1.1) when n = 3 and
b satisfies a certain technical condition. While the next Proposition (4.1) is con-
tained in Theorem (4.11), we include as a good warm up for the proof of the more
general Theorem (4.11).

PROPOSITION (4.1). Assume that b has no prime factor p ≡ 1 (mod 3). Then
(1.1) has only finitely many reduced solutions when n = 3.

Proof. Let (x, y, z) be a reduced solution of equation (1.1). We write d = gcd(y, z),
y1 = y/d, z1 = z/d. We also write d1 = gcd(x,d), x1 = x/d1, and d2 = d/d1. Finally,
let B = bm/d3

2. Then equation (1.1) is

(4.2) x3
1B+ y3

1 = z3
1,

and gcd(x1, y1)= 1. Furthermore, B = bm/d3
2 ≥ bm/d3

1 > y3/d3 = y3
1 .

Let B = B3
0α, where α is cubefree. Since the only prime factors of α are among

the prime factors of b, it follows that there are only finitely many choices for α.
Thus, we may assume that α is fixed. Note further that if α= 1, we then get

(x1B0)3 + y3
1 = z3

1,

which is impossible by the nonexistence of a positive integer solution to Fermat’s
equation for the exponent 3.

We rewrite equation (4.2) as

y3
1 = z3

1 − x3
1B = z3

1 − (x1B0)3α= (z1 − x1B0α
1/3)(z2

1 + x1z1B0α
1/3 + x2

1B2
0α

2/3),

which together with the fact that B ≥ y3
1 gives

(4.3)
∣∣∣∣ z1

x1B0
−α1/3

∣∣∣∣¿ y3
1

x3
1B3

0
¿ y3

1

x3
1B

¿ 1
x3

1
.

We now rewrite equation (4.2) as

x3
1B = (z1 − y1)(z2

1 + y1z1 + y2
1).

It is well–known and easy to prove that the only prime factors of z2
1+ y1z1+ y2

1 are
all congruent to 1 modulo 3, except that the prime 3 might divide y2

1 + y1z1 + z2
1.

In this case, we have 3||(y2
1 + y1z1+ z2

1). Since all prime factors of B are also prime
factors of b, it follows that gcd(B, y2

1 + y1z1 + z2
1)≤ 3. Hence, z1 − y1 À B.

We next observe that B tends to infinity. Indeed, if B is bounded, then so is y1,
and from the properties of solutions of Thue equations (see the proof of Propositon
(3.2)), it follows that we may assume that x1 and z1 are also bounded. Since d1|x1,
it follows that d1 is bounded. Finally, since Bd3

2 = bm and d3
2 is not divisible by

b, it follows that m has to be bounded. Thus, only finitely many solutions can be
obtained this way.

We now distinguish two cases:
Case 1. There exist infinitely many solutions satisfying z1 − y1 > Bx1/2

1 .
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In this case, x3
1B = (z1 − y1)(z2

1 + y1z1 + y2
1)À B3x3/2

1 , and we therefore conclude
that x1 À B4/3 À B4

0. Hence, the inequality

log(x3
1)

log(x1B0)
À 12

5
(1+ o(1))

holds as B →∞, therefore the inequality

log(x3
1)

log(x1B0)
≥ 11

5

holds for all but finitely many of those solutions. Inequality (4.3) now shows that
these solutions fulfill

(4.4)
∣∣∣∣ z1

x1B0
−α1/3

∣∣∣∣¿ 1
x3

1
¿ 1

(x1B0)11/5 ,

but since α1/3 is algebraic, the above inequality can have only finitely many pos-
itive solutions (x1,B0, z1) by Roth’s theorem on rational approximations of alge-
braic numbers. This is a contradiction.

Case 2. There exist infinitely many solutions satisfying z1 − y1 < Bx1/2
1 .

In this case, since x3
1B = (z1− y1)(z2

1+ y1z1+ y2
1), we get x3

1B ¿ x3/2
1 B3, therefore

x1 ¿ B4
0. Note that we also know that z1 − y1 À B, therefore x3

1B À B3, which
gives x1 À B2/3 À B2

0. Thus, B2
0 ¿ x1 ¿ B4

0. Inequality (4.3) now shows that

(4.5)
∣∣∣∣ z1

x1B0
−α1/3

∣∣∣∣¿ 1
x3

1
= 1

x2
1
· 1

x1
¿ 1

(x1B0)2
,

and since B2
0 ¿ x1 ¿ B4

0 and B0 is divisible only by prime factors of b, Ridout’s
extension of Roth’s theorem (see [4]) shows that the above inequality (4.5) can
have only finitely many positive integer solutions (x1,B0, z1), which is again a
contradiction.

Proposition (4.1) follows now from the argument used in the proof of Proposi-
tion (3.2).

The following proposition shows that it is possible to find infinitely many bases
b satisfying the conditions of the above Proposition (4.1) but not the condition (ii)
of Corollary (3.3).

PROPOSITION (4.6). There exist infinitely many primes b ≡ 2 (mod 3) such that
the Mordell-Weil group of C3(b,1) is of positive rank.

Proof. We start by constructing infinitely many primes b ≡ 2 (mod 3) of the form
b = v−u, where u and v are coprime positive integers such that u2 +uv+v2 = w3

for some positive integer w. To construct such numbers, let θ be any primitive
root of order 3 of 1 and note that

u2 +uv+v2 = (u−θv)(u−θ2v).

Thus, if we choose u and v such that u−θv = (r−θs)3 holds with some positive
integers r and s, then the relation u2 + uv+ v2 = w3 is satisfied with the value
w = (r−θs)(r−θ2s)= r2 + rs+ s2. The equation

u−θv = (r−θs)3 = r3 −3θr2s+3θ2rs2 −θ3s3,
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together with the relations θ2 = 1−θ and θ3 = 1, gives

u−vθ = (r3 +3rs2 − s3)−θ(3r2s+3rs2);

hence, u = r3 +3rs2 − s3, and v = 3r2s+3rs2; therefore, v−u =−r3 +3r2s+ s3. Let
f (X ,Y )=−X3+3X2Y +Y 3. Clearly, f (X ,Y ) is a primitive irreducible cubic form.
Let X = 2+3M and Y = 1+3N. It is easy to check that f1(M, N)= f (2+3M,1+3N)
is also an irreducible cubic polynomial which is primitive and such that there
does not exist any prime number p dividing f (m,n) for all positive integers m
and n (in fact, we have that f1(−1,0) = f (−1,1) = 5 and f1(1,0) = f (5,1) =−49 are
coprime). Thus, the conditions of Theorem 1 in [3] are fulfilled, and we conclude
that there exist infinitely many primes b = f1(m,n) = f (2+3m,1+3n). Clearly,
all such primes are congruent to −23 +13 ≡ 2 (mod 3). Note further that u+ v =
r3 +6rs2 +3r2s− s3, and by the well-known results on the Thue-Mahler equation
(see [6]), it follows that for all but finitely many of the primes b = v− u that we
have just constructed, the largest prime factor of u+v exceeds 5.

We now note that bw3 = b(u2+uv+v2)= v3−u3, therefore with x = v/u, y= w/u
we get a rational solution (x, y) to the equation

(4.7) by3 = (x−1)(x2 + x+1)= x3 −1.

Thus, (x, y) = (v/u,w/u) is also a point on C3(b,1). We now check that this point is
of infinite order on C3(b,1). Performing the following substitutions

by3 = (x−1)(x2 + x+1)= (x−1)((x−1)2 +3(x−1)+3);

with y1 = y/(x−1) and x1 = 1/(x−1), we get

by3
1 = 3x2

1 +3x1 +1; multiplying by 3 ·4,

we get
3 ·4 ·by3

1 = (6x1 +3)2 +3; with x2 = 6x1 +3,

we get
3 ·4 ·by3

1 −3= x2
2; multiplying by 32 ·42 ·b2,

we get
(3 ·4 ·by1)3 −24 ·33 ·b2 = (3 ·4 ·bx2)2;

so, we see that the given curve (4.7) is birationaly equivalent to

(4.8) Y 2 = X3 −24 ·33 ·b2,

via the birational transformations

Y = 3 ·4 ·b
(

6
x−1

+3
)

and X = 3 ·4 ·b
( y

x−1

)
.

With b = v−u, the point (x, y)= (v/u,w/u) transforms into the point of coordinates
(X ,Y )= (3·4·w,32 ·4·(u+v)). Clearly, the discriminant of the curve (4.8) is divisible
only by the primes 2, 3 and b. Since u and v are coprime, it follows that b does not
divide u+ v, and we know that u+ v has a prime factor exceeding 5. Hence, Y =
32 ·4 · (u+v) is a multiple of some prime which does not divide the discriminant of
the curve (4.8). Via the Lutz-Nagell Theorem (see page 221 in [7]), we immediately
get that the above point (X ,Y ) is not a point of finite order on the curve (4.8).
Thus, the Mordell-Weil group of C3(b,1) has positive rank.
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EXAMPLE (4.9). Taking b = 10 and r = 1,2, we see from the previous calcula-
tions that C3(b, r) is birationally equivalent to Y 2 = X3 −24 ·33 · (10r)2 for r = 1, 2,
which in turn gives us curves birationally equivalent to

Y 2 = X3 −33 ·52 and Y 2 = X3 −33 ·22 ·54,

if r = 1, or 2, respectively. These curves are 2700 U 2 and 2700 T 2, respectively,
in Cremona’s tables (see [2]), and they both have rank 0 and trivial torsion. This
shows that there is no solution of equation (1.1) when n = 3 in base 10.

We finally prove that equation (1.1) has only finitely many reduced solutions
with n = 3 for all positive integers b > 1. For any pair of rational numbers (X ,Y )
we write h(X ,Y ) for the maximum of the absolute values of the numerators and
denominators of X and Y . For a finite set of prime numbers P and a nonzero
integer n, we write nP for the largest divisor of n composed of primes from P .
The following result is true for all elliptic curves but we shall need it only for our
curves C3(b, r).

THEOREM (4.10). Let ε> 0 be fixed. There are only finitely many rational points
(X ,Y ) ∈ C3(b, r) such that if we write X = x/z with coprime integers x and z, then
|xP | > h(X ,Y )ε.

Proof. This follows immediately from the Theorem on page 101 of [5].

THEOREM (4.11). Let b > 1 be an arbitrary integer. Then equation (1.1) has
only finitely many reduced solutions (x, y, z).

Proof. We fix r ∈ {1,2}. Let (x, y, z) be a reduced solution of (1.1) such that (X ,Y )=
(x/z, y/z) ∈ C3(b, r). We write X = xb(m−r)/3/z = x1/z1 and Y = y/z = y1/z2, with
gcd(x1, z1) = gcd(y1, z2) = 1. We note that z2 | z1 | z2b2, therefore z ³ z1 ³ z2.
Furthermore, bm > y3, therefore X > Y . Since br X3 +Y 3 = 1, we get that X ³ 1.
It now follows that h(X ,Y ) ³ z1. Since (x, y, z) is reduced, there exists a prime
p|b such that if pαp ||b, then pαp does not divide y. In particular, the exponent at
which p appears in gcd(xb(m−r)/3, z) is O(1). Hence, if we write P = {p : p|b}, then
|x1|P À pm/3. By Theorem (4.10), pm/3 ¿ (h(X ,Y ))ε¿ zε1 holds with finitely many
exceptions, where ε > 0 is a small number which we will fix later. Hence, with
finitely many exceptions, we have

y3
1 ≤ y3 ≤ bm ¿ z3ε logb/ log p

1 .

We choose ε such that 3ε logb/ log p < 1/2 holds for all primes p|b. Then y3
1 ¿p

z1.
We now rewrite br X3 +Y 3 = 1 as

br
(

x1

z1

)3
+

(
y1

z2

)3
= 1,

therefore

brx3
1 − z3

1 =
(

z1

z2

)3
y3

1 ¿ y3
1 ¿ z1/2

1 ,

therefore

(4.12)
∣∣∣ x1

z1
− 1

br/3

∣∣∣¿ p
z1

z3
1

¿ 1
z2.5

1
.

Since r = 1,2 and b is not a perfect cube (otherwise there are no points (X ,Y )
with XY 6= 0 on C3(b, r)), it follows that br/3 is irrational. Roth’s theorem once
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again tells us that there are only finitely many positive solutions (x1, z1) to the
inequality (4.12).

5. Heuristics in the case n = 3

The starting point of this section is the following example.

EXAMPLE (5.1). Note that (u,v)= (1,18) satisfies u2+uv+v2 = w3 with the value
w = 7. Furthermore, b = v−u = 17 is a prime congruent to 2 modulo 3 and since
u+ v = 19 is prime, it follows that the Mordell-Weil group of C3(17,1) has positive
rank. Notice also that the above example actually provides a primitive solution of
equation (1.1) namely 7313

(17) = 183.

The above example together with Propositions (4.1) and (4.6) suggest the fol-
lowing question:

QUESTION (5.2). Do there exist infinitely many b > 1 such that no prime fac-
tor of b is congruent to 1 modulo 3 and such that equation (1.1) has at least one
reduced solution (x, y, z)?

That is, by Proposition (4.1), we know that for each such b equation (1.1) has
only finitely many reduced solutions, and Proposition (4.6) showed us how to con-
struct, for infinitely many such b, a “canonical” point on C3(b,1) which is not a
point of finite order in the Mordell-Weil group. Furthermore, the above example
showed us that such a point can actually lead to a primitive solution of equa-
tion (1.1), so the above question can loosely be reformulated by asking whether
or not one should expect to be able to create infinitely many examples of reduced
solutions (x, y, z,b) of (1.1) by this method.

We offer the following conjecture.

CONJECTURE (5.3). There exist infinitely many quintuples of positive integers
(x, y, z,b,m) such that no prime factor of b is congruent to 1 modulo 3 and such
that (x, y, z) is a primitive solution to equation (1.1) with n = 3.

In the remaining of this section, we offer some heuristical support in favor of
Conjecture (5.3). We use the notation from the beginning of the proof of Propo-
sition (4.6). Namely, we let again r and s be coprime positive integers, and put
u = r3 +3rs2 − s3, v = 3rs(r+ s), b = v− u = −r3 +3r2s+ s3. We want that b > 0
and u > 0. With x = w, y = u, z = v, we get x3b+ y3 = z3. In order for this to be
a solution of equation (1.1), we want that b > y3. Assume that 4r > s > 3r. Then
b = (s− r)(s2 + rs+ r2)+3r2s > s3/2, so it suffices that

s3

2
> y3 = (r3 +3rs2 − s3)3 > 0,

which is equivalent to

(5.4)
1

21/3 · 1
s2 >

( r
s

)3 +3
( r

s

)
−1> 0.

Let α ∈ (1/4,1/3) be the only real root of f (x) = x3 +3x−1 and let β and β be the
other two (complex conjugate) roots of this polynomial. Clearly, |β| = α−1/2 < 2.
Since

0=
∣∣∣ r
s
−β

∣∣∣2 = ( r
s
−β

)
·
( r

s
−β

)
<

(
|β|+ r

s

)2 <
(
2+ 1

3

)2
= 49

9
,
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it follows that inequality (5.4) is implied by

(5.5)
9

49 ·21/3 · 1
s2 > r

s
−α> 0.

Since 9/(49 ·21/3)> 1/7, inequality (5.5) is implied by

(5.6)
1

7s2 > r
s
−α> 0.

Let [a0,a1, . . . ] be the continued fraction expansion of α, and for h ≥ 0 put ph/qh
for the sequence of convergents of α. Since both inequalities

(−1)h+1
(

ph

qh
−α

)
> 0,

and ∣∣∣∣ ph

qh
−α

∣∣∣∣< 1
qhqh+1

= 1
qh(ah+1qh + qh−1)

hold for all h ≥ 0, it follows that inequality (5.6) holds whenever r/s = ph/qh with
some odd h such that ah+1 ≥ 7. Let H be the subset of those odd integers. We
conjecture that H contains a positive proportion of all odd integers. It is clear that
if h is large then r/s ∈ (1/4,1/3). Thus, the condition u > 0 holds from the fact that
h is odd, and the condition b > 0 is equivalent to −r3 +3r2s+ s3 > 0, which holds
because r and s are positive and r/s < 1/3. It remains to justify that b can be taken
to be free of primes congruent to 1 modulo 3.

Well, clearly b = f (ph, qh) = −p3
h +3p2

hqh + q3
h. The discriminant of the poly-

nomial h(x) = −x3 +3x2 +1 is −135, so its Galois group is S3. For a prime p let
ρ(p) be the number of roots of h(x) modulo p. A short calculation in S3 via the
Chebotarev density theorem shows that the proportion of primes p for which ρ(p)
equals 0, 1 and 3 is 1/3, 1/2 and 1/6, respectively. Since the cube root of unity does
not belong to the splitting field of h(x), by the Chebotarev density theorem again,
the same proportions hold when p is restricted to primes which are congruent to
1 (mod 3). In particular, for large X , we have∏

p≤X
p≡1 (mod 3)

(
1− ρp

p

)
À 1√

log X
.

By the sieve, given a random pair (r, s) with r/s ∈ (1/4,1/3), the probability that
f (r, s) is not divisible by primes which are congruent to 1 modulo 3 should be
about proportional to 1/

√
log(r+ s). Maybe this suggests that the “probability”

that the number b = f (ph, qh) is free of primes congruent to 1 modulo 3 should be
À 1/(log ph)1/2. Finally, we conjecture that∑

h∈H

1
(log ph)1/2

is divergent (in fact, we conjecture this to be the case when H is any subset of the
positive integers having positive lower density). Such a statement does not follow
from Roth’s Theorem, but it would follow assuming that the continued fraction
of α behaves like the continued fraction of “most real numbers” in the sense of
Khintchine’s theory (the statement about H containing a positive proportion of
odd positive integers h would also hold under such assumption).

We believe that the above heuristics do seem to support Conjecture (5.3).
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ON TOPOLOGICAL RIGIDITY OF PHASE-PORTRAITS IN THE
COMPLEX PLANE

M. TEYMURI GARAKANI, A. MAFRA, AND B. SCÁRDUA

ABSTRACT. We study phase-portraits of autonomous ordinary differential equa-
tions with polynomial coefficients in the complex plane and address the following
question: Is it true that for generic choices of coefficients the equation is completely
determined, up to analytic equivalence, by the topological equivalence class of its
phase-portrait? This question was first considered by Y. Ilyashenko in his land-
mark work [13]. Our results give a contribution to this problem in the framework
of holomorphic foliations in the complex projective plane CP2 under the hypoth-
esis of topological triviality in C2. We also give some description of the non-rigid
foliations with generic singularities as Darboux foliations.

1. Introduction

This paper is mainly concerned with the study of phase-portraits of polyno-
mial autonomous ordinary differential in the complex plane C2. We follow the
viewpoint introduced by Ilyashenko in [13]. Denote by ẋ = P(x, y), ẏ = Q(x, y) the
polynomial ODE that we consider. The basic philosophy/idea is that for generic
choice of P and Q the corresponding ODE is completely determined, up to analytic
equivalence, by its phase-portrait, more precisely, by the topological equivalence
class of it. This can be put in simple words as: Given generic P and Q and other
polynomials P1,Q1 then the ODEs (∗)d y/dx = P/Q and (1), d y/dx = P1/Q1 are an-
alytically equivalent if and only if they are topologically equivalent. In turn, the
topology of plane complex flows is a quite well-developed subject and has been con-
sidered, either in the local and global aspects, by several authors ([2, 4, 10]). Thus
a positive confirmation of the above idea should have important consequences in
the study of the above mentioned ODEs.

Note that so far we place ourselves on the complex plane C2 and we speak of
equivalence instead of conjugacy. The first striking work addressing this prob-
lem is due to Ilyashenko ([13]), where he proves the above philosophy is correct,
but once we consider the equivalence (topological or analytical) being defined on
the (compact) projective plane CP2, and for the case the differential equation (1)
embeds into an analytical deformation of (∗). In order to give a more detailed
description on Ilyashenko’s landmark result we shall introduce some ingredients
(foliations with singularities, holonomy,...) somehow beyond the original context.
As we shall mention below (see the last paragraph of this introduction), our re-
sults are somehow paving the way to the original question, as it will be clear from
our statements.

In this work we will be mainly concerned with holomorphic foliations with sin-
gularities in CP2. Any such foliation is induced by a polynomial vector field (or
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polynomial one-form) on any affine subspace C2 ⊂CP2. Conversely, any nontrivial
polynomial vector field or 1-form on C2 induces a foliation which extends to CP2

as a holomorphic foliation with singularities ([17]). The study of these foliations
is motivated by Hilbert Sixteenth Problem on the number and position of limit cy-
cles of polynomial differential equations in the real plane R2. A major attempt in
this line was started in 1956 by a seminal work of I. Petrovski and E. Landis [21].
They consider the real equation as a differential equation in the complex plane C2,
and the time t is now a complex time parameter. The integral curves of the vector
field are now either singular points which correspond to the common zeros of P
and Q, or complex curves tangent to the vector field which are holomorphically
immersed in C2. This gives rise to a holomorphic foliation by complex curves with
a finite number of singular points. One can easily see that this foliation extends
to the complex projective plane CP2, which is obtained by adding an infinite line
to the plane C2. Conversely any holomorphic foliation by curves on CP2 is given
in an affine space C2 ,→ CP2 by a polynomial vector field X = (P,Q) ∈X(C2) with
gcd(P,Q)= 1.

Although they did not completely solve this problem, they introduced a truly
novel method in geometric theory of ordinary differential equations. In 1978,
Il’yashenko made a first fundamental contribution to the problem. Following the
general idea of Petrovski and Landis, he studied complex polynomial equations in
the plane from a topological standpoint without particular attention to Hilbert’s
question. On what follows we shall describe some of his results and related works.
Let us first introduce some notation as it appears in [14]. Denote by U(n) the set
of all foliations of the complex projective plane given by a polynomial vector field
of degree at most n in a fixed affine neighborhood C2 ⊂ CP2. The equations of
class U(n) with n+1 infinite singular points form, by definition, a subclass U(n)′.
Notice that for algebraic reasons, a foliation in the class U(n) leaves invariant the
infinite line L∞ =CP2 \C2.

(1.1) Ilyashenko’s absolutely rigidity. A striking result of Y. Ilyashenko
states topological rigidity for a residual set of foliations on U(n)′ if n ≥ 2.

Definition (1.1) (cf. [14] Definition 3). A foliation F of class U(n) is said to
be absolutely rigid if there exist a neighborhood of the foliation F in the class
U(n) and a neighborhood of the identity homeomorphism in the space of all self-
homeomorphisms of the complex projective plane such that any foliation in the
former neighborhood that is conjugate to F by a homeomorphism from the latter
neighborhood is affine equivalent to F .

Using this terminology Ilyashenko’s rigidity result in [13] can be stated as:

THEOREM (1.2) ([14]). Any generic foliation of class U(n) is absolutely rigid.

The genericity conditions are stated in Ilyashenko’s original work, but we can
mention that they eliminate a dense subset of equations in a sense that will be
made clear later. We stress that it is required that the foliation leaves invariant
the infinite line. As remarked in [14], Shcherbakov [24, 25] and other authors
have reduced this exceptional set. Scherbakov’s result can be stated as in [14] as
follows:
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THEOREM (1.3). For n ≥ 2 the space U(n) contains a real algebraic subset Σn
and a nowhere dense real analytic subset Σ′

n of real codimension at least 2 such
that each foliation F in the set U(n) \ (Σn ∪Σ′

n) is absolutely rigid and has dense
leaves in C2. For n ≥ 3 the foliation exhibits only a countable set of homologically
independent complex limit cycles.

Very sharp absolute rigidity results for foliations defined by quadratic vector
fields can be found in [15]. Also, another important reference for rigidity results
is the book [16], where some versions of [15] are proved as well.

(1.2) Deformations and rigidity. Let us change now our point of view. Let M
be a complex surface. By a holomorphic foliation with singularities on M we mean
a pair F = (Fo,sing(F )) where sing(F ) ⊂ M is a discrete subset of M and Fo is a
one-dimensional holomorphic foliation on the open manifold M \ sing(F ) in the
ordinary sense. The set sing(F ) is the singular set of F and by a leaf of F we
shall mean a leaf of the underlying regular foliation Fo. Let Fol(M) denote the
space of holomorphic foliations on M. An analytic deformation of F ∈Fol(M) is an
analytic family {Ft}t∈Y of foliations on M, with parameters on an analytic space
Y , such that there exists a point “0" ∈ Y with F0 =F . Here we will only consider
deformations where Y = D ⊂ C is the unit disk. A topological equivalence (resp.
analytical equivalence) between two foliations F1 and F2 is a homeomorphism
(resp. biholomorphism) φ : M → M, which takes leaves of F1 onto leaves of F2, and
such that φ(sing(F1)) = sing(F2). The deformation {Ft}t∈D is topologically trivial
(resp. analytically trivial) if there exists a continuous map (resp. holomorphic
map) φ : M ×D → M, such that each map φt = φ(., t) : M → M is a topological
equivalence (resp. an analytical equivalence) between Ft and F0 and φ0 = Id.

Let C ⊂Fol(M) be a class of foliations on M, i.e., a subset of Fol(M). A foliation
F0 ∈ C is topologically rigid under deformations in the class C if any topologically
trivial deformation {Ft}t∈D of F0 with Ft ∈ C is analytically trivial.

Let now U ⊂ M be an open subset. We also say that F0 ∈ C is U-topologically
rigid under small deformations in the class C, if any analytic deformation {Ft}t∈D
of F0 with Ft ∈ C, ∀t; which is topologically trivial in the open subset U , is in
fact analytically trivial in M for |t| small enough. If we may take U = M we say
that the foliation is topologically rigid under small deformations in the class C.
Notice that the word small appears to indicate that we may have to restrict the
deformation parameter t to a small disk centered at the origin.

The space Fol(CP2) of foliations with singularities on CP2 can be stratified as

Fol(CP2) =
∞⋃

n=1
Fol(n), where Fol(n) denotes the class of foliations of degree n ≥ 1

(see Section 2). We fix the infinite line L∞ =CP2 \C2 and denote by X(n)⊂Fol(n)
the space of foliations of degree n ∈N which leave invariant L∞.

In this terminology we can re-state Ilyashenko’s result as:

THEOREM (1.4) ([13]). For any n ≥ 2 there exists a residual subset I(n) ⊂X(n)
whose foliations are topologically rigid under deformations in the class X(n). In
particular the foliations in I(n) are absolutely rigid.

A variant of this result is found in [18] and may be written as follows:
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THEOREM (1.5) ([18]). For each n ≥ 2, X(n) contains an open dense subset
R(n) ⊂ X(n) whose foliations are topologically rigid under deformations in the
class X(n).

Again, foliations in the class R(n) are absolutely rigid in the sense of Ilyashen-
ko. We stress the fact that in both theorems above we consider deformations
{Ft}t∈D in the class X(n), that is, Ft leaves invariant L∞,∀t ∈ D; and we assume
topological triviality in CP2. This last hypothesis is slightly relaxed by requiring
topological triviality for the set of separatrices through the singularities at L∞:

Given F ∈X(n) denote by Sep(F ) the (germ of the) set of local separatrices of
F transverse to the singularities of F in L∞. A deformation {Ft}t∈D of F =F0 is
s-trivial if there exists a continuous family of maps φt : Sep(F0)→C2 such that φ0
is the inclusion map and φt is a continuous injection map from Sep(F0) to C2 with
φt(Sep(F0)) = Sep(Ft) ([18]). A foliation F0 ∈ Fol(n) is s-rigid under deformations
in the class X(n) if any s-trivial deformation {Ft}t∈D ⊂ X(n) of F0 is analytically
trivial.

THEOREM (1.6) ([18]). For any n ≥ 2, X(n) contains an open dense subset sR(n)
whose foliations are s-rigid under deformations in the class X(n).

REMARK (1.7). As it is proved in [18], topological triviality in CP2 implies s-
triviality. We shall prove (cf. Proposition (3.13) and Corollary (3.14)) that, under
generic conditions on (the singular set of) the foliation, s-triviality is also a conse-
quence of topological triviality in C2.

Theorem A. Given n ≥ 2 there exists an open dense subset Rig(n) ⊂ X(n) such
that any foliation F in Rig(n) is C2-topologically rigid under small deformations
in the class Fol(n): any analytic deformation {Ft}t∈D of F =F0, with Ft ∈Fol(n),∀t,
which is topologically trivial in C2, must be analytically trivial in CP2 for |t| < ε

small enough.

Theorem A is strongly connected with the absolute rigidity result in Theorem 1
from Ilyashenko’s 2007 paper [13] (see page 63). Nevertheless, Ilyashenko’s result
holds under the hypothesis that the topological conjugacy is of a bounded complex-
ity, which is a notion introduced in this same paper. Theorem 1 in [15] and our
Theorem A above are therefore of different nature.

We shall also mention that Theorem A is similar to local results in [7], in the
sense that in principle, there is no a topological conjugation along an invariant
projective line. In [7] the authors prove a similar topological rigidity, for suitable
deformations of certain germs of holomorphic foliations, that can be reduced with
a single non-dicritical blow-up, and exhibiting non-solvable holonomy group for
the exceptional projective line divisor. Their technique is based on topological
rigidity for groups and germs of holomorphic diffeomorphisms. Thus, our results,
suggest that a global version of [7] (see Corollary 3 page 248) may be at hand.

Now let us recall an important class of foliations, namely Darboux foliations,
which appears in the statement of our next theorem. Let M be a complex manifold
and let f j : M → C be meromorphic functions and λ j ∈ C∗ complex numbers, j =
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1, · · · , r. The meromorphic integrable 1-form

Ω= (
r∏

j=1
f j)

r∑
j=1

λi
d f i

f i

defines a Darboux foliation F on M. The foliation F has f =∏r
j=1 f j as a logarith-

mic first integral.
Our next result hints a description of the complementary class Fol(n)\Rig(n),

i.e., of the class of non-rigid foliations with invariant infinite line and hyperbolic
singularities on this line:

Theorem B. Let F ∈X(n) be a foliation with hyperbolic singularities in the infi-
nite line and irreducible singularities in CP2. Then either F is C2-topologically
rigid for small deformations in the class Fol(n) or F is a Darboux foliation in CP2.

This theorem states some kind of dicotomy: non solvable holonomy of the in-
variant line implies rigidity and solvable holonomy implies a holmorphic integrat-
ing factor or a Darbouxian first integral.

REMARK (1.8). Generic Darboux foliations are non-rigid. Indeed, this is re-
lated to topological non-rigidity of abelian linearizable finitely generated sub-
groups of germs of complex diffeomorphisms in one variable.

In few words, a foliation F ∈X(n) with hyperbolic singularities in the infinite
line and irreducible singularities in C2, belongs to the class Rig(n) if and only if
the holonomy group of the leaf L∞ \ (sing(F )∩L∞) is non-solvable. An isolated
singularity is irreducible if it is defined by a vector field with non-zero eigenvalues
having as quotient a complex number λ ∉Q+ (see Section 2).

REMARK (1.9). No confusion should be made with the notion of irreducible we
use and the notion of irreducible singularity appearing in the resolution of singu-
larities (cf. [26]). The last consists of our non irreducible singularities and saddle-
nodes as well. In this paper no saddle-nodes are considered, so by irreducible we
shall mean non-degenerate and irreducible.

One of the main gains of our results is that we are able to give a description of
the class of non-rigid foliations having the infinite line invariant and generic sin-
gularities in terms of Darboux foliations. Nevertheless, the main point is related
to the motivation mentioned in the first paragraph. Since our deformations are,
a priori, allowed to move the line L∞ which is F0-invariant by hypothesis, and
since we assume topological triviality on C2 (not on CP2) we can this way state
our rigidity result completely in terms of the original ODE d y/dx = P/Q on C2,
proving this way that the mentioned phase-portrait rigidity actually holds for an
open dense class of ODEs and we can restate Theorem A in these terms.

The article is organized according to the following plan. Sections 2 contains
basic material, definitions and standard properties of holomorphic foliations in
the complex projective plane. Section 3 is devoted to two basic results in the proof
of Theorem A. In Section 4 we recall results of several authors ([1], [20], [27])
about dynamics, fixed points and topological rigidity of non-solvable finitely gen-
erated subgroups of germs of complex diffeomorphisms at the origin 0 ∈ C. The
next section is devoted to prove Theorem A. Section 6 is dedicated to the proof
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of Theorem B. Finally, in Section 7 we prove a kind of Noether’s lemma for foli-
ations which assures triviality for analytic integrable deformations under some
local triviality hypothesis and conclude with some conjecture. More precisely, we
have (cf. Theorem (7.1)):

Theorem C. Let {Ft}t∈D be a holomorphic integrable deformation of a foliation
F0 of degree n on CP2. Assume that for each singularity p ∈ sing(F0) the germ
of integrable deformation at p is analytically trivial. Then there exists ε> 0 such
that {Ft}|t|<ε is analytically trivial.

This theorem is comparable to Theorem 5.3 and Corollary 5.7 in [8], where
the problem of giving a criterium for an unfolding of a holomorphic foliation with
singularities to be holomorphically trivial, is originally studied. In the above men-
tioned results in [8], the author reaches similar conclusions, based on the triviality
of a certain first Cohomology group associated to the line bundle that defines the
foliation, with multiplicity one non-degenerate singularities, on a compact com-
plex surface. Thanks to the special geometry of the complex projective spaces,
these conditions are essentially verified in our case, so that our results may be
seen as a particular case of [8].

2. Preliminaries

Let F be a (singular) foliation on CP2 and L ⊂ CP2 be a projective line, which
is not an algebraic solution of F (L \ sing(F ) is not a leaf of F ). We say that
p ∈ L is a tangency point of F with L, if either p ∈ sing(F ) or p ∉ sing(F ) and the
tangent spaces of L and of the leaf of F through p, at p, coincide. We say that L
is invariant by F if ∀p ∈ L\sing(F ), p is a tangency point of F with L. Denote by
T(F ,L), the set of tangency points of F with L. According to [17], if sing(F ) has
codimension ≥ 2 or equivalently the singularities of F are finitely many points in
CP2, then there exists an open, dense and connected subset NI(F ) of the set of
lines in CP2, such that every L ∈ NI(F ) satisfies the following properties:

• L is not invariant by F ,
• T(F ,L) is an algebraic subset of L defined by a polynomial of degree n =

n(F ) in L and this number is independent of L.

The integer n(F ) is called the degree of the foliation F . According to [17], a fo-
liation of degree n in CP2 can be expressed in an affine coordinate system by a
differential equation of the form

(P(x, y)+ xg(x, y))d y− (Q(x, y)+ yg(x, y))dx = 0,

where P, Q and g are polynomials such that:

1. P + xg and Q+ yg are relatively prime,
2. g is homogeneous of degree n,
3. max{deg(P), deg(Q)}≤ n,
4. max{deg(P), deg(Q)}= n if g ≡ 0.

Let Bn+1 be the space of polynomials of degree ≤ n+1 in two variables. Let
V ⊂ Bn+1×Bn+1 be the subspace of pairs of polynomials of the form (p+xg, q+yg),
where P, Q and g are as in (2) and (3) above. Clearly V is a vector subspace of
Bn+1 ×Bn+1. Let P(V ) be the projective space of lines through 0 ∈ V . Since the
differential equations (P+xg)d y−(Q+yg)dx = 0 and λ(P+xg)d y−λ(Q+yg)dx = 0
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define the same foliation in C2, we can identify the set of all foliations of degree n
in CP2 with a subset Fol(n)⊂P(V ). We consider Fol(n) with the topology induced
by the topology of P(V ). Fol(n) is called the space of foliations of degree n in CP2.

Given a foliation F ∈ Fol(M) and an isolated singularity p ∈ sing(F ) we say
that p is non-degenerate if F is represented in local coordinates centered at p
by a holomorphic vector field X such that DX (p) is nonsingular, i.e., X has a
simple zero at p. Let p be a non-degenerate singularity. Let λ1,λ2 denote the
eigenvalues of DX (p). The characteristic numbers of F at p are the quotients
of λ1/λ2,λ2/λ1 of the eigenvalues of DX (p). A non-degenerate singularity p is
irreducible if λ1/λ2 6∈Q+. The singularity is hyperbolic if λ1/λ2 ∈C\R. Hyperbolic
singularities are analytically linearizable.

Using the above terminology we introduce some distinguished subsets of Fol(n)
⊂Fol(CP2). Denote by S(n) the set of foliations in Fol(n) with non-degenerate sin-
gularities and by T (n) the set of degree-n foliations with irreducible singularities.
Denote by A(n) the set of foliations in T (n) that leave invariant the infinite line
and by H(n) the set of foliations in A(n) that have hyperbolic singularities in L∞.

The structure of above sets is described below:

PROPOSITION (2.1) ([17],[18]). X(n) is an analytic subvariety of Fol(n) and also
if n ≥ 2 then:

1. T (n) contains an open dense subset of Fol(n).
2. H(n) contains an open dense subset M1(n) ⊂H(n) such that if F ∈M1(n),

n ≥ 2 then:
(a) L∞ is the only algebraic solution of F .
(b) The holonomy group of the leaf L∞\sing(F ) is non-solvable.

3. M1(n)⊂H(n)⊂A(n) are open dense subsets of X(n).

The next lemma says, roughly speaking, that both the singularities and the
separatrices of a foliation with non-degenerate singularities, move analytically
under analytic deformations of the foliation.

LEMMA (2.2) ([18], Proposition 1). Let Fo ∈S(n). Then #sing(Fo)= n2 +n+1=
N. Moreover if sing(Fo) = {po

1, ..., po
N } where po

i 6= po
j if i 6= j, then there are con-

nected neighborhoods U j 3 p j, pairwise disjoint, and holomorphic maps ϕ j : U ⊂
S(n) → U j, where U 3 Fo is an open neighborhood in F (n), such that for F ∈ U ,
sing(F )∩U j = ϕ j(F ) is a non-degenerate singularity. Moreover, if Fo ∈ T(n) then
the two local separatrices as well as their associated eigenvalues depend analyti-
cally on F . In particular the set S(n) is open in Fol(n).

3. Integrable deformations and rigidity

In this section we state two key results for the proof of Theorem A. The main
notion is the notion of integrable deformation that we introduce now. Let F be
a holomorphic foliation with isolated singularities on a complex surface M. An
integrable deformation of F is a holomorphic foliation F̃ of codimension one on
the total space M×D such that:

1. The singular set of F̃ has codimension greater than 1.
2. F is generically transverse to each slice M× {t} and induces by restriction a

foliation Ft := F̃ |M×{t} with isolated singularities.
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3. F0 =F in M× {0}∼= M.
In few words, an integrable deformation is a deformation {Ft}t∈D which embeds

into an analytic foliation F̃ .

REMARK (3.1). Integrable deformations are also often called unfoldings, which
by their turn have a well-developed theory, mainly related to the study of singu-
larities (called local case). We shall not use this terminology because our study
does not go into this direction, indeed we focus on global properties of the defor-
mations, while assuming the singularities to be already stable (hyperbolic).

The first key result below, derived from arguments in [13], assures analytical
triviality for integrable deformations of foliations in M1(n) provided the infinite
line is invariant for every foliation on the deformation.

THEOREM (3.2). Let {Ft}t∈D, be an integrable deformation in the class Fol(n) of
a foliation F0 =F ∈S(n). Then for |t| < ε small enough, the integrable deformation
is analytically equivalent to the trivial integrable deformation of F .

Proof. Denote by F̃ the foliation on CP2 ×D such that ∀t ∈ D, F̃ |CP2×{t} =Ft, by
π :C3\{0}→CP2 the canonical projection and byΠ : (C3\{0})×D→CP2×D the map
Π(p, t) := (π(p), t). Let also F∗ :=Π∗(F̃ ), be the pull-back foliation on (C3\{0})×D.
Then F∗ extends to a foliation on C3 ×D by a Hartogs type argument.

CLAIM (3.3). We can choose an integrable holomorphic 1-form Ω which defines
F∗ on C3 ×D such that

Ω= A(x, t)dt+
3∑

i=1
B j(x, t)dx j,

where B j is a homogeneous polynomial of degree n+1 in x, A is a homogeneous
polynomial of degree n+2 in x,

∑3
i=1 x jB j(x, t)≡ 0 andΩt :=∑3

i=1 B j(x, t)dx j defines
π∗(Ft) on C3.

proof of Claim (3.3). First we remark that by triviality of Dolbeault and Cech
cohomology groups of C3 ×D, F∗ is given by an integrable holomorphic 1-form,
say, ω in C3 ×D. The restriction ωt := ω|C3×{t} defines F∗

t := π∗(Ft) in C3. Thus
we may write ω = α(x, t)dt+∑3

k=1β
k(x, t)dxk = α(x, t)dt+ωt(x). Since the radial

vector field R is tangent to the leaves of F∗ we have ω◦R = 0 so that ωt ◦R = 0,
i.e.

∑3
k=1 xkβ

k(x, t) = 0. Now we use the Taylor expansion in the variable x =
(x1, x2, x3) of ω around a point (0, t) so that ω=∑+∞

j=νω j where ω j(x, t) :=α j(x, t)dt+∑3
k=1β

k
j (x, t)dxk =α j(x, t)dt+ωt

j and α j, βk
j are holomorphic in (x, t), homogeneous

polynomial of degree j in x, ων 6≡ 0.
Now the main argument in the proof of Claim (3.3) is the following:

LEMMA (3.4). Ω=αν+1dt+ωt
ν defines F∗ in C3 ×D.

Proof of Lemma (3.4). Indeed, ω∧dω= 0⇒ iR(ω∧dω)= iR(ω).dω−ω∧ iR(dω)= 0.
On the other hand, ω∧ iR(dω) = 0 (since iR(ω) = 0) ⇒ iR(dω) = fω for some holo-
morphic function f (Division lemma of Saito [22]). Therefore the Lie derivative of
ω with respect to R is

(3.5) LR(ω)= iR(dω)+d(iR(ω))= fω.
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On the other hand since ω=∑+∞
j=νω j =∑+∞

j=ν(α j(x, t)dt+ωt
j) we obtain

LR(ω)=
+∞∑
j=ν

LR(α j(x, t)dt+ωt
j)

=
+∞∑
j=ν

d
dz

[α j(ezx, t)dt+
3∑

k=1
βk

j (ezx, t)ezdxk]|z=0

(The flow of R is Rz(x, t)= (ezx, t))

=
+∞∑
j=ν

[ jα j(x, t)dt+ ( j+1)ωt
j].(3.6)

Now we write the Taylor expansion also for f in the variable x. f (x, t) =∑+∞
j=0 f j(x, t) where f j(x, t) is holomorphic in (x, t) homogeneous polynomial of de-

gree j in x. We obtain from (1) and (2)
+∞∑
j=ν

jα jdt+ ( j+1)ωt
j = (

+∞∑
k=0

fk)(
+∞∑
l=ν

ωl)

= ∑
j≥ν

∑
l+k= j, l≥ν

fkωl

= ∑
j≥ν

∑
l+k= j, l≥ν

( fkαl dt+ fkω
t
l) and

Then

jα j =
∑

l+k= j, l≥ν
( fkαl)(3.7)

( j+1)ωt
j =

∑
l+k= j,≥ν

( fkω
t
l) ∀ j ≥ ν and(3.8)

Notice that ων 6≡ 0 =⇒ ωt
ν 6≡ 0,∀t with |t| small enough. In particular (3) and (4)

imply f0αν = ναν and f0ω
t
ν = (ν+1)ωt

ν then f0 = ν+1,αν = 0.
An induction argument shows that:
j ≥ ν⇒ (α j+1dt+ωt

j)∧Ω= 0, (Ω :=αν+1dt+ωt
ν)

Finally since the degree of the foliation F = F0 is n we have ν = n+1. This
proves Lemma (3.4).

LEMMA (3.9). There exists a complete holomorphic vector field X on C3×Dε, Dε ⊂
D small subdisc of radius ε > 0, such that X (x, t) = ∂

∂t +
∑3

j=1 F j(x, t) ∂
∂x j

, Ω ◦ X = 0
and F j(x, t) is linear on x.

Proof of Lemma (3.9). We may presentΩ= A(x, t)dt+∑3
j=1 B j(x, t)dx j = A(x, t)dt+

ωt where iR(ωt) = 0, B j is a homogeneous polynomial of degree n+1 in x, A is a
homogeneous polynomial of degree n+2 in x.

At this point we need the following claim:

CLAIM (3.10). ∀t ∈Dε (ε≥ 0 small enough) we have sing(Ft)⊂ {A(., t)= 0}.

Proof of Claim (3.10). Since Ω∧dΩ = 0 we have the coefficients of dt∧dxi ∧dx j
equal to zero, that is:

(3.11) − A(
∂B j

∂xi
− ∂Bi

∂x j
)+B j

∂B j

∂t
−Bi

∂B j

∂t
+Bi

∂A
∂x j

−B j
∂A
∂xi

= 0
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Now given p0 ∈ sing(Ft0 ), (t0 ≈ 0, so that Ft0 ∈ S(n)) we have from (5) that
(Bi(p0, t0) = B j(p0, t0) = 0) and A(p0, t0)( ∂B j

∂xi
(p0, t0)− ∂Bi

∂x j
(p0, t0)). Since Ft0 ∈ T(n)

we have ∂B j
∂xi

(p0, t0) 6= ∂Bi
∂x j

(p0, t0)(i 6= j) and A(p0, t0)= 0.

Using now a natural parametric version of Noether’s lemma we conclude that
there exist F j(x, t) holomorphic in (x, t), homogeneous polynomial of degree 1 =
(n+2)−(n+1) in x, such that A(x, t)=∑3

j=1 F j(x, t)B j(x, t). Now we define X (x, t) :=
1 ∂
∂t −

∑3
j=1 F j(x, t) ∂

∂x j
so that Ω◦ X = A−∑3

j=1 F jB j = 0.
In addition X is complete because each F j is of degree one in x. The flow of X

writes X z(x, t) = (Ψz(x, t), t+ z). Clearly Ψz : C3\{0} −→ C3\{0} defines an analytic
equivalence between F and Fz.

Theorem (3.2) is now proved.

Another important remark is the following:

LEMMA (3.12). Let F , G be foliations with non-degenerate singularities on CP2.
Assume that F and G have same degree n ≥ 2 and are topologically conjugate in
C2. Then L∞ is also G-invariant.

Proof. Let us first recall that for a foliation H ∈ Fol(n) with non-degenerate sin-
gularities in CP2 we have ](sing(H)) = n2 + n+ 1. Moreover, we have H ∈ X(n)
if and only if ](sing(H)) ∩ L∞ = n + 1 ([17]). Thus, ](sing(F ) ∩ C2 = n2 and
]sing(G)= ]sing(F )= n2+n+1. Also we have ]sing(G)∩C2 = ]sing(F )∩C2 = n2, be-
cause of the topological equivalence. Therefore we also have ]sing(G)∩L∞ = n+1.
Since G has degree n this implies that the line L∞ is also G-invariant.

Denote by Sep(F ) and Sep(G) respectively the set of separatrices of F and G in
C2 that are transverse to L∞ at some singular point p ∈ sing(F ). The second key
result is the following:

PROPOSITION (3.13). Let F , G be foliations on CP2 both leaving invariant the
line L∞ and having only hyperbolic singularities on this line. Let φ : C2 →C2 be a
topological equivalence for F |C2 and G|C2 . Then φ takes the separatrix set Sep(F )
onto the separatrix set Sep(G).

Proof. Fix a neighborhood W of L∞ in CP2. Put W∗ = W \ L∞. Because φ is
proper, the image φ(W∗) is of the form V∗ = V \ L∞ for some neighborhood V of
L∞ in CP2. Take a separatrix Γ ∈ Sep(F ) and set Γ∗ = Γ\ (Γ∩L∞). Then, for W
sufficiently small, W ∩Γ∗ is a connected closed analytic subset of a neighborhood
W∗, which is invariant by the foliation F∗ :=F

∣∣
W∗ .

Because φ
∣∣
W∗ : W∗ → V∗ is proper, the image φ(W ∩Γ∗) ⊂ V∗ is a connected

closed subset of V∗. Since φ
∣∣
W∗ : W∗ →V∗ conjugates F∗ to G∗ =G

∣∣
V∗ , the image

φ(W∩Γ∗) is also invariant by G∗. If φ(W∩Γ∗) accumulates on some regular point
p ∈ L∞\sing(G) then, because L∞ is also G∗-invariant, φ(W∩Γ∗) also accumulates
on all points in L∞. In particular, φ(W ∩Γ∗) accumulates on some singularity
q ∈ sing(G) which is hyperbolic by hypothesis. Since φ(W∩Γ∗) accumulates on L∞
it is not contained in a separatrix of G through q and therefore it accumulates on
both separatrices. This contradicts the fact that φ(W ∩Γ∗) is closed in V∗. Thus
we conclude that the only accumulation points of φ(W ∩Γ∗) are singularities of G
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in L∞. This implies that φ(W∩Γ∗) is contained in Sep(G). Because it is connected,
it must correspond to a single separatrix of G.

COROLLARY (3.14). Let F0 ∈ H(n), n ≥ 2. Then any C2-topologically trivial
deformation {Ft}t∈D of F in the class S(n), is a deformation in the class X(n) and
it is also s-trivial if we consider t≈ 0.

Proof. By Lemma (3.12) the deformation is in the class X(n). By Proposition (3.13)
the deformation is is s-trivial for |t| small enough.

REMARK (3.15). Since H(n) is open in Fol(n), any analytic deformation {Ft}t∈D
of a foliation F ∈ S(n) remains in S(n) for |t| small enough. Thus the hypothe-
sis of the above corollary is automatically satisfied for topologically trivial small
deformations.

4. Fixed points and one-parameter pseudogroups

Denote by Diff(C,0) the group of germs of complex diffeomorphisms fixing 0 ∈C,
f (z) = λz+∑

n≥2 anzn; λ 6= 0. Let G ⊂ Diff(C,0) be a finitely generated subgroup
with a set of generators g1, · · · , gr ∈ G defined in a compact disk D̄ = D̄ε. We say
that G has the “Dense Orbits Property" (D.O.P. for short) if there exists a neigh-
borhood 0 ∈V ⊂ D̄ where the pseudo-orbits of G are dense.

In the following we collect the main properties of non-solvable groups of germs.

THEOREM (4.1) ([1],[20], [24, 25]). Suppose G is non-solvable. Then:

1. The basin of attraction of (the pseudo-orbits of) G is an open neighborhood
BG of the origin.

2. Either G has the D.O.P. or there exists an invariant germ of analytic curve
Γ (equivalent to Im(zk) = 0 for some k ∈N) where G has dense pseudo-orbits
and such that G has also dense pseudo-orbits in each component of the com-
plement of Γ.

3. If G contains some f ∈ G with f ′(0) = e2πiλ, λ ∈ C\R and some flat element
h = z+azk+1 + ... 6= Id then G has the D.O.P.

4. G is topologically rigid: given another non-solvable subgroup G′ ⊂ Diff(C,0)
and an orientation preserving topological conjugation φ : BG → BG′ between
G and G′, then φ is holomorphic in a neighborhood of 0.

5. There exists a neighborhood 0 ∈W ⊂ BG where G has a dense set of hyperbolic
fixed points.

Holomorphic deformations in Diff(C,0). Let g ∈ Diff(C,0) be defined in some
open neighborhood 0 ∈ V ⊂ C. A holomorphic (one-parameter) deformation of g is
a map G :Dε→Diff(C,0), (ε> 0) which verifies the four properties:

1. G(0)= g as germs.
2. The Taylor expansion coefficients of G(t) depend holomorphically on t.
3. There is a uniform lower bound R > 0, independent of t ∈Dε, for the radii of

convergence of G(t) and G(t)−1.
4. There is a uniform lower bound C > 0, independent of t ∈Dε, for the module

of the linear coefficient of G(t). In particular, there is a uniform upper bound
for |(G(t)−1)′(0)|, independent of t ∈Dε.
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Given a finitely generated pseudo-group G ⊂ Diff(C,0) with a set of generators
g1, · · · gr ∈ G; a holomorphic (one parameter) deformation of G is given by holo-
morphic deformation of g j, j = 1, · · · , r. We may restrict ourselves to the following
situation:

G t is a one-parameter analytic deformation of G with t ∈ D, G0 = G. We have
g1,t · · · gr,t as a set of generators for G t, all of them defined in a disk D̄δ (uniformly
on t). We will consider dynamical and analytical properties of such deformations.
The results we state below have their proofs reduced to the following case which
is studied in [27].

g1,t(z)= g1(z)+ tzD+1 where D ∈N is fixed,
g2,t(z)= g2(z), · · · , gr,t(z)= gr(z).

For such deformations we have:

THEOREM (4.2) ([24, 25] and [27]). Given a hyperbolic fixed point p ≈ 0 for
a word f = fn ◦ fn−1 ◦ · · · ◦ f1 in G, we consider the corresponding word f t = f =
fn,t ◦ · · · ◦ f1,t in G t. Then f t has a hyperbolic fixed point p(t) given by the implicit
differential equation with initial conditions:

dp(t)
p(t)D+1dt

= f ′t (p(t))
f ′t (p(t))−1

f ′1,t(p(t)), p(0)= p.

In particular p(t) depends analytically in t as well as its multiplier f t
′(p(t)). This

holds for |t| < ε if ε> 0 is small enough.

Let M2(n) ⊂ M1(n) be the set of foliations such that the holonomy group at
L∞ has the D.O.P.

LEMMA (4.3) (Lemma 3, [18]). For all n ≥ 2, M2(n) contains an open and dense
subset Rig(n) of M1(n).

The proof of the existence of the set Rig(n) is essentially as follows: Given a
foliation F ∈M1(n) we define ord(F ) as the minimum order of tangency with the
identity of the flat elements in the holonomy group Hol(F ,L∞). Take M′

1(n) =
{Fo ∈ M1(n);ord(F ) = ord(Fo) for F in a neighborhood of Fo in M1(n)}. Then it
is proved in [18] that M′

1(n) is dense and open in M1(n). Moreover, fixed an
open connected subset V ⊂ M′

1(n) and Fo ∈ V \M2(n) (if it exists), then for a
singularity of Fo the corresponding quotient of eigenvalues λ satisfies λ`−1 ∈ R
where `= ordF0.

LEMMA (4.4). Let F ∈Rig(n), n ≥ 2; then each leaf F 6⊂ L∞ is dense in CP2.

Proof. First we notice that F must accumulate to L∞. Since F is a non-algebraic
leaf it must accumulate to some regular point. Because L∞ is F -invariant the
leaf L must accumulate to every point in L∞. Fix a regular point p ∈ L∞\sing(F ).
Choose a small transverse disk Σt L∞ with Σ⊂V , V is a flow-box neighborhood of
p. We consider the holonomy group G =Hol(F ,L∞,Σ). Then F accumulates to the
origin p ∈Σ and since G has the D.O.P. it follows that F is dense in a neighborhood
of p in Σ. Any other leaf L′ of F , L′ 6= L∞ must have the same property. Using
the continuous dependence of the solutions with respect to the initial conditions
we may conclude that F accumulates any point q ∈ F ′, ∀F ′ 6= L∞. Thus F is dense
in C2 and since L∞ is F -invariant, F is dense in CP2.
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PROPOSITION (4.5). Given F ∈ Rig(n), n ≥ 2, each leaf containing a separatrix
Γ⊂ Sep(F ) of F is dense in CP2 and it accumulates densely on a neighborhood of
the origin for any transverse disk Σt L∞, q ∉ singF .

Proof. Indeed, given a separatrix Γ ⊂ Sep(F ) the leaf L ⊃ Γ is nonalgebraic for
F ∈M1(n). This implies that L\Γ accumulates L∞ and therefore any transverse
disk Σ as above is cut by L. Now it remains to use the density of the pseudo-orbits
of the holonomy group Hol(F ,L∞).

Since the class Rig(n) is open in X(n) we obtain:

LEMMA (4.6) ([24, 25] and [27]). Let F ∈Rig(n) be given with n ≥ 2 and {Ft}t∈D
an analytic deformation in the class X(n) of F =F0. Let p1, · · · , pn+1 ∈ L∞ be the
singularities of F0 in L∞.

1. There exist analytic functions p j(t), t ∈Dε such that
{p1(t), · · · , pn+1(t)}= sing(Ft)∩L∞, p j(0)= p j , j = 1, · · · ,n+1.

Fix q ∈ L∞\sing(F0) and take small simple loops
α j ∈ π1(L∞\sing(F0), q) and a small transverse disk Σt L∞. Then for ε> 0
small we have:

2. The holonomy group G t := Hol(Ft,L∞,Σ) ⊂ Diff(Σ, q) is generated by the ho-
lonomy maps f j,t associated to the loops α j (α j is also a simple loop around
p j(t)).
In particular we obtain

3. {G t}t∈Dε is a one-parameter holomorphic deformation of
G0 =Hol(F0,L∞,Σ).

4. The group G t is non-solvable with the density orbits property, and has a
dense set ηt ⊂Σ× {t} of hyperbolic fixed points around the origin (q, t). More-
over, given any p(0) ∈ η0, p(0) = f0(p(0)), there exists an analytic curve
p(t) ∈ ηt f t(p(t)) = p(t) where f t ∈ G t is the corresponding deformation of
f0.

5. Proof of Theorem A

We use the terminology introduced in the previous sections (compatible with
the one in [18]) and original ideas of [13]. Let therefore {Ft}t∈D be a C2-topologic-
ally trivial analytic deformation in the class Fol(n) of F ∈Rig(n), n ≥ 2. By Corol-
lary (3.14) there exists ε> 0 such that {Ft}t∈Dε is a a s-trivial deformation of F in
the class X(n). Theorem A is then a consequence of the main steps in the proof
of Theorem (1.6) in [18] and of Theorem (3.2) and Corollary (3.14). Indeed, as a
main step in [18] it is proved that an s-trivial deformation of a foliation F ∈Rig(n)
in the class X(n) is analytically trivial for |t| small enough. This, together with
Corollary (3.14), then implies our Theorem A, without the need to use the results
in Section 4. Nevertheless, since the above mentioned fact is not clearly stated in
the mentioned reference, we shall state it here. More precisely, we shall prove the
following proposition:

PROPOSITION (5.1). Let {Ft}t∈D be an analytic deformation in Fol(n) of a folia-
tion F0 ∈ Rig(n), n ≥ 2. If the deformation is topologically trivial in C2, then there
exists ε> 0 such that {Ft}t∈Dε is an integrable deformation of F in CP2.
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Let us prove this proposition. Consider the continuous codimension one com-
plex distribution (with singularities) F̃ on CP2 ×Dε defined as follows:

(i) sing(F̃ )= ⋃
|t|<ε

sing(Ft)× {t}

(ii) The leaves of Ft are the intersections of the leaves of F̃ with CP2 × {t},
∀|t| < ε.

LEMMA (5.2). F̃ defines a codimension one continuous foliation on CP2 ×Dε,
having singular set sing(F̃ ).

Proof. Thanks to the topological triviality in C2, F̃ is a continuous foliation on
C2×Dε. This foliation extends to a continuous foliation on CP2×Dε by adding the
leaf with singularities L∞×Dε (recall that L∞ is invariant for every foliation Ft,
cf. Lemma (3.12)).

REMARK (5.3). We proceed to prove that F̃ is transversely holomorphic. This
together with the fact that F̃ has holomorphic leaves implies that F̃ is a holo-
morphic foliation. Indeed, by an adaptation of the classical Theorem of Osgood
([11]) a continuous foliation which is holomorphic in both directions (tangent and
transverse) is holomorphic.

LEMMA (5.4). F̃ has holomorphic leaves.

Proof. It is enough to prove that the leaves of F̃ are holomorphic close to L∞×Dε.
Given a point p(0) ∈ η0 and f0 ∈ G0 as in Lemma (4.6) above, the curve p(t) and
f t ∈ G t given by (4) of this lemma, we have {p(t), |t| < ε} ⊂ L̃p(0) ∩ (Σ×Dε) where
L̃p(0) is the F̃ -leaf through p(0). On the other hand L̃p(0) is already holomorphic
along the cuts L̃p(0) ∩ (CP2 × {t}) for Lp′(0),t for p(0) = (p′(0),0). This implies that
L̃p(0) is analytic. Since the curves {p(t), |t| < ε} with p(0) ∈ η0 are analytic and
locally dense around {q}×Dε ⊂ Σ×Dε (Lemma (4.6)) it follows that any leaf L̃ of
F̃ is a uniform limit of holomorphic leaves L̃p(0) and it is therefore holomorphic.
Thus F̃ has holomorphic leaves.

Now we study the transverse behavior of F̃ . Fix a point q∞ ∈ L∞ which is not a
singular point for F0. Choose a transverse disk Σq∞ to L∞ with Σq∞ ∩L∞ = {q∞}.
For |t| small enough we have q∞ ∉ sing(Ft) and Σq∞ is transverse to Ft. Denote by
G t the holonomy group Hol(Ft,L∞,Σq∞ ) of the leaf L∞\(L∞∩sing(Ft)) calculated
at the section Σq∞ . Then, from Lemma (4.6) we promptly obtain:

LEMMA (5.5). The holonomy group G t is an analytic deformation of the holo-
nomy group G0.

Using this we can prove:

LEMMA (5.6). F̃ is transversely holomorphic close to CP2 × {0}.

Proof. This is in fact a consequence of the topological rigidity in [20] for non-
solvable groups of Diff(C,0) (Theorem (4.1)). Fix transverse section Σ=Σq∞ trans-
verse to F0 at q = q∞ ∈ L∞ as above. We may assume that Σ ⊂ V where V
is a flow-box neighborhood for F0 with q ∈ V . By Proposition (3.13) the home-
omorphisms φt : C2 → C2 take the separatrices Sep(F0) of F0 onto the set of
separatrices Sep(Ft) of Ft. By Proposition (4.5) the set of separatrices is dense
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in a neighborhood of the infinite line. Fix any p ∈ Σ contained in a separa-
trix p 3 Γ0 ⊂ Sep(F0) of F0 and denote by P(Γ0, p) the local plaque of F0|V
that is contained in Γ0 ∩ V and contains the fixed point p. Put Γt = φt(Γ0)
and consider the map t 7→ p(t) := P(Γt,φt(p))∩ (Σ× {t}). Clearly we may write
p(t)=φt(P(Γ0, p))∩ (Σ× {t}) by choosing Σ and |t| small enough. This map t 7→ p(t)
is holomorphic as a consequence of Lemma (2.2).

Finally we define ht(p) := p(t) obtaining this way an injective map defined in
a dense subset of Σ (F0 has dense separatrices in (Σ, q)), so that by the λ-lemma
for complex mappings, (see [19]), we may extend ht to a map that ht : Σ → Σ.
Moreover, it is clear that if f j,t is a holonomy map as above then we have

ht( f j,0(p)) = f j,t(ht(p)) ,

because f0 and f t fix the separatrices. Therefore, by density we have ht ◦ f j,0 =
f j,t ◦ ht, ∀ j ∈ {1, · · · ,n+ 1} and the mapping ht conjugates the holonomy groups
G t =Hol(Ft,L∞,Σ) and G0. By the topological rigidity theorem ht is holomorphic
which implies that F̃ is transversely holomorphic close to L∞×Dε ([20]) (Notice
that, since ht is close to the identity, it preserves the orientation so that we can
exclude the anti-holomorphic case).

Proof of Proposition (5.1). Lemma (5.6) and the density of Sep(Ft) (Lemmas (4.4)
and (4.6)), for |t| small enough, assures that F̃ is in fact transversely holomorphic
in CP2 ×Dε. Thus, the continuous foliation F̃ is transversely holomorphic and
has holomorphic leaves (Lemma 5.4) it is, by a Osgood-Hartogs’ type argument
(Remark 5.3), a holomorphic foliation in CP2 ×Dε.

End of the proof of Theorem A. Let {F }t∈D be a C2-topologically trivial deforma-
tion of a foliation F ∈ Rig(n), n ≥ 2, in the class Fol(n). By Proposition (5.1) we
know that there is ε> 0 such that {Ft}t∈Dε is an integrable deformation. Now, by
Theorem (3.2) if ε is small enough then the deformation is analytically trivial.

6. Proof of Theorem B

Now we are ready to prove Theorem B.

Proof of Theorem B. Suppose that F ∈X(n), n ≥ 2 is not topologically rigid in the
class Fol(n). Let therefore {Ft}t∈D be a C2-topologically trivial analytic deforma-
tion of F in the class Fol(n), which is not analytically trivial for any |t| < ε.

CLAIM (6.1). The holonomy group Hol(F ,L∞) is solvable.

Assume by contradiction that the holonomy G = Hol(F ,L∞) is a non-solvable
group. We claim that this group has the D.O.P. Indeed, thanks to Theorem (4.1) (3)
it is enough to observe that G contains some element f with linear part of the form
f (0)= exp(2πiλ) where λ ∈C\R and some non-trivial flat element g = z+azk+1+....
The existence of such element f follows from the fact that sing(F )∩L∞ contains
(hyperbolic) singularities of the form xd y−λydx+ ... = 0 where λ ∈ C\R. The
existence of such element g follows from the fact that G is not abelian, therefore
some commutator in G has the desired form. This proves that G in fact has the
D.O.P. Therefore, by the argumentation in Sections 3, 4 and mainly in Section 5 we
conclude that the deformation Ft is s-trivial and integrable for |t| small enough.
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By Theorem (3.2) we conclude that the deformation is analytically trivial for |t|
small enough, a contradiction. This proves Claim (6.1).

Therefore the holonomy group Hol(F ,L∞) is necessarily solvable. This is the
main point. From now on we proceed basically as follows: Hol(F ,L∞) solvable
implies that it is linearizable and then there exists an integrating factor (cf. [3]
or [6]). Indeed, since the singularities of F in the infinite line L∞ are hyperbolic
we conclude from [23] Proposition 5.1 page 185 that F is transversely affine in
a neighborhood of L∞ minus the set of local separatrices Sep(F ). Indeed, given
a polynomial differential equation Pd y−Qdx = 0 that defines F in the affine
space C2 there is (cf. [23] Proposition 1.1 page 172) a meromorphic one-form η

defined in a neighborhood of L∞ minus Sep(F ) such that dη = 0 and dΩ = η∧Ω
for Ω = Pd y−Qdx (in the terminology of [23] this one-form η is adapted to Ω

along L∞). Because the singularities in L∞ are hyperbolic and thanks to the
extension lemma ([23, Lemma 3.2, p. 178]) the one-form η admits a meromorphic
extension to a neighborhood of L∞ in CP2. Applying now Levi’s extension theorem
(see Remark 4.1 page 170 in [23]) we conclude that η extends to CP2 as a closed
meromorphic (rational) one-form. This implies in particular that F admits an
affine transverse structure in the complement of an invariant algebraic set (given
by the invariant part of the polar set of η) in CP2. By Theorem 4.3 page 183 in
[23] we conclude that the foliation F is a Darboux (logarithmic) foliation in the
projective plane. Notice that at this point we need to use the hypothesis that the
singular points in C2 are irreducible.

7. A Noether’s lemma for foliations

In this section we prove Theorem C from the Introduction, which reads as fol-
lows:

THEOREM (7.1) (Noether’s lemma for foliations). Let {Ft}t∈D be a holomorphic
integrable deformation of a foliation F0 of degree n on CP2. Assume that for each
singularity p ∈ sing(F0) the germ of integrable deformation at p is analytically
trivial. Then there exists ε> 0 such that {Ft}|t|<ε is analytically trivial.

Proof. Denote by F̃ the codimension one holomorphic foliation on C×D defined
by F

∣∣
C×{t} =Ft, ∀t ∈ D. Let also π : C3\{0} → CP2 be the canonical projection and

Π : (C3\{0})×D→CP2 ×D the map Π(p, t) := (π(p), t). By Hartogs’ extension theo-
rem the foliation Π∗(F̃ ) originally defined on C3 \{0}×D extends to a holomorphic
foliation on C3×D. Denote by F̃∗ this extension. Since H1(C3×D,O∗)= 1, the well-
known solution of the Cousin problem [12] implies that there exists a holomorphic
integrable 1-form Ω which defines F̃∗.

Ω= A(x, t)dt+
3∑

i=1
B j(x, t)dx j,

where A, B j are holomorphic in (x, t) ∈ C3 ×D, homogeneous polynomial in x of
degree n+ 2, n+ 1;

∑3
i=1 x jB j = 0. The foliation π∗(Ft) extends to C3 and this

extension F∗
t is given by Ωt = 0 for Ωt :=∑3

i=1 B jdx j.

CLAIM (7.2). Given point q ∈ C3 ×Dε, q ∉ {0}×D, there exist a neighborhood
U(q) of q in C3 ×Dε and local holomorphic vector field Xq ∈ X(U(q)) such that
A =Ω◦ Xq in U(q), for ε small enough.
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Proof of Claim (7.2). If q = (x1, t1) with x1 ∉ sing(F0) then x1 ∉ sing(Ft) for |t|
small enough and in particular x1 ∉ sing(Ft1 ). Thus the existence of Xq ∈X(U(q))
is assured in this case. On the other hand if x1 ∈ sing(F0) then we still have the
existence of Xq ∈X(U(q)) because of the local analytical triviality hypothesis for
the integrable deformation at x1.

Using the claim we obtain an open cover {Uα}α∈Q of M := C3\{0}×D with Uα

connected and Xα ∈X(Uα) such that A =Ω ◦ Xα in Uα, ∀α ∈ Q. Let Uα∩Uβ 6=∅
then we put Xαβ := (Xα−Xβ)|Uα∩Uβ

to obtain Xαβ ∈X(Uα∩Uβ) such that Ω◦Xαβ =
0. Take now the rotational vector field

Y = Rot(B1,B2,B3)

= (
∂B3

∂x2
− ∂B2

∂x3
)
∂

∂x1
+ (

∂B1

∂x3
− ∂B3

∂x1
)
∂

∂x2
+ (

∂B2

∂x1
− ∂B1

∂x2
)
∂

∂x3
.

Y ∈X(C3 ×D) and for each t ∈D we have iY (Vol)= dΩt where Vol= dx1 ∧dx2 ∧
dx3 is the volume element of C3 in the x-coordinates. Fixed now q = (x1, t1) ∉
sing(Ωt1 ) then the leaf of F∗

t1
through q is spanned by Y (q) and the radial vector

field R(q), as a consequence of the remark above: actually, we have iR iY (Vol) =
iR(dΩt)= (n+1)Ωt.

Given thus Uαβ :=Uα∩Uβ 6=∅, since Ωt(Xαβ)= 0 we have that Xαβ is tangent
to F∗

t outside the points (x, t) ∈ sing(Ωt) so that we can write Xαβ = gαβR+hαβY
for some holomorphic functions gαβ, hαβ ∈O(Uαβ\sing(Ωt)). Since sing(Ωt) is an
analytic set of codimension ≥ 2, Hartogs extension Theorem [17] implies that gαβ,
hαβ extend holomorphically to Uαβ. Now if Uα∩Uβ∩Uγ 6=∅ then

0= Xαβ+ Xβγ+ Xγα = (gαβ+ gβγ+ gγα)R+ (hαβ+hβγ+hγα)Y

and since R and Y are linearly independent outside sing(Ωt) we obtain: gαβ +
gβγ+ gγα = 0, hαβ+hβγ+hγα = 0.

Thus (gαβ), (hαβ) are additive cocycles in M and by Cartan’s Theorem (for
Cn+1\{0}, n ≥ 2) these cocycles are trivial, that is, ∃gα,hα ∈ O(Uα) such that if
Uα∩Uβ 6= φ then gαβ = gα− gβ , hαβ = hα−hβ in Uα∩Uβ. This gives Xα− Xβ =
Xαβ = gαβR + hαβY = (gαR + hαY ) − (gβR + hβY ) in Uα ∩Uβ 6= φ. Thus, in
Uα∩Uβ 6= φ we obtain Xα− gαR −hαY = Xβ− gβR −hβY and this gives a global
vector field X̃ ∈X(M) such that X̃ |Uα := Xα− gαR−hαY . This vector field extends
holomorphically to C3×D and we have (Ωt◦X̃ )|Uα =Ωt◦Xα−gαΩt◦R−hαΩt◦Y = A
so that Ωt ◦ X̃ = A.

It remains to prove that we may choose X̃ polynomial in the variable x. Indeed,
we write X̃ = ∑∞

k=0 X̃k for the Taylor expansion of X̃ around the origin, in the
variable x.

Then X̃k is holomorphic in (x, t) and homogeneous polynomial of degree k in
the variable x. We have A =Ωt ◦ X̃ = ∑+∞

k=0Ωt(X̃k) and since it is polynomial ho-
mogeneous of degree n+2 in x it follows that k 6= 1 ⇒Ωt(X̃k) = 0 and Ωt(X̃1) = A.
Since X̃1 is linear, the flow of X̃1 gives an analytic trivialization for {Ft}t∈Dε .

REMARK (7.3). Theorem (7.1) can also be proved in the more analytical way
as follows: Denote by F̃ the product foliation on CP2 ×D, that is, F̃

∣∣
CP2×{t} =

Ft,∀t ∈D. Let π : CP2 ×D→D be the projection π(p, t) = t. By the local triviality
hypothesis there exist a family of indexes J, holomorphic vector fields Y j defined
on open subsets U j ⊂ CP2 ×D, such that {U j} j∈J is an open cover of CP2 ×D, Y j
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is tangent to F̃ on U j and is projected by π to the field d
dt . In each nonempty

intersection Ui ∩U j 6= ; Zi j = Yi −Y j is a holomorphic vector field projected by
π into the trivial field (Zi j is vertical) and tangent to F̃ in Ui ∩U j. Therefore
{Zi j,Ui ∩U j} defines a cocycle of the considered cover with values in the sheaf Xv

F̃
of vertical holomorphic vector fields tangent to F̃ . According to Grauert Theorem
of Direct Images [9] the first cohomology group H1(CP2 ×D,Xv

F̃ ) is a OD-module

of finite type and also H1(CP2 ×D,Xv
F̃ )⊗OD

(OD/(z)) = H1(CP2,XFo ) where XFo

is the sheaf over CP2 of tangent holomorphic vector fields, tangent to Fo. The
sheaf XFo is isomorphic to the sheaf of sections of the line bundle associated with
Fo. It is well-known that H1(CP2,XFo ) = 0 so that by Nakayama’s Lemma we
have H1(CP2 ×D,Xv

F̃ ) = 0. It follows that there are vertical vector fields Z j in
the U j tangent to F̃ and such that in each Ui ∩U j 6= ; we have Zi j = Zi −Z j and
therefore Y j −Z j = Yi −Zi. This gives therefore a global holomorphic vector field
Z over CP2 ×D which is tangent to F̃ and projects by π on d

dz . Clearly the flow
maps of Z define an analytical trivialization of the integrable deformation {Ft}t∈D
(see [18], Lemma 6 and the Proof of Theorem 1.1 in page 400).

REMARK (7.4). It seems very reasonable to think that, in face of Theorem (7.1)
and of the proof of Theorem B, one may obtain that: a foliation on the complex
projective plane, leaving invariant the infinite line and with singularities of first
order type without too many resonances, is either C2-topologically rigid or it is
a Darboux foliation. Such a result would enlarge the list of topologically rigid
foliations commenced by Ilyashenko.
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A WEAK ORLICZ-PETTIS THEOREM

CHARLES SWARTZ

ABSTRACT. Kalton has shown that if E is a separable F space and M is a sub-
space of the dual of E which separates the points of E, then any series in E which
is subseries convergent with respect to the weak topology, σ(E, M), on E gener-
ated by M is subseries convergent in E. In this note we generalize Kalton’s result
to multiplier convergent series when the space of multipliers has the signed weak
gliding hump property and the space E is a separable infra-Pták space. Applica-
tions to sequence and function spaces are given.

Kalton ([7] Corollary to Theorem 3) has shown that if E is a separable F space
and M is a subspace of the dual of E which separates the points of E, then any se-
ries in E which is subseries convergent with respect to the weak topology, σ(E, M),
on E generated by M is subseries convergent in E. In this note we generalize
Kalton’s result to multiplier convergent series when the space of multipliers has
the signed weak gliding hump property and the space E is a separable infra-Pták
space. If (Z,τ) is a topological vector space and λ is a scalar sequence space, a
series

∑
z j in Z is λ multiplier convergent if the series

∑∞
j=1 t j z j is τ convergent

for every t = {t j} ∈ λ; for example, a series is m0 multiplier convergent, where m0
is the sequence space of sequences with finite dimensional range, iff the series is
subseries convergent. The elements of λ are called multipliers. An Orlicz-Pettis
Theorem is a result which asserts that a series which is λ multiplier convergent in
some weak topology is λ multiplier convergent in a stronger topology. The original
Orlicz-Pettis Theorem asserts that a series in a Banach space which is subseries
convergent in the weak topology of the space is subseries convergent in the norm
topology ([12, 13]; see [6, 4] for historic discussions of the theorem).

If E is a separable infra-Pták space and λ has the weak gliding hump property,
we show that if

∑
j x j is a series in E which is λ multiplier convergent in the weak

topology σ(E, M) on E generated by M, then the series is λ multiplier convergent
in E. The result contains the case where the series are subseries convergent as in
the original Orlicz-Pettis Theorem. Applications to sequence and function spaces
are given.

We begin by establishing the notation and assumptions necessary to describe
and establish the result. Throughout E will denote a Hausdorff locally convex
space with dual E′; if X ,Y is a dual pair, the weak topology on X from Y will be
denoted by σ(X ,Y ). Also, λ will denote a scalar sequence space which contains
c00, the space of sequences which are eventually 0.

Our result requires a gliding hump assumption on the space of multipliers λ.
If s = {s j} and t = {t j} are scalar sequences, the coordinate product of s and t is
denoted by st = {s j t j} and if A ⊂ N, the characteristic function of A is denoted
by χA . A sequence of signs is a sequence s = {s j}, where s j = ±1 for every j. An
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interval in N is a subset of the form I = [m,n] = { j : m ≤ j ≤ n}, m,n ∈ N,m ≤ n;
a sequence of intervals {I j} is increasing if max I j < min I j+1. The space λ has
the signed weak gliding hump property (signed WGHP) if whenever t ∈λ and {I j}
is an increasing sequence of intervals, there exist a sequence of signs {s j} and a
subsequence {n j} such that the coordinate sum

∑∞
j=1 s jχIn j

t ∈ λ; if the signs can
always be chosen equal to 1, then λ has the weak gliding hump property (WGHP).
A space λ is monotone if χA t ∈ λ whenever A ⊂ N and t ∈ λ; for example, c0, lp

(0 < p ≤ ∞). A monotone space has WGHP; the space cs of convergent series
is not monotone but has WGHP and bs, the space of bounded series, has signed
WGHP but not WGHP (see [17] for further examples). The WGHP was introduced
by Noll ([11]) and the signed WGHP by Stuart ([15]) to treat weak sequential
completeness in β duals (see [17] for such results).

The locally convex spaces which we consider are the infra-Pták spaces. The
locally convex space E is an infra-Pták space if a σ(E′,E) dense subspace M ⊂ E′
is σ(E′,E) closed whenever M ∩U0 is σ(E′,E) closed for every neighborhood of
0, U , in E, where U0 is the polar of U ([5, 10, 1]). For example, any complete
metrizable locally convex space is an infra-Pták space (this is essentially a result
of Krein-Smulian ([5, 3.10.2],[10, 34.3(5)],[16, 23.8]).

We also require a Hahn-Schur result in the proof of the main theorem. Suppose
for every i the series

∑∞
j=1 xi j is λ multiplier convergent in E and for every t = {t j} ∈

λ the limit, limi
∑∞

j=1 t j xi j, exists. If λ has signed WGHP and x j = limi xi j, then
the series

∑
j x j is λ multiplier convergent and

∑∞
j=1 t j x j = limi

∑∞
j=1 t j xi j for every

t ∈λ (see [17, Theorem 7.6] for the result).

THEOREM (1). Assume that E is a separable infra-Pták space with M ⊂ E′ a
subspace which separates the points of E and that λ has signed WGHP. If the
series

∑
j x j is σ(E, M) λ multiplier convergent, then the series

∑
j x j is λ multiplier

convergent in the topology of E.

Proof. We claim that the series
∑

j x j is σ(E,E′) λ multiplier convergent and then
the result will follow from the Orlicz-Pettis Theorem for locally convex spaces
([6],[17, 4.10]). In what follows if t = {t j} ∈λ,then

∑∞
j=1 t j x j will denote the σ(E, M)

sum of the series. Set

M1 = {x′ ∈ X ′ : x′(
∞∑
j=1

t j x j)=
∞∑
j=1

t j x′(x j) f or all t = {t j} ∈λ}.

Now M is σ(E′,E) dense in E′ since M separates points and M ⊂ M1 so if M1
is σ(E′,E) closed, we have M1 = E′ and we are finished. By the infra-Pták as-
sumption it suffices to show M1 ∩U0 is σ(E′,E) closed when U is a neighborhood
of 0 in E. Since E is separable, (U0,σ(E′,E)) is metrizable ([9, 21.3(4)]) so it
suffices to show M1 ∩U0 is sequentially σ(E′,E) closed. Suppose {x′i} ⊂ M1 and
σ(E′,E)− lim x′i = x′. For t ∈λ,

x′i(
∞∑
j=1

t j x j)=
∞∑
j=1

t j x′i(x j)→ x′(
∞∑
j=1

t j x j)

as i →∞. Now limi x′i(x j) = x′(x j) for every j so by the Hahn-Schur result for λ

discussed above we have that
∑∞

j=1 x′(x j) is λ multiplier convergent and for every
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t ∈λ,

x′i(
∞∑
j=1

t j x j)=
∞∑
j=1

t j x′i(x j)→ x′(
∞∑
j=1

t j x j)=
∞∑
j=1

t j x′(x j)

as i →∞. Thus, x′ ∈ M1 as desired.

Since the space m0 is monotone and, therefore, has WGHP, the result above
applies to subseries convergent series in the spirit of the original Orlicz-Pettis
Theorem. It is also the case that the series converges in topologies which may be
stronger than the original topology of E ([17, 4.10]). The theorem contains the
result of Kalton for locally convex spaces and subseries convergent series since
any locally convex F space is an infra-Pták space; it should be pointed out that
Kalton’s result applies to non-locally convex spaces. There are stronger results for
subseries convergent series in Banach spaces; if X is a Banach space which does
not contain a copy of l∞ and if M is a subspace of X ′ which separates the points
of X , then any series

∑
j x j which is subseries convergent in σ(X , M) is subseries

convergent in X ([3, I.4.7],[6, 2.2]). The proofs of this stronger result or Kalton’
theorem for subseries convergent series use results for vector measures or closed
graph theorems and do not carry forward to the case of multiplier convergent
series.

As the following example shows the separability assumption on E is important.

EXAMPLE (2). Let E = l∞ with the sup-norm and M = span{e j : j ∈N}, where e j

is the sequence with 1 in the jth coordinate and 0 in the other coordinates. Then
the series

∑
j e j is subseries convergent with respect to σ(l∞, M) but is not subseries

convergent with respect to the sup-norm.

We indicate several applications of the theorem to sequence and function
spaces. In the examples below we assume the multiplier space λ has signed
WGHP.

EXAMPLE (3). Let E be a complete metrizable locally convex space with a
Schauder basis {b j} and coordinate functionals { f j}: that is, each x ∈ E has a
unique series expansion, x = ∑∞

j=1 t jb j, with the coordinate functionals defined by
f j(x)= t j. Such a space is separable. The coordinate functionals are continuous in
this instance and we set M = span{ f j : j ∈N}. Then any series

∑∞
j=1 x j in E which is

subseries convergent in σ(E, M) is λ multiplier convergent in E. A theorem of this
type for non-locally convex, complete metric linear spaces was established for sub-
series convergent series by Stiles ([14]). A version for multiplier convergent series
can be found in [17, 4.74, 9.10].

EXAMPLE (4). Let E be a separable, complete, metrizable scalar sequence space
which is a K-space, that is, the coordinate functionals f j : {t j} → t j are continuous
from E to the scalar field for every j. Then M = span{ f j : j ∈ N} ⊂ E′ separates
the points of E so the theorem applies and any series in E which is λ multiplier
convergent in σ(E, M) (that is, coordinatewise convergent) is λ multiplier conver-
gent in E. This result applies to any AK-space, i.e., each sequence t = {t j} ∈ E is
represented by the series t = ∑∞

j=1 t j e j, where e j is the sequence with 1 in the jth

coordinate and 0 in the other coordinates, since any AK-space is separable. For
example, the spaces c0, lp (1≤ p <∞), cs,bv,bv0 are AK-spaces (see [2, 17] for lists
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of sequence spaces). The result also applies to the space c which is not an AK-space
and to certain domain spaces such as cA (see [2, 8.1.6]).

EXAMPLE (5). Let S be a compact, metric space and C(S) the space of contin-
uous functions with the sup-norm. Such a space is separable ([8, p. 245]). Let
δt be the Dirac measure concentrated at t and set M = span{δt : t ∈ D}, where D
is a dense subset of S. Then M is a subset of the dual of C(S) which separates
points. Thus, a series

∑
j f j in C(S) which is pointwise λ multiplier convergent on

D is λ multiplier convergent with respect to the sup-norm. Results of this type for
subseries convergent series were established by Thomas ([18]); see [17, 4.68] for
multiplier convergent versions. When S = D the method employed in [16, 10.4.7]
can be used to remove the metrizability assumption on S.

EXAMPLE (6). Let C(Rn) be the space of all continuous real valued functions on
Rn with the topology of uniform convergence on compact subsets. With this topology
C(Rn) is a separable F-space and if D is a dense subset of Rn, the set M = {δx : x ∈ D}
separates the points of C(Rn). Therefore, the theorem applies and any series which
is pointwise λ multiplier convergent on D is λ multiplier convergent in C(Rn). The
same remarks apply to E , the space of entire functions, f :C→C, with the topology
of uniform convergence on compact subsets of C.

There are also similar applications to vector valued sequence and function
spaces.

EXAMPLE (7). Let X be a separable, complete, metrizable locally convex space
and E a vector space of X valued sequences which is a complete, metrizable locally
convex space. We assume that E is an AK-space in the sense that every x = {x j} ∈ E
has a series expansion x =∑∞

j=1 e j ⊗ x j, where e j ⊗ x j is the sequence with x j in the
jth coordinate and 0 in the other coordinates. Then E is a separable space. Let

M = span{e j ⊗ x′ : j ∈N, x′ ∈ X ′}⊂ E′.

Then M separates the points of E and a sequence in E converges to 0 with respect to
σ(E, M) iff the sequence converges coordinatewise with respect to the weak topology
on X . Thus, a series which is λ multiplier convergent with respect to σ(E, M) is λ
multiplier convergent in E. A similar result is established in 4.76 of [17].

The example applies to such sequence spaces as c0(X ), lp(X ) (1≤ p <∞) when
X is a complete metrizable space.

EXAMPLE (8). Let S be a complete metric space and X a separable Banach
space. Let CX (S) be the space of all X valued continuous functions defined on S
with the sup-norm. Then CX (S) is separable. Let

M = span{δt ⊗ x′ : t ∈ D ⊂ S, x′ ∈ X ′},

where D ⊂ S is dense and δt ⊗ x′ ∈ CX (S)′ is defined by δt ⊗ x′( f ) = x′( f (t)). A
sequence in CX (S) converges with respect to σ(CX (S), M) iff the sequence is point-
wise convergent on D with respect to the weak topology of X . Then M separates the
points of CX (S) so the theorem applies.

EXAMPLE (9). Suppose X ,Y are Banach spaces and L(X ,Y ) is the space of all
continuous linear operators from X into Y with the operator norm. Let

M = span{y′⊗ x : y′ ∈Y ′, x ∈ X },
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where y′⊗x ∈ L(X ,Y )′ is defined by y′⊗x(T)= y′(Tx). Then M separates the points
of L(X ,Y ) and convergence in σ(L(X ,Y ), M) is just convergence in the weak oper-
ator topology. Thus, If E is any separable subspace of L(X ,Y ), the theorem applies
and any series in E which is λ multiplier convergent in the weak operator topology
is λ multiplier convergent in the operator norm.
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IDEALS WITH AT MOST COUNTABLE HULL IN CERTAIN ALGEBRAS
OF FUNCTIONS ANALYTIC ON THE HALF-PLANE

ANDRZEJ SOŁTYSIAK AND ANTONI WAWRZYŃCZYK

ABSTRACT. We describe all closed ideals with at most countable hull in the al-
gebras A(α)(C+) (α> 0) of analytic functions on the complex half-plane.

1. Introduction

In the sequel by a Banach algebra we mean a Banach space endowed with
a jointly continuous multiplication. Hence if (B,‖ · ‖) is a Banach algebra, then a
constant C > 0 in the inequality ‖ab‖ ≤ C‖a‖‖b‖ (a,b ∈B) need not be equal to one.
However, it is always possible to introduce a submultiplicative norm equivalent
to the given one and such that it takes value one at a unit, if B is unital (see e.g.
[8], p. 10).

The space A(n)(C+) (n ∈N) is the set of functions F analytic on the right half-
plane C+ = {z ∈C : Re z > 0} continuously extendable to iR, whose derivatives F (k)

are continuous on C+ \ {0} and satisfy limz→0 zkF (k)(z) = 0 for 1 ≤ k ≤ n, while
limz→∞ zkF (k)(z)= 0, 0≤ k ≤ n (we denote F (0) = F).

For a bounded function F on C+ let ‖F‖∞ = supz∈C+ |F(z)|. Provided with the
norm ‖F‖(n) =

∑n
j=0 ‖ζ jF ( j)‖∞ (ζ stands for the identity function z 7→ z) and the

pointwise multiplication the space A(n)(C+) is a Banach algebra in the sense de-
scribed above. Notice that the norm ‖F‖(n) is equivalent to the norm ‖F‖n =
‖F‖∞+‖ζnF (n)‖∞ (see [4], Prop. 3.3 and Rem. 3.6).

The space A(0)(C+) is the set of continuous functions on C+ vanishing at infinity
and analytic on the half-plane C+. It is a Banach algebra with the pointwise
multiplication and the norm ‖F‖∞ = supz∈C+ |F(z)|.

The algebras A(n)(C+) (n ∈ N0) as well as the algebras A(α)(C+) for α > 0 (see
the next section) appeared in the paper [4] as the spaces of Gelfand transforms of
“fractional convolution algebras” of functions on the half-line R+ = (0,+∞).

Taking into account that the functions F and ζnF (n) are analytic on C+, vanish
at infinity, and are continuous at zero, it follows by the maximum principle that
the norm ‖F‖n is equal to supx∈R |F(ix)|+supx∈R |x|n|F (n)(ix)|.

Closed ideals of the algebra A(n)(C+) were described in [5]. In the present paper
we study the ideals of the algebras A(α)(C+) (α> 0).

2. Algebras A(α)(C+)

The spaces A(α)(C+), α > 0, are defined by means of the fractional complex
derivation introduced in [4].
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For F ∈A(n)(C+), α > 0, n = [α]+1, and z = reiθ ∈ C+ the complex α-derivative
of F is given by the formula

WαF(z)= (−1)n

Γ(n−α)

∫ ∞

0
tn−α−1F (n)(z+ teiθ)dt.

It should be mentioned that the integral in the above formula is independent of θ,
θ ∈ [−π

2 , π2 ] ([4], Lemma 3.1). Therefore in the definition of WαF(z) the integration
can be performed along an arbitrary ray starting at z and contained in C+.

In particular, for z = ix (x ∈R) we can use the formulas

WαF(ix)= (−1)n

Γ(n−α)

∫ ∞

0
tn−α−1F (n)(i(x+ t))dt

when x ≥ 0 and

WαF(ix)= (−1)n

Γ(n−α)

∫ ∞

0
tn−α−1F (n)(i(x− t))dt

= 1
Γ(n−α)

∫ ∞

0
tn−α−1F̌ (n)(i(x+ t))dt

when x < 0. We have denoted F̌(x)= F(−x). The latter formulas are useful because
the fractional derivation on the half-line was extensively studied.

For an arbitrary F ∈A(n)(C+) let

‖F‖α = ‖F‖∞+ sup
z∈C+

|z|α|WαF(z)|.

By arguments used in the case of the norm ‖ ·‖n we can represent

‖F‖α = sup
x∈R

|F(ix)|+sup
x∈R

|x|α|WαF(ix)|

= sup
x∈R

|F(ix)|+max{sup
x≥0

xα|WαF(ix)|,sup
x≥0

xα|WαF̌(ix)|}.

If a function G is defined on iR and the right-hand side of the latter formula
makes sense for G we shall use the notation

‖G‖α,R = sup
x∈R

|G(ix)|+sup
x∈R

|x|α|WαG(ix)|.

For functions on R+ we introduce

‖G‖α,R+ = sup
x>0

|G(x)|+sup
x>0

xα|WαG(x)|.

The space A(α)(C+) is defined as the completion of the space A(n)(C+) in the norm
‖ ·‖α (n = [α]+1).

Propositions 3.5 and 3.8 from [4] provide the following properties of the family
of spaces A(α)(C+), α> 0.

THEOREM (2.1). [4] (i) For every α > 0 the space A(α)(C+) is a Banach algebra
under the pointwise multiplication.

(ii) For β≥α≥ 0 there is a constant Cαβ > 0 such that

‖F‖α ≤ Cαβ‖F‖β.

Consequently, there is a natural continuous embedding A(β)(C+) ,→A(α)(C+) with
a dense range.
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(iii) The norm ‖ ·‖α is equivalent to the norm given by the formula

‖F‖′(α) = ‖F‖∞+sup
β≤α

sup
z∈C+

|z|β|WβF(z)|.

By Theorem (2.1) (iii) the norm ‖F‖n = ‖F‖∞+‖ζnF (n)‖∞ is equivalent to the
norm ‖F‖′n =max0≤k≤n ‖ζkF (k)‖∞.

The algebras A(α)(C+) are not unital, however the unit can be attached in the
standard way. The norm in the algebra A(α)(C+)⊕C is defined by ‖F+c‖α = ‖F‖α+
|c|, where F ∈A(α)(C+) and c is a constant.

The algebra A(α)(C+)⊕C will be denoted by A(α)
u (C+). It is a unital Banach

algebra in the sense mentioned at the very beginning of the paper.
The space Mα of multiplicative linear functionals on A(α)(C+) consists of func-

tionals of the point evaluations, hence it can be identified with C+. The space Mα,u
of multiplicative linear functionals on the algebra A(α)

u (C+) contains an additional
functional φ∞(F)= limz→∞ F(z).

PROPOSITION (2.2). Let α> 0. There exists a constant C > 0 such that for every
F ∈ A(α)(C+) and every rational function G bounded on iR and such that FG ∈
A(α)(C+) the following inequality is valid:

‖FG‖α ≤ C‖F‖α‖G‖α,R.

Proof. As mentioned above, similar properties were studied in the case of func-
tions on R+, hence our purpose is to reduce the proof to that case.

In [2] it was introduced a Banach space M(α)∞ as the completion of the bounded
functions of class C(∞) on R+ in the space of the so-called functions of weak
bounded variation. M(α)∞ is called the Mikhlin space. The norm in M(α)∞ is just
‖ ·‖α,R+ . It was proved that the Mikhlin space is a Banach algebra.

For a function F defined on iR we denote by F̃ the function R+ 3 x 7→ F(ix). If
G is a rational function bounded on iR, then the function G̃ belongs to M(α)∞ .

There exists a constant C1 depending only of α, such that

‖F̃G‖α,R+ ≤ C1‖F̃‖α,R+‖G̃‖α,R+ .

Taking into account that F and FG ∈A(α)(C+) we obtain

‖FG‖α = ‖FG‖α,R = sup
x∈R

|FG(ix)|+sup
x∈R

|x|α|Wα(FG)(ix)|

≤ sup
x∈R+

|FG(ix)|+ sup
x∈R+

xα|Wα(FG)(ix)|+ sup
x∈R+

| ˇFG(ix)|

+ sup
x∈R+

xα|Wα ˇ(FG)(ix)| = ‖F̃G‖α,R+ +‖˜̌FG‖α,R+

≤ C1(‖F̃‖α,R+‖G̃‖α,R+ +‖ ˜̌F‖α,R+‖˜̌G‖α,R+ )

≤ C1(‖F̃‖α,R+ +‖ ˜̌F‖α,R+ )(‖G̃‖α,R+ +‖˜̌G‖α,R+ )

≤ 4C1‖F‖α,R‖G‖α,R = 4C1‖F‖α‖G‖α,R.
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3. Algebras A(α)
u (D)

The papers [1] and [7] provide the characterization of closed ideals with at
most countable hull of subalgebras of the disc algebra A(D) satisfying certain con-
ditions. We use these results for the description of ideals with at most countable
hull in the algebras A(α)

u (C+).

The Möbius transform m(w) = 1+w
1−w

carries the disc D onto the half-plane C+

and the circle T onto iR∪{∞}. The inverse of m is the function z 7→ z−1
z+1

.

If F is a function on C+ which has a limit at ∞, then the formulas f = F ◦m,
f (1)= limz→∞ F(z) define a function on D.

From the formulas obtained in the proof of Lemma 2.2 in [4] we have the fol-
lowing.

PROPOSITION (3.1). There exist positive constants {c j} and {d j} such that for
every f ∈ A(D)∩C(k)(D\{−1,1}) and F = f ◦m−1 we have∣∣∣(1−w2)k f (k)(w)

∣∣∣≤ k∑
j=0

c j

∣∣∣∣F ( j)
(

1+w
1−w

)∣∣∣∣ ∣∣∣∣1+w
1−w

∣∣∣∣ j

and ∣∣∣∣F (k)
(

1+w
1−w

)∣∣∣∣ ∣∣∣∣1+w
1−w

∣∣∣∣k
≤

k∑
j=0

d j

∣∣∣(1−w2) j f ( j)(w)
∣∣∣ ,

w ∈D\{−1,1}.

Let us define
A(α)

u (D)= { f ∈ C(D) : f ◦m−1 ∈A(α)
u (C+)}

and
A(α)(D)= { f ∈ C(D) : f ◦m−1 ∈A(α)(C+)}.

The space A(α)
u (D) is obviously a unital algebra under the pointwise multiplication

and a Banach algebra with the norm given by

‖ f ‖α,D = ‖ f ◦m−1‖α.

The algebra A(α)(D) is a maximal ideal in A(α)
u (D).

More explicit description of the space A(α)
u (D) as well as its norm can be ob-

tained easily in the case of the natural α. In this case WnF(z) = (−1)nF (n)(z) and
the corresponding space A(α)(C+) coincides with the space A(n)(C+), which was
defined in the introduction.

By Proposition (3.1) we obtain the following description of the algebra A(n)(D).

PROPOSITION (3.2). [4] For a positive integer n the algebra A(n)(D) is isomor-
phic to the subalgebra of the disc algebra A(D) of functions f such that f (1) = 0,
(ζ2 −1)k f (k) ∈ A(D) and

lim
z→±1

(z2 −1)k f (k)(z)= 0, 1≤ k ≤ n,

endowed with the norm [ f ](n),D =∑n
k=0 ‖(ζ2 −1)k f (k)‖∞.

As before the norms [ f ](n),D and [ f ]n,D = ‖ f ‖∞+‖(ζ2−1)n f (n)‖∞ are equivalent.
The results obtained in the paper [7] concern subalgebras B of the disc algebra

A(D) that satisfy the following conditions.
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(H1) The space of polynomials is a dense subset of B.

(H2) limk→∞ ‖ζk‖
1
k
B = 1.

(H3) There exist k ≥ 0 and C > 0 such that

|1−|λ||k‖ f ‖B ≤ C‖(ζ−λ) f ‖B, f ∈B, |λ| < 2.

(D) For every z0 ∈ T there exists N(z0) ∈ N0 such that the functionals B 3 f 7→
f ( j)(z0) (0 ≤ j ≤ N(z0)) are well-defined and continuous, and there exists a
sequence (σn) in the algebra B such that σn(z0)= 0 for all n and

(3.3) lim
n→∞‖(ζ− z0)N(z0)+1σn − (ζ− z0)N(z0)+1‖B = 0.

THEOREM (3.4). For every α > 0 the algebra A(α)
u (D) satisfies conditions (H1)–

(H3) and (D).

Proof. It is sufficient to prove the properties in question for an arbitrary norm
equivalent to the one introduced in the space A(α)

u (D). Hence in each of the con-
secutive calculations we will use the most convenient norm.

Proposition 2.1 from [4] states that the polynomials in (w−1) without a con-
stant term are dense in the space A(n)(D). Therefore the space of all polynomials
is dense in the unital algebra A(n)

u (D). On the other hand the latter space is by
definition dense in A(α)

u (D) for n−1<α< n. This proves (H1).
For every natural n and k ≥ n we have

1+k(k−1) . . . (k−n+1)≤ [ζk]n,D ≤ 1+2nk(k−1) . . . (k−n+1).

Thus lim
k→∞

[ζk]
1
k
n,D = 1. If n−1 < α< n the norm ‖ · ‖α,D is dominated by ‖ · ‖n,D and

dominates ‖ ·‖n−1,D. This proves (H2).
To the operator of multiplication by (ζ−λ) of a function f on the disc, there

corresponds the operator of multiplication by (ζ◦m−1 −λ) of the function f ◦m−1

on C+ .
For f ∈A(α)(D) we obtain by applying Proposition (2.2)

‖ f ‖α,D = ‖ f ◦m−1‖α = ‖ f ◦m−1(ζ◦m−1 −λ)(ζ◦m−1 −λ)−1‖α,R

≤ ‖(ζ◦m−1 −λ)−1‖α,R‖(ζ◦m−1 −λ) f ◦m−1‖α
≤ ‖(ζ◦m−1 −λ)−1‖n,R‖(ζ−λ) f ‖α,D,

where n = [α]+1.
By the definition of the norm ‖·‖n,R and the second formula of Proposition (3.1)

it follows that there exists C > 0 such that for |λ| < 2, |λ| 6= 1, we have

‖(ζ◦m−1 −λ)−1‖n,R = sup
z∈iR

|(ζ◦m−1 −λ)−1|+ sup
z∈iR

|z|n(|(ζ◦m−1 −λ)−1)(n)|

≤ sup
w∈T

|w−λ|−1 +
n∑

j=0
d j sup

w∈T
|w2 −1| j

∣∣∣∣ d j

dw j (w−λ)−1
∣∣∣∣

≤ C|1−|λ||−n−1.

Condition (H3) is satisfied in the form

(1−|λ|)[α]+2‖ f ‖α,D ≤ C‖(ζ−λ) f ‖α,D.
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Elements of the algebra A(n)
u (D) are continuous on the closed disc and since the

functions g(z) = (z+1)
1
2 and h(z) = (1− z)

1
2 , which belong to these spaces, are not

derivable at −1 and 1 respectively, we have N(−1)= N(1)= 0.
At all points z0 ∈ T\{−1,1} the functions f ∈ A(n)

u (D), n ∈ N, have derivatives
up to the order n and by the definition of the norm the functionals f 7→ f (k)(z0),
0 ≤ k ≤ n, are continuous. Therefore the numbers N(z0) are equal to n for z0 ∈
T\{−1,1} in the spaces A(n)

u (D).
For general α > 0 the algebra A(α)

u (D) is embedded continuously into A([α])
u (D)

hence N(1)= N(−1)= 0 and for other points of the circle N(z0)= [α].
Now, we proceed to construct the sequences (σm) satisfying (3.3). For natural

α = n and z0 = 1 define σm(z) = (1− z)
1
m . By simple calculations it is easy to

verify that σm belongs to A(n)
u (D). The condition σm(1) = 0 is satisfied. Since

N(1) = 0, it suffices to show that [(ζ− 1)σm − (ζ− 1)]n,D → 0 as m → ∞. First,
let us investigate the uniform convergence of (ζ−1)σm. For every 0 < ε < 1 and
|1− z| < ε the inequality |(z−1)σm(z)− (z−1)| < 2ε is obvious. There exists N ∈N
such that |σm(z)−1| < ε for |z−1| ≥ ε and for all m > N. In this way we obtain
‖(ζ−1)σm − (ζ−1)‖∞ < 2ε for m > N, that is

(3.5) lim
m→∞‖(ζ−1)σm − (ζ−1)‖∞ = 0.

Since ((ζ−1)σm − (ζ−1))′ = (
1+ 1

m
)
σm −1 we get

(ζ2 −1)((ζ−1)σm − (ζ−1))′ = (ζ+1)(ζ−1)
((

1+ 1
m

)
σm −1

)
.

These formulas and (3.5) imply

lim
m→∞‖(ζ2 −1)((ζ−1)σm − (ζ−1))′‖∞ = 0

and therefore
lim

m→∞[(ζ−1)σm − (ζ−1)]1,D = 0.

For n > 1 we have

((ζ−1)σm − (ζ−1))(n) = cnmσm(ζ−1)−n+1,

where the constant cnm → 0 as m →∞. Thus we have

(ζ2 −1)n ((ζ−1)σm − (ζ−1))(n) = cnm(ζ+1)n(ζ−1)σm.

By (3.5) (ζ−1)σm tends uniformly to ζ−1, and since cnm → 0 as m →∞, we get

lim
m→∞‖(ζ2 −1)n((ζ−1)σm − (ζ−1))(n)‖∞ = 0

and so
lim

m→∞[(ζ−1)σm − (ζ−1)]n,D = 0.

Condition (D) is satisfied at the point 1 in all spaces A(n)
u (D). In a similar way

it follows that this condition is also satisfied in each of the spaces A(n)
u (D) at the

point z0 = −1 if we define σm(z) = (z+1)
1
m . For arbitrary α > 0 the norm ‖ · ‖α is

dominated by ‖ ·‖[α]+1, so

lim
m→∞‖(ζ±1)σm − (ζ±1)‖α,D = 0.

Hence condition (D) holds true in both points 1 and −1 in all spaces A(α)
u (D), α> 0.

We proceed to study validity of this condition at the points z0 ∈T\{−1,1} in the
case of the spaces A(n)

u (D), n ∈N. Then N(z0)= n.
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For r > 0 let σr(z)= z−z0
z−z0−rz0

. We have

(z− z0)n+1σr(z)− (z− z0)n+1 = rz0(z− z0)n+1

z− z0 − rz0
.

By the configuration existing between the points z − z0 and rz0 the inequality
|z− z0 − rz0| ≥max{|z− z0|, r|z0|} holds true. It is clear that

lim
r→0

‖(ζ− z0)n+1σr − (ζ− z0)n+1‖∞ = 0.

By the Leibniz formula we get(
(z− z0)n+1σr(z)− (z− z0)n+1)

)(n) = rz0

n∑
m=0

cnm(z− z0)n−m+1(z− z0 − rz0)m−n−1

for some constants cnm. Therefore

sup
z∈D

∣∣(z2 −1)n (
(z− z0)n+1σr(z)− (z− z0)n+1)(n)∣∣≤ rsup

z∈D
|(z2 −1)n|

n∑
m=0

|cnm|.

It follows that
lim
r→0

[(ζ− z0)n+1σr(z)− (ζ− z0)n+1]n,D = 0

which means that condition (D) is satisfied in all algebras A(n)
u (D), n ∈N.

The function w−w0
w+1 on the half-plane C+ with w0 ∈ iR corresponds up to a con-

stant coefficient to the function ζ− z0, z0 ∈ T, on the disc under the Möbius map
m.

Let σr(w) = w−w0
w−w0+r for r > 0. Notice that |w−w0 + r| ≥ max{r, |w−w0|) and

|w+1| > 1. For w0 ∈ iR and α 6∈N we have N(w0)= [α]. Let N(w0)+1= n and let

Fr(w)=
(w−w0

w+1

)n
σr(w)−

(w−w0

w+1

)n = −r(w−w0)n

(w−w0 + r)(w+1)n .

We must prove that this function tends to zero when r → 0 in the space A(α)
u (C+).

The uniform convergence is obvious, so it remains to prove that |w|α|WαFr(w)|
also converges to zero uniformly on C+.

To simplify calculations of the derivative of this function we introduce G(h) =
hn

(h+r)(h+u)n , where h = w−w0 and u = 1+w0. Then by the Leibniz formula we
obtain

G(n)(h)=
n∑

k=0

n−k∑
j=0

bnk j(h+ r)− j−1(h+u)−2n+ j+khn−k,

where bnk j are appropiate constants. The corresponding terms of this sum behave
at infinity as h−n−1.

The proof of Proposition 3.3 (ii) in [4] provides the following estimate for |w|α|Wα

F(w)|, α> 0, n = [α]+1, F ∈A(n)(C+) :

(3.6) |w|α|WαF(w)| ≤ 1
Γ(n−α)

∫ ∞

1
(t−1)n−α−1|w|n|F (n)(tw)|dt.

For Fr(w)= −r(w−w0)n

(w−w0+r)(w+1)n we obtain

|w|α|WαFr(w)| ≤ r
n∑

k=0

n−k∑
j=0

|cnk j|
1

Γ(n−α)

∫ ∞

1
(t−1)n−α−1t−n|Φ(t,w,w0)|dt,

where

Φ(t,w,w0)= (tw)n(tw−w0 + r)− j−1(tw+1)−2n+ j+k(tw−w0)n−k.
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By the previous observation the function Φ(t,w,w0) behaves at infinity as 1
wt . It

follows that each term of the sum is less or equal to C
∫ ∞

1 (t−1)n−α−1t−n dt = C̃,
where the constant C depends only on w0, n, k, j. The convergence

lim
r→0

∥∥∥∥(
ζ−w0

ζ+1

)n
σr −

(
ζ−w0

ζ+1

)n∥∥∥∥
α

= 0

is proved. The condition (D) is satisfied in every space A(α)
u (D), α> 0 .

4. Ideals with at most countable hull

Let B be a semi-simple Banach algebra which is a unital subalgebra of the disc
algebra A(D) and let f ∈B. The set h( f ) = {z ∈D : f (z) = 0} is called the hull of f .
If I is an ideal of B then the hull of I is the set

h(I)= ⋂
f ∈I

h( f ).

Obviously h(I) is a closed set. For j ∈N0 let us define

h j(I)= {z ∈T : N(z)≥ j and f (z)= f ′(z)= . . .= f ( j)(z)= 0 for all f ∈ I }.

Suppose that the algebra B satisfies condition (D). A function U from the Hardy
space H∞ is called inner if its boundary function equals to one almost everywhere
on T. The inner function U divides f ∈ H∞ (denoted by U | f ) if f /U is a bounded
function.

Let H = {H0,H1, . . .} be a descending family of sets H j ⊂ T such that H j ⊂ {z ∈
T : N(z)≥ j}. For a given inner function U we define

I(U ;H)= { f ∈B : U | f and f ( j)(z)= 0 for z ∈ H j, j ∈N0}.

Ideals of B which are of this form are called standard. By UI we denote the
greatest common inner divisor of all nonzero elements of the ideal I.

The following theorem was proved in [7].

THEOREM (4.1). Let B be a semi-simple Banach algebra which is a unital sub-
algebra of the disc algebra A(D). Suppose that B satisfies conditions (H1), (H2),
(H3), and (D). If I ⊂ B is a closed ideal and h(I) is at most countable, then I is a
standard ideal:

I = I(UI ;H),
where H= {h j(I)}.

By Theorem (3.4) we obtain

COROLLARY (4.2). For every α> 0 all closed ideals with at most countable hull
of the algebra A(α)

u (D) are standard.

In the case of the algebra A(α)
u (D) the number N(z) is equal to 0 for z =±1 and

is equal to [α] for other points of the circle. For a closed ideal I the points ±1 can
appear only in the set h0(I). For 0 < j ≤ [α] the sets h j(I) are relatively closed
subsets of T\{−1,1}. The following theorem gives a more explicite description of
closed ideals with at most countable hull in A(α)

u (D).

THEOREM (4.3). Let I be a closed ideal in A(α)
u (D) such that h(I) is at most

countable. Then the ideal I is standard, i.e.

I = I(UI ;h0(I),h1(I), . . . ,h[α](I)).
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In particular the ideal of A(α)
u (D) of the form I(1; {1},;, . . . ,;) is just the algebra

A(α)(D).
The principal object of our interest is the algebra A(α)(C+) which is a maximal

ideal in the algebra A(α)
u (C+). Taking into account the isomorphism A(α)

u (C+) ∼=
A(α)

u (D) we can obtain immediately the description of all closed ideals with at most
countable hull in the algebra A(α)(C+). These ideals are in one to one correspon-
dence with the ideals of A(α)

u (D) of the form I(U ;H0,H1, . . . ,H[α]), where H0 is at
most countable and 1 ∈ H0.

The description will be more concrete if we include information about the form
of inner functions on the half-plane.

If U is an inner function on the unit disc D, then the function U =U ◦m−1 on
C+ can be represented as a product U ◦m−1 = BS, where B is of the form

B(z)=
(

z−1
z+1

)k ∏
n

|1− z2
n|

1− z2
n

· z− zn

z+ zn
,

while S is uniquely representable as

S(z)= e−ρz exp
(
−

∫
R

tz+ i
t+ iz

dµ(t)
)

for some positive measure µ on R singular with respect to the Lebesgue measure
and ρ ≥ 0. Hence, the set of zeros of the function B coincides with the set of zeros
of U ◦m−1 in the open half-plane C+ and the set of zeros of the factor S consists of
zeros of U ◦m−1 on the imaginary axis iR and is equal to the support of µ (see [6],
p. 132).

Functions on C+ of the form U = BS are called inner functions on the half-
plane.

Now, let U be an inner functions on the half-plane. Let H = {H j}[α]
j=0 be an

arbitrary descending family of closed subsets of iR such that 0 6∈ H j for j > 0. Let
us denote

I(U ;H)= {F ∈A(α)(C+) : U |F and F ( j) vanishes on H j for j = 0,1, . . . , [α] }.

If I is a closed ideal in A(α)(C+), then we denote

H0(I)= {z ∈ iR : F(z)= 0 for all F ∈ I },

and for 0< j ≤ [α]

H j(I)= {z ∈ iR\{0} : F(z)= F ′(z)= . . .= F ( j)(z)= 0 for all F ∈ I }.

THEOREM (4.4). Let I be a closed ideal in A(α)(C+) such that H0(I) is at most
countable. Let UI be the greatest common inner divisor of all nonzero elements of
I. Then

I = I(UI ;H0(I), . . . ,H[α](I)).

In particular, we have a characterization of dense ideals in A(α)(C+) which can
be called a Nyman-type theorem (see [3]).

COROLLARY (4.5). An ideal J ⊂A(α)(C+) is dense if and only if the following
two conditions are satisfied:

1. H0(J )=;,
2. for every a > 0 there exists f ∈J such that f eaζ is not bounded on C+.
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Proof. The first condition is obviously necessary. The second one says that the
inner function e−aζ is not a common inner divisor of elements of J , so it is also a
neccessary condition for the density of J .

On the other hand condition 1 implies that the greatest common inner divisor
UJ nowhere wanishes in C+. The only inner functions without zeros in C+ are the
exponentials eaζ, a ≤ 0.

If condition 2 is satisfied, then UJ = 1, hence J = I(1;;, . . . ,;)=A(α)(C+).
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RUIN PROBABILITIES AND THE RUIN TIME DISTRIBUTION

CARLOS G. PACHECO GONZÁLEZ

ABSTRACT. We analyze the renewal properties of a discounted risk process to
derive integral equations that help to characterize quantities such as: ruin prob-
ability, survival probability, first passage time and time of ruin.

1. Introduction

Let δ > 0 be a continuous time interest rate. We consider the following dis-
counted risk process for an insurance company,

(1.1) Ut := u+ r(t)−Z(δ)
t , t ≥ 0.

Here,

r(t) :=
∫ t

0
ρe−δsds

is the present value of the incomes received by the company up to time t, which
is determined with the premium rate ρ > 0. Variable u is the initial capital of the
company and

Z(δ)
t :=

Nt∑
i=1

X i e−δTi , t ≥ 0,

where Nt is a renewal process with interarrival times τ1,τ2, . . . which are inde-
pendent identically distributed positive random variables (i.i.d. positive r.v.s.).
Process N is defined by

Nt :=max

{
k :

k∑
i=1

τi ≤ t

}
,

and Ti :=∑i
j=1τ j, i = 1,2, . . . represent the arrival times.

Variables X1, X2, ... (named the claim size) are i.i.d. positive r.v.s. Throughout
this paper we assume that the interarrival time and claim size are independent,
and we denote by τ and X the generic random variables, such that τ d= τ1 and
X d= X1, with distributions Fτ and FX , respectively. To avoid technical problems
we assume that P(τ> 0)= 1 and that P(X <∞)= 1.

Given the initial capital u, the ruin probability is given as

ψ(u) := P
(
χu <∞)

where χu := inf {s : Us < 0} .

Together with the ruin probability one is also interested on the time of ruin, that
is

inf{s ≥ 0 : Us ≤ 0},

2010 Mathematics Subject Classification: 60K05, 65R20.
Keywords and phrases: discounted risk process, ruin and survival probabilities, ruin time distri-

bution, Volterra integral equations.
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which is related to the first passage time of process Z(δ), i.e.

inf{s ≥ 0 : Z(δ)
s ≥ h(s)},

for some function h.
Our aim is to study ψ(u) (or equivalently the survival probability φ(u) := 1−

ψ(u)) and also the distribution of the time of ruin. In turn, we derive integral
equations that help to characterize these quantities.

It is known that one can find equations to characterize the ruin or the survival
probability, see [1] or [10], for instance. In fact, when the claims X and τ are
exponentially distributed an explicit expression of ψ(u) is given in Harrison [7].
There are also papers (see [12, 4, 5]) where, using stochastic calculus, it is derived
an integro-differential equation for the survival probability, even when the dis-
counted factor is random given by δ+σB(t) where B is a Brownian motion. In this
paper we give more elementary arguments to find such integro-differential equa-
tion for model (1.1), where δ or ρ are not perturbed. We do so using methods as for
the classical Cramér-Lundberg model, see Grandell [6] for instance. The reader
should notice that despite it has not been in general possible to solved explicitly
these equations, one may use numerical procedures to approximate solutions.

The paper is organized in the following way. Next section presents integral
equations in the general case when the interarrival time τ is not necessarily expo-
nential. In Section 3 we derive the integro-differential equation and the Volterra
integral equation for the survival probability φ(u) when τ is exponential r.v.; we
also give some consequences of these equations. Finally, in last section we carry
out some analysis to derive equations for the first passage time and the time of
ruin distributions.

2. Basic equation for the ruin probability

It is well known that integral equations in renewal theory comes from the re-
newal properties of the processes; in the following result we use a renewal argu-
ment (similarly as in [8] for studying perpetuities).

LEMMA (2.1). i) The ruin probability satisfies

ψ(u) = P
(
u+ ρ

δ
− e−δτ1 (

ρ

δ
+ X1)< 0

)
+

∫ ∞

0

∫ eδt(u+ ρ
δ

)− ρ
δ

0
ψ

(
eδt(u+ ρ

δ
)− (

ρ

δ
+ x)

)
FX (dx)Fτ(dt),

where FX and Fτ are the distributions of X and τ, respectively.
ii) The survival probability φ(u) satisfies

φ(u) =
∫ ∞

0

∫ eδt(u+ρ/δ)−ρ/δ

0
φ

(
eδt(u+ ρ

δ
)− (

ρ

δ
+ x)

)
FX (dx)Fτ(dt).(2.2)

Proof. i) Notice that

ψ(u)= P
(
χu <∞|A)

P(A)+P
(
χu <∞|Ac)P(Ac),

where A = {
u+ ρ

δ
− e−δτ1 (ρ

δ
+ X1)< 0

}
. Of course P

(
χu <∞|A)= 1.
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Now, to calculate P
(
{χu <∞}

⋂
Ac) consider that on Ac and when t ≥ τ1

Ut = u+ ρ

δ
− ρ

δ
e−δt − eδτ1

Nt∑
i=1

X i e−δ(Ti−τ1)

= u+ ρ

δ
− ρ

δ
e−δτ1 e−δ(t−τ1) − X1e−δτ1 − e−δτ1

Nt∑
i=2

X i e−δ(Ti−τ1)

= u+ ρ

δ
− X1e−δτ1 + e−δτ1

(
−ρ
δ

e−δ(t−τ1) −
Nt∑
i=2

X i e−δ(Ti−τ1)

)

= e−δτ1

eδτ1 (u+ ρ

δ
)− (

ρ

δ
+ X1)︸ ︷︷ ︸

≥0

+ ρ

δ
− ρ

δ
e−δ(t−τ1)︸ ︷︷ ︸

=r(t−τ1)

−
Nt∑
i=2

X i e−δ(Ti−τ1)

︸ ︷︷ ︸
d=∑Nt−τ1

i=1

 .

Hence

P
(
{χu <∞}

⋂
Ac)= ∫ ∞

0

∫ eδt(u+ ρ
δ

)− ρ
δ

0
ψ

(
eδt(u+ ρ

δ
)− (

ρ

δ
+ x)

)
FX (dx)Fτ(dt).

ii) The proof follows similar reasoning, or one might substitute ψ(u) = 1−φ(u)
in i).

3. Equations for exponential interarrivals

In this section, assuming that τ is exponential, we derive an integro-differential
equation for the survival probability.

(3.1) An integro-differential equation.

THEOREM (3.1). If τ∼ exp(λ), then φ is differentiable and it satisfies

(3.2) φ′(u)= λ

δ(u+ρ/δ)
φ(u)− λ

δ(u+ρ/δ)

∫ u

0
φ(u− x)FX (dx).

Proof. Under the assumption, equation (2.2) of Lemma 2.1 is

φ(u) =
∫ ∞

0

∫ eδt(u+ρ/δ)−ρ/δ

0
φ

(
eδt(u+ ρ

δ
)− (

ρ

δ
+ x)

)
FX (dx)λe−λtdt.

Taking the change of variable z = eδt(u+ρ/δ)−ρ/δ, we have that

e−λt =
(

u+ρ/δ
z+ρ/δ

)λ/δ
and dt = dz

δ(z+ρ/δ)
.

This turns equation (2.2) into

φ(u) =
∫ ∞

u

∫ z

0
φ(z− x)FX (dx)

λ(u+ρ/δ)λ/δ

δ(z+ρ/δ)1+λ/δ dz

= λ(u+ρ/δ)λ/δ
∫ ∞

u

∫ z

0
φ(z− x)FX (dx)

dz
δ(z+ρ/δ)1+λ/δ ,

which shows that φ is differentiable. Since we assume that P(X <∞) = 1 and we
take δ > 0, then φ(u) is an increasing function of u and φ(u) < 1 for all u < ∞.
Thus, taking the derivative d

du in previous display gives the result.
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COROLLARY (3.3). Function φ satisfies

(3.4) α= g(u)φ(u)+
∫ u

0
K(u, s)φ(s)ds, u ≥ 0,

where α :=−ρφ(0), g(u) :=−ρ−δu and K(u, s) :=λ+δ−λFX (u− s).

Proof. We write equation (3.2) as

(δu+ρ)φ′(u)=λφ(u)−λ
∫ u

0
φ(u− x)FX (dx).

Integrating on [0,u] we obtain

δ

(
uφ(u)−

∫ u

0
φ(s)ds

)
+ρ(φ(u)−φ(0))=λ

∫ u

0
φ(s)ds−λ

∫ u

0
φ(s)FX (u− s)ds.

For the last integral we used the indentity∫ u

0

∫ s

0
φ(s− x)FX (dx)ds =

∫ u

0
φ(s)FX (u− s)ds.

(see for instance [11], page 194). This gives rise to the Volterra integral equation
(3.4).

REMARK (3.5). Equation (3.4) can be written in the form

φ(u)= ρφ(0)
ρ+δu

+
∫ u

0

(λ+δ)−λFX (u− s)
ρ+δu

φ(s)ds.

Appealing to Theorem 5 in [2], p. 183, we know that previous Volterra linear equa-
tion admits a unique solution in the space of continuous function with compact
support.

REMARK (3.6). Equation (3.4) has been previously derived in [1] (see Proposi-
tion 1.8 of chapter VIII) using different methods. When δ = 0, previous equation
becomes the well known integral equation for non-discounted risk process (consult
for example [6]).

REMARK (3.7). In Harrison [7] it is found explicitly the ruin probability ψ(u)
when X ∼ exp(1/m); such solution is

ψ(u)= c
∫ ∞

ρ/δ+u
xλ/δ−1e−x/mdx,

where
c := m(λ/δ)∫ ∞

ρ/δ xλ/δe−x/mdx
.

Thus, under this circumstance, 1−ψ(u) solves equation (3.4).

Although not very explicit, the theory of successive approximations for inte-
gral equations (see e.g. section 1.3 of Corduneanu [3]) gives the following from
Corollary (3.3).

PROPOSITION (3.8). The unique solution of equation (3.4) is given by

(3.9) φ(u)= ρφ(0)
ρ+δu

+ρφ(0)
∫ u

0

R(u, s)
ρ+δs

ds,

where R(t, s) solves equation

(3.10) R(t, s)= K̃(t, s)+
∫ t

s
R(t, r)K̃(r, s)dr, 0≤ s ≤ t,
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with

K̃(t, s) := λ+δ−λFX (t− s)
ρ+δt

(3.2) The Laplace transform of φ. Now we study the Laplace transform of
{φ(u),u ≥ 0}, solution of (3.4). For this purpose, the Laplace transform of a function
{h(u),u ≥ 0} evaluated at z ∈R is denoted by

L[h(u)](z) :=
∫ ∞

0
e−zuh(u)du,

or simply L[h](z). Let us then set Φ(z) := L[φ](z).
From Widder [13] (see pages 446, 453 and 454, respectively) we have the fol-

lowing identities:

L[uφ(u)](z) = −Φ′(z),

zL
[∫ u

0
φ(s)ds

]
(z) = Φ(z),

L
[∫ u

0
φ(s)FX (u− s)ds

]
(z) = Φ(z)L[FX ](z).

Thus, the Laplace transform of (3.4) yields

α

z
=−ρΦ(z)+δΦ′(z)+ (λ+δ)

Φ(z)
z

−λΦ(z)G(z),

where G(z) := L[FX ](z).
This is an ordinary differential equation (ODE) of the form

Φ′(z)= F(z)Φ(z)+ α

δz
,

with

F(z) := 1
δ

(
ρ+G(z)− λ+δ

z

)
.

Hence, if z0 > 0 we can calculate∫ ∞

0
exp(−z0u)φ(u)du,

and we can use theory of ODE to have the following expression for the Laplace
transform.

PROPOSITION (3.11). The Laplace transform of φ(u) is given by

Φ(z)= e
∫ z

z0
F(r)dr

[∫ z

z0

α

δv
e−

∫ v
z0

F(r)drdv+ c
]

,

where c := ∫ ∞
0 exp(−z0u)φ(u)du.

To have a more explicit expression for
∫ v

z0
F(r)dr above, we can use the Theorem

of Fubini to write∫ v

z0

F(r)dr = (v− z0)ρ
δ

− (λ+δ)
δ

ln
(

v
z0

)
+ 1
δ

∫ ∞

0

(
e−z0u − e−vu

u

)
FX (u)du.
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Figure 1. Draw of the first passage time.

4. Ruin time distribution

In this section, we want to exploit the renewal properties of the risk process Ut
to derive a two-dimensional Volterra integral equation to describe the distribution
of the time of ruin; the basic idea is taken from [9] where it was obtained equations
to describe P(Z(δ)

t ≤ z). One may find useful to look at Figure 1.
Let us first analyze the first passage time of process Z(δ)

t . Define

Rz := inf{s ≥ 0 : Z(δ)
s > z},

and let G1(z, t) := P(Rz ≤ t). Then we have

PROPOSITION (4.1). The following integral equation holds for G1(z, t):

G1(t, z)= P(τ≤ t, X e−δτ ≥ z)+
∫ t

0

∫ zeδs

0
G1

(
zeδs − x, t− s

)
FX (dx)Fτ(ds)

Proof. If τ1 > t, a fortiori Rz > t, for z > 0. Thus

G1(z, t)= P(Rz ≤ t|E1)P(E1)+P(Rz ≤ t|E2)P(E2),

where
E1 := {τ1 ≤ t, X1e−δτ1 ≥ z}

and
E2 := {τ1 ≤ t, X1e−δτ1 < z}.

Notice that if τ1 ≤ t and X1e−δτ1 ≥ z, then Rz ≤ t always, i.e.

P(Rz ≤ t|E1)= 1.

Let us now concentrate on P(Rz ≤ t,E2). From the equality of events

{Rz ≤ t}= {Z(δ)
t > z}

we draw the following,

P(Rz ≤ t,E2)= P(Z(δ)
t > z,E2)

= P
(
X1e−δτ1 + X2e−δ(τ1+τ2) + X3e−δ(τ1+τ2+τ3) + . . .+ XNt e

−δ(τ1+...+τNt ) > z,E2

)
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= P
(
X2e−δτ2 + X3e−δ(τ2+τ3) + . . .+ XNt e

−δ(τ2+...+τNt ) > zeδτ1 − X1,E2

)
,

which, due to the set E2, becomes

= P
(
Z(δ)

t−τ1
> zeδτ1 − X1,E2

)
= P

(
Rzeδτ1−X1

≤ t−τ1,E2

)
Thus, we have

P(Rz ≤ t,E2) = E
(
P

(
Rzeδτ1−X1

≤ t−τ1

)
IE2

)
=

∫ t

0

∫ zeδs

0
G1

(
zeδs − x, t− s

)
FX (dx)Fτ(ds).

We can now gather terms to write down the equation.

To study the time of ruin, we consider the following expression of Ut:

Ut = v− ρ

δ
e−δt −Z(δ)

t ,

where v := u+ρ/δ. The ruin time is defined by

R(v) := inf{s ≥ 0 : Us ≤ 0}= inf
{
s ≥ 0 : Zs ≥ v− ρ

δ
eδs

}
,

and its distribution is denoted by G(v, t) := P(R(v) ≤ t). We can now characterize
function G. In the proof, it might be useful to look at Figure 2.

THEOREM (4.2). G is the unique solution of

G(v, t)= P
(
τ≤ t, X ≥ veδτ−ρ/δ

)
+

∫ t

0

∫ veδt−ρ/δ

0
G

(
veδs − x, t− s

)
FX (dx)Fτ(ds)

Proof. Notice that P(R(v)≤ t|τ1 > t)= 0, then

G(v, t) = P (R(v)≤ t|E1)P (E1)+P (R(v)≤ t|E2)P (E2) ,

where
E1 :=

{
X1e−δτ1 ≥ v− ρ

δ
e−δτ1 , τ1 ≤ t

}
and

E2 :=
{

X1e−δτ1 < v− ρ

δ
e−δτ1 , τ1 ≤ t

}
.

However P (R(v)≤ t|E1) = 1. For the next term, we use now the renewal prop-
erties of process Z(δ)

t to yield

P (R(v)≤ t, E2)

= P

(
inf

{
s ≥ 0 :

Ns∑
i=2

X i e−δTi ≥ v− ρ

δ
e−δ(τ1+s) − X1e−δτ1

}
≤ t−τ1, E2

)
(here multiplying both sides by eδτ1 )

= P

(
inf

{
s ≥ 0 :

Ns∑
i=2

X i e
−δ∑i

j=2 τ j ≥ veδτ1 − X1 − ρ

δ
e−δs

}
≤ t−τ1, E2

)

=
∫ t

0

∫ veδt−ρ/δ

0
G

(
veδs − x, t− s

)
FX (dx)Fτ(ds);

for the last equality we used the fact that{
Ns∑
i=2

X i e
−δ∑i

j=2 τ j , s ≥ 0

}
(d)= {Z(δ)

s , s ≥ 0}.
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Figure 2. Draw of the time of ruin.

Joining pieces we end up with the relation.
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OPTIMAL SOLUTIONS OF CONSTRAINED DISCOUNTED
SEMI-MARKOV CONTROL PROBLEMS

JUAN GONZÁLEZ-HERNÁNDEZ AND CÉSAR EMILIO VILLARREAL-RODRÍGUEZ

ABSTRACT. We give conditions for the existence of optimal solutions to the con-
strained semi-Markov decision problem on Borel spaces, with possibly unbounded
costs and discounted performance index. We also demonstrate the existence of
optimal solutions which are given by a convex combinations of N +1 measurable
selectors, where N is the number of constraints.

1. Introduction

There are not many articles that work with constrained semi-Markov deci-
sion processes in Borel spaces and performance index of expected discounted cost.
Luque Vásquez and Robles-Alcaraz [23] worked on unbounded and unconstrained
semi-Markov decision processes. Abdel-Hameed [1] gave applications to reliabil-
ity. Love et al [20] analyzed the optimal repair/replacement policy in a machine
system modeled as a discrete semi-Markov decision process. Cao [4] made a sensi-
tivity analysis in a finite state semi-Markov process. Hu and Yue [14] showed the
existence of optimal control limit policies of a semi-Markov decision process whose
objective function is an expected discounted cost and the environment changes
according to a semi-Markov process. Hudak and Nollau [17] considered an ap-
proximation procedure for calculating the optimal value of a discounted semi-
Markov decision process with countable state space and finite action space. Hao,
Hongsheng and Baoqun [10] proposed an optimal robust control policy for uncer-
tain semi-Markov control processes. Dai et al [5] studied performance optimiza-
tion algorithms for a class of semi-Markov control processes with compact action
set. Tang, Xi and Yin [28] extend techniques based on performance potential for
Markov control problems to uncertain semi-Markov control processes. Liu [18]
proved the existence of ε-optimal in a weighted semi-Markov decision processes.
Luque-Vásquez and Minjárez-Sosa [21] studied a discounted semi-Markov control
process with Borel state space, unbounded cost function and unknown holding
time distribution. Singh, Tadić and Doucet [27] implemented an algorithm us-
ing the gradient method for semi-Markov decision processes with application to
call admission control. Hao, Baoqun and Hongsheng [9] established error bounds
for potential in optimization algorithms for semi-Markov decision processes. Yin
et al [32] studied the problems of discounted-cost performance optimization for
a class of semi-Markov decision processes. Luque-Vásquez, Minjárez-Sosa and
Rosas-Rosas [22] boarded the problem of semi-Markov control processes with un-
known and partially unknown holding times distribution under average cost and

2010 Mathematics Subject Classification: 60K15, 47N10, 47N30.
Keywords and phrases: semi-Markov decision process, performance index, stochastic kernel, Pol-

ish space.
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discounted cost criteria. Huang and Guo in [15] studied a first passage model
for discounted semi-Markov decision processes with denumerable states and non-
negative costs, and in [16] the finite horizont semi-Markov decision processes with
denumerable states.

For a deeper study on Markov Decision Processes see [11] or [25]. The cases
with constraints can be seen in [7, 6, 8].

So far there are no known works that address to the constrained semi-Markov
control problem whose state space and control space are Borel spaces. The main
contributions of this article is the focus by occupation measures.

Section 2 contains preliminary notions of semi-Markov control model with con-
straints. Section 3 works with a generalization of the occupation measures for
semi-Markov decision processes with discounted cost. This allows to give an
equivalent problem in terms of a family of measures and to use the direct ap-
proach. In Section 4 we prove the existence of solutions to the control problem.
We conclude the article with Section 5, where the existence of stationary optimal
solutions which are convex combinations of at most N +1 measurable selectors is
demonstrated.

Notation (1.1). A Polish space Z is a complete separable metric space and a
Borel space is a measurable subset of a Polish space. We denote by B(Z) its Borel
σ-algebra. Measurable always means Borel-measurable. If Z and W are Borel
spaces, a stochastic kernel P on Z given W is a function (w,B) 7→P(B|w) such that
P(·|w) is a probability measure on B(Z) for each w ∈W , and P(B|·) is a measurable
function on W for each B ∈ B(Z). We also shall denote by P(Z) the set of all
probability measures on (Z,B(Z)).

2. The semi-Markov control model

Definition (2.1). A constrained semi-Markov decision process (CSMDP)

(X,A, A,Q,F, c j,d j; j ∈ {0,1, . . . , N})

consists of:

(a) A Borel space space X, called the state space.
(b) A Borel space A, the control (or action) space.
(c) A function A : X→ {B : B is a measurable subset of A}. For each x we have

that A(x) 6=∅ and it is the set of admissible controls (or actions) at the state
x. Moreover we assume that the set

K := {(x,a) : x ∈X, a ∈ A(x)}

is a Borel subset of X×A and contains the graph of a measurable map from
X to A.

(d) A stochastic kernel Q on X given K called the transition law.
(e) A continuous function t 7→ F(t|x,a, y) which is a probability distribution

function, for each (x,a, y) ∈ K×X, and we assume F(t|·) is jointly measur-
able for each real number t.

(f) The nonnegative measurable real functions on X×A, c j and d j for j ∈ {0,1,
. . . , N} are the so called cost functions.
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The CSMDP represents a stochastic system that evolves in the next way: At
stage i the system is in the state xi ∈ X and a control ai ∈ A(xi) is applied, then
the following things happen: The immediate costs c j(xi,ai) for j ∈ {0,1, . . . , N} are
incurred. The system moves to the next state xi+1 ∈X according to the probability
measure Q(·|xi,ai). Conditional to (xi,ai, xi+1) the time ti+1 from the transition i
occurs until the transition i+1 occurs has the distribution function F(·|xi,ai, xi+1).
The costs d j(xi,ai) for j ∈ {0,1, . . . , N} are imposed until the transition i+1 occurs.
After the transition i+1 occurs, a control ai+1 ∈ A(xi+1) is chosen and the process
continues in this way.

For each i ∈ N∪ {0}, define the space of admissible histories up to stage i by
H0 := X and Hi := Ki−1 ×X = K× Hi−1. A generic element hi ∈ Hi is a vec-
tor, or history, of the form hi = (x0,a0, . . . , xi−1,ai−1, xi), where (x j,a j) ∈ K for
j ∈ {0,1,2, . . . , i−1} and xi ∈X.

Definition (2.2). (a) A control policy is a sequence π = (πi) of stochastic ker-
nels πi on A given Hi, satisfying the constraint πi(A(xi)|hi) = 1 for all
hi ∈ Hi and i ∈N∪ {0}. We denote by Π the class of all policies.

(b) A control policy is said to be randomized stationary, if there exists a sto-
chastic kernel ϕ on A given X, satisfying the constraint ϕ(A(x)|x) = 1 such
that πi(·|hi) = ϕ(·|xi) for all hi ∈ Hi and i ∈N∪ {0}. We identify the policy π

with ϕ and denote by Φ the set of all such policies.
(c) A randomized stationary policy ϕ is said to be stationary deterministic if

there exists a function f from X to A, satisfying the constraint f (x) ∈ A(x)
such that ϕ(·|x) is concentrated at f (x). These functions are called measur-
able selectors. We identify the policy ϕ with f and we denote by F the set of
all such policies.

(d) A randomized stationary policy is said to be N-randomized policy if it is a
convex combination of at most N stationary deteministic policies. We denote
the set of all such policies by ΦN .

Given an initial distribution ν ∈P(X) and π= (πi) ∈Π, by Ionescu-Tulcea The-
orem ([3, Th. 2.7.2], [13, Sec. 11] or [19, pp. 137-139]), there exists a probability
space (Ω,A,P) such that

1. Pπ
ν(x0 ∈ B)= ν(B) for B ∈B(X);

2. Pπ
ν(xi+1 ∈ B|hi,ai) = Q(B|xi,ai) for all B ∈ B(X), hi ∈ Hi and ai ∈ A(xi), i ∈
N∪ {0};

3. Pπ
ν(ai ∈ C|hi)=πi(C|hi) for all C ∈B(A) and hi ∈ Hi, i ∈N∪ {0};

4. Pπ
ν(ti ≤ r|hi+1) = F(r|xi,ai, xi+1) for all r ∈ R, hi+1 ∈ Hi+1 and ai ∈ A(xi),

i ∈N∪ {0};

From the dynamic of the process given by Definitions (2.1) (d) and (e) and the
nature of a policy, Definition (2.2) (a), we can see that:

REMARK (2.3). The random variables t1, t2, . . . are conditionally independent
given the process (x0,a0, x1,a1, . . .).

We denote by Eπ
ν the expectation with respect to Pπ

ν , and we denote by Pπ
x and

Eπ
x respectively when ν is concentrated at x.
In order to assure that an infinite number of transitions t1, t2, . . . does not occur

in a finite interval, we need to impose a condition: (see Vega-Amaya [31]). To
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do this, we introduce the following notations: for the distibution function of the
holding time ti conditional to (x,a) ∈K we put

(2.4) G(t|x,a) :=
∫
X

F(t|x,a, y)Q(dy|x,a) for t ≥ 0;

for the conditional expected value of ti given (x,a) we put

(2.5)

τ(x,a) :=
+∞∫
0

(1−G(t|x,a))dt

=
∫
X

+∞∫
0

(1−F(t|x,a, y))dtQ(dy|x,a));

and we introduce the auxiliary functions τα such that τα(x,a) is the conditional

expected value of
ti∫
0

e−αtds given (x,a) puting

(2.6)
χα(x,a) :=

∫ +∞

0
e−αtG(dt|x,a) and

τα(x,a) := (1−χα(x,a))/α,

for α ∈ (0,1) (the discount rate) and (x,a) ∈K.

Condition (2.7). There exist ε> 0 and t̄ > 0 such that P(t > t̄|x,a)= 1−G(t̄|x,a)≥
ε for all (x,a) ∈K.

So we have the next lemma (Proposition 2.4 of [31]):

LEMMA (2.8). If Condition (2.7) holds, then
1. infKτ(x,a)≥ εt̄;
2. τ̄α := supKτα(x,a)< 1;

3. Pπ
x

( ∞∑
i=1

ti =+∞
)
= 1 for every x ∈X and π ∈Π.

Performance index. Let us define the sum of the transition times as T0 := t0 :=
0, and Ti := Ti−1+ ti for i ∈N. If we consider Vα

j (π,ν) for π ∈Π and ν a fixed initial
distribution on X as:

Vα
j (π,ν) :=Eπ

ν

 ∞∑
i=1

e−αTi

c j(x,a)+d j(x,a)

ti+1∫
0

e−αtdt

 ,

for j ∈ {0,1, . . . , N}. Now we define new current costs when the process is in state
x and an action a is chosen as:

(2.9) Cα
j (x,a) := c j(x,a)+d j(x,a)τα(x,a),

where τα is given in (2.6). So, by properties of conditional probability, we can
express Vα

j (π,ν) as:

(2.10) Vα
j (π,ν) :=Eπ

ν

( ∞∑
i=0

e−αTi Cα
j (xi,ai)

)
,

for j ∈ {0,1, . . . , N}.
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Definition (2.11). For α ∈ (0,1), an initial distribution ν on X and a policy π ∈Π,
the values of Vα

j (π,ν) given in (2.10) are called the α-discounted expected costs.
When ν is concentrated at some x ∈X we write Vα

j (π, x) instead.

Let k j > 0 for j ∈ {1, . . . , N} given. The discounted control problems is:

DCP minVα
0 (π,ν),

subject to Vα
j (π,ν)≤ k j for j ∈ {1, . . . , N},

π ∈Π.

If a policy π∗ reaches this minimum, it is said that it is an optimal solution for
DCP and it is called an al pha-discounted optimal policy.

3. Discounted occupation measures

Notation (3.1). For an arbitrary Borel space Z we shall denote by M(Z) the
family of finite (signed) measures on (Z,B(Z)). We shall denote by M(Z|Z′) the
family of all conditional finite measures on Z given Z′. That is, an element of
M(Z|Z′) is a function (z′,B) 7→ m(B|z′), such that m(B|·) is a measurable function
on Z′ for each B ∈B(Z) and m(·|z′) ∈M(Z) for each z′ ∈ Z′. Also when C ⊂ Z, M(C)
shall denote the family of all finite measures with support on C. Similarly we de-
note by M+(Z), M+(Z|Z′) and M+(C) the corresponding families for nonnegative
finite measures.

Let us define the conditional measure Hα ∈M(X|X×A) as

Hα(C|x,a) :=
∫
C

e−αtG(dt|x,a)

=Eν
π

(
e−αti 1lC(xi)|xi−1 = x,ai−1 = a

)
,

for all i ∈ N, where 1lC is the indicator function of the set C, that is 1lC(x) = 1, if
x ∈ C, and 1lC(x)= 0 otherwise.

Definition (3.2). Given α ∈ (0,1), ν an initial distribution on P(X) and a policy
π ∈Π, the α -discounted occupation measure m(· :π,ν,α) is defined as

(3.3) m(B :π,ν,α) :=Eπ
ν

( ∞∑
i=0

e−αTi 1lB(xi,ai)

)
,

for B ∈B(X×A).

REMARK (3.4). Observe that m(· :π,ν,α) ∈M+(X×A). In fact

m(B :π,ν,α) :=Eπ
ν

( ∞∑
i=0

e−αTi 1lB(xi,ai)

)
≤

∞∑
i=0

(τ̄α)i,

REMARK (3.5). (a) If µ ∈M(X×A), there is a randomized control ϕ ∈ Φ and
a signed measure µ̂ ∈M(X) such that

(3.6) µ(B×C)= (µ̂⊗ϕ)(B×C) :=
∫
B

ϕ(C|x)µ̂(dx)

for B ∈ B(X) and C ∈ B(A). The measure µ̂ is called the marginal measure
of µ on X and it is obtained by mean of µ̂ := µ(· ×A). Observe that for each
C ∈ B(A), µ̂(B) = 0 =⇒ µ(B×C) = 0 and the function ϕ(C|·) is the Radon-
Nikodým derivative of µ(·×C) with respect to µ̂.
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(b) Conversely, if ϕ is a randomized control and µ̂ ∈M(X), there is an unique
signed measure µ ∈M(X×A) such that (3.6) is satisfied.

LEMMA (3.7). Let f be a nonnegative measurable function on B(X×A), and let
α ∈ (0,1), ν an initial distribution on P(X) and a policy π ∈ Π. Set m(B) = m(B :
π,ν,α), thus ∫

X×A
f (x,a)m(d(x,a))=Eπ

ν

( ∞∑
i=0

e−αTi f (xi,ai)

)
.

Proof. This property can be proved by following the classic way of supposing first
the case when the function f is an indicator function, then simple function, then
increasing limit of simple functions.

Notation (3.8). Given a measurable function f on K, a stochastic kernel P on X
given K, a stochastic kernel ϕ on A given X and a Borel subset of X, we denote by

f (x,ϕ) :=
∫
A

f (x,a)ϕ(da|x)

and

P(B|x,ϕ)=
∫
A

P(B|x,a)ϕ(da|x).

THEOREM (3.9). A measure m ∈M+(K) is an α-discounted occupation measure
if and only if it satisfies

(3.10) m̂(B)= ν(B)+
∫

X×A
Hα(B|x,a)m(d(x,a)),

for every Borel subset B of X, where m̂ is the marginal measure of m on X, that is
m̂(B) := m(B×A) for B ∈B(X).

Proof. Let us take m(B)= m(B :π,ν,α). We have

m̂(B)= m(B×A)=Eπ
ν

( ∞∑
i=0

e−αTi 1lB×A(xi,ai)

)

= ν(B)+Eπ
ν

( ∞∑
i=1

e−αTi 1lB×A(xi,ai)

)

= ν(B)+Eπ
ν

( ∞∑
i=1

Eπ
ν(e−αTi 1lB×A(xi,ai)|hi−1,ai−1)

)

= ν(B)+Eπ
ν

( ∞∑
i=1

e−αTi−1Eπ
ν(e−αti 1lB×A(xi,ai))|xi−1,ai−1)

)

= ν(B)+Eπ
ν

( ∞∑
i=1

e−αTi−1 Hα(B|xi−1,ai−1)

)

= ν(B)+
∫

X×A
Hα(B|x,a)m(d(x,a)).
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Conversely, let us consider a measure m ∈M+(K) such that satisfies (3.10). Let
us disintegrate m = m̂⊗ϕ, then iterations of this equation produce

m̂(B)= ν(B)+
∫
X

Hα(B|x0,ϕ)m̂(dx0)

= ν(B)+
∫
X

Hα(B|x0,ϕ)ν(dx0)

+
∫
X

∫
X

Hα(B|x1,ϕ)Hα(dx1|x0,ϕ)m̂(dx0)= ·· · = ν(B)

+
M−1∑
i=1

∫
X

∫
X

· · ·
∫
X

Hα(B|xi,ϕ)
i∏

k=1
Hα(dxk|xk−1,ϕ)ν(dx0)

+
∫
X

∫
X

· · ·
∫
X

Hα(B|xM ,ϕ)
M∏

k=1
Hα(dxk|xk−1,ϕ))m̂(dx0),

for all M ∈N. In this last expression we consider an empty product as equal to 1.
The last sumand tends to zero, in fact∫

X

∫
X

· · ·
∫
X

Hα(B|xM ,ϕ)
M∏

k=1
Hα(dxk|xk−1,ϕ))m̂(dx0)≤ (τ̄α)M → 0,

as M →∞. Now, for i ∈N we have∫
X

∫
X

· · ·
∫
X

Hα(B|xi,ϕ)
i∏

k=1
Hα(dxk−1|xk−1,ϕ)ν(dx0)

=Eϕ
ν (e−αTi 1lB(xi)),

and
ν(B)=Eϕ

ν

(
e−αT01lB(x0)

)
.

Hence

m̂(B)=
∞∑

i=0
Eϕ
ν (e−αTi 1lB(xi))= m(B×A :π,ν,α)= m̂(B :π,ν,α),

therefore
m = m̂⊗ϕ= m̂⊗ϕ(· :π,ν,α)= m(· :π,ν,α).

COROLLARY (3.11). The family of stationary policies is sufficient for the control
problems.

Let us denote
〈m, f 〉 :=

∫
f (x,a)m(d(x,a)).

Let k j ≥ 0 for j ∈ {0,1, . . . , N} given.
The control problems now has the form

MDCP min
〈
m,Cα

0
〉

subject to
〈

m,Cα
j

〉
≤ k j for j ∈ {1,2, . . . , N}

and m̂ = ν+ (m⊗Hα)
m ∈M+(K).

Actually.
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COROLLARY (3.12). The problems DCP and MDCP are equivalent.

4. Existence of solution

Remember that X and A are Borel spaces. The functions c j and d j are non-
negative for j ∈ {1,2, . . . , N} and F is a continuous function. By using the former
corollary we shall prove that MDCP is solvable in Theorem (4.4) below.

Condition (4.1). Let us suppose:

(a) There is a policy π ∈Π such that Vα
j (π,ν)≤ k j for j ∈ {1,2, . . . , N} and Vα

0 (π,ν)
<+∞.

(b) The function c0 is inf-compact or is a moment and lower semicontinuous.
(c) The functions ck and d j are lower semicontinuous functions for k ∈ {1,2, . . . ,

N} j ∈ {0,1, . . . , N}.
(d) The stochastic kernel Q is weakly continuous.
(e) There is a density function f (t|x,a, y) for F(t|x,a, y) such that f is an uni-

formly continuous function on all its variables.

REMARK (4.2). Claus (a) is in order the problem DCP (or MDCP) makes sense.
Claus (b) assure we have a tight family, so we can apply Prohrov’s Theorem. Claus
(c) implies that with limits we fulfill the constraints. Clauses (d) and (e) force the
function τα to be continuous.

Let us define the set M f of all feasible occupation measures, that is, the set of
all measures m ∈M+(K) such that

〈m,Cα
0 〉 <+∞,

〈m,Cα
j 〉 ≤ k j for j ∈ {1,2, . . . , N},

and m̂ = ν+ (m⊗Hα)

and let us define the value of the program MDCP by

V̄ = inf
{〈

m,Cα
0
〉

: m ∈M f
}
.

LEMMA (4.3). Under Condition (4.1) the function τα given in (2.6) is a continu-
ous function.

Proof. As f (t|x,a, y) is an uniformly continuous function on (t, y), given ε> 0 and
(x,a) ∈X×A, there is δ> 0, such that

| f (t|x,a, y)− f (t|x,a, y′)| < ε,

for all (t, y), (t, y′) ∈ (0,+∞)×X such that d1(y, y′) < δ, where d1 is the distance in
the space X. Hence∣∣∣∣∣∣

+∞∫
0

e−αt f (dt|x,a, y)−
+∞∫
0

e−αt f (dt|x,a, y′)

∣∣∣∣∣∣= ε

α
.

That is, for each (x0,a0) ∈X×A, the function

y 7→
+∞∫
0

e−αt f (dt|x0,a0, y)
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is continuous on X. Hence, by Condition (4.1) (d), the function

(x,a) 7→
∫
X

+∞∫
0

e−αt f (dt|x0,a0, y)Q(dy|(x,a))

is a continuous function on X×A for each (x0,a0) ∈X×A. Now from the inequality∣∣∣∣∣∣
∫
X

+∞∫
0

e−αt f (dt|x′,a′, y)Q(dy|x′,a′)

−
∫
X

+∞∫
0

e−αt f (dt|x,a, y)Q(dy|x,a)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
X

+∞∫
0

e−αt f (dt|x′,a′, y)Q(dy|x′,a′)

−
∫
X

+∞∫
0

e−αt f (dt|x′,a′, y)Q(dy|x,a)

∣∣∣∣∣∣
+

∫
X

+∞∫
0

e−αt| f (dt|x′,a′, y)− f (dt|x,a, y)|Q(dy|x,a),

we can see that the function τα is a continuous function.

THEOREM (4.4). If conditions (2.7) and (4.1) holds then the MDCP is solvable.

Proof. Let (mi)∞i=1 be a sequence of occupation measures in M f such that 〈mi,Cα
0 〉

↘ V̄ . Let mi(·) = mi(· : π,ν,α). By Condition (2.7) the family of occupation mea-
sures is uniformly bounded by 1

1−τ̄α .
Now, from Condition (4.1), (a) and (b) the family of occupation measures M f

is tight. Hence by Prohorov’s Theorem, there is a measure m0 and a subsequence
(mni )

∞
i=1 which is weakly convergent to m0.

From this we obtain that its marginals m̂ni → m̂0 and by Theorem (3.9) we
have m̂0 = ν+ (m0 ⊗ϕ0), then m0(·)= m0(· :ϕ,ν,α).

Now by (4.1), (b) and (c) c j and d j are lower semicontinuous functions for
j ∈ {0,1, . . . , N}, then by Lemma (2.6) Cα

j is a semicontinuous function for j ∈
{0,1, . . . , N}. By Fatou Lemma and since m̂ni → m̂0, 〈m0,Cα

j 〉 ≤ liminfk〈mk,Cα
j 〉 ≤

k j for j ∈ {1, . . . , N}. Finally V̄ ≤ 〈m0,Cα
0 〉 ≤ liminfk〈mk,Ck

0〉 ≤ V̄ .

5. Characterization of the solutions

In this section we shall prove that if the stochastic kernel is nonatomic, then
there exists an N + 1-randomized optimal policy. For this we shall need some
preliminaries definitions and lemmas.

Definition (5.1). Let µ a finite (nonnegative) measure on B(A). Then µ is said
to be:

(a) regular if µ(D) = sup{µ(C) : C ⊂ D and C is closed} for each Borel set D ∈
B(A);
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(b) τ-smooth if for every decreasing net (Fη)η of closed subsets of S we have
µ(

⋂
ηFη)= infηµ(Fη).

REMARK (5.2). (a) If A is a Hausdorff (ot T2) space, then every Radon mea-
sure on A is τ-smooth, and if A is regular (or T3), then every τ-smooth mea-
sure is regular (see e.g., [30, Proposition I.3.1]).

(b) If A is strongly Lindelöf (which is the case e.g., if A is a Suslin space, see [26,
p. 104]), then every finite measure on B(A) is τ-smooth. The latter fact and
(a) yield, in particular the following.

(c) In particular, if A is a locally compact and separable metric space, the parts
(a) and (b) imply that each p.m. on B(A) is both τ-smooth and regular.

By Remark (3.5) and [6, Th. 2.6] we get immediately the next theorem.

THEOREM (5.3). Let X be an arbitrary topological space, and A a topological
space such that every p.m. on B(A) is τ-smooth and regular. Fix an arbitrary finite
measure µ̂ on B(X), nonnegative real-valued measurable functions Cα

1 ,Cα
2 ,. . . ,Cα

N
on K, and real numbers k1, . . . ,kN . Consider the set Λ ⊂Φ that consists of all the
randomized strategies ϕ ∈Φ for which

(5.4)
∫

Cα
j (x,ϕ(x))µ̂(d(x,a))≤ k j for all j ∈ {1, . . . , N},

and let ex(Λ) be the set of extreme points of Λ. Then:
1. Λ is convex and

(5.5) ex(Λ)⊂Φ0
N+1

where Φ0
N+1 is the set of all the (N +1)-randomizations of the form ϕ(·|x) =

N+1∑
j=1

λ j1l·( f j(x)) ∈ΦN+1 for some f j ∈ F and nonnegative numbers λ j such that

N+1∑
j=1

λ j = 1 and the vectors

(5.6)
(∫

Cα
1 (x, f j(x))µ̂(dx), . . . ,

∫
Cα

N (x, f j(x))µ̂(dx),1
)
∈RN+1,

for j ∈ {1, . . . , N}, are linearly independent.
2. If equality holds in (5.4), then we have equality of the sets in (5.5).

REMARK (5.7). (a) Theorem (5.3) requires the action set A is a topological
space such that

(5.8) every p.m. on B(A) is τ-smooth and regular.

This condition ensures that the set of extreme points of the space P(A) of
p.m.’s on A coincides with the set of Dirac measures δa for all a ∈A (see, for
instance, [29, Th. 11.1]).

(b) If a p.m. is tight, then it is τ-smooth and regular (see [29, p. xiii]). It follows
that to obtain (5.8) it suffices to give conditions on A so that every p.m. on
B(A) is tight. This is the case if, for instance, A is: (i) a σ-compact Hausdorff
space; (ii) a Polish space; or (iii) a locally compact separable metric space.
(See [26, 29].)

In the remainder we also consider the following sets:
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• The convex cone D+ := R+ ·Φ of the so-called transition measures restricted
to K;

• the linear space D :=D+−D+ of signed transition measures with the obvious
definitions of sum and scalar multiplication; and

• M(K) the linear space of finite signed measures on X×A concentrated on
K.

Let l : D → M(K) be the linear mapping defined by l(ϕ) := ν⊗ϕ, where ν is
finite measure on X and ν⊗ϕ is as in Remark (3.5). We define the quotient space
D :=D/ker(l), where ker(l) := {ϕ ∈D : (ϕ)= 0} is the kernel of l. For each ϕ ∈D, let
ϕ := {ϕ′ ∈D : ν⊗ϕ′ = ν⊗ϕ} be the corresponding equivalence class in D, and the
quotient sets F,Φ,Λ,Φ

0
N+1 are defined similarly. For instance, Λ := {ϕ :ϕ ∈Λ}.

In the next lemma we use the following notation. If ν is a finite measure on X
and Φ′ is a subfamily of randomized strategies in Φ, then ν⊗Φ′ := {ν⊗ϕ :ϕ ∈Φ′}.
Next lemma can be proved as in [6, Th. 2.6 ] and [8, Th. 5.6].

LEMMA (5.9). 1. If ν ·ϕ is an extreme point of ν ·Φ (resp., ν ·Λ), then ϕ is an
extreme point of Φ (resp., Λ).

2. If ϕ is an extreme point of Φ, then ϕ has an extreme point f in F
⋂
ϕ.

3. If ϕ is an extreme point of Λ, with Λ as in Theorem (5.3), then ϕ has an
extreme point ϕ∗ of Λ with ϕ∗ in R0

q+1
⋂
ϕ.

THEOREM (5.10). (Bauer’s extremum principal (see [2])) If S is a compact con-
vex subset of a locally convex Hausdorff topological vector space, then every l.s.c.
concave function on S achieves its minimum at an extreme point.

Finally we get as in [6, Th. 6.2] and [8, Th. 5.8].

THEOREM (5.11). Suppose that A is locally compact separable metric space and
that Q and ν are nonatomic, then there exists an N+1-randomized optimal policy.

6. Example

Let X=A= [0,+∞), A(x)= [0, x] and ν(B)= ∫
B

e−tdt, for B ∈B(X).

Let us consider a device such that the probability of passing from a state x ∈X
with an action a ∈ A(x) to a state in B ∈B(X) is given by

Q(B|x,a)=
∫
B

λ2(x+1−a)exp(−λ2(x+1−a)y)dy

and the transition occurs in a random time whose distribution function is given
by

F(t|x,a, y)= 1−exp(−λ1(x+1−a)yt2),

and so
f (t|x,a, y)= (−2λ1(x+1−a)yt)exp(−λ1(x+1−a)yt2).

The current operation cost functions to be minimized are c0(x,a) = γ0a2 +γ1a2

and d0(x,a) = η0x2. The cost function for which is important to keep under some
bounds are c1(x,a) = γ2(x−a)2 and d1(x,a) = η1x which represent some measure
of risk associated with big values. Then the distribution G and its density g are
independent of (x,a). G0(t) = G(t|x,a) = 1− λ2

λ1 t2+λ2
, g0(t) = g(t|x,a) = 2λ1λ2 t

(λ1 t2+λ2)2 .
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The expected value of the time T is τα = τα(x,a) =
(
λ2
λ1

) 1
2 π

2 = τ̄α. The other costs

are Cα
0 (x,α) = γ0a2 +η0ταx2, Cα

1 (x,α) = γ1(x− a)2 +η1ταx. The kernel Hα of fi-
nite measures is Hα(C|x,a) = ∫

C
e−αt2λ1λ2

t
(λ1 t2+λ2)2 dt. Now we shall see that this

example satisfies all the conditions. First, Condition (2.7) is fulfilled if

λ2

λ1 t̄2 +λ2
≥ ε̄> 0.

Condition (4.1): (a) To see that there is a policy π ∈ Π such that Vα
j (π,ν) ≤ k1

and Vα
0 (π,ν)<+∞ let us consider the deterministic stationary policy given by the

function f (x)= x. Hence

Vα
0 (π,ν)≤ 2(γ0 +γ1 +η0τα)+ 2(γ0 +γ1 +η0τα)

λ2
2

∞∑
i=1

(τα)i

and

Vα
1 ≤ 1+ 1

λ1

∞∑
i=1

(τα)i,

that is, this condition is hold if 1+ 1
λ1

∑∞
i=1(τα)i ≤ k1.

(b), (c) and (d) hold.
(e) The fact that the density function f is uniformly continuous is a conse-

quence of its properties. It is nonnegative, bounded, analytic, the function itself
and all its derivatives tend to zero when its argument tend to infinity and is such
that the maximum of the absolute value of all its second partial derivatives are
reached, hence it is uniformly continuous.

Finally the space A is locally compact separable metric space and Q and ν are
nonatomic.

7. Conclusions and open problems

In this article, for discounted constrained semi-Markov decision processes in
Borel spaces, we transform the original control problem in an optimization prob-
lems in the space of finite measures. This allowed to demonstrate the existence of
solutions to the control problem, to characterize the extreme points of this family
and to show there are solutions which are extreme points.

A work in process that we can mention is to find the analogous family of occu-
pation measures for average constrained semi-Markov decision processes in Borel
spaces. The target is to demonstrate existence of solutions to the control problem
and to characterize the solutions.

In the model worked in this article it was considered that the actions are taken
just in base of the previous states and actions, independent of sojourn times. A
variant is to allow the actions may depend on the sojourn times also and that the
dynamic of the system were described by a stochastic kernel on X× [0,∞) given
X× [0,∞)×A. The problem is to find the family of ocupation measures and to
follow the scheme of this article.

Other open problem is to pose the control problem as an infinite linear pro-
gramming. To do this, the first step is to characterize the family of occupation
measures. Moreover this family allows to use also convex programming.
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