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PREFACE

The International Year of Statistics 2013 was an initiative set forth by the
International Statistical Institute (ISI) in order to highlight the importance of
statistics worldwide and its impact in modern society. The choice of year could
be justified by the 300th year anniversary of the publication of Ars Conjectandi
by Jacobi Bernoulli or the 250th year anniversary of the publication of An essay
towards solving a problem in the doctrine of chances by Thomas Bayes, two works
that have strongly influenced the current directions of statistics and probability
and the broad spectrum of fields that interact with them.

However, it takes little effort to find more anniversaries of other very impor-
tant contributions, e.g. 90 years of the publication by Eggenberger y Polya, 80
years of the axiomatisation of Probability by Andréi Kolmogorov, 40 years of the
work by Robert C. Merton presenting the Black and Scholes formula as well as
the work by Thomas S. Ferguson introducing the cornerstone model in Bayesian
nonparametrics. This makes us think that, no matter the year we pick, we could
always find anniversaries of important contributions in statistics and probability,
which makes evident their role in almost any field in science.

In Mexico, more than 70 universities, research centres, societies and institu-
tions formed part of the over 2300 entities participating in this celebration. In
particular, the Sociedad Matemática Mexicana devotes this special volume to di-
vulge some recent research lines followed by renowned Mexican researchers.

Therefore, as invited editors, we have undertaken the difficult task of decid-
ing whom to invite to form part of this volume, in order to have a representative
sample of the current research directions in probability and statistics in Mexico.
Some of our selection criteria was based on youth, expertise in the field and na-
tional representativeness. It goes without saying that our list of contributors is
by no means exhaustive and only constitutes a small sample of our rich and high
quality community. Although, nowadays it is difficult to establish the boundaries
between statisticians and probabilitists we tried to distribute the contributions in
half. It is also worth mentioning that all articles were subject of a strict refereeing
by experienced experts in each of the treated fields.

We are fully grateful to the authors of this volume, for their valuable contribu-
tion and efforts placed in this volume. We are sure that these articles will serve
as inspiration to present and future generations, placing the role of statistics and
probability as one of the engines driving our modern society. We are indebted to
all referees for their careful work put in revising all articles in the volume. Lastly,
on behalf of the Mexican community in statistics and probability, would like to
acknowledge Prof. Víctor M. Pérez Abreu C., who apart of being member of the
steering committee of the international initiative statistics2013, was the main
instigator of this celebration in Mexico.

Daniel Hernández, CIMAT

Ramsés H. Mena, IIMAS-UNAM
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ON THE DISTRIBUTION OF EXPLOSION TIME OF STOCHASTIC
DIFFERENTIAL EQUATIONS

JORGE A. LEÓN, LILIANA PERALTA HERNÁNDEZ, AND JOSÉ VILLA-MORALES

ABSTRACT. In this paper we use the Itô’s formula and comparison theorems to
study the blow-up in finite time of stochastic differential equations driven by
a Brownian motion. In particular, we obtain an extension of Osgood criterion,
which can be applied to some nonautonomous stochastic differential equations
with additive Wiener integral noise. In most cases we are able to provide with a
method to figure out the distribution of the explosion time of the involved equa-
tion.

1. Introduction

Consider the stochastic differential equation

dX t = b(X t)dt+σ(X t)dWt, t > 0,(1.1)

X0 = x0.

Here b,σ : R→ R are two locally Lipschitz functions, x0 ∈ R and {Wt : t ≥ 0} is a
Brownian motion defined on a complete probability space (Ω,F ,P).

It is well-known that the solution X of equation (1.1) may explode in finite
time. That is, |X t| goes to infinite as t approaches to a stopping time that could be
finite with positive probability, which is called the explosion time of equation (1.1)
(see McKean [12]). The Feller test is an important tool of the stochastic calculus
to know if there is blow-up in finite time for (1.1) (see, for example, Karatzas and
Shreve [10]). The reader can consult de Pablo et al. [5] (and references therein)
for applications of blow-up.

In the case that b is non-decreasing and positive, and σ≡ 1, Feller test is equiv-
alent to Osgood criterion [14], as it is proven in León and Villa [11]. It means, the
solution of (1.1) explodes in finite time if and only if

∫ ∞
x0

(1/b(s))ds <∞. Also, when
σ≡ 0 and b > 0, Osgood [14] has stated that explosion time is finite if and only if∫ ∞

x0
(1/b(s))ds <∞. In this case, the explosion time is equals to this integral.
Unfortunately, the distribution of the explosion time of equation (1.1) is not

easy to calculate. One way to do it is using linear second-order ordinary differ-
ential equations. Indeed, Feller [7] has pointed out the Laplace transformation
of this distribution is a bounded solution to some related ordinary differential
equations (see Section 5.2 below for a generalization of this result). Also some
numerical schemes have been analyzed in order to approximate the time of explo-
sion (consult Dávila et al. [4]). In this paper, in Section 5.1, we also obtain the

2010 Mathematics Subject Classification: Primary 45R05, 60H10; Secondary 49K20.
Keywords and phrases: iterated logarithm theorem for martingales, Itô’s formula, comparison the-

orems for integral and stochastic differential equations, Osgood criterion, partial differential equations
of second order, time of explosion.

125



126 J. A. LEÓN, L. PERALTA HERNÁNDEZ, AND J. VILLA-MORALES

partial differential equation that has the distribution of the explosion time as a
bounded solution.

Now consider the nonautonomous stochastic differential equation

dX t = b(t, X t)dt+σ(t, X t)dWt, t > 0,(1.2)

X0 = x0.

For this equation, Feller test and Osgood criterion are not useful anymore, but,
in the case that σ is independent of x, we are still able to associate the Laplace
transformation of the distribution of the explosion time of (1.2) with a partial
differential equation as Theorem (5.10) below establishes.

The main purpose of this paper is to deal with some extensions of Osgood cri-
terion for some equations of the form (1.2). For instance, Lemma (3.2) provides a
better understanding of Theorem 2.1 in [3], or if, in (1.2), σ is independent of x, we
obtain an extension of Osgood criterion by means of the law of iterated logarithm
and comparison theorems. It is worth mentioning that versions of these impor-
tant tools have been used to analyze global solutions of integral equations as it is
done by Constantin [3], or to obtain an extension of Osgood criterion to integral
equations with additive noise and with 0< b(t, x)= b(x) non-decreasing (see León
and Villa [11]).

The paper is organized as follows. Our comparison theorem for integral equa-
tions is introduced in Section 3. Some extensions of Osgood criterion are given in
Sections 2, 3 and 4. Finally, the relation between partial differential equations
and finite blow-up is considered in Section 5.

2. Osgood criterion for some stochastic differential equation with
diffusion coefficient

Let σ : R→ R and h : R→ R be a differentiable function and a continuous func-
tion, respectively. We consider the stochastic differential equation

(2.1) X ξ
t = ξ+

1
2

∫ t

0
σ(X ξ

s )σ′(X ξ
s )h2(s)ds+

∫ t

0
σ(X ξ

s )h(s)dWs, t ≥ 0,

where ξ ∈R. Here and in what follows, W = {Wt : t ≥ 0} is a Brownian motion.
Now we assume that there are −∞ ≤ x1 < x2 ≤ ∞ such that σ 6= 0 on (x1, x2).

Let ξ ∈ (x1, x2) be fixed and define Ψξ : (x1, x2)→R as

Ψξ(x)=
∫ x

ξ

dz
σ(z)

.

Set lξ =Ψξ(x1)∧Ψξ(x2), rξ =Ψξ(x1)∨Ψξ(x2) and Yt =
∫ t

0 h(s)dWs, t ≥ 0.
The following result is our first extension of Osgood criterion.

THEOREM (2.2). Let τξ = inf{t ≥ 0 : Yt ∉ (lξ, rξ)}. Then, the process X ξ
t =Ψ−1

ξ
(Yt),

0≤ t < τξ is a solution of equation (2.1).

REMARK (2.3). In this case, τξ is called the explosion time of the solution to
equation (2.1).

Proof. Applying Itô’s formula with f (x)=Ψ−1
ξ

(x), x ∈ (lξ, rξ) we have

(2.4) f (Yt∧τk
ξ
)− f (0)= 1

2

∫ t∧τk
ξ

0
f ′′(Ys)h2(s)ds+

∫ t∧τk
ξ

0
f ′(Ys)h(s)dWs,
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where
τk
ξ = inf{t > 0 : Yt ∉ (lξ+k−1, rξ−k−1)}.

Letting k →∞ in (2.4) we get the result holds.

An immediate consequence of Theorem (2.2) is the following:

COROLLARY (2.5). Let
∫ ∞

0 h2(s)ds =∞. Then the solution of equation (2.1) ex-
plodes in finite time if and only if either lξ >−∞, or rξ <∞. Moreover, if lξ and rξ
are two real numbers, then

P(τξ ∈ dt)=
∞∑

k=−∞
(−1)k rξ+k(rξ− lξ)p

2π(H(t))3/2
exp

(
− (rξ+k(rξ− lξ))2

2H(t)

)
dt,

with H(t)= ∫ t
0 (h(s))2ds.

Proof. It is well-known that there is a Brownian motion B = {Bt : t ≥ 0} such that
Yt = BH(t), t ≥ 0, (see, for instance, Durrett [6]). Let τ̃ξ = inf{t > 0 : Bt ∉ (lξ, rξ)}.
Then, it is easy to show that P(τξ ≤ t) = P(τ̃ξ ≤ H(t)). Consequently, the proof
follows from Borodin and Salminen [1] (page 212).

REMARK (2.6). Suppose that, for example, σ> 0, Ψξ(x1)=−∞ and Ψξ(x2)<∞.
Then, as an immediate consequence of the proof of Corollary (2.5), we get that
τξ = inf{t > 0 :

∫ t
0 h(s)dWs =Ψξ(x2)} and

(2.7) P(τξ ≤ t)=Φ
(
Ψξ(x2)p

H(t)

)
,

where

Φ(x)= 2p
2π

∫ ∞

x
e−z2/2dz.

Observe that we get a similar result when σ is negative, or the involved interval
has the form (lξ,∞).

Now we illustrate this remark with two examples.

EXAMPLE (2.8). Let σ(x)= |x|α, x ∈R, α> 1 and ξ ∈R. Then

Ψξ(x)=
{ 1

1−α (|x|1−α−|ξ|1−α), ξ> 0, x ≥ 0,
1

1−α (|ξ|1−α−|x|1−α), ξ< 0, x ≤ 0.

Hence,

Ψξ(−∞)= |ξ|1−α
1−α and Ψξ(0)=∞, for ξ< 0,

and

Ψξ(∞)= |ξ|1−α
α−1

and Ψξ(0)=−∞, for ξ> 0.

Therefore, there is explosion in finite time and

P(τξ ≤ t)=Φ
( |ξ|1−α

(α−1)
p

H(t)

)
.
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EXAMPLE (2.9). Let σ(x)= eαx, x ∈R, α 6= 0 and ξ ∈R. Then

Ψξ(x)= 1
α

(e−αξ− e−αx),

Ψξ(−∞)=
{ −∞, α> 0,

1
α

e−αξ, α< 0,
and Ψξ(∞)=

{ 1
α

e−αξ, α> 0,
∞, α< 0.

Thus we deduce that there is explosion on the left for α < 0, there is explosion on
the right for α> 0 and

P(τξ ≤ t)=Φ
(

e−αξ

|α|pH(t)

)
.

3. An extension of Osgood criterion for integral equations

In this section we generalize recent results obtained in [2] and [11]. Now we
study the following nonautonomous integral equation

(3.1) X ξ
t = ξ+

∫ t

0
a(s)b(X ξ

s )ds+ g(t), t ≥ 0.

The explosion time TX
ξ

of this equation is defined as TX
ξ

= inf{t ≥ 0 : X ξ
t ∉ R}. In

the remaining of this paper we will need the following conditions:
H1:: a : (0,∞)→ (0,∞) is a continuous function such that

lim
t→∞

∫ t+η

t
a(s)ds > 0, for some η> 0.

H2:: b : R→ [0,∞) is a continuous function such that there exist −∞≤ l <∞
and −∞ < r < ∞ satisfying that b > 0 and locally Lipschitz on (l,∞), and
b : [r,∞)→ (0,∞) is non-decreasing.

H3:: g : [0,∞)→R is a continuous function such that

limsup
t→∞

(
inf

0≤h≤η̃
g(t+h)

)
=∞, for some η̃> 0.

Henceforth we utilize the convention

At(x)=
∫ x

t
a(z)dz, t ≥ 0 and x ∈ (t,∞),

and

Bξ(x)=
∫ x

ξ

dz
b(z)

, x ∈ (l,∞).

We begin with the following generalization of Osgood criterion.

LEMMA (3.2). Let H1 and H2 be satisfied and x0 > l. Consider the ordinary
differential equation

d y(t)
dt

= a(t)b(y(t)), t > t0,(3.3)

y(t0) = x0.

a) Assume that Bx0 (∞)≥ At0 (∞), then

y(t)= B−1
x0

(At0 (t)), t ≥ t0.

b) If Bx0 (∞)< At0 (∞), then there is blow up in finite time and the time of explo-
sion T y

x0 is equal to A−1
t0

(Bx0 (∞)).
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REMARK (3.4). Observe that equation (3.3) (resp. equation (3.1)) has a unique
solution for x0 > l (resp. for ξ > l) that may explode in finite time because of Hy-
potheses H1 and H2 (resp. H1-H3). This fact will be used in the proof of Theorem
(3.6) below without mentioning.

Proof. From (3.3) we see that∫ t

t0

y′(s)
b(y(s))

ds =
∫ t

t0

a(s)ds.

The change of variable z = y(s) yields Bx0 (y(t))= At0 (t).
Now we deal with Statement a). If Bx0 (∞) ≥ At0 (∞), then Bx0 (∞) > At0 (t), for

all t > t0. Therefore y(t)= B−1
x0

(At0 (t)), t > t0 is well-defined.
Finally we consider Statement b). In this case we have that B−1

x0
(At0 (t)) is only

defined for t < A−1
t0

(Bx0 (∞))<∞.

Also we are going to need the following elementary comparison result.

LEMMA (3.5). Let x0 > r and T > t0. Assume that H1 and H2 are satisfied, and
that u,v : [t0,T]→R are two continuous functions.

a) Suppose that u and v are such that

v(t) > x0 +
∫ t

t0

a(s)b(v(s))ds, t ∈ [t0,T],

u(t) = x0 +
∫ t

t0

a(s)b(u(s))ds, t ∈ [t0,T].

Then v(t)≥ u(t), for all t ∈ [t0,T].
b) If

r < v(t) < x0 +
∫ t

t0

a(s)b(v(s))ds, t ∈ [t0,T],

u(t) = x0 +
∫ t

t0

a(s)b(u(s))ds, t ∈ [t0,T].

Then v(t)≤ u(t), for all t ∈ [t0,T].

Proof. We first deal with Statement a). Let N = {t ≥ t0 : b(u(s))≤ b(v(s)), s ∈ [t0, t]}.
Since t0 ∈ N, then the continuity of v and u, together with the fact that b is non-
decreasing on (r,∞), leads us to show that T̃ = sup N > t0. If T̃ < T then

v(T̃)−u(T̃)>
∫ T̃

t0

a(s)[b(v(s))−b(u(s))]ds ≥ 0,

which is impossible due to the definition of T̃.
Finally, we proceed similarly to prove that b) is also true and to finish the

proof.

THEOREM (3.6). Let ξ ∈ R. Assume H1-H3. Then the explosion time TX
ξ

of the
solution X ξ of (3.1) is finite if and only if

(3.7)
∫ ∞

r

ds
b(s)

<∞.
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Proof. Suppose that TX
ξ
<∞. Since g is continuous, then∫ t

0
a(s)b(X ξ

s )ds

{
<∞, t < TX

ξ
,

=∞, t = TX
ξ

.

Hence, there is t0 ∈ (0,TX
ξ

) such that

ξ+
∫ t0

0
a(s)b(X ξ

s )ds+ inf
s∈[0,TX

ξ
]
g(s)> r,

and consequently X ξ
t > r for t ∈ [t0,TX

ξ
].

Now set

M = sup{|g(t)| : 0≤ t ≤ TX
ξ }+ξ+

∫ t0

0
a(s)b(X ξ

s )ds.

This yields

X ξ
t < M+1+

∫ t

t0

a(s)b(X ξ
s )ds, t ∈ [t0,TX

ξ ].

On the other hand, we consider the integral equation

u(t)= (M+1)+
∫ t

t0

a(s)b(u(s))ds, t ≥ t0.

Because M > r, Lemmas (3.2) and (3.5) give Tu
M+1 = A−1

t0
(BM+1(∞)) ≤ TX

ξ
< ∞.

Whence ∫ ∞

M+1

ds
b(s)

<∞.

The continuity and positivity of b in [r,∞) implies (3.7).
Reciprocally, suppose that X ξ does not explodes in finite time. From Hypothe-

ses H1 and H3, we can find a sequence {tn : n ∈N} such that tn ↑∞ and

r+1< ξ+ inf
0≤h≤η̃

g(tn +h) ↑∞, as n →∞.

Observe that

X ξ
t+tn

> ξ+ inf
0≤h≤η̃

g(tn +h)−1+
∫ t

0
a(s+ tn)b(X ξ

s+tn
)ds, t ∈ [0, η̃].

Now consider the integral equation

u(t)= ξ+ inf
0≤h≤η̃

g(tn +h)−1+
∫ t

0
a(s+ tn)b(u(s))ds, t ∈ [0, η̃].

Therefore Lemmas (3.2) and (3.5) yield∫ ∞

ξ+inf0≤h≤η̃ g(tn+h)−1

ds
b(s)

>
∫ tn+η̃

tn

a(s)ds.

Whence H1 implies
∫ ∞

r
ds

b(s) =∞.

We finish this section with the following result for bounded noise.

PROPOSITION (3.8). Assume Hypotheses H1 and H2. Also assume that g in
equation (3.1) is a bounded function and that ξ+ infs≥0 g(s)> r. Then, we have the
following statements:

a)
∫ ∞

r (1/b(s))ds =∞ implies that the solution of equation (3.1) does not explode
in finite time.
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b)
∫ ∞

r (1/b(s))ds <∞ yields that the solution of equation (3.1) blows up in finite
time and

TX
ξ ∈ (A−1

0 (Bξ+sups≥0 g(s)(∞)), A−1
0 (Bξ+infs≥0 g(s)(∞))).

Proof. Let ε> 0 be such that ξ+ infs≥0 g(s)> r+ε. Set

Zξ
t = ξ+sup

s≥0
g(s)+ε+

∫ t

0
a(s)b(Zξ

s )ds

and

Y ξ
t = ξ+ inf

s≥0
g(s)−ε+

∫ t

0
a(s)b(Y ξ

s )ds.

By Lemma (3.5) we have,

Y ξ
t < X ξ

t < Zξ
t , t < TZ

ξ+sups≥0 g(s)+ε.

Letting ε ↓ 0 the proof is an immediate consequence of Lemma (3.2), and Hypothe-
ses H1 and H2.

4. Stochastic differential equation with additive Wiener integral noise

In this section we study equation (3.1) when the noise g is a Wiener integral.
More precisely, here we study the stochastic differential equation

(4.1) X ξ
t = ξ+

∫ t

0
a(s)b(X ξ

s )ds+ I t,

where I t =
∫ t

0 f (s)dWs and f : [0,∞) → R is a square-integrable function on [0, M],
for any M > 0.

In the remaining of this section we utilize the following assumption:
H4::

∫ ∞
0 f 2(s)ds =∞ and

(4.2)
∞∑

n=M

1
Υp(n)

(∫ n+2

n
f 2(s)ds

)p/2

<∞,

for some M, p > 0, where

Υ(t)=
√

2
(∫ t

0
f 2(s)ds

)
loglog

(
ee ∨

∫ t

0
f 2(s)ds

)
.

REMARK (4.3). Observe that (4.2) holds if, for example,

t 7→
(∫ t+2

0
f 2(s)ds

)(∫ t

0
f 2(s)ds

)−1
−1,

is a decreasing function in Lp([M,∞)) for some M, p > 0.

On the other hand, as a consequence of iterated logarithm theorem for locally
square integrable martingales, we can now state the following:

LEMMA (4.4). Under the fact that
∫ ∞

0 f 2(s)ds =∞, we have

(4.5) limsup
t→∞

I t

Υ(t)
= 1 with probability one.

Proof. The result is Theorem (1.1) in Qing Gao [9].

The following theorem is the main result of this section.
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THEOREM (4.6). Assume Hypotheses H1, H2 and H4. Then the stochastic dif-
ferential equation (4.1) blows up in finite time with probability 1 if and only if∫ ∞

r
ds

b(s) <∞.

Proof. We first observe that, by Theorem (3.6), we only need to show that the
paths of I satisfy Hypothesis H3 almost surely.

Burkholder-Davis-Gundy inequality (see, for instance, Theorem 3.5.1 in [6])
yields

E

[(
sup

s,t∈[n,n+2]
|I t − Is|

)p]
≤ cp

(∫ n+2

n
f 2(s)ds

)p/2

,

where cp is a constant depending only on p. Then, by (4.2),

E

[ ∞∑
n=M

(
sup

s,t∈[n,n+2]

|I t − Is|
Υ(n)

)p]
≤ cp

∞∑
n=M

1
Υp(n)

(∫ n+2

n
f 2(s)ds

)p/2

<∞.

Therefore, it is enough to prove that I(ω) satisfies H3 for ω ∈Ω for which there
exists n0 ∈N such that

sup
s,t∈[n,n+2]

|I t(ω)− Is(ω)|
Υ(n)

≤ 1
4

, for n ≥ n0

and (4.5) is satisfied. Hence, we can find a sequence {tn : n ∈ N} such that tn > n
and

I tn (ω)
Υ(tn)

≥ 1
2

for all n ∈N.

Finally, using the properties established in this proof, we are able to write, for
n ≥ n0,

inf
s∈[tn,tn+1]

Is(ω) = I tn (ω)+ inf
s∈[tn,tn+1]

(
Is(ω)− I tn (ω)

)
≥ I tn (ω)+ inf

s∈[tn,tn+1]
(−|Is(ω)− I tn (ω)|)

≥ I tn (ω)−
(

sup
s,t∈[[tn],[tn]+2]

|Is(ω)− I t(ω)|
Υ([tn])

)
Υ([tn])

≥ 1
2
Υ(tn)− 1

4
Υ([tn])≥ 1

4
Υ(tn)→∞,

as n →∞, where [t] is the integer part of t and, in the last inequality, we have
used that Υ is a non-decreasing function.

Now, in order to state a consequence of Theorem (4.6), we consider the equation

(4.7) Yt = ξ+
∫ t

0
b̃(s,Ys)ds+ I t, t ≥ 0.

Here, for each T > 0, the function b̃ : [0,∞)×R→ [0,∞) is locally Lipschitz (uni-
formly on s ∈ [0,T]), b(·, x) is continuous, for x ∈ R, and I satisfy Hypothesis H4
with f continuous. Remember that, in this case, equation (4.7) has a unique solu-
tion that may explode in finite time.

COROLLARY (4.8). Let a and b satisfy Conditions H1 and H2, respectively. As-
sume that ξ ∈R, b is locally Lipschitz,

∫ ∞
r (1/b(x))dx <∞ (resp.

∫ ∞
r (1/b(x))dx =∞)

and a(s)b(x) ≤ b̃(s, x) (resp. b̃(s, x) ≤ a(s)b(x)), (s, x) ∈ [0,∞)×R. Then, the solution
to equation (4.7) explodes (resp. does not explode) in finite time.
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Proof. We only consider the case that
∫ ∞

r (1/b(x))dx = ∞ and b̃(s, x) ≤ a(s)b(x),
since the proof is similar for the other one.

Let X ξ and Y be the solutions of equations (4.1) and (4.7), respectively. Then,
from Milian [13] (Theorem 2), we get

Yt ≤ X ξ
t , t ≥ 0.

Thus, by Theorem (4.6), the solution Y of equation (4.7) cannot explode in finite
time because it cannot go to −∞ in finite time since b̃ is R+-valued and I has
continuous paths and, consequently, bounded paths on compact intervals of [0,∞).
Therefore the proof is complete.

EXAMPLE (4.9). Take

a(x) = xα, x ∈ (0,∞),

b(x) = 8x2 −36x+48, x ∈R,

f (x) = xβ, x ∈ (0,∞), β>−1
2

.

Hence

lim
t→∞

∫ t+1

t
xαdx =


+∞, α> 0,

1, α= 0,
0, α< 0,

and
(t+2)2β+1

t2β+1 −1=
(
1+ 2

t

)2β+1
−1≤ C

1
t

.

The last function belongs to Lp([1,∞]), for any p > 1. Thus f satisfied (4.2) due to
Remark 4.3.

On the other hand, it is clear that
∫ ∞
ξ

dx
8x2−36x+48 <∞, ξ> 0. Then

X ξ
t = ξ+

∫ t

0
sα(8(X ξ

s )2 −36(X ξ
s )+48)ds+

∫ t

0
sβdWs,

explodes in finite time when α≥ 0. Notice that b is not necessarily increasing as in
[11] or [2]. Moreover, we can improve Theorem (4.6) in some particular cases, see
[15].

EXAMPLE (4.10). The function Yt ≡ 1 is solution to

Yt = 1+
∫ t

0
(Ys)2ds− t, t ≥ 0.

Although
∫ ∞

1 (1/s2)ds <∞, Y does not blow-up in finite time because g(t) =−t, t ≥
0, does not satisfies Hypothesis H3.

Also notice that f (t) = exp(exp(t)), t ≥ 0, does not satisfies (4.2). We intuitively
understand that in this case the noise is to strong and we have also blow up in
finite time, for any initial condition. We have a contrary effect as in Example
(4.10).

PROPOSITION (4.11). Let f and I be defined as in equation (4.1). Suppose H1,
H2 and

∫ ∞
0 f 2(s)ds <∞ are satisfied. Then I is bounded with probability one and,

under the assumption ξ+ infs≥0 Is > r, the stochastic differential equation (4.1)
blows up in finite time if and only if Br(∞)<∞.

REMARK (4.12). Observe that ξ+ infs≥0 Is depends on ω.
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Proof. The result follows from [6] (Lemma 3.4.7 and Theorem 3.4.9), and Propo-
sition (3.8).

5. An approach to obtain the distribution of the explosion time of a
stochastic differential equation

Now we study some stochastic differential equations of the form

(5.1) X ξ
t = ξ+

∫ t

0
b(s, X ξ

s )ds+
∫ t

0
σ(s, X ξ

s )dWs, t ≥ 0.

Namely, we propose a method to figure out the distribution of the explosion time
τξ of X ξ. Intuitively, τξ is a stopping time such that (5.1) has a solution up to this
stopping time and limsupt↑τξ |X t| =∞.

(5.1) Autonomous case. This section is devoted to deal with the stochastic dif-
ferential equation

X ξ
t = ξ+

∫ t

0
b(X ξ

s )ds+
∫ t

0
σ(X ξ

s )dWs, t ≥ 0,

with b,σ ∈ C1(R). In this case, McKean [12] has shown that X ξ

(τξ)− ∈ {−∞,∞} on
[τξ <∞]. So, henceforth, we can utilize the convention

τ+ξ = inf{t > 0 : X ξ
t =∞} and τ−ξ = inf{t > 0 : X ξ

t =−∞}.

THEOREM (5.2). Consider a bounded function u : [0,∞)×R→ R that satisfies
the following boundary value problem:

∂u
∂t

(t, x) = 1
2
σ2(x)

∂2u
∂x2 (t, x)+b(x)

∂u
∂x

(t, x), t > 0 and x ∈R,(5.3)

u(0, x) = 0, for all x ∈R.(5.4)

a) Assume that u(t,∞)= u(t,−∞)= 1. Then P(τξ ≤ t)= u(t,ξ).
b) u(t,∞)= 1 and u(t,−∞)= 0 implies that P(τ+

ξ
≤ t)= u(t,ξ).

c) If u(t,∞)= 0 and u(t,−∞)= 1, we have P(τ−
ξ
≤ t)= u(t,ξ).

Remarks
1) Maximum principle provides with conditions on b and σ such that the solu-

tion of equation (5.3) is bounded (see Friedman [8]).
2) It is quite interesting to observe that (5.3) is related to transition density of

process X ξ, or related to the fundamental solution of the associated Cauchy
problem (see [8]). On the other hand, (5.4) and the conditions in Statement
a)-c) are intuitively clear. In fact, (5.4) establishes that if we begin at a real
point (ξ ∈ R), then we need some time to get blow-up. And other conditions
mean that if we begin at cementery state (±∞), then the time to blow-up is
less than any time.

3) Observe that P(τξ ≤ t) = P(τξ+ ≤ t)+P(τξ− ≤ t) and that, for example in State-
ment a), we have P(τξ <∞)= u(∞,ξ).

4) If X ξ does not explodes in finite time, then equation (5.3)–(5.4) has not a
bounded solution satisfying conditions established in either Statement a),
b), or c).
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Proof. Using Itô’s formula on 0≤ s < t and that u is solution to (5.3) we obtain

u(t− (s∧τm
ξ ), X ξ

s∧τm
ξ

)= u(t,ξ)+
∫ s∧τm

ξ

0

∂u
∂x

(t− r, X ξ
r )σ(X ξ

r )dWr,

where τm
ξ

= inf{t > 0 : |X ξ
t | > m}. Since u is bounded, then the above stochastic

integral is a martingale. Therefore

u(t,ξ)= E
[
u(t− (s∧τm

ξ ), X ξ

s∧τm
ξ

)
]

.

Letting s ↑ t, then continuity of X ξ and the boundedness of u, together with the
dominated convergence theorem, allow us to write

u(t,ξ) = E
[
u(t− (t∧τm

ξ ), X ξ

t∧τm
ξ

)
]

= E
[
u(t− (t∧τm

ξ ), X ξ

t∧τm
ξ

),τξ ≤ t
]

+E
[
u(t− (t∧τξm), X ξ

t∧τξm
),τξ > t

]
.

Taking m →∞,

(5.5) u(t,ξ)= E
[
u(t−τξ, X ξ

τξ ),τξ ≤ t
]
+E

[
u(0, X ξ

t ),τξ > t
]

.

Now we consider Statement a),

u(t,ξ)= E
[
u(t−τξ, X ξ

τξ ),τξ ≤ t
]
= P(τξ ≤ t).

Statement b) is proven as follows. From equality (5.5) we get

u(t,ξ) = E
[
u(t−τξ, X ξ

τξ ),τξ ≤ t,τ+ξ < τ−ξ
]

+E
[
u(t−τξ, X ξ

τξ ),τξ ≤ t,τ−ξ < τ+ξ
]

= P(τ+ξ ≤ t).

Finally, Statement c) is proven similarly. So the proof is complete.

EXAMPLE (5.6). a) In Example 2.8, with h ≡ 1, we have

ū(t,ξ)=
{
Φ

( |ξ|1−α
(α−1)

p
t

)
, ξ> 0,

0, ξ≤ 0,

and

u
¯

(t,ξ)=
{

0, ξ> 0,
Φ

( |ξ|1−α
(α−1)

p
t

)
, ξ≤ 0,

satisfy Statements b) and c) of Theorem (5.2), respectively. In particular, if
ξ> 0, then ū(∞,ξ) = 1, therefore we have a positive blow-up. This phenome-
non is explained by Milan [13] (Theorem 1) due to the involved solution being
a nonnegative process when ξ> 0.

b) For β> 0, the partial differential equation

∂u
∂t

(t, x) = a2

2
e2βx ∂

2u
∂x2 (t, x)+βa2e2βx ∂u

∂x
(t, x),

u(0, x) = 0, ∀x ∈R,
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has solution,

u(t, x)= exp
(
− e−2βx

2(aβ)2t

)
.

Since u(t,∞) = 1 and u(t,−∞) = 0, then the distribution of explosion time to
the stochastic differential equation

X x
t = x+

∫ t

0
βa2e2βX x

s ds+
∫ t

0
aeβX x

s dWs,

is given by

P(τξ ≤ t)= exp
(
− e−2βx

2(aβ)2t

)
because of P(τ+

ξ
<∞)= 1.

REMARK (5.7). It is not difficult to see that Examples 2.8 and 2.9 are solution
of the corresponding partial differential equations (PDEs), then we conjecture that
the distribution of the explosion time is the solution of such a PDE. If this is true,
then we have the following criterion of explosion: There is explosion in finite time if
and only if the corresponding PDE has a bounded solution. Moreover, this criterion
could be applied in more dimensions and for non autonomous processes (see [8]).

(5.2) Laplace transform of the distribution of the explosion time. Finally,
in this subsection we indicate how we could calculate the Laplace transformation
of the distribution of the explosion time τξ of the solution to equation (4.7). It
means, we assume that the equation

(5.8) X ξ
t = ξ+

∫ t

0
b(s, X ξ

s )ds+ I t, t ≥ 0,

has a unique solution that may blow-up in finite time, where b takes values in
R+ and I t =

∫ t
0 f (s)dWs. Note that if ω ∈Ω is such that τξ(ω) <∞, then X ξ

t > ξ+
inf0≤s≤τξ(ω) I t(ω), t ≤ τξ(ω), and consequently

∫ τξ(ω)
0 b(s, X ξ

s )ds =∞. Thus, X ξ
τξ− =

∞, on [τξ <∞], and τξ = τ+ξ .
We begin with an auxiliary result.

LEMMA (5.9). Let λ > 0 and τξ the explosion time of the solution of equation
(5.8). Then

E
(
e−λτξ

)
=λ

∫ ∞

0
P(τξ ≤ u)e−λudu.

Proof. Let us denote the distribution of τξ by Fτξ . Fubini theorem leads to justify

E
(
e−λτξ

)
=

∫
(0,∞)

e−λsFτξ (ds)=λ
∫

(0,∞)

(∫ ∞

s
e−λudu

)
Fτξ (ds)

= λ

∫ ∞

0

(∫
(0,u]

Fτξ (ds)
)

e−λudu =λ
∫ ∞

0
Fτξ (u)e−λudu.

Consequently, the proof is complete.

Now we can state the main result of this subsection.
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THEOREM (5.10). Consider λ > 0, the explosion time τξ of the solution of (5.8)
and a bounded function u : [0,∞)×R→R that is a solution of the partial differen-
tial equation

−∂u
∂t

(t, x) = 1
2

f 2(t)
∂2u
∂x2 (t, x)+b(t, x)

∂u
∂x

(t, x)−λu(t, x), t > 0 and x ∈R,

u(t,∞) = 1.

Then, λ
∫ ∞

0 P(τξ ≤ u)e−λudu = u(0,ξ).

Proof. As in the proof of Theorem (5.2) Itô’s formula gives

u(0,ξ)= E
(
u(t∧τm

ξ , X ξ

t∧τm
ξ

)exp(−λ(t∧τm
ξ ))

)
.

We can now easily complete the proof of this result by combining Lemma (5.9),
the arguments used in the last part of the proof of Theorem (5.2) and the fact that
X ξ

τm
ξ

→∞ as m →∞ on [τξ <∞]. Indeed we first take m ↑∞, and then t ↑∞.

REMARK (5.11). In some cases we have the converse of Theorem (5.10). For
example, consider the stochastic differential equation

X ξ
t = ξ+

∫ t

0
(g(X ξ

s )+a−b)ds+ cWt, t ≥ 0,

where a,b, c ∈R, a > b and g :R→ [0,∞). Then the associated ordinary differential
equation is

c2

2
w′′(x)+ (g(x)+a−b)w′(x)−λw(x) = 0, t > 0,(5.12)

w(∞) = 1.

Therefore, if X ξ explodes in finite time then (5.12) has a bounded solution, in fact
it is the Laplace transform of the explosion time (see [7]). Then the solution of

−∂u
∂t

(t, x) = c2

2
∂2u
∂x2 (t, x)+ (g(x−bt)+a)

∂u
∂x

(t, x)−λu(t, x), t > 0, x ∈R,

u(t,∞) = 1.

is given by u(t, x)= w(x−bt).
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LIMIT THEOREMS AND INFINITE DIVISIBILITY IN
NON-COMMUTATIVE PROBABILITY

OCTAVIO ARIZMENDI AND CARLOS VARGAS

ABSTRACT. We introduce in a unified way the basic theory on additive limit the-
orems and infinite divisibility for the natural notions of stochastic independence
in non-commutative probability: tensor (classical), Boolean, free and monotone.
We also present specialized, recent, results on free infinite divisibility.

1. Introduction

The concept of stochastic independence is fundamental in probability theory.
During the 80’s, Hudson and Parthasarathy [35] and Voiculescu [61] introduced
quantum (or non-commutative) probability spaces, where new notions of indepen-
dence may occur. The idea traces back to von Neumann (1932), who, was aiming at
the mathematical foundation for the statistical questions in quantum mechanics.
In an attempt to tackle key problems on operator algebras, Voiculescu launched
the theory of free probability, which is based on the concept of free independence.
This field started to draw more attention a few years later, when natural real-
izations of free independence and practical applications of free probability were
found in several areas of mathematics, such as random matrix theory [64], repre-
sentation theory [21] and combinatorics [54].

Limit theorems play a central role in classical probability. In particular, the
class of infinitely divisible measures arises when looking at some of these limit
theorems. The concept of infinite divisibility of probability distributions was in-
troduced in 1929 by Bruno de Finetti [29]. The theory was soon enriched in the
30’s by Kolmogorov [38], Lévy [40, 41] and Khintchine [37], culminating with the
Lévy-Khintchine representation, which gives a complete characterization of infin-
itely divisible measures.

Starting in the 60’s, the interest in the theory increased due to its practical
applications (mainly to waiting time theory and modeling). These applications
required explicit examples of infinite divisible distributions and hence motivated
the search for efficient criteria to test the infinite divisibility of given measures.
During the subsequent three decades, a variety of methods were developed and
the infinite divisibility of a large number of new classes of distributions (such as
mixtures, GGC, Thorin class, etc.) was established (see [23, 30, 59]).

Similar limit theorems in free probability and the concept of free infinite divisi-
bility were considered since the beginning and a Lévy-Khintchine type character-
ization of free infinitely divisible measures was given by Bercovici and Voiculescu
in [19]. Later, the notions of Boolean [58] and monotone independence [44] were
introduced and the corresponding Lévy-Khintchine representations were found.

2010 Mathematics Subject Classification: 46L54, 60E07.
Keywords and phrases: non-commutative probability, infinite divisibilty, free probability.
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On the other hand, Speicher’s combinatorial approach to free probability [54,
48] (which was later extended to the Boolean [58] and monotone [33] cases) pro-
vided new characterizations of infinitely divisible measures in terms of cumu-
lants. However, until recent, explicit examples were quite rare.

In the last years, with the introduction of non-classical stochastic processes
[22], there has been an increasing interest in finding explicit examples and devel-
oping criteria to effectively test non-classical infinite divisibility.

The purpose of this note is to survey about limit theorems and infinite divisi-
bility with respect to these non-classical notions of independence. We start with
the basic theory and present in a unified way the fundamental limit theorems
and characterizations of infinitely divisible distributions. In the last section, we
specialize on the free case, presenting very recent results and examples.

The selection of material included in this survey is determined partly by the
personal interests of the authors.

2. Non-Commutative Probability Spaces

Hudson and Parthasarathy [35] and Voiculescu [61] introduced quantum (or
non-commutative) generalizations of probability spaces inspired by the algebraic
approach to probability theory: All the information about the joint distributions
of compactly supported random variables X1, . . . , Xn can be retrieved from eval-
uating their mixed moments (i.e. the values of E(X i1 · · ·X ik ),k ≥ 1, i j ≤ n). For
instance, the notion of independence of the n-tuple X1, . . . , Xn is equivalent to the
condition, that for all k1, . . . ,kn ≥ 0,

(2.1) E(X k1
1 · · ·X kn

n )= E(X k1
1 ) · · ·E(X kn

n ).

A probability space can then be understood as a pair (A,E) where A is a unital,
commutative algebra (over C) of random variables and E :A→C is a unital linear
functional.

The idea now is to consider a pair (A,τ), consisting of a non-commutative al-
gebra A with unit 1A and a linear functional τ : A→ C. Elements a1, . . . ,ak ∈A
are called (non-commutative) random variables and the values τ(ai1 , . . . ,aik ),k ≥
1,1≤ i1, . . . , ik ≤ n are the (mixed) moments of the n-tuple a1, . . . ,ak.

Let us consider the richer structure where A is a C∗-algebra and τ a state, (i.e
a unital, positive linear functional). Then for every normal element a ∈ A, (i.e.
a∗a = aa∗), there exist a unique (compactly supported) probability measure µa on
C which encodes all the information about the mixed moments of {a,a∗}:∫

C
zn z̄mdµa(z)= τ(an(a∗)m), ∀n,m ≥ 0.

In particular, the distribution µa of self-adjoint random variables a = a∗ is sup-
ported on the real line. We will concentrate mainly in such elements.

When we talk about the distribution of non-normal elements, we refer to the
collection of mixed moments of {a,a∗}, which in general can not be encoded in a
probability measure. We should point out that every element in a commutative
probability space is normal, and hence these generic algebraic distributions can
only be realized in non-commutative probability spaces.

The importance of such algebraic distributions will be more evident when we
consider the mixed moments of several non-commutative random variables. In
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the same way that the factorization of mixed moments encodes the independence
relation of the considered variables, there are new factorizations which encode
interesting relations between non-commutative random variables.

(2.1) Five Notions of Independence. If we fix the individual distributions of
two elements a,b ∈A, their joint distribution (mixed moments) can be quite ar-
bitrary, unless some notion of independence is assumed to hold between a and b.
Several classification works by A. Ben Ghorbal and M Schürman[16], Muraki [?]
and Speicher[55], have discussed the essential properties of classical indepen-
dence which should be present in a non-commutative notion of independence.
Under the most general assumptions considered in these works, there are only
five notions of independence: tensor (classical), free, Boolean, monotone and anti-
monotone. Each type of independence can be thought as a rule for calculating
mixed moments, in the spirit of eq. (2.1). Let (An)n≥1 be a sequence of subalge-
bras of A.

We say that (An)n≥1 are tensor-independent iff, for any k ≥ 1 and any k-tuple
a1, . . . ,ak ∈A, such that ai ∈ A j(i), 1≤ i ≤ k,

(2.2) τ(a1a2 · · ·ak)= ∏
s∈I

τ

( ∏
j(i)=s

ai

)
,

where I = { j(i)|i ≤ k} ⊂ N and the ai are multiplied in the same order as they
appear in the left hand side.

The subalgebras (An)n≥1 are Boolean-independent iff

(2.3) τ(a1a2 · · ·ak)= τ(a1)τ(a2) · · ·τ(ak)

whenever k ≥ 1, a1, . . . ,ak ∈A, are such that ai ∈ A j(i), 1≤ i ≤ k and j(i) 6= j(i+1).
If we write ā := a−τ(a) for a ∈A, we say that (An)n≥1 are free iff

(2.4) τ(ā1ā2 · · · āk)= 0,

whenever k ≥ 1, a1, . . . ,ak ∈A, are such that ai ∈ A j(i), 1≤ i ≤ k and j(i) 6= j(i+1).
The linearly ordered subalgebras A1 < A2 < . . . are monotone-independent iff

the following rule holds for any k ≥ 1 and any k-tuple a1, . . .ak ∈ A, such that
ai ∈ A j(i), 1≤ i ≤ k and j(i) 6= j(i+1):

(2.5) τ(a1 · · ·am−1amam+1 · · ·ak)= τ(a1 · · ·am−1am+1 · · ·ak)τ(am)

whenever j(m) = max{ j(s)|1 ≤ s ≤ k} (the anti-monotone independence is obtained
by replacing max by min).

For any notion of independence, we say that a1, . . .an,∈A are independent if
so are the (not necessarily unital) algebras 〈a1〉 , . . . ,〈an〉 (〈ai〉 is the algebra gen-
erated by ai). With the exception of tensor independence, these new notions are
only meaningful in non-commutative spaces: If a,b ∈A commute and are Boolean,
free, or monotone independent, then either a or b is a multiple of the identity, es-
sentially. If A is commutative, tensor independence reduces to the usual classical
independence.

A nice facet of non-commutative probability is that many objects in mathe-
matics may be seen as random variables, a prominent example being matrices,
and random versions of them. Surprisingly, free independence describes the col-
lective behavior of large random matrices. In his seminal work [64], Voiculescu
introduced a new conceptual way of dealing with random matrices, starting with
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a multivariate version of Wigner’s semicircle law [66]: One may consider a non-
commutative probability space of n× n random matrices (with τ := n−1E ◦ Tr).
The mixed moments of (entrywise) independent Gaussian matrices X1, . . . , Xk
converge as (n → ∞) to the corresponding mixed moments of free semicircular
non-commutative random variables s1, . . . , sk. In other words, Gaussian random
matrices are asymptotically free semicirculars (see Section 3). As the theory of
free probability developed, broader applications to Random Matrices have been
found.

In theory, if a,b ∈A are self-adjoint and satisfy an independence relation, we
may compute the mixed moments of a and b. These are enough to describe the
distribution of the self-adjoint element a+b. However, in practice, one uses either
analytical or combinatorial means to explicitly compute µa+b in terms of µa and
µb. Understanding and developing these analytic and combinatorial properties of
distributions of non-commutative variables is of eminent importance for progress
in the field.

(2.2) Non-classical Convolutions. Recall that the classical convolution of two
probability measures µ1,µ2 on R is defined as the probability measure µ1 ∗µ2
on R such that Cµ1∗µ2 (t) = Cµ1 (t)+Cµ2 (t), t ∈ R, where Cµ(t) = log µ̂(t) with µ̂(t)
the characteristic function of µ. Classical convolution corresponds to the sum of
tensor independent random variables: µa ∗µb = µa+b, for a and b independent
random variables. The (classical) cumulants are the coefficients cn = cn(µ) in the
series expansion (whenever it exists)

Cµ(t)=
∞∑

n=1

cn

n!
(it)n.

Similar convolutions and related transforms exist for the free, Boolean and
monotone theories.

We will denote by M,M+, respectively, the set of Borel probability measures
on R and R+ := [0,∞). The complex upper and lower half-planes are respectively
denoted by C+ and C−. Let Gµ(z) = ∫

R
µ(dx)
z−x (z ∈ C+) be the Cauchy transform of

µ ∈M.
Free convolution was defined in [61] for compactly supported probability mea-

sures and later extended in [43] for the case of finite variance, and in [19] for the
general unbounded case. Let Gµ(z) be the Cauchy transform of µ ∈M and Fµ(z)
its reciprocal 1

Gµ(z) . It was proved in Bercovici and Voiculescu [19] that there are

positive numbers η and M such that Fµ has a right inverse F−1
µ defined on the

region Γη,M := {z ∈C+; |Re(z)| < ηIm(z)}.
The Voiculescu transform of µ is defined by φµ (z)= F−1

µ (z)− z, on any region of
the form Γη,M where F−1

µ is defined.
The free additive convolution of two probability measures µ1,µ2 ∈ M is the

probability measure µ1�µ2 on R such that

φµ1�µ2 (z)=φµ1 (z)+φµ2 (z), for z ∈Γη1,M1 ∩Γη2,M2 .

Free additive convolution corresponds to the sum of free random variables: µa�
µb = µa+b, for a and b free random variables. The free cumulants [54] are the
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coefficients κn = κn(µ) in the series expansion (whenever it exists)

(2.6) φµ(z)=
∞∑

n=1
κnz1−n.

The free multiplicative convolution µ1�µ2 of probability measures µ1,µ2 ∈M,
one of them in M+, say µ1 ∈M+, is defined as the distribution of µX1/2

1 X2 X1/2
1

where
X1 ≥ 0, X2 are free, self-adjoint elements such that µX i =µi, (see [19].)

The Boolean convolution [58] of two probability measures µ1,µ2 ∈M is defined
as the probability measure µ1 ]µ2 on R such the transform Kµ(z) = z − Fµ(z),
(usually called self-energy), satisfies

Kµ1]µ2 (z)= Kµ1 (z)+Kµ2 (z), z ∈C+.

Boolean convolution corresponds to the sum of Boolean-independent random vari-
ables. Boolean cumulants are defined as the coefficients rn = rn(µ) in the series
(whenever it exists)

(2.7) Kµ(z)=
∞∑

n=1
rnz1−n.

The monotone convolution was defined in [44] and extended to unbounded mea-
sures in [28]. The monotone convolution of two probability measures µ1,µ2 ∈M
is defined as the probability measure µ1�µ2 on R such that

Fµ1�µ2 (z)= Fµ1 (Fµ2 (z)), z ∈C+.

Monotone convolution corresponds to the sum of monotone independent random
variables. Recently, Hasebe and Saigo [33] defined a notion of monotone cumu-
lants (hn)n≥1 which satisfy that hn(µ�k)= khn(µ).

(2.3) Combinatorial Theory of Cumulants. Speicher’s combinatorial treat-
ment of free probability [54] gives a nice description of free convolutions using cu-
mulants. These ideas were extended by Speicher and Wourodi [58] for the Boolean
case and Hasebe and Saigo [33] for the monotone case.

A partition π is an equivalence relation on the set [n] := {1,2, . . . ,n}, which
is decomposed into equivalence classes V1, . . . ,Vr, called blocks. We write π =
{V1, . . . ,Vr} and a ∼π b for a,b ∈Vi.

A partition π is called non-crossing iff a ∼π c,b ∼π d ⇒ b ∼π c for all 1 ≤ a <
b < c < d ≤ n.

A non-crossing partition is called interval partition if, a ∼π b ⇒ a ∼π b−1 for
all 1 ≤ a < b ≤ n. We denote by P(n) ⊃ NC(n) ⊃ I(n) the sets of partitions, non-
crossing partitions and interval partitions of [n], respectively.

A monotone partition (π,λ) is a non-crossing partition, together with a linear
order λ of the blocks {V1, . . . ,Vr} of π, which respects the nesting structure of π.
More precisely, if 1 ≤ a < b < c ≤ n are such that a, c ∈ Vi, b ∈ Vj and i 6= j, then
λ(Vj)<λ(Vj).

For a random variable a ∈A, its classical, free, Boolean and monotone cumu-
lants (ca

n)n≥1, (κa
n)n≥1, (ra

n)n≥1, (ha
n)n≥1, satisfy the moment-cumulant formulas

(2.8) τ(an)= ∑
π∈P(n)

ca
π =

∑
π∈NC(n)

κa
π =

∑
π∈I(n)

ra
π =

∑
(π,λ)∈M(n)

ha
π

|π|! ,
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where, for a sequence of complex numbers ( fn)n≥1 and a partition π= {V1, . . . ,Vi},
we define fπ := f|V1| · · · f|Vi |, where |π| is the number of blocks of the partition π.

3. Central Limit Theorems

For a classical random variable X with all moments, mean 0 and variance 1, let
us denote by S∗

n(X )= (X1+X2+·· ·+Xn)/
p

n the normalized sum of n independent
copies of X . The so-called Central Limit Theorem states that S∗

n(X ) converges, as
n →∞, to the standard normal distribution N (0,1). Similar results hold for other
notions of independence.

We briefly sketch the standard proof of these central limit theorems. The
method is based on showing the convergence of all the moments. For each additive
convolution ~ ∈ {∗,�,],�}, let S~n (X ) be the normalized sum of n ~-independent
copies of X . We fix n and expand the k-th moment of S~n (X ):

(3.1) τ((S~n (X ))k)= n−k/2
n∑

i1,...,ik=1
τ(X i1 , . . . , X ik ).

Since all X i have the same distribution, τ(X i1 , . . . , X ik ) will depend only on
which indices are equal and which are not (and on the order of the involved indices
for ~ =�). It is useful to associate a tuple i1, . . . , ik with the partition π defined
by r ∼π s ⇔ ir = is. For ~ =�, we consider the linear order λ of the blocks of π
which is induced by the order of the indices. We write τπ(X ) := τ(X i1 , . . . , X ik ) for
~ ∈ {∗,],�} and τ(π,λ)(X ) := τ(X i1 , . . . , X ik ) for ~=�. We sum first over all tuples
i1, . . . , ik with the same associated partition, obtaining, for ~ ∈ {∗,],�}:

τ((S~n (X ))k)= 1
nk/2

∑
π∈P(k)

∑
1≤i1,...,ik≤n
{i1,...,ik}∼π

τπ(X )= ∑
π∈P(k)

τπ(X )n!
(n−|π|)!nk/2 ,

and similarly

τ((S�
n (X ))k)= ∑

(π,λ)∈P¹(k)

τ(π,λ)(X )n!
|π|!(n−|π|)!nk/2 .

Since τ(X ) = 0 it is possible to deduce from the factorization rules of each in-
dependence, that τπ(X ) = τ(π,λ)(X ) = 0 whenever π has as block of size 1. On the
other hand, the factor n−k/2 forces that at least k/2 different indices should appear
for the contribution of π (or (π,λ)) not to vanish as n →∞.

By combining these two conditions, we only need to consider pairings. Depend-
ing on the notion of independence, additional conditions on the blocks of π (or
(π,λ)) have to be fulfilled for τπ(X ) or τ(π,λ)(X ) to be non-zero.

For ~ = ∗ no further condition needs to be imposed. In the Boolean case the
repeated indices need to be consecutive and hence only the interval pairing counts.
For free random variables one can show that only non-crossing pairings matter.
For the monotone case we get only the monotone pairings. Since τ(X2) = 1, we
have, for all the non-vanishing pairings π (or ordered pairings (π,λ), resp.), that
actually τπ(X )= 1 (τ(π,λ)(X )= 1, resp.).

After enumerating the valid partitions and noticing that n!(nk/2(n−|π|)!)−1 → 1
as n → ∞, we obtain that all the odd moments vanish asymptotically and the
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asymptotics of the even moments are given by

τ((S∗
n(X ))2k)→ (2k)!

(2k)k!
, τ((S]

n (X ))2k)→ 1,

τ((S�n (X ))2k)→ (2k)!
(k!)2(k+1)

, τ((S�
n (X ))2k)→ (2k)!

(k!)22k ,

which we can recognize as the moments of known probability measures.
Thus, the free central limit theorem [24, 61] states that the normalized sum of

free copies of X converges weakly to the standard semicircle distribution w, with
density

w(dx)= 1
2π

√
4− x2, x ∈ [−2,2].

Similarly, the distributions appearing in the Boolean [58] and monotone [44]
CLT’s are, respectively, the symmetric Bernoulli distribution, b := 1/2δ−1 +1/2δ1,
and the arcsine distribution a, with density

1

π
p

2− x2
x ∈ [−

p
2,
p

2].

Once we established these fundamental limit theorems, we would like to point
out generalizations in various directions.

(3.1) Operator-valued Central Limit Theorems. All the statements for the
different notions of independence that we have presented so far seem to be par-
allel realms of classical probability. However, there are operator-valued gener-
alizations of free, Boolean and monotone independence with their corresponding
operator-valued central limit theorems [56, 63]. This branch of non-commutative
probability is completely novel, as no such operator-valued generalization of clas-
sical independence exists. Operator-valued free probability has found important
applications to random matrix theory and wireless communications [17, 34, 52,
53, 57].

(3.2) Berry-Essen Estimates. In classical probability, the Berry-Essen theorem
gives a quantitative bound on the speed of convergence to the central limit: If X
is a centered random variable with variance 1, then the distance between S∗

n(X )
and a standard normal random variable Y can be estimated in terms of the Kol-
mogorov distance ∆ by

∆(S∗
n(X ),Y )≤ C

|τ(X3)|p
n

,

where C is a fixed constant.
A free analogue of the Berry-Esseen theorem was obtained by Chistyakov and

Götze [27]: If X is a centered random variable with variance 1 and finite fourth
moment, then the Kolmogorov distance between S�n (X ) and a standard semicir-
cular random variable s is bounded by

∆(S�n (X ), s)≤ c
|τ(X3)|+

√
τ(X4)p

n
,

where c is a fixed constant. A weaker version of this result was obtained indepen-
dently by Kargin [36] under assumption on X being bounded.

Recently, Mai and Speicher [42] obtained Berry-Essen estimates for multivari-
ate and operator-valued versions of the free central limit theorem.
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The Berry Esseen type estimates are still open for the Boolean and monotone
case. It is clear for the Boolean case that one should use a different distance: since
the limiting measure is atomic, its Kolmogorov distance to any absolutely contin-
uous measure will be 1/4. For the monotone case, one can construct examples
where the order of convergence n−1/2 is not achieved.

(3.3) Superconvergence to the Central Limit. A qualitative generalization
of the free central limit theorem was proved by Bercovici and Voiculescu [20].
It turns out that the convergence to the free central limit is of a much stronger
nature than the classical one. They referred to this phenomenon as superconver-
gence.

THEOREM (3.2) ([20]). Let X be a bounded random variable, and let µk be the
distribution of S�k (X ).

1. There is some N > 0 such that, for all k ≥ N, the distribution µk is absolutely
continuous w.r.t. the Lebesgue measure.

2. For k ≥ N, the densities dµk/dx converge uniformly on R to the density of the
semicircle law.

3. If ak and bk are respectively, the lower and upper edges of the support of µk,
then ak →−2 and bk → 2 as k →∞.

Later, Wang [67] proved that (1) and (2) also hold when µk has unbounded sup-
port and, furthermore, he showed the Lp-convergence to the semicircular density
for p > 1/2.

The property (3) from Theorem (3.2) also holds for the Boolean and monotone
CLT’s with rate of convergence n−1/2. However, one can find examples where (1)
and (2) fail.

THEOREM (3.3). [11] Let X be bounded, centered, with variance 1.
1. Let [ak,bk] be the support of the random variable S]

k (X ). Then ak → −1,
bk → 1 as k →∞. Moreover, ‖S]

k (X )‖ < 1+‖X‖/
p

k.
2. Let [ak,bk] be the support of the random variable S�

k (X ). Then ak →−p2,
bk →p

2 as k →∞. Moreover, ‖S�
k (X )‖ <p

2+2‖X‖/
p

k.

4. Infinite Divisibility

Let µ ∈∈ M and denote by ~ one of the additive convolutions of probability
measures on R, namely, ~ ∈ {∗,],�,�}. We say that µ is ~-infinitely divisible if,
for all n ∈N, there exists a probability measure µn such that

µ=µn~µn~ · · ·~µn︸ ︷︷ ︸
n times

.

We will denote by ID(~) the set of ~-infinitely divisible measures.
Just as in the classical case, infinitely divisible distributions play a very im-

portant role in the context of limit theorems in non-commutative probability. For
example, it is easily seen that the Central Limits of Section 2 belong to ID(~).
The following theorem (due to Lévy and Khintchine [37, 41] for the classical
case, Bercovici and Pata [18] for the free and Boolean cases, and Anshelevich and
Williams [2] for the monotone one) shows how the sums of independent identically



INFINITE DIVISIBILITY IN NON-COMMUTATIVE PROBABILITY 147

distributed non-commutative random variables give rise to infinitely divisible dis-
tributions.

THEOREM (4.1). Let ~ ∈ {∗,],�,�}. A probability measure µ is ~-infinitely
divisible if and only if the is a sequence of probability measures {µn}n∈N , and a
sequence of positive integers k1 < k2 < ·· · such that the sequence

µn~µn~ · · ·~µn︸ ︷︷ ︸
kn

→µ,

in distribution.

We shall point out that the more general theorem for triangular infinitesimal
arrays where the measures are not assumed to be identically distributed is also
true for free and Boolean convolutions. However, this is not true for the monotone
convolution.

(4.1) Lévy Khintchine Representations. Recall that a probability measure µ

is infinitely divisible in the classical sense if and only if its classical cumulant
transform log µ̂ has the Lévy-Khintchine representation

(4.2) log µ̂(u)= iγu−
∫
R
(eiut −1− iut

1+ t2 )
1+ t2

t2 σ (dt) , u ∈R.

where γ ∈R and σ is a fine measure. If this representation exists, the pair (γ,σ) is
determined in a unique way and is called the (classical) generating pair of µ. In
this case we denote µ by ρ

γ,σ
∗

Bercovici and Voiculescu [19] proved that the Voiculescu transform admits
an analogous Lévy-Khintchine representation: a probability measure µ is �-
infinitely divisible if and only if there exists a finite measure σ on R and a real
constant γ such that

(4.3) φµ(z)= γ+
∫
R

1+ tz
z− t

σ(dt), z ∈C+.

The pair (γ,σ) is called the free generating pair of µ and we denote µ by ρ
γ,σ
� .

For the Boolean case things are simpler. As shown by Speicher and Wourodi
[58], any probability measure is ]-infinitely divisible and there is also a Boolean
Lévy-Khintchine representation. Indeed, it follows by the Nevanlinna-Pick theory
that for any probability measure µ there exists a real constant γ and a finite
measure σ on R, such that

(4.4) Kµ(z)= γ+
∫
R

1+ tz
z− t

σ(dt), z ∈C+.

The pair (γ,σ) is called the Boolean generating pair of µ and we denote µ by ρ
γ,σ
] .

A characterization of �-infinitely divisible measures was done by Muraki [46]
and Belinschi [13]. A probability measure µ belongs to ID(�) if and only there
exists a composition semigroup of reciprocal Cauchy transforms Fs+t = Fs ◦Ft =
Ft ◦Fs and F1 = Fµ. In this case the map t 7→ Ft(z) is differentiable for each fixed
z in R and we define the mapping Aµ on C+ by

Aµ(z)= dFt(z)
dt

∣∣∣∣
t=0

, z ∈C+.
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For mappings of this form there exists γ ∈R and a finite measure σ, such that

(4.5) Aµ(z)=−γ−
∫
R

1+ tz
z− t

σ(dt).

This is the Lévy-Khintchine formula for monotone convolution and in this case we
denote µ by ρ

γ,σ
� . The monotone cumulants hn are the coefficients in the series

(4.6) − Aµ(z)=
∞∑

n=1
hnz1−n.

(4.2) Cumulant Criteria. For measures with compact support (or, more gener-
ally, for measures which are determined by moments), working with cumulants
turns out to be very useful to rule out measures which are not infinitely divisible.

The main criteria is the conditionally positive definiteness of cumulants for
infinitely divisible measures, similar to the classical case. Let µ be a measure
and denote by {cn}n≥1, {κn}n≥1, {rn}n≥1, {hn}n≥1, respectively, its corresponding se-
quences of classical, free, Boolean and monotone cumulants.

Recall that a sequence {an}n≥1 is conditionally positive definite if for every n ≥ 1
and αi ∈C, i = 1, ...,n

n∑
i, j=1

αiα jai+ j ≥ 0.

THEOREM (4.7). Let ~ ∈ {∗,�,],�} be any of the additive convolutions. Let
µ be a probability measure on R determined by moments. Then µ is ~-infinitely
divisible if and only if the sequence of cumulants with respect to the convolution ~
is conditionally positive definite.

(4.3) Bercovici-Pata Bijections. As mentioned at the beginning of this section,
a correspondence between limit distributions arising from classical, Boolean, free
and monotone convolutions is due to the works of Bercovici and Pata [18] and
Anshelevich and Williams [2].

THEOREM (4.8) ([2, 18]). Fix a finite positive Borel measure σ on R, a real num-
ber γ, a sequence of probability measures {µn}n∈N , and a sequence of positive inte-
gers k1 < k2 < ·· · The following assertions are equivalent:

1. The sequence µn ∗µn ∗·· ·∗µn︸ ︷︷ ︸
kn

converges weakly to ρ
γ,σ
∗ ;

2. The sequence µn�µn� · · ·�µn︸ ︷︷ ︸
kn

converges weakly to ρ
γ,σ
� ;

3. The sequence µn ]µn ]·· ·]µn︸ ︷︷ ︸
kn

converges weakly to ρ
γ,σ
] ;

4. The sequence µn�µn� · · ·�µn︸ ︷︷ ︸
kn

converges weakly to ρ
γ,σ
� ;

5. The measures

kn
x2

x2 +1
dµn(x)→σ

weakly, and

lim
n↑∞

kn

∫
R

x
x2 +1

dµn(x)= γ.
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The last theorem gives a correspondence between the limit measures known
as the Bercovici-Pata bijection. This can be stated concretely from the Lévy-
Khintchine representations of the various infinitely divisible measures. Indeed,
the different Lévy pairs are obtained by the limits in (5) above.

Definition (4.9).
1. The (classical-to-free) Bercovici-Pata bijection Λ : ID(∗) → ID(�) is defined

by the application ρ
γ,σ
∗ 7→ ρ

γ,σ
� .

2. The (Boolean-to-free) Bercovici-Pata bijection B : M→ ID(�) is defined by
the application ρ

γ,σ
] 7→ ρ

γ,σ
� .

3. The (classical-to-monotone) Bercovici-Pata bijection Λ� : ID(∗) → ID(�) is
defined by the application ρ

γ,σ
∗ 7→ ρ

γ,σ
� .

The weak continuity of Λ and Λ−1 was proved in [12]. The weak continuity of
B and B−1 follows from the continuity of the free and Boolean convolution powers
since B(µ) = (µ�2)]1/2. Finally the weak continuity of Λ� was proved in Hasebe
[31]. In summary, the arrows the following commutative diagram are weakly
continuous.

ID(])=M

ID(∗)ID(�) ID(�)

B

Λ−1 Λ�

REMARK (4.10). If follows from the Lévy-Khintchine representations that the
Boolean cumulants of µ are free cumulants of its image under the Boolean
Bercovici-Pata bijection B, namely, rn(µ) = kn(B(µ)). Similarly, cn(µ) = kn(Λ(µ))
and cn(µ)= hn(Λ�(µ)).

(4.4) Convergence of the 4th-moment. In a seminal paper, Nualart and Pec-
cati [50] proved a convergence criterion for normalized multiple integrals in a
fixed chaos with respect to the classical Brownian motion to the normal distri-
bution. More precisely, let (Wt)t>0 be a standard Brownian motion. For every
square-integrable function f on Rm+ we denote by IW

m ( f ) the m-th multiple Wiener-
Ito stochastic integral of f with respect to W .

THEOREM (4.11) ([50]). Let {Xn = IW
m ( fn)}n>0 be a sequence of multiple Wiener-

Ito integrals in a fixed m-chaos. Then the following are equivalent
1. E[X4

n]→ 3,
2. µXn →N (0,1).

As pointed out in the previous section, the standard proof for the convergence
to any of these “Gaussian” distributions consists of showing the convergence of
all moments. Thus, Theorem (4.11), gives a drastic simplification for the moment
method for the case of multiple integrals.

Recently, it was proved by Kemp et al. [39] that the Nualart-Peccati 4th mo-
ment criterion holds also for the free Brownian motion (St)t>0 and its multiple
Wigner integrals IS

m( f ).
Motivated by these results, Arizmendi [3] showed that, when restricted to in-

finitely divisible measures, convergence to the “Gaussian” distributions can be
ensured by the convergence of the second and fourth moments.
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THEOREM (4.12).

1. Let {µn =µXn }n>0 be a sequence of probability measures with variance 1 and
mean zero such that µn ∈ ID(∗) and suppose that E[X4

n] → 3 then µXn →
N (0,1).

2. Let {µn =µXn }n>0 be a sequence of probability measures with variance 1 and
mean zero such that µn ∈ ID(�) and suppose that E[X4

n]→ 2. then µXn →w.
3. Let {µn = µXn }n>0be a sequence of probability measures with variance 1 and

mean zero such that µn ∈ ID(�) and suppose that E[X4
n]→ 3/2, then µXn → a.

The proof is based in the following simple lemma (which is the Boolean version
of the theorem above) and on the continuity of Bercovici-Pata bijections.

LEMMA (4.13). Let Xn be random variables with variance 1 and mean 0, if
E(X4

n)→ 1 then µXn →b.

5. Some Recent Results in Free Infinite Divisibility

Freeness and free infinite divisibility is, by far, much more explored than their
Boolean and monotone counterparts. In this section we want to describe recent
results and examples of freely infinitely divisible (FID, for short) distributions.
The selection of the topics, strongly motivated by the interests of the authors, is
focused on results which have no analog in the classical world. In particular, the
free counterparts of important classes of classical infinitely divisible distributions,
such as the compound Poisson, stable, self-decomposable, Type G, Generalized
Gamma Convolutions and Meixner laws, obtained by the Bercovici-Pata bijection,
will not be treated here. For more information on such classes, the interested
reader is advised to look at the original work [18], but also [12], where detailed
properties of the Bercovici-Pata bijection are given, and [4, 51, 60], among others.

(5.1) Polynomials in free random variables and free subordinators. An
important subclass of ID(∗) is the class of infinitely divisible measures with sup-
port on R+. This class plays an important role in the theory of stochastic processes
since it corresponds to the one dimensional marginal distributions of real-valued
Lévy processes with non-decreasing sample paths, known as subordinators. Any
classically infinitely divisible distribution supported on R+ satisfies that µ∗t is
concentrated on R+ for all time t > 0. In contrast, we can easily find an FID dis-
tribution with support on R+ such that µ�t is not supported on R+ for all times
t > 0 (e.g. the semicircle distribution with mean 2 and variance 1). This observa-
tion lead to consider the class of free regular measures. We say that a measure
µ ∈ ID(�) is free regular if µ�t is supported on R+ for all t ≥ 0. A measure µ is free
regular if and only if µ =Λ(ν) for some ν ∈ ID(∗)∩M+. This class has very nice
closure properties.

THEOREM (5.1) ([9]). Let µ,ν be free regular measures and let σ be FID. Then
the following properties hold.

1. µ�ν is free regular.
2. µ�σ is FID.

Furthermore, the class of FID behaves well under squaring.
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THEOREM (5.2) ([9]). Let X be a self-adjoint even element (i.e. µX is symmetric).
If X is FID, then X2 is free regular (FID, in particular).

We note here that there is no classical analog of the previous theorems see [9].
The free commutator [49] also preserves FID.

THEOREM (5.3) ([9]). Let X and Y be free and self-adjoint elements, and sup-
pose that µ1 := µX and µ2 := µY are FID. Then the distribution of the free commu-
tator µ12µ2 :=µi(XY−Y X ) is also FID.

We have seen that if a1,a2,a3 are free even FID random variables, then i(aia j−
a jai), aia j +a jai, a2

i and a ja2
i a j are also FID. Combining these results one can

easily see that the following polynomials are FID: a2
1 +a2

2 +a2a1 +a2a1, i(a1a2
2 −

a2a2
1), a4

1 + a4
2 − a2

2a2
1 − a2

2a2
1, a1a2

2a1 + a2a2
1a2 + a1a2a1a2 + a2a1a2a1, a1a2

2a1 +
a2a2

1a2−a1a2a1a2−a2a1a2a1, a1a2a3+a2a1a3+a3a1a2+a3a2a1, etc. Therefore,
it is natural to ask which polynomials preserve FID.

(5.2) Free infinite divisibility of Gaussian distribution. In [10], the authors
considered the free infinite divisibility (also FID, for short) of the ultraspherical
family un with density

cn(4− t2)n−1/21[−2,2].

where cn is a normalizing constant.
This family contains all the Gaussian distributions with respect to the 5 funda-

mental notions of independence in non-commutative probability (the normal law
g appears in the limit n →∞ if un, properly normalized).

Arizmendi and Perez-Abreu [10] proved using kurtosis arguments that un is
not FID for n < 1 and from cumulant criteria conjectured that un is FID for all
n ∈ [1,+∞).

Since the class ID(�) is closed under weak convergence, one important conse-
quence of the FID of this family is that the normal distribution g is both classically
and freely infinitely divisible.

Following these remarks and considerations of general Brownian motions, the
FID of the normal distribution g was proved by Belinschi et al. [14]. However,
they used another family to approximate the normal law.

THEOREM (5.4). [14] Let µc denote the Askey-Wimp-Kerov distribution with

density µc(dx) = 1
2πΓ(c+1)

1
|D−c(ix)|1R(x)dx, where the function D−c(z) for c > 0

is defined by

D−c(z)= e−
z2
4

Γ(c)

∫ ∞

0
xc−1e−zx− x2

2 dx,

and D−c(z) for c ∈ (−1,0) is the analytic continuation of D−c for c > 0. For any
c ∈ (−1,0]the measure µc is �-infinitely divisible. In particular, the normal law µ0
belongs to ID(�)∩ ID(∗).

The normal distribution plays no important role in free probability and thus
there is a priori no reason for this distribution to be FID.

The importance of the paper [14] does not only come from proving this surpris-
ing result, which was a conjecture of one of the present authors [10]. On one hand,
this result has lead to consider the question of how big is the class ID(�)∩ ID(∗).
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On the other hand, the techniques used in [14] have been used and further de-
veloped [1, 5, 6, 7, 25, 32] and lead to consider the class UI firstly introduced in
Arizmendi and Hasebe [7]. This class has proved to be very useful in proving the
�-infinite divisibility of a distribution and will be described in the next part 5.4.

The FID of un was proved for n ∈ N by Arizmendi and Belinschi [5] and for
general n ∈ [1,+∞) in a recent paper by Hasebe [32]. This gives another proof of
the fact that g belongs to ID(�).

Let us finally mention that other FID families which approximate the Gaussian
distribution. The proofs of the FID of these families rely on the ideas of [14].

EXAMPLE (5.5). The following are families of distributions in ID(�) which
suitably scaled approximate the Gaussian distribution.

1. [1] The q-Gaussian distribution

gq(dx)=
√

1− q
π

sinθ(x)
∞∏

n=1
(1− qn)|1− qne2iθ(x)|2 1[

− 2p
1−q

, 2p
1−q

](x)dx

for q ∈ [0,1), where θ(x) is the solution of x = 2p
1−q

cosθ, θ ∈ [0,π].

2. [32] The Student distribution

tn(dx)= 1
B( 1

2 ,n− 1
2 )

1
(1+ x2)n 1R(x)dx, n = 1,2,3, · · · .

3. [32] For p > 3/2, the gamma distribution

γp(dx)= 1
Γ(p)

xp−1e−x 1[0,∞)(x)dx.

(5.3) Distributions which are clasically and freely infinitely divisible.
From the Bercovici-Pata bijection one may have the idea that there are two par-
allel classes: ID(�) and ID(∗) and in principle, apart from trivial examples and
fixed points there is no reason why a distribution may belong to both classes.

We have seen already that the normal distribution belongs to ID(�)∩ ID(∗).
Recent works [6, 9, 25, 32, 51] have provided more examples of probability mea-
sures in this class.

EXAMPLE (5.6) (Measures which are in ID(∗)∩ ID(�)).

1. The Cauchy distribution

c(dx)= 1
π(1+ x2)

1R(x)dx.

2. [9] The chi-square distribution 1p
πx e−x1[0,∞)(x)dx.

3. [32] The Student distribution tn, n=1,2,3...
4. [9, 32] For n = 1,2,3, · · · , the F-distribution with density

f (x) := 1
B(1/2,n/2)

1
(nx)1/2

(
1+ x

n

)−(1+n)/2
, x > 0.

5. [25] For 0< t ≤ 1
2 , the symmetric Meixner distributions

ρt(dx) := 4t

2πΓ(2t)
|Γ(t+ ix)|2 dx, x ∈R.
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6. [25] The logistic distribution

µ2(dx)= π

2cosh2(πx)
dx, x ∈R.

7. [7] The positive Boolean stable law with stability index α ∈ (0, 1
2 ]

dbα

dx
=

1
π

sin(απ)xα−1

x2α+2cos(απ)xα+1
, x > 0.

8. [32] For p ∈ (0,1/2]∪ [3/2,∞), the gamma distribution γp.

A still remaining question is whether there is a general theory on the intersec-
tion of free and classical infinite divisibility.

(5.4) The class UI. We begin with an analytical characterization of FID distri-
butions.

THEOREM (5.7). A Borel probability measure µ on the real line is FID if and
only if its Voiculescu transform φµ(z) extends to an analytic function φµ : C+ →C−.

In practice, it is quite challenging to decide whether or not a distribution is FID.
The class UI (univalent inverse reciprocal Cauchy transforms) was introduced in
[7], following the ideas of [14].

Definition (5.8). A probability measure µ is said to be in class UI if Fµ is uni-
valent in C+ and, moreover, F−1

µ has an analytic continuation from Fµ(C+) to C+
as a univalent function.

The importance of this class is given by the following lemma (implicitly used
in [14])

LEMMA (5.9). [7] If µ ∈UI then µ is FID.

It is easily seen that the class UI satisfies the following properties.
1. The class UI is closed with respect to the weak convergence.
2. The class UI is not closed under free convolution.
3. ID(�) contains strictly UI .
Although the class UI is a proper subset of ID(�), most of the known FID

distributions belong to UI. In fact, up to now, all the FID distributions presented
in the present section are UI.

EXAMPLE (5.10). The following probability measures belong to UI.
1. Wigner’s semicircle law

w(dx)= 1
2π

√
4− x2 1[−2,2](x)dx.

2. The free Poisson law (or Marchenko-Pastur law)

m(dx)= 1
2π

√
4− x

x
1[0,4](x)dx.

3. [7, 32] For 1
2 ≤ |a| < 1, the beta distribution βa with

βa(dx)= sin(πa)
πa

(
1− x

x

)a
1[0,1](x)dx,

for 1
2 ≤ |a| < 1. β 1

2
is equal to m up to scaling.
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4. [6] The Boolean stable law with stability index α

dbρ
α(dx)=


sin(πρα)

π

xα−1

x2α+2xα cos(πρα)+1
dx, x > 0,

sin(π(1−ρ)α)
π

|x|α−1

|x|2α+2|x|α cos(π(1−ρ)α)+1
dx, x < 0,

for 0<α≤ 1
2 , ρ ∈ [0,1].

REMARK (5.11). For 1
2 ≤α≤ 2

3 and 2− 1
α
≤ ρ ≤ 1

α
−1, the Boolean stable law bρ

α

is still freely infinitely divisible, but not in the class UI [6].

(5.5) Free divisibility indicator. A remarkable property for the free convolu-
tion is the fact that µ�t exists as a probability measure, for all t ≥ 1. This contrast
with classical probability theory, because the usual convolution µ∗t is not nec-
essarily defined even for t ≥ 1, unless µ is ∗-infinitely divisible. Hence, for any
measure µ, the following quantity is of interest:

φ̃(µ) := inf{t > 0 :µ�t exists as a probability measure}.

A probability measure µ is freely infinitely divisible if and only if φ̃(µ)= 0.
Belinschi and Nica [15] introduced the semigroup of homomorphisms

Bt(µ)=
(
µ�(1+t)

)] 1
1+t .

In addition to the semigroup property Bt(Bs(µ)) = Bt+s(µ), the family Bt also
satisfies:

1. Bt(µ�ν)=Bt(µ)�Bt(ν).
2. B1 =B.

Because of the semigroup property one can introduce the free divisibility indicator

φ(µ) := sup{t ≥ 0 :µ ∈Bt(M)}.

By property (2), Bt reaches free infinite divisibility at time t = 1, and φ(µ) ≥ 1 if
and only if µ ∈ ID(�). Moreover, φ(µ) = 1− φ̃(µ) if µ is not freely infinitely divis-
ible. Thus, φ(µ), rather than just testing free infinite divisibility, measures, in
some sense, how divisible a measure is. The explicit calculation of this indica-
tor is expected to be useful to understand the free convolution and free infinite
divisibility.

Belinschi and Nica [15] calculated the divisibility indicator the free poisson (
φ(m) = 1), the semicircle distribution (φ(w) = 1), arcsine distribution (φ(a) = 1/2)
and Cauchy distribution (φ(t1)=∞). They also showed that for any purely atomic
distribution the divisibility indicator equals 0.

More recently, the following relation was proved in Arizmendi and Hasebe [8]

(5.12) φ(µ]t)= φ(µ)
t

for t > 0.

In particular, as conjectured by Bożejko [26], if µ is freely infinitely divisible
then so is µ]t. Furthermore, from (5.12) one may reformulate the definition of the
free divisibility indicator as

φ(µ)= sup{t ≥ 0 :µ]t is freely infinitely divisible}.
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This has been used by Hasebe in [32] to show that the divisibility indicator equals
1 for the following distributions: the Gaussian distribution, the Student distribu-
tion tq for q ∈ (1,2]∪⋃∞

n=1[2n+1/4,2n+2] and the ultraspherical distributions up
for p ∈ [1,∞).
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A REVIEW OF CONDITIONAL RARE EVENT SIMULATION FOR TAIL
PROBABILITIES OF HEAVY TAILED RANDOM VARIABLES

LEONARDO ROJAS-NANDAYAPA

ABSTRACT. Approximating the tail probability of a sum of heavy-tailed ran-
dom variables is a difficult problem. In this review we exhibit the challenges
of approximating such probabilities and concentrate on a rare event simulation
methodology capable of delivering the most reliable results: Conditional Monte
Carlo. To provide a better flavor of this topic we further specialize on two algo-
rithms which were specifically designed for tackling this problem: the Asmussen-
Binswanger estimator and the Asmussen-Kroese estimator. We extend the appli-
cability of these estimators to the non-independent case and prove their efficien-
cies.

1. Introduction

The term rare event is used to designate all those events whose probabilities
are small, yet non-negligible and characterized by the difficulty of its calculation.
Often, these rare events are extremely important in applications; for instance,
consider the consequences of a natural disaster for an insurance company, or an
economic crisis for a financial institution or the sudden arrival of huge number of
jobs to a server as it often occurs in a web server. Many of the probability mod-
els employed for dealing with these problems contain multiple random variables
(not necessarily independent) and the quantities of interest are given in terms of
transformations such as sums, products or extremes. In consequence, the explicit
calculation of a distribution of interest is often non-trivial and one must rely on
approximation methods. Among these, the Monte Carlo method is considered to
be one the most reliable, specially in cases where analytical approximations are
not available.

In this review we mainly focus on the Monte Carlo method for approximating
rare event probabilities, but we also discuss asymptotic approximations; the rea-
son for this is that the implementation of efficient Monte Carlo estimators often
requires to draw elements from asymptotic theory. In particular, we specialize on
tail probabilities of a sum of random variables

P(Sn > x), x →∞.

When the involved random variables are light tailed, the approximation of such
probabilities is dealt via Large Deviations theory. Notwithstanding, certain phe-
nomena are better modeled with heavy-tailed distributions. However, the approx-
imation of rare event probabilities in the presence of heavy tails is often more
involved and it has been considered a challenging problem among the applied

2010 Mathematics Subject Classification: 60E05, 90-04.
Keywords and phrases: rare-event simulation, conditional Monte Carlo, heavy-tails, efficiency,

non-independent.
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probability community. The reason for this is that most classical methods require
that the domain of convergence of the moment generating function contains an
open set including the origin —a condition which is not satisfied by heavy-tailed
random variables as these are characterized by the non-existence of their moment
generating functions for positive values of the argument. Therefore, new methods
have been called for tackling this problem, and as a result we have seen in the last
fifteen years a very intense research activity devoted to Rare Event Simulation.
In this review, we focus on the methodology called Conditional Monte Carlo, which
has provided some of the most powerful and efficient estimators so far. Some of
our contributions employ this technique [5, 23, 11]. Here we include some results
which have not been previously published in peer-review journals. These are the
generalizations of the so called Asmussen-Binswanger and Assmusen-Kroese es-
timators for the case of independent but non-identical random variables. These
extensions are accompanied by their corresponding proofs of efficiency.

This paper is structured as follows. In section 2 we provide a discussion on
independent heavy-tailed random variables. This theory is now at an advanced
level and well-understood. Several alternative definitions for heavy tails are re-
viewed and their relations and main properties are studied. In particular, we pay
attention to the rich class of subexponential distributions and we discuss how its
defining property provides a useful insight into the occurrence of large values of
a sum —a characteristic behavior known as the principle of the single big jump.
Moreover, it has been recognized that the subexponential property goes beyond
the independent case and it is now an area of active research. One of the main
contributions of this author is in this front. The main result in [6] states that a
sum of lognormals possesses the subexponential property even when the involved
random variables are correlated via a Gaussian dependence structure.

A general overview of Monte Carlo methods is provided in Section 3 with a
particular emphasis in the area known as Rare Event Simulation. The notions of
rare event and efficient estimator are formalized here in order to provide the proper
framework for analyzing Monte Carlo estimators for rare event probabilities. We
discuss the classical tools such as importance sampling, exponential change of
measure and conditional Monte Carlo. We discuss briefly the limitations of some
standard methods when applied in a heavy-tailed setting. Section 4 is devoted
exclusively to the approximation of tail probabilities of sums of heavy-tailed ran-
dom variables; a recount of available methods is given there followed by a more
detailed exposition on a set of estimators based on the Conditional Monte Carlo;
these are known as the Asmussen-Binswanger [1] and the Asmussen-Kroese [4].
In particular, we provide extensions to the non-independent case and prove the ef-
ficiency of these estimators. We stress the fact that Theorems 4.1–4.3 are original
contributions and their efficiency proofs can be found in the Appendix in Section
6. Finally, Section 5 contains some concluding remarks.

2. Heavy Tails

The term heavy-tailed phenomena [21], is often used to refer to real world phe-
nomena where record values are characterized by its extreme behavior. Examples
of this type of phenomena are abundant in insurance; for instance, consider the
two record costliest (adjusted for inflation) hurricanes striking the United States
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during the period 1900-2010: Katrina (2005) and Andrew (1992) with damage
costs of 105,840 and 45,562 million USD respectively [9]. Both records have ex-
treme values but the most striking feature is that the damage cost of hurricane
Katrina more than doubles the damage cost of hurricane Andrew! Further exam-
ples occur in Finance and Telecommunications where economic losses or system
breakdowns due to large data file sizes or long transmission lengths are of great
concern.

The examples above sketch the huge relevance of heavy-tailed phenomena and
stress the importance of having the right probabilistic distributions for modeling
their behavior. In the rest of this section we will provide alternative definitions
which lead to several classes of heavy-tailed distributions and will study their
properties. In particular, we will pay attention to the distinctive behavior of con-
volutions of certain types of heavy-tailed distributions known as the principle of
the single big jump. We also establish some contrasts with respect to light tailed
distributions, which typically comprehend most of the classical models in proba-
bility and statistics. Our exposition follows closely [16] but we also draw elements
from [15] and [20].

We say that a random variable X has a (right) heavy-tailed distribution if

E[eθX ]=∞, ∀θ > 0.

Foss, Korshunov and Zachary [16] employ the term exponential moment to refer
to the quantity E[eθX ]. Adopting this terminology, we say that X has a heavy-
tailed distribution if it fails to have a positive exponential moment. In contrast,
if a distribution with unbounded right support has a finite positive exponential
moment, then we say that it has a light-tailed distribution. Further to this, we
can easily verify that light-tailed distributions have moments of every order while
a random variable with an infinite moment of any order will necessarily have a
heavy-tailed distribution. The converse of the last statement is false in general;
the classical example is that of a lognormal random variable which has finite
moments of every order but it fails to have a positive exponential moment, and in
consequence classifies as a heavy-tailed distribution.

In the definition above it is implicit that a right heavy-tailed distribution
should have an unbounded right support. In fact, the defining property of a heavy-
tailed distribution is inherently related to the rate of decay of its tail probability
F(x) := 1−F(x). Therefore, it is natural to obtain equivalent definitions of a heavy-
tailed distribution in terms of its tail probability or its hazard rate function. In
particular, we define the hazard function Λ(x) as

Λ(x) :=− logF(x).

Moreover, if the tail probability F of a distribution is differentiable, then we define
the hazard rate function λ(x) := Λ′(x). Hazard (rate) functions arise in a wide
variety of applications in survival analysis and reliability where it is known under
alternative names such as survival or failure (rate) functions. In addition, we say
that an arbitrary nonnegative function f is heavy-tailed iff

limsup
x→∞

f (x)
e−θx =∞, ∀θ > 0.

Thus a function is heavy-tailed if it decays slower than an exponential function.
The following theorem (cf. [16, Theorem 2.6]) ties together the properties of the
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tail and the hazard functions of a heavy-tailed distribution and provides alterna-
tive definitions.

THEOREM (2.1). Let F be a distribution function with unbounded right sup-
port. The following are equivalent:

1. F is a heavy-tailed distribution.
2. F is a heavy-tailed function.
3. liminfx→∞Λ(x)x−1 = 0.

These definitions provide practical means for testing the heaviness of any given
distribution. Classical examples of heavy-tailed distributions include the subfam-
ily of regularly varying distributions (including Pareto, Loggamma, Burr), the
Weibull distribution with parameter 0 < λ < 1, the Cauchy and the Lognormal
distributions. On the other hand, the exponential, gamma and normal random
variables are examples of light-tailed distributions. In fact, from the definition of
a heavy-tailed function it follows that an exponential transformation of a light-
tailed random variable might yield a heavy-tailed random variable. In particular,
the Pareto, loggamma and lognormal are heavy-tailed distributions obtained from
an exponential transformation of the exponential, gamma and normal distribu-
tions respectively.

The class of heavy-tailed distributions as defined above is too general for de-
riving useful properties. However, by adding some regularity conditions one can
obtain tractable subclasses of heavy-tailed distributions which posses attractive
properties, yet remain general enough. One of such subclasses is that of long
tailed distributions. This subclass is denoted L and defined by the following prop-
erty. A distribution F ∈L iff

lim
x→∞

F(x+ y)

F(x)
= 1, ∀y ∈R.

An analogue definition exists for a general function f which is ultimately positive
and posses the property listed above; in such case we say that f is a long-tailed
function. The following result [16, Lemma 2.17] provides the connection between
heavy and long tailed distributions.

LEMMA (2.2). If f is a long-tailed function then

lim
x→∞

f (x)
e−θx =∞, ∀θ ≥ 0.

In consequence, a long-tailed distribution F is necessarily heavy-tailed, but the
converse is not always true. The reference [16] provides a counterexample of a
heavy-tailed distribution which fails to be long-tailed. By adding the smoothness
condition which defines the class of long-tailed distributions, we gain some useful
properties in exchange of some generality. In particular, it is possible to prove
that the class of long-tailed functions is closed under linear transformations (mix-
tures), products, maxima, minima, and convolutions. Moreover, the convolution
of a long-tailed distribution with an arbitrary distribution is long-tailed.

A very useful characterization of long-tailed distributions is via their insensi-
tiveness with respect to a function h. More precisely, we say that a function f is
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h-insensitive [16] iff

sup
|y|≤h(x)

| f (x+ y)− f (x)| = o( f (x)), x →∞,

uniformly in |y| ≤ h(x). If the function f is monotone, then h-insensitivity reduces
to having f (x+h(x))∼ f (x) as x →∞. Clearly, a long-tailed function is insensitive
with respect a constant function. However, this property can be strengthened as
shown in the following Lemma:

LEMMA (2.3). If F is a long-tailed distribution, then there exists a function
h(x)→∞ such that F is an h-insensitive function.

For instance, if F is regularly varying then it is o(x)-insensitive, while the
lognormal is o(x/logx)-insensitive and the heavy-tailed Weibull with parameter
λ ∈ (0,1) is o(x1−λ)-insensitive.

Next, we discuss briefly the relationship between long-tailed distributions, in-
tegrated tails and the mean excess function. If a distribution function is such that∫ ∞

0 F(x)dx <∞, then we can define the integrated tail distribution of F as

F I (x) :=min
{
1,

∫ ∞

x
F(t)dt

}
.

The mean excess function can be defined for a distribution having a finite first
moment as

e(x) := E[X − x|X > x].
That is, the mean excess function is the expected value of the excess of a random
variable over a given x, provided that it has exceeded this threshold value. The
mean excess function is related to the integrated tail distribution via the relation
e(x) = F I (x)/F(x). Moreover, the following Lemma [16, Lemma 2.25] provides a
useful characterization of long-tailed distributions in terms of mean-excess func-
tions.

LEMMA (2.4). The integrated tail distribution FI is long-tailed iff its associated
mean excess function is such that e(x)→∞.

In applications, the mean excess function is often used to diagnose the pres-
ence of heavy-tails. However, the previous lemma shows that if e(u) →∞ we can
only verify that the integrated tail distribution is long-tailed but we cannot say
anything about the heaviness of the original distribution F. In fact, one can con-
struct a counterexample of a light tailed distribution whose mean excess function
goes to infinity. This is a case of a more general fact which says that if F is an
absolutely continuous distribution, then its density f is a heavy-tailed function
but the converse is false in general; that is, if a density function f is heavy-tailed,
its distribution function is not necessarily heavy-tailed. In consequence, the mean
excess function of a heavy-tailed function should increase to infinity as we let the
threshold value x →∞, but it is not an absolutely reliable tool to diagnose a heavy
tail because a distribution with mean excess function going to infinity is not nec-
essarily heavy-tailed. Counterexamples for all these cases can be found in [16].

Convolutions of certain regular and nonnegative heavy-tailed distributions
have a unique property which set them apart from light-tailed distributions: the
principle of the single big jump. This property is extremely useful and most of
the heavy-tailed distributions used in practice possess it; in fact, the family of
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distributions defined by this property forms a proper subclass of long-tailed dis-
tributions. To define it we concentrate exclusively on distributions with nonnega-
tive values, but point out that some of the subclasses of heavy-tailed distributions
defined below can be generalized to distributions supported over the reals.

We start with the following elementary property of a convolution which holds
for all nonnegative distributions F with unbounded right support. Let F∗n the
n-fold convolution of F and F∗n its corresponding tail distribution, then

liminf
x→∞

F∗n(x)

F(x)
≥ n, ∀n ∈N.

The following theorem [16, Theorem 2.12] provides a sufficient condition for the
liminf above to be equal to n. In fact, this will provide a very useful insight into
the characteristic behavior of the convolution of a heavy-tailed distributions:

THEOREM (2.5). Let F be a nonnegative heavy-tailed distribution. Then

(2.6) liminf
x→∞

F∗n(x)

F(x)
= n, ∀n ∈N.

The corresponding liminf of most light-tailed nonnegative distributions like
the exponential and gamma will be infinite. Hence, it is tempting to use the the-
orem above as an alternative definition of heavy-tails, but it turns out this is not
possible as one can construct a light tailed nonnegative distribution for which the
liminf of the ratio of convolutions as defined above is equal to n. A counterexample
can be found in [16]. However, we can strengthen the condition above to obtain a
subclass of long-tailed distributions: subexponential distributions, This subclass
was originally introduced by Chistyakov in 1964 [13]. We say that a nonnegative
distribution F belongs to the class of subexponential distributions, denoted S, if
it possesses the subexponential property; that is, the tail probability of the n-fold
convolution of F is asymptotically equivalent to n times the tail probability F.
More precisely,

(2.7) lim
x→∞

F∗n(x)

F(x)
= n, ∀n ∈N.

Therefore, a heavy-tailed distribution requires and additional regularity condition
to be subexponential. That condition is the existence of the limit (2.7). Moreover,
it is possible to prove that that subexponential distributions form a proper sub-
class of long-tailed distributions. That is, any subexponential distribution is long-
tailed but not every long-tailed distribution will necessarily be subexponential.
For a counterexample see [16]. Curiously, the name subexponential was originally
employed to refer to the class of distributions satisfying limx→∞ F(x)eλx <∞, but
nowadays it is employed in the more restrictive sense described above. Subexpo-
nentiality is a property of the tail exclusively; however, it has a very interesting
implication for the tail of an n−convolution —a characteristic which often goes
under the name of the principle of the single big jump. Let us start by noting that
the distribution of the maximum Mn of n arbitrary i.i.d. random variables (not
necessarily subexponential) is given by Fn(u). Hence

P(Mn > x)= 1−Fn(x)= 1−(1−F(x))n = 1−
n∑

k=0
(−1)k

(
n
k

)
F

n−k
(x)= F(x)

(
n+O(F(x))

)
.
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In consequence, the tail probability of the maximum is asymptotically equivalent
to the tail probability of the convolution, namely P(Mn > x) ∼ P(Sn > x), where
Sn := X1 + ·· ·+ Xn. Since the X ′

is are nonnegative, then {Mn > x} ⊂ {Sn > x} and
the conclusion above can be written in a conditional form as

lim
u→∞

P(Mn > u)
P(Sn > u)

= lim
u→∞P(Mn > u|Sn > u)= 1.

This expression is very appealing as it says that the if the sum becomes large
it is only likely due to the contribution of a single random variable. This be-
havior is completely opposite to that of lighted tails where the only likely way
that a sum of i.i.d. random variables becomes large is as a consequence of sev-
eral moderately large but otherwise proportionally sized contributions of two or
more random variables. Hence, it turns out that distributions within the class S
should be appropriate for modeling those phenomena which show some stability
through time but eventually are shocked by an extreme event. Subexponential
distributions inherit the properties of long-tailed distributions but also possess
many of their own; for instance, the class of subexponential distributions is closed
under maxima, minima, mixtures, convolutions and random translations. Also,
most of the heavy-tailed distributions used in practice are subexponential such as
the Pareto, loggamma, Burr, Weibull and Lognormal. Also, in the case of nonneg-
ative distributions, there exists an upper bound for the expression F∗n(x)/F(x).
Such bound goes under the name of Kesten’s bound [16, Theorem 3.34], and it is
described in the following Theorem:

THEOREM (2.8). Let F be a subexponential distribution. Then, for every ε > 0
there exists a constant c such that for all x ≥ 0 and all n ≥ 1 it holds that

F∗n(x)

F(x)
≤ c(1+ε)n.

Notice that the subexponential property is given for nonnegative, independent
and identically distributed random variables, thus it would be desirable to extend
this definition to more general sets of random variables and investigate more gen-
eral conditions under which the principle of the single big jump holds. First we
concentrate on distributions supported on the whole real line where it turns out
that the defining property (2.7), which from now on we call subexponential-type
property, is no longer a tail property. For instance, if we consider a distribution
supported all over the reals which fulfills the subexponential-type property, then
the distribution F+(x) := F(x)Ix≥0 will not necessarily be subexponential and the
principle of the single big jump does not hold anymore; this argument motivates
the following alternative definition. We say that a distribution F is whole-line
subexponential if F+ is subexponential. Alternatively, one could obtain an equiv-
alent definition by consider the distribution G(x) = P(X ≤ x|X ≥ 0) instead of F+.
The following theorem [16, Lemma 3.4 and Theorem 3.6] summarize two alterna-
tive equivalent definitions which provide useful insights into the class of whole-
line subexponential distributions.

THEOREM (2.9). The following assertions are equivalent:
1. F is whole-line subexponential.
2. F is long-tailed and it possesses the subexponential-type property.



166 LEONARDO ROJAS-NANDAYAPA

3. F is long-tailed and there exists a function h(x) → ∞ for which F is h-
insensitive and such that for any two independent random variables X1, X2 ∼
F it holds that

P(X1 + X2 > x, X1 > h(x), X2 > h(x))= o(F(x)), x →∞.

This theorem says that for a distribution to be whole-line subexponential it is
not enough to just have the subexponential-type property but we also require a
long-tail. Clearly, whole-line subexponential distributions form a proper subclass
of long-tailed and heavy-tailed distributions. Moreover, the third part of the the-
orem above shows that the principle of the single big jump holds as it says that it
is unlikely to observe a large value of the sum as a consequence of two (or more)
random variables taking moderately large values.

The following Lemma generalizes the principle of the single big jump to inde-
pendent but non-identically distributed random variables [16, Corollary 3.18].

LEMMA (2.10). Let F be a whole-line subexponential distribution and F1, . . . ,Fn
be a collection of distributions such that limx→∞ F(x)/F i(x) = ci ≥ 0. Then it holds
that

lim
x→∞

F1 ∗F2 ∗·· ·∗Fn(x)

F(x)
=

n∑
i=1

ci.

If limx→∞ F1(x)/F2(x)= c > 0, then we say that F1 and F2 are tail equivalent. It
is straightforward to prove that if F2 is tail equivalent to a long-tailed distribu-
tion, then F2 is long tailed as well.

The last subclass of heavy-tailed distributions that we will discuss are the sub-
families of distributions with regularly varying tails with index α, denoted R(α),
and defined as the family of nonnegative random variables whose tail probabil-
ity can be written as F(x) = L(x)x−α with x,α > 0, and L(x) is a slowly varying
function. That is, L(x) is a measurable function satisfying

lim
x→∞

L(tx)
L(x)

= 1, ∀t ∈ (0,∞).

In particular, it holds that F is regularly varying distribution iff

lim
x→∞

F(tx)

F(x)
= t−α, ∀t ∈ (0,∞).

The class Rα is often understood as those distributions with a tail behavior sim-
ilar to a power function with exponent α while the slowly varying function L(x)
acts as a perturbation factor. This class has been largely studied under the more
general theory of regularly varying functions [7, cf. 7]. Many authors consider
that regularly varying is a synonym of heavy-tails [21]; moreover, this subfamily
play fundamental roles in the theory of fluctuations of sums and extremes of inde-
pendent random variables. The Pareto, Burr, α-stable and loggamma are typical
examples of regularly varying distributions. The theory of regularly varying dis-
tributions is quite extensive, so we decide to omit most of it but we enunciate a
few properties. One of the most remarkable results is Karamata’s theorem which
is as follows: Let L ∈R0 be bounded in [x0,∞) and α> 1. Then∫ ∞

x

L(t)
tα

dt = L(x)
(α−1)xα−1 (1+o(1)) x →∞.
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This result says that the integrated tail of a regularly varying function with index
α> 1 will be regularly varying with index α−1. Even more, it says that the slowly
varying function is preserved after the integration. Using Karamata’s Theorem it
is easy to verify that the mean excess function e(u) of a regularly varying goes
to infinity as u →∞. Similarly, all the moments of order large than the index α

of a regularly varying distribution are infinite while those of smaller order than
α are finite. It is trivially seen that the tail probability decays slower than the
exponential and it is also provable that a regularly varying distribution satisfies
the characteristic property of subexponential distributions. Hence, the class R
inherits all the properties of the class S.

3. Rare Event Simulation

As discussed in the previous section, most of the heavy-tailed distributions
used in practice belong to the class of whole-line subexponential distribution.
Therefore, the subexponential type-property can be used to approximate the tail
probability of a sum of heavy-tailed random variables. Such approximation is very
precise in the asymptotic regions of the tail distribution; however, this approxi-
mation can loose some precision for moderately large values. Hence, it is desir-
able to obtain sharper approximations and a natural choice is to recourse to the
Monte Carlo method. The elementary version for calculating the tail probability
px := P(X1 +·· ·+ Xn > x) is the so called Crude Monte Carlo and consists in sim-
ulating R identical copies of the random vector (X1, . . . , Xn), say {(X1,r, . . . , Xn,r),
r = 1,2, . . . }; calculating the sums Sr := X1,r + ·· · + Xn,r; defining the (Bernoulli)
random variables Wr,x := I(Sr > x) and returning the arithmetic average

p̂x,R := 1
R

R∑
r=1

Wr,x.

The law of large numbers implies that for a fixed x, the sequence of random
variables p̂x,R converges to px as R →∞. Moreover, since the random variables
{Wr : r = 1,2, . . . } have bounded variance, the Central Limit Theorem implies that
a measure for the random error is the margin of error of the Crude Monte Carlo
estimator

me(p̂x,R) :=
√

px(1− px)
R

.

This formula exhibits the natural trade-off between precision and computational
effort that is required for obtaining an estimate. While in theory we could attain
any desirable level of precision by simply increasing the number of replications,
it is not so uncommon to end up with very long running times which make unfea-
sible to attain a certain desired precision. In fact, the crude version of the Monte
Carlo is fated to deliver poor approximations when used to estimate rare event
probabilities. More precisely, we say that an indexed family of events {Ax : x ∈ R}
is a sequence of rare events if px := P(Ax) → 0 as x →∞. Crude Monte Carlo is
considered to deliver poor estimates for rare event probabilities because the as-
ymptotic order of the margin of error is larger than the asymptotic order of the
probability of interest as the events becomes rarer. For instance, the relative error
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of the Crude Monte Carlo estimator goes to infinity as the event becomes rarer:

lim
x→∞

me(p̂x,R)
px

= lim
px→0

√
1− px

pxR
=∞.

This implies that the number of replications needed to achieve certain relative
precision grows to infinity as the event becomes rarer. This discussion makes
obvious the two following facts. 1) The margin of error is not an appropriate pre-
cision measure for rare event simulation; instead, we should look at the relative
error as defined above (or equivalently to the coefficient of variation defined as
the square of the margin of error). 2) We need to turn our attention to alternative
collections of Monte Carlo estimators requiring a finite number of replications for
achieving certain relative precisions no matter how rare the event is.

(3.1) Efficiency criteria in rare event simulation. First we discuss the effi-
ciency criteria employed in rare event simulation. In a rare event framework, we
say that a Monte Carlo estimator p̃x,R is strongly efficient or has bounded relative
error if the (single-replicate) estimator has the following property

limsup
x→∞

Varp̃x,1

p2
x

<∞.

This efficiency property says that the number of replications required to estimate
px with certain fixed relative precision remains bounded as px → 0. However, it
is often difficult to construct such estimators and/or prove that the limsup above
remains bounded. For that reason it is common to employ an alternative weaker
criterion denominated logarithmic efficiency. This is defined as

limsup
x→∞

Varp̃x,1

p2−ε
x

= 0, ∀ε> 0.

This criterion implies that the number of replications needed for achieving cer-
tain relative precision grows at most at rate of order | log(px)|. From a practical
point of view, there is no substantial difference between these two criteria, but as
mentioned before it is often much easier to prove logarithmic efficiency not only
because it is a weaker criterion but also due to the equivalent definition given in
the following result.

LEMMA (3.1). An estimator p̃x is logarithmically efficient iff

liminf
x→∞

∣∣ logVar p̃x
∣∣∣∣ log px

∣∣ ≥ 1.

The condition given in the previous Lemma often arises in Large Deviation
theory, but are now standard in Rare-Event simulation. The proof of this Lemma
is standard but to the best of the author’s knowledge, it has seldom appeared in
the rare event simulation literature. For sake of completeness, we provide an
alternative proof.

Proof of Lemma (3.1). Let us first assume that

liminf
x→∞

| logVar p̃x,1|
2 | log px|

≥ 1
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Then for all ε> 0 there exists x0 such that the inequality on the left hand side on
the following display holds for all x ≥ x0

| logVar p̃x,1|
2 | log px|

> 1−ε/2 ⇐⇒ Var p̃x,1

p2−ε
x

< 1.

The inequality on the right hand side above is obtained by simple algebraic ma-
nipulations of the inequality in the left hand side. Taking limsup we obtain

limsup
x→∞

Var p̃x,1

p2−ε
x

< 1.

The last inequality holds for all ε> 0, hence the the limsup is necessarily smaller
or equal to 0. The converse is proved in a similar way. Let us assume

limsup
x→∞

Varp̃x,1

p2−ε
x

= 0, ∀ε> 0.

Hence, for all 0< δ< 1 there exist x0 such that for all x ≥ x0 the inequality on the
left hand side of the following display holds

Varp̃x,1

p2−ε
x

< c ⇒
∣∣∣ logVarp̃x,1

2 | log px|
∣∣∣> ∣∣∣ log c

| log px|
− 2−ε

2

∣∣∣
The inequality on the right hand side follows from standard algebraic manipula-
tions. Taking liminf on both sides we obtain that

liminf
x→∞

| logVar p̃x,1|
2 | log px|

> 1−ε/2, ⇐⇒ liminf
x→∞

| logVar p̃x,1|
2 | log px|

≥ 1.

This completes the proof.

A stronger efficiency concept is achievable and has been proven for several
algorithms in the recent literature. This criterion goes under several different
names such as asymptotically zero relative error or vanishing relative error, and
it is defined as follows. We say that an estimator p̂x,1 has asymptotically zero
relative error iff

limsup
x→∞

Varp̃x,1

p2
x

= 0.

This criterion is stronger than bounded relative error. In fact, when an estimator
has asymptotically zero relative error, it can theoretically produce a variance re-
duction such that the number of replications necessary to attain certain precision
is of order O(px) as x → ∞. That means that ultimately the number of replica-
tions needed for achieving certain relative precision will continue to decrease as
the event becomes rarer until it will be necessary to have a single replication. In
addition, there exist, on one hand, efficiency criteria which are weaker than loga-
rithmic efficiency. More precisely, for a fixed value δ> 0 we say that an estimator
ẑ(x) is δ-efficient if

limsup
u→∞

Varẑ(u)
z2−δ(u)

<∞.

This definition fills the gap between logarithmic efficiency and Crude Monte Carlo
efficiency and it is often used to describe the improvement over Crude Monte
Carlo. On the other hand, there are stronger efficiency concepts which take care
of the moments of higher order of an estimator. These go under the name bounded
relative error of order k [19].
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Before we move on, we would like to remark that proving that a candidate
estimator satisfies any of the efficiency properties listed above is often a very dif-
ficult problem. The reason for this is that the variance of an estimator (appearing
on the numerator of the efficiency criteria discussed) is often unknown and one
has to find an upper bound of the second moment of the estimator which is tight
enough so it remains asymptotically bounded by the appropriate power of the first
moment.

(3.2) Variance reduction techniques. One of the the most important practi-
cal tasks in rare-event simulation is to propose estimators for a given sequence
of rare events which may satisfy any of the efficiency properties discussed in the
previous section. In a more general framework, the set of techniques employed
used to produce estimators which improve the performance of the Crude Monte
Carlo estimator go under the name of variance reduction methods (c.f. [3]). More
precisely, a variance reduction method is an algorithm that modifies an existing
estimator (or constructs a new one) in such a way that the resulting estimator re-
mains unbiased and (hopefully) produces a reduction in variance when compared
to Crude Monte Carlo. Among the most notorious variance reduction methods
one could list Importance Sampling, Control Variates, Stratification, Conditional
Monte Carlo, Antithetic sampling. In addition, variance reduction methods can be
divided in static and adaptive. In a static method, every step of the algorithm is
conducted independent of the outcome; in contrast, the evolution of an adaptive
algorithm depends on previous outcomes of the algorithm.

While most of these methods are potentially able to produce smaller variances
than Crude Monte Carlo, not all of these are well suited for rare event simulation.
The main reason is that the demand of variance reduction in the presence of rare
events is huge. As discussed in the previous section, one requires a variance which
is of much lower order than the one provided by Crude Monte Carlo. Moreover,
the quality of these methods is often assessed not only based on the variance
reduction itself but also in the amount of computational resources consumed, the
theoretical work required and the implementation effort invested.

Among the most powerful methods mentioned above, the most effective ones
for rare event simulation are Importance Sampling and Conditional Monte Carlo.
We discuss briefly these two methods, but before doing so we point that this review
is dedicated to static algorithms; however, it is worth mentioning that adaptive
techniques have attracted a considerable amount of attention in recent years due
to its effectiveness [10, 14, cf.].

Let us start with Importance Sampling. Assume that all the random variables
of interest are defined on a probability space (Ω,F ,P). This method relies on the
existence of a Radon-Nykodym derivative of the original measure with respect to
an alternative probability measure: the importance sampling distribution. More
precisely, suppose that we are interested in estimating E[h(W)] where W is a ran-
dom variable defined on (Ω,F ,P) and E is the expectation operator under the mea-
sure P. If Q is an absolutely continuous measure with respect to P, then it holds
that

E[g(W)]= EQ[L g(W)],

where EQ is the expectation operator under the measure Q and L := dP/dQ is the
Radon-Nykodym derivative of P with respect to Q (the last also goes under the
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name of likelihood ratio in the stochastic simulation literature). In particular, if
the measures P and Q are absolutely continuous, then the Radon-Nykodym deriv-
ative/likelihood ratio is simply the ratio of the corresponding density functions.

The main idea of importance sampling is that if W is simulated according to
the measure Q, then the random variable L h(W) has an expected value which is
equal to E[h(W)], hence it is an unbiased estimator of the quantity of interest. The
variance of the estimator is clearly altered as the second moment is given by

EQ[L2h2(W)]= E[Lh(W)].

Observe that importance sampling does not always produce variance reduction as
the expressions above are not necessarily bounded by the second moment of the
estimator under the original measure. In fact, one can end up with an increased
or even an infinite variance if one chooses the wrong importance sampling dis-
tribution. To the best of the author’s knowledge there does not exist a general
methodology for choosing an appropriate importance sampling (there is however,
a large number of strategies that can suggest good importance sampling distribu-
tions); most of the time the selection is based on the experience of the simulator
or other additional information about the quantity of interest.

However, when the focus is in estimating probabilities, there exists a distribu-
tion with zero variance, which is simply the original distribution restricted to the
event of interest, that is Q(dx) := IA(x)/P(A)P(dx). Clearly the Radon-Nykodym
derivative/likelihood ratio is given by L :=P(A)IA(·). Thus we have

EQ[L; A]= LEQ[I(A)]=P(A).

while for the second moment of the estimator we obtain that

EQ[L2; A]=P2(A)EQ[IA]=P2(A).

From the last expression it follows that this estimator has variance 0. At first
sight, this observation might appear of no practical use as the implementation of
the zero variance estimator is unfeasible since it requires the knowledge of the
unknown probability of interest P(A). However, the zero variance distribution is
of great theoretical interest as one can obtain partial information about it an serve
as the ideal model when choosing an appropriate distribution; that is a distribu-
tion which is as “close” as possible to the zero variance distribution. Intuitively,
we would like to choose a distribution in such way that the “important” event A is
sampled with higher frequency with respect to the original distribution. However,
there is a natural trade-off in the final value of the variance for the new estima-
tor because if we increase the frequency of any subset it would also increase the
values of its likelihood ratios. Therefore, the selection of the importance sam-
pling requires a conscious analysis. In fact, a considerable amount of research
effort in rare event simulation has been devoted to approximating the zero vari-
ance distribution. One of the most prominent cases is that of the Cross-Entropy
method, which consists of an iterative method which selects an “optimal” dis-
tribution from a parametric family by minimizing the Kullback-Leibler distance
with respect to the zero variance distribution. Another prominent case is that of
Exponential Change of Measure or Exponential Twisting where the importance
sampling distribution is selected from the so called exponential family generated
by the original distribution. The later technique will be discussed in some detail
in the following section.
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The second variance reduction technique that will be discussed here is Con-
ditional Monte Carlo. This is perhaps the most general variance reduction tech-
nique and the one requiring more theoretical effort. The intuitive idea behind it is
that the variance of a given estimator can be reduced by extracting the variability
coming from known information. If we add a little bit more of rigor to this idea
we simply end up with conditional expectation. Let us consider again a random
variable W defined on a probability space (Ω,F ,P), h an arbitrary function and G
a simulatable sub-σ-algebra of F . Then

E[g(W)]= E[E[g(W)|G]],

and in consequence E[g(W)|G] is an unbiased estimator of the quantity of interest
E[g(W)]. This estimator is unbiased and, in most practical cases one could easily
verify the conditions of the Rao-Blackwell Theorem; in such case, the variance is
always smaller or equal than the one of the original estimator. The implementa-
tion of this algorithm is more involved when compared to other variance reduction
methods as it requires two critical steps, 1) simulating from G and 2) computing
explicitly the random variable E[g(W)|G]. Obviously it is also desired that the
resulting estimator provides a substantial variance reduction, and for achieving
that, the sub-σ-algebra G should contain as much information about the occur-
rence of the event of interest as possible.

Most of the estimators discussed in this paper rely on Conditional Monte Carlo
method. A variety of examples will be provided in the following section to help
clarifying the use of this method.

4. Main Results

We will be interested in the tail probabilities of a sum of random variables.
More precisely,

P(X1 +·· ·+ XN > u),
where X1, X2, . . . is a sequence of random variables and N is possibly random
(most algorithms condition on the random number N and then employ a method
for simulating the tail probability for a fixed number of random variables). The
case of independent and light-tailed random variables is well understood via the
theory of Large Deviations. Moreover, in terms of Monte Carlo simulation, the
standard variance reduction method is Importance Sampling with an exponen-
tial change of measure. That consists in selecting an importance sampling distri-
bution from a family of probability measures consisting of the normalized mea-
sures Fθ(dx) := eθxF(dx) for all possible values of θ in the domain of convergence
Θ := {θ : E[eθX ]<∞, X ∼ F}. For estimating P(X1 +·· ·+ Xn > u) where the X i ’s are
nonnegative and independent random variables with common distribution F, the
importance sampling distribution and its associated parameter θ are chosen in
such way that Eθ[X ] = u. From our discussion of light and heavy tails it follows
that such parameter always exists in the light-tailed case for all values of u. This
selection is asymptotically optimal as Large Deviations results can be used to
prove that it converges to the zero variance importance sampling [26, 12, 25, 24].
Moreover, it is known that in the light-tailed case, an exponential change of mea-
sure delivers a logarithmically efficient estimator.

However, in the heavy-tailed case the domain of convergence Θ is reduced to
the set of non positive values of θ, and therefore we only hope to find a solution of
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Eθ[X ] = u when u ≤ E[X ]; hence, it is clear that it is not possible to implement an
optimal exponential change of measure for large values of u. The (nowadays con-
sidered) seminal paper [2] presented a number of examples which further exhib-
ited the inherent difficulty in designing good estimators for probabilities of rare
events involving heavy-tailed random variables and the challenges of demonstrat-
ing their efficiencies. This paper triggered an intense research activity devoted to
rare event simulation of heavy-tailed random variables; during the last fifteen
years we have seen a wide variety of new developments including estimators for
ad hoc applications, novel simulation methodologies targeting rare events and
theoretical advances which allowed to simplify some efficiency proofs. As a result,
the literature is quite vast. In the following we list a few notorious early works
in the area which exemplify the main ideas that one could find in this expanding
area of research. A prevalent idea in most of these works is the exploitation of
the principle of the single large jump, either by proposing importance sampling
distributions which increase the frequency of single big jumps or conditioning in
such a way that the conditional probability of a single big jump can be explicitly
calculated.

The first logarithmic efficient algorithm was proposed in [1] for the regularly
varying case. This is a Conditional Monte Carlo estimator and based on order
statistics. The reference [2] proposes a variant of the latter estimator and proves
logarithmic efficiency for regularly varying and the lognormal case. A conditional
algorithm, similar to that of [1] was proposed in [4]. That algorithm exploits a
symmetry relation of random variables which are i.i.d. and the conditioning in-
volves the lower order statistic. It is proved that this estimator has the stronger
bounded relative error efficiency property in the regularly case and it is numer-
ically superior to many similar algorithms. It was later proved in [17] that it
also achieves bounded relative error in the lognormal case. An independent proof
was provided in [5] and reported in [22]; an extension of this is given in Theorem
4.3 in this review. The performance of this algorithm has been improved over
time but it continues to be used as a benchmark of performance for similar algo-
rithms. On the importance sampling front, [18] developed a novel methodology
where an importance sampling distribution is selected according to a criteria in-
volving the hazard rate function; accordingly, this method is called hazard rate
twisting. Early examples of adaptive algorithms include [14] which proposed a
state-dependent algorithm for the regularly varying case having bounded rela-
tive error. Also [10] proposed a state-dependent algorithm in a queueing context
and proved that their estimator has vanishing relative error when applied to a
GI/G/1 queue for a large class of heavy-tailed distributions.

Here, we will concentrate in the conditional algorithms proposed in [1] and [4].
At the end of this section we include some extended results. Moreover, several
algorithms studied in this dissertation build on these early ideas.

(4.1) Conditional Monte Carlo Methods Based on Order Statistics. In this
subsection we discuss the algorithms designed by [1] and [4]. As mentioned pre-
viously, this algorithms exploit the principle of the single big jump by using order
statistics. The idea is neat and simple as one can calculate explicitly the prob-
ability that the maximum alone is responsible for the large value of the sum by
conditioning on the remaining order statistics. Although the algorithms in [1] and
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[4] are both based on this idea, they differ in the way of conditioning. The origi-
nal idea appeared in [1] but the modified version in [4] provided a more efficient
and easier to implement algorithm. We complement these ideas by providing ex-
tensions with the corresponding proofs of efficiency. Let us first start with the
Asmussen-Binswanger estimator:

We assume that {X1, . . . , Xn} is a collection of i.i.d. heavy-tailed random vari-
ables. The idea is to simulate the first n−1 order statistics out of n. The procedure
is simple as we just simulate X1, . . . , Xn and discard the largest one. The clever
idea here is that we can now calculate explicitly the conditional probability of the
rare event {Sn ≥ u} given the order statistics. This comes out as the following
random variable

P
(
Sn > x

∣∣ X(1), . . . , X(n−1)
) = F((x−S(n−1))∨ X(n−1))

F(X(n−1))
,

where S(n−1) = X(1) + ·· · + X(n−1). This algorithm is logarithmic efficient in the
regularly varying [8] and the lognormal case [1]. However, we can easily drop the
identically distributed assumption. When simulating the order statistics, we just
need to keep track of the (random) index of the largest random variable, say K .
The conditioning will deliver instead

(4.1) P
(
Sn > x

∣∣ X(1), . . . , X(n−1)
) = FK

(
X(n−1) ∨ (x−Sn−1)

)
FK

(
X(n−1)

) ,

where Fk(·) is the distribution function of the k-th random variable. Clearly, the
random variable above is unbiased. Moreover, we prove that it has logarithmic
efficiency when all random variables are independent lognormals but not neces-
sarily identically distributed.

THEOREM (4.2). Let X1, . . . , Xn be independent lognormal random variables.
Then the estimator (4.1) is logarithmic efficient.

The proof of this theorem is slightly technical and relegated to the appendix.
This result can be further extended to the case where the random variable with
the heaviest tails is lognormal. The proof of this follows trivially by comparison of
the tail asymptotics.
Asmussen-Kroese estimator. A slight tweak in the Asmussen-Binswanger estima-
tor can result in a dramatic variance reduction. The main observation of [4] is
that the algorithm above still has a large variability due to the fact that there
is a significant large probability of having a big jump among the first n−1 order
statistics. This probability is dramatically reduced by considering a symmetry ar-
gument. The idea is to calculate the probability of the event {Sn > x, Xk = Mn} for
k = 1, . . . ,n and where Mn =max{X i : i = 1, . . . ,n}. By symmetry we obtain

(4.3) P(Sn > x)= nP(Sn > x, Xd = Mn).

Condition on F =σ(X1, . . . , Xd−1) and note that

nP(Sd > x, Xd = Md |X1, . . . , Xn−1)= nF(Mn−1 ∨ (x−Sn−1)).

This algorithm has bounded relative error in the regularly varying [4] and the
lognormal [5, 17] cases. Moreover, the identically distributed assumption can be
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dropped by substituting the symmetric argument with

P(Sn > x)=
n∑

k=1
P(Sn > x, Xk = Mn).

This idea was empirically explored in our technical report [5]. An obvious ap-
proach consists in estimating individually each of the terms in the summation
above. The resulting estimator has good efficiency properties but requires more
computational effort. The following alternative approach delivers much better re-
sults. The strategy described can be seen as an hybrid between conditional Monte
Carlo and importance sampling where the importance sampling distribution is a
mixture. Let pk := P(Xk = Md), the probability that Xk takes the largest value
among the X i ’s and qk a discrete probability measure supported over {1,2, . . . ,n}.
Hence

P(Sn > x)=
n∑

k=1
P(Sn > x|Xk = Mn)pk

qk

qk
=

n∑
k=1

P(Sn > x, Xk = Mn)
qk

qk

= E
[ I(Sn > x, XK = Mn)

qK

]
.

where K is distributed according to qk. Further if we condition with respect to
the sub-σ-algebra F =σ(K , X1, . . . , XK−1, XK+1, . . . , Xn) we obtain

(4.4) P(Sn > x)= E
[FK (M−K ∨ (x−S−K ))

qK

∣∣F]
,

where Fk is the distribution of the k-th random variable and M−k and S−k
are defined as the maximum and sum of the X i ’s without considering the k-
th random variable. The convenient election of the qk ’s should deliver a sig-
nificant variance reduction. Intuitively, this should be minimized if we choose
q∗

k := P(Xk = Mn|Sn > u). That is, the probability that the k-th random variable
is largest conditioned to the rare event. However, this probability is not available
beyond the independent case. Our suggestion is to use

qk(u)= P(Xk > u)∑n
i=1P(X i > u)

.

Empirically, we have verified that this proposal approaches the value of the pk ’s as
u →∞. Hence, it is conjectured that asymptotically these are equivalent. More-
over, this estimator

(4.5)
FK (M−K ∨ (x−S−K ))

pK

delivers excellent numerical results with little computational effort. Efficiency
proofs for nonidentical and independent random variables in the lognormal and
regularly varying cases are given in the next two Theorems and their proofs can
be found in the appendix.

THEOREM (4.6). Let X1, X2, . . . , Xn be independent lognormal random vari-
ables, K a discrete random variable supported over {1, . . . ,n}. Then (4.5) is an
unbiased estimator of P(Sn > x) with bounded relative error.

THEOREM (4.7). Let X1, X2, . . . , Xn be independent regularly varying random
variables with indexes αi respectively, K a discrete random variable supported over
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{1, . . . ,n}. Then (4.5) is an unbiased estimator of P(Sn > x) with bounded relative
error.

5. Conclusions

Calculating the tail probability of a sum of random variables is a fundamen-
tal problem in applied probability. In particular, having sharp approximations
of these tail probabilities is of key importance in several disciplines. While in
the most common cases this problem is tackled with standard methods, it turns
out that it is very challenging to deal with random variables which posses heavy
tails. In this paper we provide a review on the standard theory of heavy-tails and
subexponentiality; we studied the alternative definitions for heavy-tails and pro-
vided a glimpse of their main properties. In particular, we paid attention to the
subexponential-type property which is characterized for the principle of the single
big jump. One of my main contributions to this area was to demonstrate that this
behavior goes beyond the independent case by proving that a collection of corre-
lated lognormals posses the subexponential-type property. This result provides
an asymptotic equivalent expression for the tail probability of a sum of correlated
lognormals which can be used as an approximation of the real probability.

However, in most applications it is desired to have a better precision. Some of
the most precise and reliable methods to obtain approximations is via the Monte
Carlo method. In particular, the subarea known as Rare-event simulation is de-
voted to develop the methodologies for delivering sharp approximations. The sec-
ond part of this review is dedicated to these aspects. We discussed the main tech-
niques and introduced the efficiency concepts used to assess the theoretical per-
formance of estimators for rare event probabilities. This area of research is quite
extensive. However, for this review I decided to focus on Conditional Monte Carlo
for independent but not necessarily identically distributed random variables. The
original estimators are now considered standard for the i.i.d. case but neverthe-
less we were able to extend these results by dropping the identically distributed
assumption. The efficiency proofs in Theorems 4.1, 4.2 and 4.3 appear in my Phd
thesis but otherwise this is unpublished material.

6. Appendix: Proofs

Proof of Theorem (4.2). In order to characterize the dominant tail behavior we de-
fine

σ2 = max
1≤k≤d

σ2
k, µ= max

k:σ2
k=σ2

µk,

and let F be the distribution of a lognormal random variable with parameters
µ and σ. Note that the index K is a discrete random variable supported over
{1, . . . ,d}, so we can simplify our proof using the following inequality

E
[
ẑ2

AB
]= E[F

2
K

(
X(d−1) ∨ (u−Sd−1)

)
F

2
K

(
X(d−1)

) ]≤ d∑
k=1

E
[F

2
k
(
X(d−1) ∨ (u−Sd−1)

)
F

2
k
(
X(d−1)

) ]
.
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The idea is to obtain an asymptotic upper bound for the expectation for a fixed k.
Then we break this expectation in two pieces as follows

E
[Fk

2(
(u−S(d−1))∨ X(d−1)

)
Fk

2
(X(d−1))

]
= E

[F
2
k
(
(u−S(d−1))∨ X(d−1)

)
F

2
k
(
X(d−1)

) ; X(d−1) <
u
d

]

+E
[Fk

2
((u−S(d−1))∨ X(d−1))

Fk
2
(X(d−1))

; X(d−1) >
u
d

]
.

The quotient inside the second expectation is always smaller than 1, so we can
bound the whole expectation with P

(
X(d−1) > u/d

)
. For the first expectation, it

will be useful to note that if X(d−1) < u/d then the following inequalities hold

u−S(d−1) ≥ u− (d−1)X(d−1) ≥ u− d−1
d

u = u/d ≥ X(d−1).

This implies that in the event {X(d−1) < u/d}, the following inequality holds true
as well

Fk
(
(u−S(d−1))∨ X(d−1)

)≤ Fk(u/d).

Inserting these bounds in the expectations we arrive at the following upper bound

(6.1) E
[ F

2
k(u/d)

F
2
k(X(d−1))

; X(d−1) <
u
d

]
+P(

X(d−1) > u/d
)
.

We concentrate on the expectation in the last term. Since X(n−1) < u/d we can
apply Lemma (6.3) to get a bound for the quotient in the first expectation to obtain

cE
[ F

2
(u/d)

F
2
(X(d−1))

; X(d−1) <
u
d

]
= c F

2
(u/d)E

[ 1

F
2
(X(d−1))

; X(d−1) <
u
d

]
,

where c is a constant (recall that F was defined as the distribution with the dom-
inant tail). Letting F(d−1) and f(d−1) be the distribution and density functions of
X(d−1) respectively, we rewrite this expectation in integral form and use partial
integration to obtain

u/d∫
0

f(d−1)(y)

F
2
(y)

d y=−F (d−1)(y)

F
2
(y)

∣∣∣u/d

0
+2

u/d∫
0

F (d−1)(y) f (y)

F
3
(y)

d y

= 1− F (d−1)(u/2)

F
2
(u/2)

+2
u/d∫
0

F (d−1)(y)

F
2
(y)

f (y)

F(y)
dy.

We get a new upper bound by just ignoring the negative term. For dealing with
integral it will be useful to note that

(6.2)
F (d−1)(t)

F
2
(t)

≤
∑

i 6= j F i(t)F j(t)

F
2
(t)

=O(1), (0,∞).

This is true since the F has the heaviest tail so it dominates all Fk ’s, and the
quotient remains bounded as y → ∞. Trivially, the same holds true as y → 0.
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Then, by a continuity argument this quotient remains bounded all over (0,∞) by
a constant, say c1 > 0. We use this to obtain a new upper bound

1+ c1

∫ u/d

0

f (t)

F(t)
d y= 1− c1 logF(u/d).

Inserting this new bound in (6.1) we have obtained a new bound for Eẑ2
AB(u) which

has the following shape

c F
2
(u/d)

[
1− c1 logF(u/d)

]+F (d−1)(u/d)≤ c2 F
2
(u/d)

[
1− c1 logF(u/d)

]
,

where the last inequality was obtained by using the argument (6.2). So, to prove
logarithmic efficiency we need

lim
u→∞

EẑAB(u)
P2−ε(Sd > u)

≤ lim
u→∞

c2 F
2
(u/d)

[
1− c1 logF(u/d)

]
F

2−ε
(u)

= 0.

Using Mill’s ratio and some basic calculus it is provable that the last limit is zero
for all ε> 0. By doing this the proof is complete.

LEMMA (6.3). Let F1 and F2 lognormal distributions such that F2 has a heavier
tail than F1. Then, there exists c ∈R such that for all y≤ x it holds that

F1(x)

F1(y)
≤ c

F2(x)

F2(y)
.

Proof. Let λ1(x), λ2(x) the corresponding failure rate functions of the lognormal
distributions F1 and F2. First we will prove that there exist constants c1 > 0 and
y0 > 0 such that the following inequality is true

−λ1(t)≤−λ2(t)+ c1I[0,y0](t).

For proving this, we will start from the inequality

[λ1(t)−λ2(t)]+ =λ1(t)−λ2(t)+ [λ2(t)−λ1(t)] I{t:λ1(t)<λ2(t)}(t)
≤λ1(t)−λ2(t)+λ2(t) I{t:λ1(t)<λ2(t)}(t),

from where it follows that

−λ1(t)≤−λ2(t)+λ(t)I{t:λ1(t)<λ2(t)}(t).

Since λ2(t) is real-valued on closed intervals of the type [0, y0] it remains bounded
in there by continuity. So, it is just necessary to prove that {t :λ1(t)<λ2(t)}⊆ [0, y0]
for some y0 ∈R+. We consider the two possible cases in which F1 has heavier tail
than F2. In the first of them we consider σ1 < σ2. So we use the tail asymptotic
expression for λ(x) to obtain

lim
x→∞

λ1(x)
λ2(x)

= lim
x→∞

log x/xσ2
1

log x/xσ2
2
= σ2

2

σ2
1
> 1,

from where the conclusion follows easily. The second case comes when σ1 = σ2
and µ1 < µ2. For proving that λ2(x) ≤ λ1(x) we will just check that λ(x,µ) is a
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decreasing of function of µ. The derivative is given as

d
dµ

λ(x,µ)=

log x−µ

σ2 f (x,µ)F(x,µ)− f (x,µ)
∞∫

x

log t−µ

σ2 f (t,µ)dt

F
2
(t,µ)

=
log xf (x,µ)F(x,µ)− f (x,µ)

∞∫
x

log t f (t,µ)dt

σ2F
2
(t,µ)

.

The last expression is verified to be negative from the observation
∞∫

x

log t f (t,µ)dt > log x
∞∫

x

f (t,µ)dt = log xF(x).

Then we just use this intermediate result to prove that

F1(x)

F1(y)
= exp

{
−

x∫
y

λ1(t)dt
}
≤ exp

{
−

x∫
y

λ2(t)dt+
x∫

y

c1I[0,y0](t)dt
}

≤ exp
{
−

x∫
y

λ2(t)dt+
y0∫

0

c1dt
}

= exp
{

log
F2(x)

F2(y)
+ c2

}
= c

F2(x)

F2(y)
.

Proof of Theorem (4.6). Recall that the condition for asymptotic bounded relative
error is equivalent to

lim
u→∞

E[ẑ2
AK (u)]

P(Sd > u)
<∞.

By subexponentiality we have that P(Xk > u) = O(P(Sn > u)) for all k. Using this
relation and the fact that all pi ’s are all larger than 0 it will be enough to prove
that

limsup
u→∞

F
2
k(M−k ∨ (u−S−k))
P2(Xk > u)

<∞ k = 1, . . . ,d.

The idea will be to provide an upper bound where we get rid of the random vari-
able S−k since its distribution is unknown to us. For doing so, we divide the
sample space in two events, namely A1 = {M−k ≤ u/2d} and A2 = {M−k > u/2d},
and note that in A1 the following relations hold

u−S−k ≥ u−nM−k ≥ u−u/2= u/2> u/2d ≥ M−k.

Using this we can obtain an upper bound in terms of Md only

E[F
2
k(M−k ∨ (u−S−k))]

F
2
k(u)

≤ E
[F

2
k(u−nM−k)

F
2
k(u)

; M−k < u/2d
]

+E
[F

2
k(M−k)

F
2
k(u)

; M−k > u/2d
]
.
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So, with a simple change of variables we can rewrite this expression in integral
form as follows

u/2∫
0

F
2
k(u− y)

F
2
k(u)

fM−k (y/d)d y+
∞∫

u/2d

F
2
k(y)

F
2
k(u)

fM−k (y)dy.

The advantage of this bound is that the density of M−k is known to us. In fact,
this density is always smaller than the sum of the individual densities as can be
seen from the following expression

fM−k (·)= ∑
i 6=k

f i(·)
∏

j 6=i,k
F j(·)≤

d∑
i=1

f i(·).

Inserting this new bound and taking the sum out of the integral we arrive to the
conclusion that the estimator will have bounded relative error if

(6.4) limsup
u→∞

u/2∫
0

F
2
k(u− y)

F
2
k(u)

f i(y/d)d y+
∞∫

u/2d

F
2
k(y)

F
2
k(u)

f i(y)d y<∞, i,k = 1, . . . ,d.

We prove separately that each of this two integrals remain bounded as u → ∞.
The first integral remains bounded due to Lemma (6.5). The second one is the
easy since it can be evaluated directly using L’Hopital Theorem,

lim
u→∞

∞∫
u/2d

F
2
k(y) f i(y)d y

F
2
k(u)

= lim
u→∞

F
2
k(u/2d) f i(u/2d)

4d Fk(u) fk(u)
→ 0.

This limit can be easily verified using Mill’s ratio. Putting together these results
the result follows immediately.

LEMMA (6.5). Under the hypothesis of the Theorem (4.6) it holds that

lim
u→∞

u/2∫
0

F
2
k(u− y)

F
2
k(u)

f i(y/d)d y<∞.

Proof. Consider Fk(u) = exp
{− ∫ u

0 λ(t)dt
}
, where λ(t) is the failure rate of the

lognormal distribution and by standard subexponential theory we know that λ(t)
is asymptotically equivalent to log(u)

σ2u . By choosing c > 1
σ

2 we obtain that c log t
t is

an asymptotic upper bound for λ(t), then

Fk(u− y)

Fk(u)
= exp

{ u∫
u−y

λ(t)dt
}
< exp

{
c logu

u∫
u−y

1
t

dt
}

= exp
{

c logu(logu− log(u− y))
}
.

Using a first order Taylor expansion of log(·) around (u− y) and the fact that it is
a concave function we have that logu < log(u− y)+ y

u−y , so the last expression is
bounded by

exp
{

c
y logu
u− y

}
.
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Take u > 1. Our claim is that the set
{
y : log(2y) > y logu

u−y
} = (g(u),u/2) for some

function g(u) → 1/2. This is true since both functions are increasing and equal
when y= u/2, but log(2y) is concave and y logu

y−u is convex proving that there exists
a smaller root than u/2. Next we verify that for any value y0 > 1/2 there exists
a value u0 such that for all u > u0 the inequality log(2y0) > y0 logu

u−y0
is fulfilled and

therefore g(u)< y0. We use this to get
u/2∫
y0

F
2
k(u− y)

F
2
k(u)

f i(y/d)d y<
∞∫

y0

c1 exp{c log y} f i(y/d)d y=
∞∫

y0

c2 yc f i(y/d)d y.

Since all the moments of a lognormal rancom variable are bounded we can con-
clude that the last expression is also bounded. For y ∈ (0, y0) we simply use the
fact that a lognormal random variable belongs to the class L, so we obtain

y0∫
0

F
2
k(u− y)

F
2
k(u)

f i(y/d)d y< F
2
k(u− y0)

F
2
k(u)

→ 1.

Proof of Theorem (4.7). Note that in the proof of Theorem (4.6) we did not make
use of the hypothesis about the distribution up to (6.4). Hence, we can retake the
proof from there so it remains to prove that the same holds for regularly varying
distributions. That is

u/2∫
0

F
2
k(u− y)

F
2
k(u)

f i(y/d)d y+
∞∫

u/2d

F
2
k(y)

F
2
k(u)

f i(y)d y<∞,

where Fk is a regular varying distribution function with index αk and f i are den-
sities of regularly varying random variables with indexes αi. The first integral
can be easy bounded with

F
2
k(u/2)

F
2
k(u)

= 2−2αk +o(1) u →∞.

For the second one we can use L’Hopital rule to obtain

F
2
k(u/2d)

F
2
k(u)

f i(u/2d)= (2d)2αk f i(u/2d)= o(1).

Putting together these two expressions we complete the proof.

Acknowledgments

The author would like to thank the editors and the referees. The author is
supported by the ARC grant DE130100819.

Received June 20, 2013

Final version received October 24, 2013

LEONARDO ROJAS-NANDAYAPA

SCHOOL OF MATHEMATICS AND PHYSICS,
THE UNIVERSITY OF QUEENSLAND,
4072 BRISBANE, AUSTRALIA,
l.rojas@uq.edu.au



182 LEONARDO ROJAS-NANDAYAPA

REFERENCES

[1] S. ASMUSSEN AND K. BINSWANGER, Simulation of ruin probabilities for subexponential claims,
ASTIN Bulletin, 27, (1997), 297–318.

[2] S. ASMUSSEN, K. BINSWANGER, AND B. HØJGAARD, Rare events simulation for heavy-tailed
distributions, Bernoulli, 6, (2000), 303–322.

[3] S. ASMUSSEN AND P. W. GLYNN, Stochastic Simulation: Algorithms and Analysis, Springer-
Verlag, New York, 2007.

[4] S. ASMUSSEN AND D. P. KROESE, Improved algorithms for rare event simulation with heavy
tails, Advances in Applied Probability, 38, (2006), 545–558.

[5] S. ASMUSSEN AND L. ROJAS-NANDAYAPA, Sums of dependent lognormal random variables:
Asymptotics and simulation, in Thiele Research Reports, Aarhus, DK, 2006, Thiele Centre.

[6] , Asymptotics of sums of lognormal random variables with Gaussian copula, Stat. Probab.
Lett., 78, (2008). To appear.

[7] N. H. BINGHAM, C. M. GOLDIE, AND J. L. TEUGELS, Regular Variation, Cambridge University
Press, Cambridge, 1987.

[8] K. S. BINSWANGER, Rare Events and Insurance, PhD thesis, ETH, Zürich, 1997. 12233.
[9] E. S. BLAKE, C. W. LANDSEA, AND E. J. GIBNEY, The deadliest, costliest, and most intense

united states tropical cyclones from 1851 to 2010 (and other frequently requested hurricane facts),
tech. report, National Oceanic and Atmospheric Administration, 2011.

[10] J. BLANCHET AND P. W. GLYNN, Efficient rare-event simulation for the maximum of a heavy-
tailed random walk, Ann. of Appl. Probab., 18, (2008), 1351–1378.

[11] J. H. BLANCHET AND L. ROJAS-NANDAYAPA, Efficient simulation of tail probabilities of sums of
dependent random variables, Journal of Applied Probability, 48A, (2011), 147–164.

[12] J. A. BUCKLEW, J. A. NEY, AND P. SADOWSKY, Monte Carlo simulation and large deviations
theory for uniformly recurrent Markov chains, J. Appl. Prob., 27, (1990), 44–59.

[13] V. P. CHISTYAKOV, A theorem of sums of independent positive random variables and its applica-
tions to branching processes, Theory of Probability and its Applications, 9, (1964), 640–648.

[14] P. DUPUIS, K. LEDER, AND H. WANG, Importance sampling for sums of random variables with
regularly varying tails, ACM TOMACS, 17, (2006), 1–21.

[15] P. EMBRECHTS, C. KLÜPPELBERG, AND T. MIKOSCH, Modelling Extremal Events for Insurance
and Finance, Springer-Verlag, New York, 1997.

[16] S. FOSS, D. KORSHUNOV, AND S. ZACHARY, An introduction to heavy-tailed and subexponential
distributions, Springer, 2011.

[17] J. HARTINGER AND D. KORTSCHAK, On the efficiency of the Asmussen-Kroese-estimator and its
applications to stop-loss transform, in Proceedings of the 6th International Workshop on Rare
Event Simulation, Bamberg, Germany, 2006, RESIM.

[18] S. JUNEJA AND P. SHAHABUDDIN, Simulating heavy-tailed processes using delayed hazard rate
twisting, ACM TOMACS, 12, (2002), 94–118.

[19] P. L’ECUYER, J. BLANCHET, B. TUFFIN, AND P. W. GLYNN, Asymptotic robustness of estimators
in rare-event simulation, ACM TOMACS, , (2008). To appear.

[20] T. MIKOSCH, Non-Life Insurance Mathematics, Springer-Verlag, Berlin, 2009.
[21] S. I. RESNICK, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer-Verlag,

New York, 2006.
[22] L. ROJAS-NANDAYAPA, Risk probabilities: Asymptotics and Simulation, PhD thesis, Aarhus Uni-

versity, 2008.
[23] L. ROJAS-NANDAYAPA AND S. ASMUSSEN, Efficient simulation of finite horizon problems in

queueing and insurance risk, Queueing Systems, 57, (2007), 85–97.
[24] J. S. SADOWSKY, On Monte Carlo estimation of large deviations probabilities, Ann. Appl. Prob.,

6, (1996), 399–422.
[25] J. S. SADOWSKY AND J. A. BUCKLEW, On large deviations theory and asymptotically efficient

monte carlo estimation, IEEE Transactions on Information Theory, 36, (1990), 579–588.
[26] D. SIEGMUND, Importance sampling in the Monte Carlo study of sequential tests, Ann. Stat., 3,

(1976), 673–684.



Bol. Soc. Mat. Mexicana (3) Vol. 19, 2013

UNIFORM LARGE DEVIATIONS FOR HEAVY-TAILED QUEUES
UNDER HEAVY TRAFFIC

JOSE BLANCHET AND HENRY LAM

ABSTRACT. We provide a complete large and moderate deviations asymptotic for
the steady-state waiting time of a class of subexponential M/G/1 queues under
heavy traffic. The asymptotic is uniform over the positive axis, and reduces to
heavy-traffic asymptotics and heavy-tail asymptotics on two ends, both of which
are known to be valid over restricted asymptotic regimes. The link between
these two well-known asymptotics is a transition term that is expressible as a
convolution-type integral. The class of service times that we consider includes
regularly varying and Weibull tails in particular.

It is our pleasure to contribute to this special issue dedicated to the Interna-
tional Year of Statistics. In response to the request of the editors of this special
issue we briefly overview the research topics that we have investigated recently.
Our research group has pursued several themes in recent years. All of them lie
under the scope of applied probability. Some of our projects deal with computa-
tional probability. In this context, our goal is to enable efficient computation in
stochastic systems using (and often developing) theory of probability to inform
the design of algorithm that are optimal and robust in certain sense (see Blanchet
and Glynn (2008)). Most of the computations that we study relate to stochastic
simulation (also known as Monte Carlo) methods (see Blanchet and Lam (2012)).
Other projects that we pursue relate to classical analysis in probability, such as
asymptotic approximations, large deviations, and heavy-traffic limits (Blanchet
and Glynn (2006) and Lam et al (2011)). All of our research efforts are moti-
vated by models and problems in areas such as: Finance, Insurance, Operations
Research, and Statistics.

Here we shall study a class of asymptotic results that lie at the intersection
of large deviations and heavy-traffic limit theory. We use a classical model in
queueing theory to illustrate these types of results, namely, the classical M/G/1
queue. Despite its apparent tractability, most of the asymptotics for the steady-
state waiting time of the M/G/1 queue that have been proposed in the literature
are only provably valid in restricted regimes. Among them are the well-known
heavy-traffic or Kingman asymptotic (see Kingman (1961)) and the heavy-tail
or Pakes-Veraberbeke asymptotic (see for example Embrechts and Veraverbeke
(1982)). More precisely, in heavy traffic (i.e. when the long-run proportion of time
the server is utilized, ρ, is close to 1) one approximates the distribution of the
steady-state waiting time in spatial scales of size 1/(1−ρ) by the steady-state dis-
tribution of reflected Brownian motion (which is exponential). On the other hand,
the heavy-tail asymptotic assumes fixed traffic intensity while the tail parameter

2010 Mathematics Subject Classification: 60F10.
Keywords and phrases: uniform large deviations, queueing systems, heavy-tails, heavy-traffic.
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increases. It states that for service time with so-called stationary excess distri-
bution (in the tradition of renewal theory) B0(x) lying in the class, S, of subex-
ponential distribution (see, for example, Embrechts et. al. (2003) and Asmussen
(2001, 2003)), the probability that the steady-state waiting time is larger than x
is asymptotically (ρ/(1−ρ))B̄0(x).

In this paper we provide a uniform large deviations asymptotic of the steady-
state waiting time distribution for heavy-tailed M/G/1 under heavy traffic. Our re-
sults can handle the case when heavy traffic is present but the tail parameter level
is moderate, which is covered by neither heavy-traffic or heavy-tail asymptotics.
Our results in this paper extend and unify previous work by Olvera-Cravioto et.
al. (2011) and Olvera-Cravioto and Glynn (2011). In these two papers, the authors
studied first the regularly varying M/G/1 queue and showed that heavy-traffic
and heavy-tail asymptotics remain valid on regimes that are respectively smaller
and larger than an explicitly identified transition point. Then, a separate argu-
ment is given in Olvera-Cravioto and Glynn (2011) in order to deal with Weibull
type distributions. Our framework here provides means to develop a unified the-
ory of transitions from heavy-traffic to heavy-tailed asymptotics that covers both
regularly varying and Weibullian tails at once. In addition, and in contrast to
Olvera-Cravioto et. al. (2011), for regularly varying distributions we provide an
explicit asymptote for the behavior of the tail of the steady-state waiting time in
the M/G/1 queue right at the transition point in complete generality.

We shall use the machinery developed by Rozovskii (1989, 1993) for large and
moderate deviations of random walks. Related papers that develop similar meth-
ods include Nagaev (1969) and Borokov and Borovkov (2001). A central argument
to obtaining these deviations results is finding a suitable truncation level depend-
ing on p. In Section 2 we outline this truncation argument and we provide the
details of the proofs in Section 3.

1. Statement of Result and Outline of Argument

Let (X i : i ≥ 1) be a sequence of non-negative i.i.d. r.v.’s (independent and identi-
cally distributed random variables) and define Sn = X1+·· ·+Xn, with S0 = 0. Let
M be a geometrically distributed random variable with parameter p > 0 and inde-
pendent of the X i ’s. In particular, P (M = k) = pqk for k = 0,1, ..., where q = 1− p.
The random variable SM is said to be a geometric sum. It turns out (see Asmussen
(2003)), that the steady-state waiting time of an M/G/1 queue can be represented
as geometric sum, is p = 1−ρ > 0.

Throughout the rest of the paper we use F(x) to denote the distribution of X i
and we write X to denote a generic copy of X i. We are interested in P(SM > x) as
p ↘ 0 and x = x(p)↗∞.

We use the following notation. Given non-negative functions f1 (·), f2 (·), we
write f1 (x) ¿ f2 (x) if f1 (x) = o ( f2 (x)) as x → ∞ (i.e. “ f1 has smaller order than
f2”) and f1 (x) À f2 (x) if f2 (x) = o( f1(x)) (i.e. “ f1 has larger order than f2”). Also
we use “¹" and “º" to denote “having order smaller than or equal to” and “having
order larger than or equal to", respectively. For example, f1 (x) ¹ f2 (x) means
that f1 (x) ≤ c f2 (x) for some c > 0. Lastly, we use “∼" to denote “asymptotically
equivalent or the same order" (i.e. f1 (x) / f2 (x)→ 1).
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We shall consider X i in class S of subexponential distribution (i.e. P(X1+X2 >
x)/F̄(x)→ 2) together with the assumption

F̄(x) := P(X i > x)= e−g(x),

where g(·)≥ 0 is clearly non-decreasing, and g(x)→∞ as x →∞. We also assume
that g(·) is differentiable, and that g(x)/xδ → 0 and is eventually decreasing for
some 0< δ< 1. We further assume that EX = µ<∞, EX2 = 1 and EX2+ε <∞ for
some ε> 0 (we sometimes drop the subscript i in X i for convenience). We assume
that (2+ ε) log x ¹ g(x) ¿ x. In addition, we assume that h(x) = g(x+µ)−2log x is
eventually non-decreasing and goes to ∞, which is intuitive given that EX2+ε <
∞. We also assume that h′(x)/h(x)≤ (δ+η)/x for some η> 0 eventually. Finally, we
also assume that X i is strongly non-lattice, in the sense that

inf
|ω|>υ

|1−χ(ω)| > 0

for any υ> 0, where χ(ω)= EeiωX is the characteristic function of X .
Set Bp = 1/p and define for x > 0 and p ∈ (0,1)

(1.1) Γ (x, p)=
[

e−θ
∗x +

(
1
p

F̄(x)+
∫ x

Bp

(
1
p
+ x− y

µ

)
e−θ

∗(x−y)dF(y)
)

I(x ≥ Bp)
]

,

where θ∗ is the solution to the equation E[eθX ; X ≤ Bp] = 1/q. Our main result is
the following:

THEOREM (1.2). Let Bp = 1/p. We have uniformly over x > 0 that

lim
p→0

sup
x>0

∣∣∣∣P (SM > x)
Γ (x, p)

−1
∣∣∣∣= 0.

Note that we can as well choose Bp to be any quantity having the same order
as 1/p. Blanchet and Glynn (2007) shows that θ∗ admits a Taylor series type
expansion θ∗ = p/µ+ c2 p2 + ·· · . The expansion is valid up to the order of the
moment of X i. Thus if EX2 < ∞ we can ensure that θ∗ can be expanded up to
the second order of p. Note that this gives e−θ

∗x ∼ e−px/µ for Bp ¹ x ¿ 1/p2, which
coincides with Kingman’s asymptotic. On the other hand, the second term in (1.1)
is the heavy-tail asymptotic. It can be shown that the first term is dominant for
small order of x (with respect to p) while the second term is dominant for large
order. The third term can be the dominant component in a neighborhood of the
transition between the first and the second. These observations are apparent
through the following example.

EXAMPLE (1.3) (Regularly Varying Tail). Suppose X i has density L(x)/x1+α, x >
0 where α > 2 and L(·) is a slowly varying function, so F̄(x) ∼ L(x)/xα. We are
interested in computing the third term of (1.1). First we have

1
p

∫ x

Bp

e−θ
∗(x−y) L(y)

y1+α d y= 1
p

e−θ
∗x L(x)

xα

∫ 1

Bp /x
eθ

∗xu 1
u1+α

L(ux)
L(x)

du

∼ 1
p

e−θ
∗x L(x)

xα

∫ 1

Bp /x

eθ
∗xu

u1+α du.
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where the first equality follows by a substitution y = xu, and the equivalence rela-
tion follows from the property of slowly varying function that L(ux)/L(x) → 1 uni-
formly over compact set as x →∞. If θ∗x = O(1), which implies x ≤ C1/θ∗ ∼ C1µ/p
for some constant C1 > 0 (see the proof of Lemma (2.4) for the equivalence θ∗ ∼ p/µ),
then ∫ 1

Bp /x

eθ
∗xu

u1+α du ≤ eθ
∗x

∫ 1

Bp /x

1
u1+α du ≤ C2eθ

∗x

for some C2 > 0 and so

1
p

e−θ
∗x L(x)

xα

∫ 1

Bp /x

eθ
∗xu

u1+α du ≤ C2

p
L(x)
xα

¿ e−θ
∗x.

On the other hand, if θ∗x ↗∞, then applying Laplace’s method yields

1
p

e−θ
∗x L(x)

xα

∫ 1

Bp /x

eθ
∗xu

u1+α du ¹ 1
p

L(x)
xα

1
θ∗x

¿ 1
p

F̄(x).

Now by the same analysis, and noting that θ∗ ∼ p/µ, we obtain that

x
µ

∫ x

Bp

e−θ
∗(x−y) L(y)

y1+α d y≤ C3
L(x)
xα−1 ¿ e−θ

∗x

and
1
µ

∫ x

Bp

e−θ
∗(x−y) L(y)

yα
d y≤ C4

L(x)
xα−1 ¿ e−θ

∗x

for θ∗x =O(1), and

x
µ

∫ x

Bp

e−θ
∗(x−y) L(y)

y1+α d y∼ 1
µ

∫ x

Bp

e−θ
∗(x−y) L(y)

yα
d y∼ 1

p
L(x)
xα

for θ∗x ↗∞, which implies that∫ x

Bp

x− y
µ

e−θ
∗(x−y) L(y)

y1+α d y= o
(

1
p

L(x)
xα

)
.

Hence we have

P(SM > x)=
[

e−θ
∗x + 1

p
F̄(x)

]
(1+ o(1))

for any x > 0. This recovers a basic result in Olvera-Cravioto et. al. (2011) and
identifies the transition point located at −((α−2)/2)log(p)/p.

We now give a brief outline of our argument leading to Theorem (1.2). De-
tailed proofs will be provided in the next section. Our method is mainly inspired
by Rozovskii (1989, 1993) together with the use of uniform renewal theorem in
Blanchet and Glynn (2007). We first find an appropriate truncation for X i, so
that the geometric sum of the truncated part can be approximated by uniform
renewal theorem while the remaining part follows the big-jump asymptotic. Uni-
form renewal theory then yields Kingman’s asymptotic. On the other hand, the
heavy-tail component will boil down to calculating a convolution of negative bino-
mial sum with the increment distribution.

From now on we will adopt the following notations. Recall that Bp = 1/p, and
δ satisfies g(x)/xδ → 0. This allows us to find δ′ = δ+η < 1 for some η > 0. For
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convenience of development, when g(x) ¹ log x, we take δ = 0 and δ′ be a small
number such that 0< δ′ < 1. We then let Kp = (1/p2δ)e(1−δ′)g(Bp), and

Cp,M =
{

Bp for M ≤ Kp
µ+p

M for M > Kp

Let us state the result on the split into truncated and remaining part:

PROPOSITION (1.4).

P(SM > x) =
[
P

(
SM > x, max

1≤i≤n
X i ≤ Cp,M

)

+P

(
SM > x,

n⋃
i=1

{
X i > Cp,M ,max

j 6=i
X j ≤ Cp,M

})]
(1+ o(1))(1.5)

uniformly over x > 0.

Note that we have used a truncation level that remains at Bp for small M but
grows in order

p
M for large M. Such level will ensure that the contribution of two

or more jumps i.e. X i > Cp,M , is negligible for both small and large M. Moreover,
as we shall see in Proposition (1.6) below, Kp is chosen such that the truncated
part is regular enough to invoke uniform renewal theorem.

Our argument is finished by recognizing the two components in the right hand
side of (1.5) as the terms in (1.1), via the following propositions:

PROPOSITION (1.6).

P
(
SM > x, max

1≤i≤n
X i ≤ Cp,M

)
= e−θ

∗x + o
(
e−θ

∗x + 1
p

F̄(x)I(x ≥ Bp)
)

uniformly over x > z(p) for any z(p) such that z(p)→∞ as p → 0.

PROPOSITION (1.7).

P

(
SM > x,

n⋃
i=1

{
X i > Cp,M ,max

j 6=i
X j ≤ Cp,M

})

=
{[

1
p F̄(x)+∫ x

Bp

(
1
p + x−y

µ

)
e−θ

∗(x−y)dF(y)
]

(1+ o(1)) uniformly over x ≥ Bp

¿ e−θ
∗x uniformly over x < Bp

2. Proofs

Note that Theorem (1.2) is uniform over x ≥ 0. The results that follow are
obtained uniformly over x ≥ z (p) as long as z (p) → ∞ as p → 0. Of course, for
x ≤ z (p)< Bp we have that Γ (x, p)= e−θ

∗x and therefore the limit

lim
p→0

sup
0≤xp≤z(p)p

∣∣∣∣P (pSM > px)
Γ (x, p)

−1
∣∣∣∣= lim

p→0
sup

0≤u≤z(p)p

∣∣∣∣ P (pSM > u)
exp(−(θ∗/p)u)

−1
∣∣∣∣= 0,

is easily established if z (p) p = o (1). Consequently, to obtain Theorem (1.2) it
suffices to indeed assume x ≥ z (p) as indicated.
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Proof of Proposition (1.4). First we write

P(SM > x) = P(SM > x, max X i ≤ Bp, M ≤ Kp)

+P(SM > x, max X i ≤µ+
p

M, M > Kp)

+P(SM > x, max X i > Bp, M ≤ Kp)

+P(SM > x, max X i >µ+
p

M, M > Kp)(2.1)

Note that the first two terms constitute the first term in the right hand side of
(1.5), and we shall focus on the last two terms. For the third term, we have

(2.2) P(SM > x, max X i > Bp, M ≤ Kp)

= P(SM > x, exactly one X i > Bp, M ≤ Kp)

+P(SM > x, more than one X i > Bp, M ≤ Kp).

We will show that the second term in (2.2) is negligible compared to the first term
in (2.1), by following the proof in Lemma 4 of Rozovskii (1993). Using the notation
there, we denote

Qn−k,k(x)= P(Sn > x, X1, X2, . . . , Xk > Bp, Xk+1, . . . , Xn ≤ Bp),

A = supy≥2Bp IBp (y)/F̄(y) where

IBp (y)=
∫ y−Bp

Bp

F̄(y−u)dF(u),

and ξBp = supy≥Bp F̄(y)/F̄(y+Bp). Now Lemma 4a in Rozovskii (1993), applying to
our case, states that for k ≥ 2, Qn−k,k(x) ≤ AQn−k+1,k−1(x)+ F̄(Bp)Qn−k+1,k−1(x−
Bp) (from equation (64) there), and Qn−k+1,k−1(x−Bp) ≤ ξBpQn−k+1,k−1(x) (from
equation (65) there).

Recognizing that X i is always non-negative, we have

Qn−k,k(x)≤ (F(Bp))−1Qn−k+1,k(x)

≤ (F(Bp))−1(AQn−k+1,k−1(x)+ F̄(Bp)Qn−k+1,k−1(x−Bp))

≤ (F(Bp))−1(A+ F̄(Bp)ξBp )Qn−k+1,k−1(x)

= HpQn−k+1,k−1(x)(2.3)

where Hp = (F(Bp))−1(A + F̄(Bp)ξBp ). Lemma 4c in Rozovskii (1993) yields that
(note the slight difference in the definition of g(x) between there and here. We
denote F̄(x) = e−g(x) while Rozovskii defines F̄(x) ∼ e−g(x)/x2 for the case of finite
variance. Thus the g(x)’s differs by a term of 2log x. We also note that in Rozovskii
(1993) Bn =p

n in the case of finite variance.)

A =O

(
1

B2
p

max
y≥Bp

g(y)y2(1−δ)e−(1−δ)g(y)

)
, and ξBp =O

(
exp{δg(Bp)}

B2δ
p

)
.
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Now let g̃(x)= g(x)−2log x. Then we have

A ¹ p2 max
y≥Bp

( g̃(y)+2log y)e−(1−δ) g̃(y)

≤ p2 max
y≥Bp

Cg̃(y)e−(1−δ) g̃(y) for some constantC,

by our assumption that g(x)º (2+ε) log x

= Cp2 g̃(Bp)e−(1−δ) g̃(Bp) = Cp2δ(g(Bp)−2logBp)e−(1−δ)g(Bp)

when p is small enough, and ξBp =O(p2δeδg(Bp)). Hence we have

Kp ·Hp ≤ C(F(Bp))−1(g(Bp)+1)e−ηg(Bp) → 0

for some C > 0. So
bKpc∑
n=2

pqn
n∑

k=2

(
n
k

)
Qn−k,k(x)

≤
bKpc∑
n=2

pqn
n∑

k=2
nkHk−1

p P(Sn > x, X1 > Bp, max
2≤i≤n

X i ≤ Bp) (by iterating (2.3))

≤
bKpc∑
n=2

pqnn
n∑

k=2
Kk−1

p Hk−1
p P(Sn > x, X1 > Bp, max

2≤i≤n
X i ≤ Bp)

≤
bKpc∑
n=2

pqnn
KpHp

1−KpHp
P(Sn > x, X1 > Bp, max

2≤i≤n
X i ≤ Bp) (for p small enough)

¿
bKpc∑
n=2

pqnnP(Sn > x, X1 > Bp, max
2≤i≤n

X i ≤ Bp)

and hence

P(SM > x, more than one X i > Bp, M ≤ Kp)¿ P(SM > x, max X i ≤ Bp, M ≤ Kp)

uniformly over x > 0.
We are left to prove that the fourth term in (2.1) is equivalent in order to

P(SM > x, exactly one X i >µ+
p

M, M > Kp)

Using directly the result in Lemma 4 of Rozovskii (1993), and denoting X̃ i = X i−µ
and S̃n =∑n

i=1 X̃ i as the centered random variables, we get

P(SM > x, max X i >µ+
p

M, M > Kp)=

=
∞∑

n=bKpc+1
pqnP(Sn > x, max X i >µ+

p
n)

=
∞∑

n=bKpc+1
pqnP(S̃n > x−nµ, max X̃ i >

p
n)

=
∞∑

n=bKpc+1
pqnP(S̃n > x−nµ, exactly 1 X̃ i >

p
n)(1+ g(x,n))

where the last equality follows from (61) in Rozovskii (1993) and g(x,n) → 0 uni-
formly in x as n →∞.
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Since Kp →∞ as p → 0, for any ε, we have

∞∑
n=bKpc+1

pqnP(S̃nµ> x−nµ, exactly 1 X̃ i >
p

n)g(x,n)

≤ ε
∞∑

n=bKpc+1
pqnP(S̃nµ> x−nµ, exactly 1 X̃ i >

p
n)

when p becomes small enough. Therefore

P(SM > x, max X i >µ+
p

M, M > Kp)

≤ (1+ε)P(SM > x,exactly one X i >µ+
p

M, M > Kp)

for p small enough. Since ε is arbitrary, we conclude that

P(SM > x, max X i >µ+
p

M, M > Kp)

∼ P(SM > x,exactly one X i >µ+
p

M, M > Kp)

uniformly over x > 0.
The proof of Proposition (1.4) is complete.

Proof of Proposition (1.6). Note that

P(SM > x, max X i ≤ Cp,M)=
= P(SM > x, max X i ≤ Bp, M ≤ Kp)+P(SM > x, max X i ≤µ+

p
M, M > Kp)

= P(SM > x, max X i ≤ Bp)−P(SM > x, max X i ≤ Bp, M > Kp)

+P(SM > x, max X i ≤µ+
p

M, M > Kp)

The proof of the proposition will be finished by the following two lemmas:

LEMMA (2.4).

P(SM > x, max X i ≤ Bp)= e−θ
∗x(1+ o(1))

uniformly over x > z(p) for any z(p) such that z(p)→∞ as p → 0.

LEMMA (2.5).

P(SM > x, max X i ≤ Bp, M > Kp)

≤ P(SM > x,max X i ≤µ+
p

M, M > Kp)¿ e−θ
∗x + 1

p
F̄(x)

uniformly over x > z(p) for any z(p) such that z(p)→∞ as p → 0.

Proof of Lemma (2.4). Let X̄ be the truncated random variable at level Bp i.e.

P(X̄ ∈ B)= P(X ∈ B|X ≤ Bp)

for any measurable set B. We denote Pθ(·) as the exponential change of measure

Pθ(·)= E[eθX̄−ψ̄(θ); · ]

where ψ̄(·) = log φ̄(·) is the logarithmic moment generating function of X̄ and
φ̄(θ) = EeθX̄ is the moment generating function of X̄ . Also denote Eθ[·] as the
expectation under Pθ(·) and µ̄θ = Eθ X̄ .
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Consider the change of measure of X i with θ satisfying

φ̄(θ)= 1
qF(Bp)

which gives

(2.6) E[eθX ; X ≤ Bp]= 1
q

This equation is similar to (33) in Blanchet and Glynn (2007), but with a different
truncation level. Theirs is a truncation level x while here we use Bp regardless of
x.

We want to characterize the solution of (2.6), which, as we will see, will give
the θ∗ in Theorem (1.2). Suppose 0 ≤ θ ≤ Cp for some C > 0 and p small enough.
Write

E[eθX ; X ≤ Bp]=
∫ Bp

0
eθydF(y)

=
∫ Bp

0

(
1+θy+ θ2 y2

2
eνθy

)
dF(y)

for some 0 ≤ ν = ν(θy) ≤ 1. The equation is valid by our moment assumptions on
X . We then get

(2.7) E[eθX ; X ≤ Bp]= F(Bp)+θm(Bp)+R(θ)

where
F(Bp)= 1− F̄(Bp)= 1− e−g(Bp)

m(Bp)=
∫ Bp

0
ydF(y)=µ(1+ o(1))≤µ

as p → 0 and

R(θ)=
∫ Bp

0

θ2 y2

2
eνθydF(y)≤ θ2

2
eCD(Bp)≤ θ2

2
eC

where D(Bp) = ∫ Bp
0 y2dF(y). Equating (2.7) with 1/q = 1+ p+ p2 +·· · , and noting

that e−g(Bp) ¿ p2, we get θ∗ ∼ p/µ, which also verifies that there is a unique θ∗
that indeed lies in [0,Cp]. Henceforth we will identify this as our θ∗.

Next we have, letting T be exponentially distributed with rate θ∗ in the fourth
equality below,

P(SM > x,max X i ≤ Bp) =
∞∑

n=1
pqnP(Sn > x,max X i ≤ Bp)

=
∞∑

n=1
p(qF(Bp))nP(S̄n > x)=

∞∑
n=1

pEθ∗ [e−θ
∗S̄n ; S̄n > x]

= p
∞∑

n=1
Eθ∗ [x < S̄n < T]= pEθ∗

[ ∞∑
n=1

I(x < S̄n < T))

]

= p
∫ ∞

x
θ∗e−θ

∗ y(Ūθ∗ (y)−Ūθ∗ (x))d y

= pe−θ
∗x

∫ ∞

0
θ∗e−θ

∗ y(Ūθ∗ (y+ x)−Ūθ∗ (x))d y,
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where Ūθ∗ (·) = ∑∞
n=1 Pθ∗ (S̄n ≤ ·) is the renewal measure of X̄ i under the measure

Pθ∗ (·).
We shall now find Ūθ∗ (·). More specifically, we will show that uniform renewal

theorem, as depicted in Theorem 1, part 2 of Blanchet and Glynn (2007), is valid
for X̄ i under the exponential family Pθ∗ (·) for all small enough p. Denote χ̄θ∗ (ω)=
Eθ∗ eiωX̄ = qF(Bp)Ee(iω+θ∗)X̄ as the characteristic function of X̄ under Pθ∗ (·). The
theorem requires that such family is uniformly strongly non-lattice i.e.

inf
0≤p≤κ

inf
|ω|>υ

|1−χθ∗ (ω)| > 0

for small enough κ > 0 and any υ > 0, and that sup0≤p≤κEθ∗ X̄2+ε < ∞. If these
conditions hold then we have (as a weaker conclusion than the stated theorem in
Blanchet and Glynn (2007))

(2.8) sup
0≤p≤κ

µ̄4
θ∗

∣∣∣∣∣Ūθ∗ (t)− t
µθ∗

− Eθ∗ X̄2

2µ̄2
θ∗

∣∣∣∣∣= o(1)

as t →∞.
We now check the above conditions. First note that

χ̄θ∗ (ω)= qF(Bp)Eei(ω+θ∗)X̄ = qE[e(iω+θ∗)X ; X ≤ Bp]

= q(E[eiωX ; X ≤ Bp]+θ∗r(θ∗,ω))= q(χ(ω)−E[eiωX ; X > Bp]+θ∗r(θ∗,ω))

where |r(θ∗,ω)| ≤ E[X eνθ
∗X ; X ≤ Bp] for some 0 ≤ ν = ν(θ∗X ) ≤ 1 a.s. and the

second equality is valid by our moment assumptions on X . Note that

|E[eiωX ; X > Bp]| ≤ F̄(Bp), and E[X e(νθ∗)X ; X ≤ Bp]≤ eCµ,

for some C > 0. Since X is non-lattice, given any υ > 0, we have |1−χ(ω)| > 1− ζ
for some 0< ζ= ζ(υ)< 1 for all |ω| > υ. So for |ω| > υ, we have

|1− χ̄θ∗ (ω)| = |1− (1− p)(χ(ω)−E
[
eiωX ; X > Bp

]
+θ∗r(θ∗,ω)|

≥ |1−χ(ω)|− |E[eiωX ; X > Bp]|−θ∗|r(θ∗,ω)|
− p(|χ(ω)|+ |E[eiωX ; X > Bp]|+θ∗|r(θ∗,ω)|)> 1−ζ′

for some 0< ζ′ < 1 and small enough p. This shows that X̄ under the exponential
family Pθ∗ (·) is uniformly strongly non-lattice. Moreover, we have

Eθ∗ X̄2+ε ≤ qE[X2+εeθ
∗X ; X ≤ Bp]≤ eCEX2+ε

for some C > 0. Together with our moment assumption on X , this shows that
sup0≤p≤κEθ∗ X̄2+ε <∞.

Hence we can invoke the uniform renewal theorem in Blanchet and Glynn
(2007). Since Pθ∗ (X̄ > s) = qE[eθ

∗X ; s < X ≤ Bp] ≤ qeC F̄(s) for s < Bp and is 0
otherwise, we note that HF

1 (t), HF
2 (t) and HF

1 ∗ HF
1 (t) in Theorem 1, part 2 of

Blanchet and Glynn (2007) all go to 0 uniformly in our exponential family as
t → ∞. Note also that µ̄θ∗ = qE[X eθ

∗X ; X ≤ Bp]. Since X eθ
∗X I(X ≤ Bp) ≤ X eC

which is integrable, by dominated convergence theorem and that θ∗ ∼ p/µ we
have E[X eθ

∗X ; X ≤ Bp]→µ. Hence µ̄θ∗ =µ+ o(1). This concludes, from (2.8), that

Ūθ∗ (y+ x)−Ūθ∗ (x)= y
µ̄θ∗

+R(y, x,θ∗)
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where sup0≤p≤κ,y>0 |R(y, x,θ∗)|→ 0 as x →∞. So

pe−θ
∗x

∫ ∞

0
θ∗e−θ

∗ y(Ūθ∗ (y+ x)−Ūθ∗ (x))dy

= pe−θ
∗x

∫ ∞

0
θ∗e−θ

∗ y
(

y
µ̄θ∗

+R(y, x,θ∗)
)

dy

= pe−θ
∗x

µ̄θ∗

(
1
θ∗

+ o(1)
)
∼ e−θ

∗x

uniformly over x > z(p) for any z(p) such that z(p) →∞ as p → 0. Lemma (2.4) is
proved.

Proof of Lemma (2.5). The first inequality holds obviously when p is small enough.
Thus we will focus on the order relation. As in the proof of Proposition (1.5), we
let X̃ i = X i −µ and S̃n =∑n

i=1 X̃ i be the centered random variables and their sum.
Let P(X̃ > x)= e−g(x+µ) and recall that h(x)= g(x+µ)−2log x satisfies h(x)/xδ

′ → 0
and is eventually decreasing, and

(2.9)
h′(x)
h(x)

≤ δ′

x
for large enough x. Note also that ε log x ¹ h(x)¿ x by construction.

By (70) and (71) in Rozovskii (1993) (note that the g(x) defined there differs
from ours by a term of 2log x and hence h(x) here will play the role of g(x) in
Rozovskii’s paper) we have

(2.10) P(S̃n > x−nµ,max X̃ i ≤
p

n)≤ e−β(x−nµ)h(
p

n)/
p

n

for x ≥ nµ+Λn, where Λn = αh(
p

n)
p

n and β<α/2, for large enough n and some
constant α> 0. This will be important for our development.

We now define the following functions that will prove useful for our argument.
Let l(n)= nµ+Λn. We extend the domain of the function l to the positive real axis
and define l−1(y) = inf{x : l(x) ≥ y}, so l−1(x) = x/µ− (α/µ)h(

√
l−1(x))

√
l−1(x). Also

let r(x) = h(x)/x, so 1/x ¿ r(x) ¿ 1/x1−δ′ as x ↗∞. Define r−1(y) = inf{x : r(x) ≤ y}.
We then have

(2.11) 1/y1/(1−δ′) ¿ r−1(y)¿ 1/y

as y↘ 0.
We shall also prove a monotone property concerning the function (whose use

will become clear in the argument that follows)

f (n) :=−β(x−nµ)
h(
p

n)p
n

+n log q

We have

f ′(n)=−β(x−nµ)
(

h′(
p

n)
2n

− 1
2

h(
p

n)
n3/2

)
+βµh(

p
n)p

n
+ log q

=−β
2

( x
n
−µ

)(
h′(

p
n)− h(

p
n)p

n

)
+βµh(

p
n)p

n
+ log q

By (2.9), we have f ′(n) ≥ βµh(
p

n)/
p

n+ log q ≥ 0, or f (n) is increasing, when n ≤
(r−1(−(log q)/(βµ)))2.
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Let Rp = r−1(−(log q)/(βµ)). We write

P(SM > x, max X i ≤µ+
p

M, M > Kp)

=
∞∑

n=bKpc+1
pqnP(S̃n > x−nµ,max X̃ i ≤

p
n)

=
bR2

pc∧bl−1(x)c∑
n=bKpc+1

pqnP(S̃n > x−nµ,max X̃ i ≤
p

n)I(bR2
pc∧bl−1(x)c > bKpc)

+
bl−1(x)c∑

n=bR2
pc∨bKpc+1

pqnP(S̃n > x−nµ,max X̃ i ≤
p

n)I(bl−1(x)c > bR2
pc∨bKpc)

+
∞∑

n=bKpc∨bl−1(x)c+1
pqnP(S̃n > x−nµ,max X̃ i ≤

p
n)(2.12)

We will now analyze the terms one by one. Note that n ≤ l−1(x) implies x ≥ l(n).
Hence by (2.10) and our monotone property of f (·) we have

bR2
pc∧bl−1(x)c∑

n=bKpc+1
pqnP(S̃n > x−nµ,max X̃ i ≤

p
n)I(bR2

pc∧bl−1(x)c > bKpc)

≤
bR2

pc∧bl−1(x)c∑
n=bKpc+1

pqne−β(x−nµ)r(
p

n)I(bR2
pc∧bl−1(x)c > bKpc)

≤


∑bl−1(x)c
n=bKpc+1 pql−1(x) exp

{
−β(x− l−1(x)µ)r(

√
l−1(x))

}
for bl−1(x)c ≤ bR2

pc∑bR2
pc

n=bKpc+1 pqR2
p exp

{
−β(x−R2

pµ)
(
− log q

βµ

)}
for bl−1(x)c > bR2

pc

(2.13) ≤
{

l−1(x)pql−1(x)e−βαh2(
p

l−1(x)) for bl−1(x)c ≤ bR2
pc

R2
p pe(x/µ) log q for bl−1(x)c > bR2

pc

and for bl−1(x)c > bKpc. The first part of the last inequality follows by substituting
x = l(l−1(x))= l−1(x)+αh(

√
l−1(x))

√
l−1(x). We shall prove that in both cases they

are of smaller order than e−θ
∗x + (1/p)F̄(x)I(x ≥ Bp).

Consider the first case, and suppose Kp ≤ x ¹ Rp. Dividing the first part of
(2.13) by e−θ

∗x gives

(2.14) exp
{

pα
µ

h(
√

l−1(x))
√

l−1(x)(1+ o(1))−βαh2(
√

l−1(x))+ log(l−1(x)p)
}

by substituting l−1(x)= x/µ−(α/µ)h(
√

l−1(x))
√

l−1(x) and using log q =−p(1+o(1)).
Note that x ¹ Rp implies that r(x)º−(log q)/(βµ)≥ p/(βµ). Since r(

√
l−1(x))º r(x),

we have h(
√

l−1(x))À (p/(βµ))
√

l−1(x). This gives

βαh2(
√

l−1(x))À (pα/µ)h(
√

l−1(x))
√

l−1(x)(1+ o(1)).

Since h(x) À ε log x, we also have βαh2(
√

l−1(x)) À log l−1(x) º log(l−1(x)p). Thus
(2.14) is equal to exp{−βαh2(

√
l−1(x))(1+ o(1))} ¹ exp{−βαh2(

√
Kp)(1+ o(1))} =

o(1).
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Now suppose x À Rp and bl−1(x)c ≤ bR2
pc. Note that for any x À Rp, one can

always find a = a(p)↗∞ arbitrarily slowly as p ↘ 0, such that x À aRp. Dividing
the first part of (2.13) by (1/p)F̄(x) gives

(2.15) exp{l−1(x) log q−βαh2(
√

l−1(x))+ log(l−1(x)p)+h(x−µ)+2log x+ log p}.

Note that x À aRp implies r(x)¿ r(x/a)¹ p/(βµ) and hence pl−1(x)À h(x−µ), by
using l−1(x) = x/µ− (α/µ)h(

√
l−1(x))

√
l−1(x). By substituting y = Rp in (2.11) we

have paRp º 1/pδ
′/(1−δ′) À− log p which implies px/µÀ log x for x À aRp. Hence

(2.15) is equal to exp{−pl−1(x)(1+ o(1))}¹ exp{−pl−1(aRp)(1+ o(1))}= o(1).
We now proceed to the second part of (2.13). But l−1(x) º R2

p implies x À Rp,

since h2(
√

l−1(x))/l−1(x) → 0. Hence by the same argument px/µ À h(x) and
px/µÀ log x º logRp. Hence dividing the expression by (1/p)F̄(x) gives

exp
{

x
µ

log q+2logRp + log p+h(x−µ)+2log x+ log p
}

= exp
{
− px
µ

(1+ o(1))
}
¹ exp

{
−

pR2
p

µ
(1+ o(1))

}
= o(1)

We now analyze the second term of (2.12). We have, for bl−1(x)c > bR2
pc∨bKpc,

bl−1(x)c∑
n=bR2

pc∨bKpc+1
pqnP(S̃n > x−nµ,max X̃ i ≤

p
n)

≤
bl−1(x)c∑

n=bR2
pc+1

pqne−β(x−nµ)r(
p

n) ≤
bl−1(x)c∑

n=bR2
pc+1

p(qeβµr(
p

n))ne−βxr(
p

n)

≤
bl−1(x)c∑

n=bR2
pc+1

p(qeβµ
− log q
βµ )ne−βxr(

p
l−1(x)) ≤

bl−1(x)c∑
n=bR2

pc+1
pe−βxr(

p
l−1(x))

≤ l−1(x)pe−βxr(
p

l−1(x))(2.16)

where the third inequality holds because Rp = r−1(− log q/(βµ)) and r(x) is eventu-
ally decreasing. Note that xr(

√
l−1(x)) ∼ µ

√
l−1(x)h(

√
l−1(x)) À h(

√
l−1(x)). Also,

since ε log x ¿ h(x) ¿ x, we have xr
√

l−1(x) º
√

l−1(x)h(
√

l−1(x)) À log x. Hence
dividing (2.16) by (1/p)F̄(x) gives

exp{−βxr(
√

l−1(x))+ log(l−1(x)p)+h(x−µ)+2log x+ log p}

= exp{−βxr(
√

l−1(x))(1+ o(1))}¹ exp{−βR2
pr(

√
l−1(R2

p))(1+ o(1))}= o(1)

We now analyze the final term of (2.12). We have
∞∑

n=bKpc∨bl−1(x)c+1
pqnP(S̃n > x−nµ,max X̃ i ≤

p
n)≤ ql−1(x)∨Kp+1

≤
{

qKp /a′+1 for l−1(x)¿ Kp/a′

ql−1(x)+1 for l−1(x)º Kp/a′ ≤
{

e−pKp /a′
for l−1(x)¿ Kp/a′

e−pl−1(x) for l−1(x)º Kp/a′(2.17)

where a′ = a′(p)↗ 0 as p ↘ 0 at a rate that will be chosen later on.
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For the first part, dividing by e−θ
∗x yields

exp
{
−p

Kp

a′ +θ∗x
}
= exp

{
−p

Kp

a′ (1+ o(1))
}
= o(1)

For the second part observe that

r
(Kp

a′

)
= h((1/a′2δ)e(1−δ′)g(Bp))

(1/a′2δ)e(1−δ′)g(Bp)
≤ Ca′1−δ′ p2δ(1−δ′)

e(1−δ′2 g(Bp)
¿ p

for some constant C > 0, for a suitably chosen a′, since h(x) ≤ xδ eventually. We
then get Kp/a′−1(p) which implies r(x)¹ r(Kp/a′)¿ p for l−1(x)º Kp/a′. This gives
pl−1(x)À h(x). Note that pKp/a′ = (1/a′1−2δe(1−δ′)g(Bp) À−2δ log p+(1−δ′)g(Bp)=
logKp, so pl−1(x) À log x for x º Kp/a′. Hence dividing the second part of (2.17)
by (1/p)F̄(x) gives

exp{−pl−1(x)+h(x−µ)+2log x+ log p}=exp{−pl−1(x)(1+ o(1))}

¹ exp
{
−pl−1

(Kp

a′

)
(1+ o(1))

}
= o(1)

This concludes our proof of Lemma (2.5).

Proof of Proposition (1.7). The case for x < Bp is obvious, since we have P(Sn >
x, exactly one X i > Cp,n)≤ nF̄(Bp) and hence

P(SM > x, exactly one X i > Cp,M)≤
∞∑

n=1
pqnnF̄(Bp)= q

p
F̄(Bp)= o(1)¿ e−θ

∗x,

uniformly over x < Bp. Thus we shall focus on x ≥ Bp. Note that

P(SM > x, exactly one X i > Cp,M)

≤
bKpc∑
n=1

pqnn
(
F̄(x)(F(Bp))n−1 +

∫ x

Bp

P(Sn−1 > x− y,max X i ≤ Bp)dF(y)
)

+
∞∑

n=bKpc+1
pqnn

(
F̄(x)(F(µ+p

n))n−1

+
∫ x

µ+pn
P(Sn−1 > x− y,max X i ≤µ+

p
n)dF(y)I(x ≥µ+p

n)
)

≤ q
p

F̄(x)+
bKpc∑
n=2

pqnn
∫ x

Bp

P(Sn−1 > x− y,max X i ≤ Bp)dF(y)

+
∞∑

n=bKpc+1
pqnn

∫ x

µ+pn
P(Sn−1 > x− y,max X i ≤µ+

p
n)dF(y)I(x ≥µ+p

n)

= q
p

F̄(x)+
∞∑

n=2
pqnn

∫ x

Bp

P(Sn−1 > x− y,max X i ≤ Bp)dF(y)

−
∞∑

n=bKpc+1
pqnn

∫ x

Bp

P(Sn−1 > x− y,max X i ≤ Bp)dF(y)

+
∞∑

n=bKpc+1
pqnn

∫ x

µ+pn
P(Sn−1 > x− y,max X i ≤µ+

p
n)dF(y)I(x ≥µ+p

n).

We will finish the proof by invoking the following lemmas:
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LEMMA (2.18).
∞∑

n=2
pqnn

∫ x

Bp

P(Sn−1 > x− y,max X i ≤ Bp)dF(y)

=
∫ x

Bp

(
1
p
+ x− y

µ

)
e−θ

∗(x−y)dF(y)(1+ o(1))

uniformly over x ≥ Bp.

LEMMA (2.19). We have µ+p
K p ≥ Bp for p small enough, and

∞∑
n=bKpc+1

pqnn
∫ x

Bp

P(Sn−1 > x− y,max X i ≤ Bp)dF(y)

≤
∞∑

n=bKpc+1
pqnn

∫ x

Bp

P(Sn−1 > x− y,max X i ≤µ+
p

n)dF(y)

¿
∫ x

Bp

(
1
p
+ x− y

µ

)
e−θ

∗(x−y)dF(y)+ 1
p

F̄(x)

uniformly over x ≥ Bp.

Proof of Lemma (2.18). We write
∞∑

n=2
pqnnP(Sn−1 > x,max X i ≤ Bp) = q

p

∞∑
n=1

p2qn(n+1)P(Sn > x,max X i ≤ Bp)

= q
p

P(SN > x,max X i ≤ Bp)

where N is a negative binomial variable with parameter 2 and p. Let {X ′
i}i=1,2,...,

M′ and S′
M be independent and identical copies of {X i}i=1,2,..., M and SM , and let

FM(x) = P(SM ≤ x,max X i ≤ Bp) and F̄M(x) be its complement defined by P(SM >
x,max X i ≤ Bp). Note that by Lemma (2.4) we have P(SM > x,max X i ≤ Bp) =
e−θ

∗x(1+u(x, p)) where supx>Bp |u(x, p)|→ 0. We have

P(SN > x,max X i ≤ Bp)

= P(SM +S′
M > x, max

1≤i≤M
X i ≤ Bp, max

1≤ j≤M′ X
′
j ≤ Bp)

=
∫ x

0
F̄M(x− y)dFM(y)+ F̄M(x)F̄M(0)

=
∫ x

0
e−θ

∗(x−y)(1+u(x− y, p))dFM(y)+ F̄M(x)F̄M(0)

∼
∫ x

0
e−θ

∗(x−y)dFM(y)+ F̄M(x)F̄M(0)

= e−θ
∗xF̄M(0)− F̄M(x)+

∫ x

0
F̄M(y)θ∗e−θ

∗(x−y)dy+ F̄M(x)F̄M(0)

= e−θ
∗xF̄M(0)+

∫ x

0
θ∗e−θ

∗x(1+u(y, p))d y− F̄M(x)(1− F̄M(0))∼ e−θ
∗x +θ∗xe−θ

∗x

uniformly over x > Bp. The fourth equality is obtained using integration by parts,
and the last equality follows from the observation that F̄M(0) = P(max1≤i≤M X ′

i ≤
Bp) = ∑∞

n=0 pqnF(Bp)n → 1 as p → 0. Noting that θ∗ ∼ p/µ, the conclusion of the
lemma is then an easy consequence.
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Proof of Lemma (2.19). The inequality is obvious. We will thus focus on the order
relation. We first prove that

∞∑
n=bKpc+1

pqnnP(Sn−1 > x,max X i ≤µ+
p

n)¿ e−θ
∗x + 1

p
F̄(x)

uniformly over x ≥ Bp. The proof is very similar to that of Lemma (2.5). Adopting
the notation there, we can write

∞∑
n=bKpc+1

pqnnP(Sn−1 > x,max X i ≤µ+
p

n)

=
bR2

pc∧bl−1(x)c∑
n=bKpc+1

pqnnP(S̃n−1 > x− (n−1)µ,max X̃ i ≤
p

n)I(bR2
pc∧bl−1(x)c > bKpc)

+
bl−1(x)c∑

n=bR2
pc+1

pqnnP(S̃n−1 > x− (n−1)µ,max X̃ i ≤
p

n)I(bl−1(x)c > bR2
pc > bKpc)

+
∞∑

n=bKpc∨bl−1(x)c+1
pqnnP(S̃n−1 > x− (n−1)µ,max X̃ i ≤

p
n)

Using the same analysis, the first term will be less than or equal to l−1(x)(l−1(x)+1)
2 pql−1(x)e−βαh2(

p
l−1(x)) for bl−1(x)c ≤ bR2

pc
R2

p(R2
p+1)

2 pe(x/µ) log q for bl−1(x)c > bR2
pc

the second term will be less than or equal to

l−1(x)(l−1(x)+1)
2

pe−βxr(
p

l−1(x))

and the third term will be less than or equal to
(
Kp − 1

p +1
)

e−pKp /a′
for l−1(x)¿ Kp/a′(

l−1(x)− 1
p +1

)
e−pl−1(x) for l−1(x)º Kp/a′

For the first two terms the same analysis carries over while for the last one we
only have to observe again that px À log x for x º Kp/a′, which will show our
claim.

Hence we have

∞∑
n=bKpc+1

pqnn
∫ x

Bp

P(Sn−1 > x− y,max X i ≤µ+
p

n)dF(y)

¿
∫ x

Bp

(
e−θ

∗(x−y) + 1
p

F̄(x− y)
)

dF(y)¹
∫ x

Bp

(
1
p
+ x− y

µ

)
e−θ

∗(x−y)dF(y)+ 1
p

F̄(x)

where the last order relation is obtained by using property of class S that
∫ x

0 F̄(x−
y)/F̄(x)dF(y)→ 2 as x →∞. We conclude our proof of Lemma (2.19).
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SELF-SIMILAR MARKOV PROCESSES

JUAN CARLOS PARDO AND VÍCTOR RIVERO

ABSTRACT. This note surveys some recent results on self-similar Markov pro-
cesses. Since the research around the topic has been very rich during the last
fifteen years we do not pretend to cover all the recent developments in the field,
and hence we focus mainly in giving a panorama of the areas where the authors
have made contributions.

1. Introduction

As the title shows the main object of study in this paper is the class of real
valued self-similar Markov processes, and in fact much of the results that will
be summarised here concern the class of positive self-similar Markov processes.
Before going into the detail we lift the following definition from Lamperti’s pio-
neering work [43].

Definition (1.1). A stochastic process X = {X t, t ≥ 0} defined on (Ω,F , (Ft)t≥0,
(Px)x∈Rd ) and Rd-valued is said semi-stable, now a days called self-similar, if there
exists an α ∈R, such that for any c > 0,

Law({cX c−α t, t ≥ 0},Px)=Law({X t, t ≥ 0},Pcx)

that is, both processes have the same finite dimensional laws, viz. for any 0< t1 <
t2 < ·· · < tn <∞

(1.2) Px
(
cX c−α t1 ∈ dx1, cX c−α t2 ∈ dx2, . . . , cX c−α tn ∈ dxn

)
=Pcx

(
X t1 ∈ dx1, X t2 ∈ dx2, . . . , X tn ∈ dxn

)
,

where by Px we understand the law of the process stating at x. Whenever α 6= 0
we will say that the process is 1/α-self-similar.

Lamperti’s main contribution in [43] has been to fully answer the question:
which are all the stochastic processes that can be obtained as the weak limit of
some process on which we have applied an infinite sequence of contractions of
the scale of time and space? This question has been motivated by some rather
transcendental results about weak convergence of normalised processes as for in-
stance the famous result by Donsker [23] about convergence of a random walk
towards a Brownian motion. Lamperti’s [43] main results are summarised in the
following theorem.

2010 Mathematics Subject Classification: 60G18, 60J99, 60G51.
Keywords and phrases: self-similar Markov process, Lévy processes, Markov additive processes,

Lamperti representation, exponential functionals, entrance laws, quasi-stationary distributions, fluc-
tuation theory, law of the iterated logarithm.
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THEOREM (1.3). Let Y = {Yt, t > 0} be a stochastic process Rd-valued and f :
R→R a function such that the process Y ζ defined by

Y ζ
t = Yζt

f (ζ)
, t > 0,

converges in the sense of finite dimensional laws, towards a non degenerated pro-
cess, X , that is for any 0 < t1 < t2 < ·· · < tn <∞, the convergence in law between
random vector holds

(1.4)
(
Y ζ

t1
,Y ζ

t2
, . . . ,Y ζ

tn

)
W−−−→

ζ→∞
(
X t1 , X t2 , . . . , X tn

)
.

Then, the process X is self-similar with an index α, for some α ∈R. The function f
is regularly varying with index α, that is f (ζ)= ζαL(ζ), with L a function such that

lim
ζ→∞

L(cζ)
L(ζ)

= 1, for all c > 0.

In this case it is nowadays said that X is the scaling limit of Y . Furthermore, any
self-similar Markov process can be obtained this way.

Among the class of self-similar processes there are several important sub-
families that permit a better understanding of these. Some of them are the self-
similar Gaussian processes; the class of additive self-similar processes, that is
those with independent increments, those with homogeneous increments, and,
those which are of particular interest to us, which have the strong Markov prop-
erty. For properties and references about the former classes of processes see for
instance the thorough survey by Embrechts and Maejima [26]. In the sequel we
will restrict ourselves to the class of real valued self-similar Markov processes.

A real valued self-similar Markov process X (x), starting from x is a càdlàg
strong Markov process which fulfills the above described scaling property. Real
valued self-similar processes often arise in various parts of probability theory as
limit of re-scaled processes. These processes are involved for instance in branch-
ing processes, Lévy processes, coalescent processes and fragmentation theory.
Some particularly well known examples are Brownian motion, Bessel processes,
stable subordinators, stable processes, stable Lévy processes conditioned to stay
positive, etc.

Our main purpose in this paper is to give a panorama of properties of rssMp
that have been obtained since the early sixties under the impulse of Lamperti’s
work [44], where the study of the case of positive self-similar Markov processes is
initiated, and we will put particular emphasis in topics where the authors of this
note have contributed.

2. Positive self-similar Markov processes

Throughout this paper we will assume that the self-similarity index, say 1/α, is
strictly positive so α> 0. When we restrict self-similar Markov processes to take
values on the positive half-line we have an interesting relationship between this
class and R∪ {−∞}-valued Lévy processes, such relation was obtained by Lam-
perti [44] and it is now known as the Lamperti representation of positive valued
self-similar Markov processes, pssMp for short.
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To state a precise result we recall that an R∪ {−∞}-valued stochastic process
ξ= (ξt, t ≥ 0) is a Lévy process if its paths are càdlàg, the state {−∞} is an absorb-
ing point, and it has stationary and independent increments. The state {−∞} is
understood as an isolated point and hence the process hits this state and dies at
an independent exponential time ζ, with some parameter q ≥ 0, the case q = 0 is
included to allow this time to be infinite a.s. The law of ξ is characterized com-
pletely by its Lévy-Khintchine exponent Ψ, which takes the following form

(2.1) logE
[
ezξ1 ,1< ζ

]
=Ψ(z)=−q+bz+ σ2

2
z2 +

∫ ∞

−∞
(
ezy −1− zyI{|y|<1}

)
Π(dy),

for any z ∈ iR, where σ,b ∈ R and Π is a Lévy measure satisfying the condition∫
R(y2 ∧1)Π(d y)<∞. For background about Lévy processes see [4], [40], [57].

Hereafter, for x > 0 the measure Px denotes the law of a pssMp issued from x,
and to refer to a pssMp issued from x > 0 we will use indistinctly (X ,Px), (X (x),Px)
and X (x).

Lamperti’s representation of self-similar R+–valued Markov processes killed at
their first hitting time of 0, enables us to construct the paths of any such process
starting from a strictly positive point from those of a Lévy process, and viceversa.
More precisely, Lamperti [44] found the representation

(2.2) X (x)
t =

{
xexpξτ(tx−α), 0≤ t ≤ xαI(αξ),
0, t ≥ xαI(αξ),

under Px, for x > 0, where

τ(t)= inf{s > 0 : Is(αξ)≥ t} , Is(αξ)=
∫ s

0
expαξu du , I(αξ)= lim

t→ζ
I t(αξ) ,

and where ξ is a R∪ {−∞}–Lévy process with law P. Note that for t < I(αξ), we
have the equality τt =

∫ t
0

(
Xs

)−αds, so that (2.2) is invertible. Indeed, any R∪{−∞}-
valued Lévy process ξ can be represented as

ξt =
{

log
( Xγt

X0

)
, 0≤ t < ∫ T0−

0 X−α
s ds,

−∞,
∫ T0−

0 X−α
s ds ≤ t,

where X is some 1/α-pssMp, {γt, t ≥ 0} is the inverse of the additive functional∫ t

0
X−α

s ds, 0≤ t < T0 = inf{u > 0 : Xu = 0}.

Observe that the process ξ does not depend on the starting point of X . Hence, we
will denote the law of ξ by P, and it is obtained as the image measure of Px under
the latter transformation, independently of the starting point x > 0. Reciprocally
given a Lévy process (ξ,P) using the former transformation we construct a family
of Markovian measures (Px)x>0, sharing the same semigroup. Hence Lamperti’s
transformation yields a one to one relation between the class of pssMp killed at
their first hitting time of 0 and the one of Lévy processes. Unless otherwise stated,
in the sequel we will denote a 1/α-pssMp by (X , (Px)x>0), and by (ξ,P) the Lévy
process associated to it.

A first implication of Lamperti’s transformation is that the first hitting time
of 0, for a 1/α–pssMp and the exponential functional of a Lévy process, I(αξ), are
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equal in law, more precisely

(T0,Px) Law= (xαI(αξ),P).

Another useful consequence is the following classification of pssMp’s:

(LC1) ζ<∞ P–a.s. if and only if

(2.3) Px(T0 <∞, XT0− > 0, XT0+s = 0, ∀s ≥ 0)= 1,

for all x > 0.
(LC2) ζ=∞ and limt→∞αξt =−∞ P–a.s. if and only if

(2.4) Px
(
T0 <∞, XT0− = 0, XT0+s = 0, ∀s ≥ 0)= 1,

for all x > 0.
(LC3) ζ=∞ and limsupt→∞αξt =∞ P–a.s. if and only if

(2.5) Px(T0 =∞)= 1, for all x > 0.

Furthermore, a useful way to characterise the pssMp associated to a Lévy pro-
cess ξ is via its infinitesimal generator. Indeed, Volkonskii’s Theorem allow us
to ensure that the infinitesimal generator of X , say L, evaluated in a function
f : R+ → R, such that f̃ (·) = f (e·) is in the domain of the infinitesimal generator of
ξ, that we denote A, takes the form

L f (x)= x−αA f̃ (log x)

=−qx−α f (x)+ x1−α(−b+ 1
2
σ2) f ′(x)+ x2−α 1

2
σ2 f ′′(x)

+ x−α
∫
R

(
f (xey)− f (x)− yxf ′(x)1{|y|<1}

)
Π(d y),

where (b,σ,Π) is the characteristic triple of ξ, and q is the rate at which it is
killed. Using this characterisation we can easily obtain the following examples.

EXAMPLE (2.6) (Continuous pssMp and Bessel processes). Given that the total-
ity of Lévy processes with continuous paths is necessarily of the form ξt = εBt +µt,
t ≥ 0, with (Bt, t ≥ 0) a standard Brownian motion and some ε,µ ∈ R, we get that
the totality of pssMp with continuous paths killed at its first hitting time of zero
is obtained as a Lamperti transformation of a process of the latter form, with ε,µ
and the self-similarity index appropriately chosen. For instance, when X is a stan-
dard Brownian motion killed at its first hitting time of 0, the self-similarity index
is 1/2, and the Lévy process is ξt = Bt − t

2 , t ≥ 0. Furthermore, taking ε = 1, and
µ= d

2 −1, with d > 0, and α= 2 we obtain a d-dimensional Bessel process. It is also
an interesting exercise to prove this assertion using stochastic calculus.

EXAMPLE (2.7) (Stable subordinators). Let X be an α-stable Lévy process with
non-decreasing paths, 0<α< 1. X is a 1/α-pssMp. Its infinitesimal generator is

Ã f (x)=
∫ ∞

0

(
f (x+ y)− f (x)

)
αc

dx
x1+α , c > 0.

By a change of variables

Ã f (x)= x−α
∫ ∞

0

(
f (xez)− f (x)

) cαez

(ex −1)1+α
dx,
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and by Volkonskii’s formula we obtain that the underlying Lévy process has jump
measure

Π(dx)= cαez

(ex −1)1+α
dx.

A family of processes associated to stable processes will be described in Sec-
tion 2.2.

REMARK (2.8). Although this will not be used in what follows, it is worth point-
ing out that the assumption made at the beginning of this section asking that the
self-similarity index 1/α is strictly positive is not essential. Indeed, if in Lamperti’s
transformation we take α < 0, in order to make things consistent, we should just
change the absorbing state of the pssMp to {∞}, which will be reached in a finite
time when the Lévy process αξwill either jump in a finite time or drift towards −∞.
So, for a general self-similarity index 1/α we should consider (0,∞)∪ {∆}−valued
pssMp where ∆ is a cemetery state, that it is interpreted as 0 if α> 0, and as ∞ if
α< 0.

An useful property of pssMp is that the self-similarity property remains valid
when we take powers or we make time changes with power functions. More pre-
cisely, given a 1/α-pssMp and a β ∈R\{0}, the process Y defined by

Yt := (X t)β , t ≥ 0,

with 1/0 taken as ∞, is a α/β-pssMp and it is the Lamperti transform of the Lévy
process βξ. This makes that in most of the cases there is no loss of generality in
assuming that the self-similarity index equals 1. Now, for a γ 6= −α, define a time
change

Dγ
t = inf{u > 0 :

∫ u

0
(Xs)γds > t}, t ≥ 0.

The process W defined by
Wt = XDγ

t
, t ≥ 0,

is a 1/(α+ γ)-pMasp and the underlying Lévy process remains ξ. The proof of
this result is an easy consequence of the fact that time changes with respect to
additive functionals preserve the strong Markov property and that, in this case,
the time change also preserves the scaling property of the process X . This can also
be easily seen by using Lamperti’s transform and understanding the composition
of time changes. These properties, together with some duality properties, where
studied in [60], see also [41]. Other duality properties where obtained in [8].

(2.1) Defining a positive self-similar Markov process starting at 0. In his
seminal paper, Lamperti [44] studied the forms in which a self-similar diffusion
could be started from the state 0. Lamperti findings lead to the following question

Given a positive 1/α-self-similar Markov process, (X , (Px)x>0), con-
structed via the Lamperti transformation of some Lévy process ξ, when
does there exists a pssMp that behaves like X when it is in (0,∞) and
that it is not trivially started from 0?

In the case where the pssMp (X , (Px)x>0) never hits zero this question has been
answered in full generality by Bertoin and Caballero [5], Bertoin and Yor [8], Ca-
ballero and Chaumont [11], and Chaumont, Kyprianou, Pardo and Rivero [16],
by providing necessary and sufficient conditions for the existence of a probability



206 JUAN CARLOS PARDO AND VÍCTOR RIVERO

measure P0+, that can be obtained as the weak limit of Px as x ↓ 0+, and under
which the canonical process has the same transition semigroup as the one associ-
ated to (X , (Px)x>0). Equivalently, we may ask under which conditions there exists
a non-degenerate process X (0) that is the weak limit of X (x) as x → 0.

Besides, when (X , (Px)x>0) hits zero in a finite time to answer the above posed
question one should look for all the recurrent extensions of it, that is the totality
of positive self-similar Markov process that behave like the latter process before
hitting zero for the first time but for which 0 is a recurrent and regular state. This
problem has been studied by Lamperti [44] and Vuolle-Apiala [59], and solved in
whole generality by Rivero [54, 55] and Fitzsimmons [27].

The main contributions of the papers quoted above will be summarized below.

2.1.1. Entrance laws. Bertoin and Caballero [5] and Bertoin and Yor [8] proved
that, whenever the process drifts towards ∞, limt→∞ X (x)

t =∞, Px-a.s., the family
of processes X (x) converges, as x ↓ 0, in the sense of finite dimensional distribu-
tions towards X (0) if and only if the underlying Lévy process ξ in the Lamperti
representation is such that

(H) ξ is non lattice and 0< m =: E(ξ1)≤E(|ξ1|)<+∞ .

In fact, the condition of ξ being non-lattice is not essential, whenever the process
is lattice the limit exists when taken along adequately chosen subsequences. As
proved by Caballero and Chaumont in [11], the latter condition is also a NASC for
the weak convergence of the family (X (x)), x > 0 on the Skohorod space of càdlàg
trajectories. In the same article, the authors also provided a path construction of
the process X (0). The entrance law of X (0) has been described in [5] and [8] as
follows: for every t > 0 and for every measurable function f :R+ →R+,

E
(
f
(
X (0)

t

))
= 1

m
E
(
I(−αξ)−1 f

((
tI(−αξ)−1)1/α))

Caballero and Chaumont [11] actually studied the more general case where X is
only required to be such that

(2.9) limsup
t→∞

X (x)
t =∞, Px −a.s. ∀x > 0,

and they were able to prove that a necessary and sufficient condition for the weak
convergence to hold is that the mean of the upward ladder height process, say h =
(ht, t ≥ 0), associated to ξ, is finite and a further technical condition. For further
details see [11]. Latter Chaumont, Kyprianou Pardo, and Rivero [16] improved
the result of Chaumont and Caballero [11] by showing that the technical condition
is irrelevant. Moreover, these authors obtained an expression for the entrance law
which extend that obtained in [5] and [8], namely

E0+ ( f (X t))=
∫ ∞

0
f
(

t1/α

x1/α

)
1
x
η(dx),

where η is a measure defined by

η( f )= 1
αµ+

∫
R3+

P(Ĩ ∈ dt)V̂(dx)P†
x

(∫ ς0

0
e−αξu du ∈ ds

)
f
(
eαx (t+ s)

)
,

and
∫ ∞

0 x−1η (dx)= 1, with Ĩ the exponential functional of the negative of the Lévy
process ξ conditioned to stay positive, V̂ the renewal measure of the downward
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ladder height process associated to ξ, and P† being the law of ξ conditioned to hit
zero continuously.

Knowing the results of Bertoin and Caballero [5] and Bertoin and Yor [8], it
may appear surprising that the searched necessary and sufficient condition for the
weak convergence to hold is the finiteness of the mean of the upward ladder height
process. An heuristic for the necessity of this condition is as follows. Assume there
is a process X (0) that is obtained as a weak limit of X (x) as x ↓ 0+ . This process
has the scaling property and hence for any c > 0

(cX (0)
tc−α , t ≥ 0) Law= (X (0)

t , t ≥ 0).

For a > 0, let Ta = inf{t > 0 : X (0)
t > a}, this r.v. is a finite stopping time because

the original process satisfies (2.9). By the scaling property we have the equality
in law

X (0)
Ta

Law= cX (0)
Ta/c

, for all c > 0.

Making c →∞ and some elementary manipulations we get

(2.10) X (0)
Ta

Law= aexp
{

lim
c→∞

(
log(X (0)

Ta/c
)− log(a/c)

)}
.

Finally, the process log X (0) should have the same hitting probabilities as ξ, be-
cause log X (·) is obtained by time changing ξ, and hence we should have the equal-
ity in law

lim
c→∞

(
log

(
X (0)

Ta/c

)
− log(a/c)

}
Law= lim

z→∞ξT+
log(z)

− log(z),

with T+
log(z) = inf{t > 0 : ξt > log(z)}. We conclude from (2.10) that the latter limit

exists and it is not degenerate. It is well known that this is equivalent to the weak
convergence of the overshoots of the underlying upward ladder height subordina-
tor. The latter condition is in turn equivalent to the finiteness of the mean of the
upward ladder height subodinator, see for instance [22]. The details about the
whole argument can be found in [42] where the authors obtain precise descrip-
tions about the distribution of random variables associated to the events of first
passage above a level and last passage below a level, among other results.

Besides, observe that if the mean of the upward ladder height is finite then by
the results in [5] and [11] the pssMp, H = (Ht, t ≥ 0), associated to the upward
ladder height subordinator has a non-degenerate weak limit, H(0), and so one
may wonder whether it is possible to understand the limit process X (0) using the
process H(0). We remark that we may understand the process H as the process of
the past supremum of X in an adequate time scale. The main motivation of the
paper [16] was to construct the process H from the process X , via a time change,
establish the convergence of H, and finally construct the limit process X (0) from
H(0), by hanging into the paths of H(0) the excursions from the supremum. One
of the main results in [16] is the following description.

THEOREM (2.11). Let X be the Lamperti transform of a L.p. ξ that does not
jump or drift towards −∞, and define the maximum process (Ms, s ≥ 0), by Mt :=
sups≤t Xs, t ≥ 0. We have the following facts.

(i) There exists a function j(ε) for ε> 0, such that

lim
ε→0

1
j(log(1+ε))

∫ t

0
1{

Ms
Xs ∈[1,1+ε[

}ds = LΘt ,
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uniformly over bounded intervals in probability. The process LΘ is a local
time at the past supremum for X , i.e. and additive functional whose support
is given by the closure of the random set

Θ := {t ≥ 0 : X t = sup
0≤s≤t

Ms}.

(ii) Let {Rt, t ≥ 0} be the right continuous inverse of LΘ, that is

Rt = inf{s > 0 : LΘs > t}, t ≥ 0,

and put Ht := XRt , t ≥ 0. The process H is the Lamperti transform of the
upward ladder height subordinator of ξ.

The term “hanging into the paths of H0+ the excursions from the supremum” is
made precise in [16] by constructing an exit system associated to the random set
Θ defined above, and then using this exit system to prove the convergence of the
resolvent of X , as the starting point tends to 0, which gives the finite dimensional
convergence. Finally, the weak convergence is obtained by proving tightness. We
do not provide further details. Instead we mention that the papers [16], [20] and
[42] contributed to the foundation of a fluctuation theory for pssMp analogous to
the well developed one of real valued Lévy processes. In the paper [20] the path
of a pssMp is decomposed into the path of the pre- and post-overall infimum. A
precise description of these segments of paths is provided, and the limit of the
path when the overall minimum tends to zero is obtained. In particular, it is
shown that the post-minimum process converges to the path of X (0), and hence
that the pre-infimum path squeezes to the path equal to zero with 0 length when
the starting point tends to 0.

2.1.2. Recurrent extensions. We now deal with the results around the question
What are the positive α–self-similar Markov processes X̃ which behave like (X ,P)
up to the first hitting time of 0 for X̃ and such that 0 is a regular and recurrent
state? A process that has this characteristics is usually called a recurrent exten-
sion of the process (X ,P). Lamperti [44] solved this question in the special case
of a Brownian motion killed at 0, using results specific to Brownian motion. After
Lamperti, Vuolle-Apiala [59] used excursion theory to give a more general an-
swer under some regularity assumptions for the resolvent of the process (X ,P).
Then the question was solved in full generality by Rivero [54], [55], and Fitzsim-
mons [27]. In order to describe the results in those papers we introduce some
further notions, but before we mention that a different approach using stochastic
differential equations has been used in [24] (see Section 2.1.3).

Definition (2.12) (Self-similar excursion measures). A measure n on (D+,G∞)
having infinite mass is a self-similar excursion measure compatible with (X ,P) if

(i) n is carried by

{ω ∈D+|0< T0 <∞ and X t(ω)= 0, ∀t ≥ T0} ;

(ii) For every bounded G∞-measurable functional H and each t > 0 and Λ ∈Gt,

n (H ◦θt,Λ∩ {t < T0})=n
(
EX t (H) ,Λ∩ {t < T0}

)
,

with θt the shift operator;
(iii) n

(
1− e−T0

)
<∞;
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(iv) there exists a γ ∈]0,α[ such that for every c > 0 the image of n under the
mapping Hc :D+ →D+, defined by Hc(ω)(t)= cω(tc−1/α), for t > 0, is

n◦Hc = cγ/αn .

It is well known in the theory of Markov processes that a way to construct re-
current extensions of self-similar Markov processes is by means of the so called
Itô’s program or pathwise approach, which consists on pasting together excursions.
Precise results about this topic can be found in [10] and [54]. The main results
from the latter references allow us to ensure that there is a bijection between the
existence of self-similar recurrent extensions and self-similar excursion measures
compatible to (X ,P). Actually, the latter is the Itô excursion measure for the ex-
cursions from zero of the self-similar recurrent extension of (X ,P). We will now
describe necessary and sufficient conditions for the existence of such a measure.

Vuolle-Apiala [59] proved that there are two types of excursion measures,
namely those for which the recurrent extension exits 0 by jumps, which in terms
of the excursion measure means n (X0+ = 0) = 0, and those for which the recur-
rent extension leaves zero continuously, n (X0+ > 0) = 0. And furthermore, a self-
similar excursion measure is either of one type or the other, but not both. It
has been shown in [54] that the reason for this is that they have different self-
similarity index. Vuolle-Apiala proved that a consequence of the scaling property
is that all the self-similar excursion measures such that n(X0+ = 0) = 0, can be
written as

(2.13) n(·)= cα,β

∫
x>0

dx
x1+βPx(·),

for some β such that β/α ∈]0,1[ and cα,β ∈]0,∞[, is a normalizing constant. Thus,
to determine the existence of a recurrent extension that leaves 0 by a jump all we
are ought to do is to verify when a measure of this form bears all the condition to
be a self-similar excursion measure. That is the purpose of the following theorem.

THEOREM (2.14). Let (X ,P) be an α-self-similar Markov process that hits the
cemetery point 0 in a finite time a.s. and (ξ,P) the Lévy process associated to it via
Lamperti’s transformation. For 0<β<α, the following are equivalent

(i) E(eβξ1 ,1< ζ)< 1,
(ii) E

((∫ ∞
0 exp{αξs}ds

)β/α
)
<∞,

(iii) There exists a recurrent extension of (X ,P), say X (β), that leaves 0 by a jump
and its associated excursion measure nβ is such that

nβ(X0+ ∈ dx)= cα,ββx−1−βdx, x > 0,

where cα,β is a constant.

In this case, the process X (β) is the unique recurrent extension of (X ,P) that leaves
0 by a jump distributed as above.

The proof of this theorem resides in the fact that a measure of the form in
(2.13) satisfies the conditions (i), (ii) and (iv) from the Definition (2.12), as it can
be easily verified, but the condition (iii) is only satisfied when the condition (ii)
of Theorem (2.14) is satisfied, and hence what is left to prove is the equivalence
between (i) and (ii), because the equivalence between (ii) and (iii) is obtained from
the previous discussion.
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It is actually more difficult to establish the existence of entrance laws that are
carried by the paths that leave 0 continuously. The definitive answer is given in
the following result obtained by Rivero [54, 55] and Fitzsimmons [27].

THEOREM (2.15). Let (X ,P) be an α-self-similar Markov process that hits its
cemetery state 0 in a finite time P-a.s. and (ξ,P) be the Lévy process associated to
(X ,P) via Lamperti’s transformation. The following are equivalent:

(i) ∃ θ ∈]0,α[, s. t. E(eθξ1 ,1< ζ)= 1, Cramér’s condition.
(ii) There exists a recurrent extension of (X ,P) that leaves 0 continuously and

such that its associated excursion measure from 0, say N, satisfies N(1−
e−T0 )= 1.

In this case, the recurrent extension in (ii) is unique and the entrance law associ-
ated to the excursion measure N is given by, for any f positive and measurable

N( f (X t), t < T0)= 1
tθ/αΓ(1− (θ/α))E\(J(θ/α)−1)

E\

(
f
(

t1/α

J1/α

)
J(θ/α)−1

)
,

for t > 0, where P\ = eθξt P on σ(ξs, s ≤ t) and J = ∫ ∞
0 exp{−αξs}ds.

The above description of the measure N is reminiscent of Imhof ’s construction
of the excursion measure of the Brownian process out from 0 which relates the
law of a brownian motion conditioned to stay positive and started from zero, that
is a Bessel process issued from 0, and the excursion measure. Further results
in this direction and a description of the excursion measure conditionally on the
length as well as its image under time reversal are provided in [54]. A description
of the excursion measure in terms of the height of the excursion is provided in [3].

2.1.3. A stochastic differential equation approach. Motivated by the problem of
existing zero and the description of the recurrent extension of positive self-similar
Markov process, Barczy and Döring [24] proposed a stochastic differential equa-
tion (SDE for short) approach. More precisely, recall that the Lévy-Itô represen-
tation of a Lévy process ξ= (ξt, t ≥ 0) is given as follows

ξt = bt+σBt +
∫ t

0

∫
{|u|≤1}

uÑ (ds,du)+
∫ t

0

∫
{|u|≥1}

uN (ds,du),

where b ∈ R, σ ≥ 0, B is a Brownian motion and N is an independent Poisson
random measure on (0,∞)×R with intensity ds⊗Π(du) and Ñ represents its com-
pensated version. Assuming that E[eξ1 ] < ∞, hence the proposed SDE can be
written as follows

X t = x+
(
logE[eξ1 ;ζ> 1]

)
t+σ

∫ t

0

√
X tdBs −

∫ t

0

∫ ∞

0
1{rXs−≤1}Xs−M̃(ds,dr)

+
∫ t

0

∫ ∞

0

∫ ∞

−∞
1{rXs−≤1}Xs−(eu −1)Ñ1(ds,dr,du),

for t ≤ T0. Here B is a Brownian motion, N1 is an independent Poisson random
measure on (0,∞)× (0,∞)×R with intensity ds⊗dr ⊗Π(du) and M is an inde-
pendent Poisson random measure on (0,∞)× (0,∞) with intensity qds⊗dr. The
random measures M̃ and Ñ represents the compensated version of M and N ,
respectively. The intuition of the above SDE follows from applying Itô’s formula
to eξt and afterwards including a correction which is given by the random time
change.
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It is important to note that whenever 0 < logE[eξ1 ;ζ > 1] < ∞, then this new
representation is not restricted to t ≤ T0. We also note that the SDE defined
above posses weak solutions up to a first hitting time. If ξ posses only negative
jumps and satisfies that 0 < logE[eξ1 ;ζ > 1], then for any initial condition x > 0
there is a pathwise unique non-negative strong solution (X t, t ≥ 0) which is self-
similar with index α= 1 and such that (X t,0≤ t ≤ T0) its underlying Lévy process
in the Lamperti transform has the same law as ξ killed at rate q. If the Lévy
process ξ satisfies the Cramér condition then (X t, t ≥ 0) is the unique recurrent
self-similar extension of (X t,0 ≤ t ≤ T0). Moreover if ξ does not drift to −∞ or ξ
drifts to −∞ and it satisfies the Cramér condition, then the process (X t, t ≥ 0) is
the unique strong solution of the above SDE with initial condition X0 = 0.

(2.2) Exponential functionals. As we have seen in previous sections a recur-
rent object in the theory of pssMp is the so-called exponential functional of a Lévy
process ξ with lifetime ζ, i.e.

Iζ(ξ) :=
∫ ζ

0
exp

{
ξs

}
ds.

For instance, a consequence of Lamperti’s transformation is that the first hitting
time of a positive valued ssMp has the same law as the exponential functional of a
Lévy process; we have also seen that it describes the entrance law of a pssMp that
never hits zero, or the entrance law under the excursion measure of the recurrent
extension associated to a pssMp that hits zero in a finite time. Latter in this note,
Section 2.3, we will see that the density of an exponential functional plays a cru-
cial role in establishing integral test for describing the upper and lower envelopes
of a pssMp; also we will see in Section 2.4 that the Yaglom limit for a pssMp is
determined by the asymptotic behaviour of the tail distribution of the first hitting
time of zero. Hence a good understanding of the law of an exponential functional
is necessary in order to obtain precise information about pssMp’s. Furthermore,
one could say that exponential functionals of Lévy processes and pssMp leave in
symbiosis because facts about pssMp have been used to obtain properties of expo-
nential functionals.

Moreover, this is not the only fact that has motivated many research works on
the topic over the last two decades. The law of Iζ(ξ) plays an important role in
many other areas of probability theory, for instance in fragmentation, coalescence
and branching processes, financial and insurance mathematics, Brownian motion
in hyperbolic spaces, random processes in random environment, etc. For more
details about these topics and other aspects not covered in this section we refer
to the survey paper [9]. In this section we intend to provide a collection of results
that partially complements the latter paper.

Because in our setting ζ is taken as the life time of the Lévy process ξ, we
will hence focus in the case where ζ = eq, an exponential random variable with
parameter q ≥ 0 which is independent of the process ξ. Many authors have been
interested in the existence (and determine explicitly, as well) of the density asso-
ciated to Ieq (ξ). When q = 0, then eq is understood as ∞. In this case, we assume
that the process ξ drifts towards −∞ since it is a necessary and sufficient con-
dition for the almost sure finiteness of I(ξ) := I∞(ξ), see for instance Theorem 1
in Bertoin and Yor [9]. Carmona, Petit and Yor [15] were the first in studying
the existence of the density of I∞(ξ). More precisely, they proved the existence of
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such density in the case when the jump structure of the Lévy process is of finite
variation and also provided an integral equation that the density must hold, we
will recall the integral equation below. Recently Bertoin et al. [6] (see Theorem
3.9) proved the existence of the density in the general case.

The first result that we present in this section is about the existence of the
density of Ieq (ξ) in the case q > 0, in terms of its associated 1-positive self-similar
process (X ,P1), it has been obtained in [50].

THEOREM (2.16). Let q > 0, then the function

h(t) := qE1

[
1
X t

1{t<T0}

]
, t ≥ 0,

is a density for the law of Ieq (ξ).

A consequence of this result in the case where ξ is a subordinator gives the
following important property of h.

COROLLARY (2.17). Assume q > 0 and that ξ is a subordinator. Then the law of
the r.v. Ieq (ξ) is a mixture of exponentials, that is its law has a density h on (0,∞)
which is completely monotone. Furthermore, limt↓0 h(t)= q.

Carmona, et al. [15] integral equation give some information of the density and
allow us to compute it explicitly in some particular cases. A generalizaton and
extension of this integral equation in the case of the negative of a subordinator
has been obtained in [50]

THEOREM (2.18). Assume that ξ = −σ, with σ a subordinator with drift c ≥ 0,
killing term q and Lévy measure Π. Let q ≥ 0. The random variable Ieq has a
density that we denote by k, and it solves the equations

(2.19)
∫ ∞

y
k(x)dx =

∫ ∞

0
k(yex)Uq(dx), almost everywhere,

and

(2.20) (1− cx)k(x)=
∫ ∞

x
Π(log(y/x))k(y)dy+ q

∫ ∞

x
k(y)dy, x ∈ (0,1/c).

with E
[∫ eq

0 1{σt∈dx}dt
]
=Uq(dx), on x ≥ 0, andΠ(y) :=Π(y,∞), for y> 0. Conversely,

if a density on (0,1/c) satisfies any of the equations (2.19) or (2.20) then it is the
density of Ieq .

There are two main approaches which have been developed and used to extract
more information about the law of the exponential functional. The first one uses
the fact that the Mellin transform of Ieq (ξ) is solution of the functional equation,

(2.21) E
[
Ieq (ξ)s−1

]
= ψq(s)

s
E

[
Ieq (ξ)s

]
,

where ψq(λ) = − lnE[eλξ1 ,1 < eq]. The above equation, when q = 0, appears for
the first time in Carmona et al. [15] and was extended by Maulik and Zwart [45].
When q = 0, the equation (2.21) can be solved explicitly in the case when ξ is the
negative of a subordinator or a spectrally positive Lévy process, which, in both
cases, determine the law of Ieq (ξ). More precisely, let −ξ be a subordinator and
Φ(λ) = − lnE[eλξ1 ]. Carmona et al. [15] noted that the law of the exponential
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functional of a subordinator is determined by its entire moments which are given
by the identity

E
[
I(ξ)k

]
= k
Φ(k)

E
[
I(ξ)k−1

]
= k!
Φ(1) · · ·Φ(k)

, for k = 1,2, . . .

We note that this equation can be solved explicitly in many situations, see for
instance Bertoin and Yor [9]. Similarly, if ξ is a spectrally positive Lévy process,
Bertoin and Yor [9] proved that the law of I(ξ) is determined by its negative entire
moments and can be expressed in the form

E
[
I(ξ)−(k+1)

]
= Ψ(k)

k
E

[
I(ξ)−k

]
= m

Ψ(1) · · ·Ψ(k−1)
(k−1)!

, for k = 1,2, . . .

where Ψ(λ)= lnE[e−λξ1 ] and with the convention that the right-hand side equals
m for k = 1.

One can prove that if Cramér’s condition is satisfied then the Mellin transform
of Ieq (ξ) satisfies the functional identity (2.21), however it is clear that there are
infinitely many functions which satisfy the same functional identity. The next
result obtained by Kuznetsov and Pardo [39] tells us that if we have found a
function f (s) which satisfies (2.21), and if we can verify two conditions about the
zeros of this function and its asymptotic behaviour, then we can in fact uniquely
identify the Mellin transform of Ieq (ξ).

PROPOSITION (2.22). Assume that there exists z0 > 0 such that ψq(z) is finite
for all z ∈ (0, z0) and ψq(θ) = 0 for some θ ∈ (0, z0). If f (s) satisfies the following
three properties

(i) f (s) is analytic and zero-free in the strip Re(s) ∈ (0,1+θ),
(ii) f (1)= 1 and f (s+1)= s f (s)/ψq(s) for all s ∈ (0,θ),

(iii) | f (s)|−1 = o(exp(2π|Im(s)|)) as Im(s)→∞, uniformly in Re(s) ∈ (0,1+θ),
then E[Ieq (ξ)s−1]≡ f (s) for Re(s) ∈ (0,1+θ).

In particular, this proposition can be used to provide a very simple and short
proof of the well-known result on exponential functional of Brownian motion with
drift and of the recent results on exponential functionals of processes with double-
sided hyper-exponential jumps (see [14]).

Recently in [39], the authors found a particular class of Lévy processes, called
hypergeometric Lévy processes, for which the solution of the functional equation
can directly be guessed from (2.21) and verified using Proposition 1, and derived
the law of Ieq (αξ) for an specific value of q.

Hypergeometric Lévy processes were first introduced in [42] and constructed
using Vigon’s theory of philanthropy (see [58]). The class of processes that we
present next should be considered as a subclass of the hypergeometric processes
studied in [42] and as a generalization of Lamperti-stable processes, which were
introduced by Caballero and Chaumont [11].

We start by defining its Laplace exponent ψq(z) as

(2.23) ψq(z)= Γ(1−β+γ− z)
Γ(1−β− z)

Γ(β̂+ γ̂+ z)
Γ(β̂+ z)

,

where (β,γ, β̂, γ̂) belong to the admissible set of parameters

A= {β≤ 1, γ ∈ (0,1), β̂≥ 0, γ̂ ∈ (0,1)}.
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Let
η= 1−β+γ+ β̂+ γ̂.

The Levy density of hypergeometric Lévy processes can be computed explicitly,
see Proposition 1 in [39]. Moreover, if β< 1 and β̂> 0 the process ξ is killed at rate

q =ψq(0)= Γ(1−β+γ)
Γ(1−β)

Γ(β̂+ γ̂)
Γ(β̂)

.

The process ξ drifts to +∞, −∞ or oscillates whenever β= 1 and β̂> 0, β< 1 and
β̂= 0 or β= 1 and β̂= 0. The process ξ has no Gaussian component. When γ+γ̂< 1
(1≤ γ+γ̂< 2) the process has paths of bounded variation and no linear drift (paths
of unbounded variation).

Three Lamperti-stable processes ξ∗,ξ↑ and ξ↓ were introduced by Caballero
and Chaumont [11] by applying the Lamperti transformation to the positive self-
similar Markov processes construced from a stable process. In particular, the
process ξ∗ is obtained from a stable process started at x > 0 and killed upon exit
from the positive half-line, while the process ξ↑ {ξ↓} is obtained from a stable
process conditioned to stay positive {conditioned to hit zero continuously}. We
refer to [11, 12, 17] for all the details on these processes.

The Lamperti-stable processes ξ∗, ξ↑, ξ↓ can be identified as hypergeometric
processes with the following sets of parameters. Let δ= 1/α. From the definition

β γ β̂ γ̂

ξ∗ 1−α(1−ρ) αρ 1−α(1−ρ) α(1−ρ)

ξ↑ 1 αρ 1 α(1−ρ)

ξ↓ 0 αρ 0 α(1−ρ)

of the Laplace exponent (2.23) we find that ξ satisfies Cramér’s condition, that
is to say E[exp(β̂ξ1)] = 1, therefore applying Lemma 2 from Rivero [55] we con-
clude that the Mellin transform of Ieq (αξ) exists for s ∈ (0,1+ β̂δ). In order to
describe the results about the law of Ieq (αξ), we need to define the double gamma
function, G(z;τ). The double gamma function is defined by an infinite product in
Weierstrass’s form

G(z;τ)= z
τ

ea z
τ+b z2

2τ
∏

m≥0

∏
n≥0

′ (
1+ z

mτ+n

)
e−

z
mτ+n+ z2

2(mτ+n)2 , |arg(τ)| <π, z ∈C.

Here the prime in the second product means that the term corresponding to
m = n = 0 is omitted. Note that by definition G(z;τ) is an entire function in z
and if τ ∉ Q it has simple zeros on the lattice mτ+ n, m ≤ 0, n ≤ 0. We refer to
Kuznetsov [36] or Kuznetsov and Pardo [39] for more properties of this function.
The following result, lifted from [39], characterize the Mellin transform of the
exponential functional of hypergeometric Lévy processes.

THEOREM (2.24). Assume that α > 0, (β,γ, β̂, γ̂) ∈A and β̂ > 0. Then for s ∈ C
we have

(2.25) E[Ieq (αξ)s−1]≡ CΓ(s)
G((1−β)δ+ s;δ)

G((1−β+γ)δ+ s;δ)
G((β̂+ γ̂)δ+1− s;δ)

G(β̂δ+1− s;δ)
,
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where the constant C is such that the above identity equals 1 when s = 1.

We now want to study the density of the exponential functional, which is de-
fined by

p(x)= d
dx

P(Ieq (αξ)≤ x), x ≥ 0.

In order to do so, we have to compute the inverse Mellin transform of (2.25) which
is not a simple inversion exercise. From the paper by Kuznetsov & Pardo [39] in
the next result it is provided an asymptotic expansion of the density p(x) in the
case when α ∉Q.

THEOREM (2.26). Assume that α ∉Q. Then

p(x)∼ ∑
n≥0

anxn + ∑
m≥0

∑
n≥0

bm,nx(m+1−β+γ)δ+n, x → 0+,

p(x)∼ ∑
m≥0

∑
n≥0

cm,nx−(m+β̂)δ−n−1, x →+∞.

The series (an)n≥0, (bm,n)m,n≥0 and (cm,n)m,n≥0 can be computed explicitly. We
refer to Kuznetsov and Pardo [39] for more details about this series.

It turns out that for almost all parameters α the asymptotic series from above
converge to p(x) for all x > 0. In order to state this result, we need to define the
following set of real numbers.

Definition (2.27). Let L be the set of real irrational numbers x, for which there
exists a constant b > 1 such that the inequality∣∣∣x− p

q

∣∣∣< 1
bq

is satisfied for infinitely many integers p and q.

For more details about this set of irrational numbers see Kuznetsov [36] and
Kuznetsov and Hubalek [32]. The following result was obtained in [39].

THEOREM (2.28). Assume that α ∉L∪Q. Then for all x > 0

p(x)=


∑

n≥0
anxn + ∑

m≥0

∑
n≥0

bm,nx(m+1−β+γ)δ+n, if γ+ γ̂< 1,∑
m≥0

∑
n≥0

cm,nx−(m+β̂)δ−n−1, if γ+ γ̂> 1.

It is worth recalling that, in general, it is not an easy exercise to invert the
Mellin (or moments) transform of Ieq (ξ) since a fine analysis of its asymptotic
behavior is required.

The second methodology to obtain information about the law of Ieq (ξ) is based
on the well-known relation between this and the distribution of the absorption
time of positive self-similar Markov processes. Indeed, in Carmona et al. [15]
it is shown that the law of Ieq (ξ) can be expressed as an invariant function of a
transient Ornstein-Uhlenbeck process associated to self-similar Markov process.

In Pardo et al. [49], starting from a large class of Lévy processes and assum-
ing that q = 0, it is shown that the law of I(ξ) can be factorized into the product
of independent exponential functionals associated with two companion Lévy pro-
cesses, namely the descending ladder height process of ξ and a spectrally positive
Lévy process constructed from its ascending ladder height process. It is known
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that these two subordinators appear in the Wiener-Hopf factorization of Lévy pro-
cesses. The laws of these exponential functionals are uniquely determined either
by their positive or negative integer moments. Moreover, whenever the law of
any of these can be expanded in series we can in general develop the law of I(ξ)
in series. Thus, for example, the requirements put on the Lévy measure of ξ in
Kuznetsov and Pardo [39] can be relaxed to conditions only on the positive jumps
(the Lévy measure on the positive half-line) of ξ thus enlarging considerably the
class of Lévy processes ξ, for which we can obtain a series expansion of the law of
I(ξ).

Before stating the next results let us introduce some notation. First, since in
our setting ξ drifts to −∞, it is well-known that the ascending (resp. descend-
ing) ladder height process H+ = (H+(t))t≥0 (resp. H− = (−H−(t))t≥0) is a killed
(resp. proper) subordinator. Then, we write, for any z ∈ iR,

(2.29) φ+(z)= logE
[
exp(zH+(1))

]= δ+z+
∫

(0,∞)
(ezy −1)µ+(y. )−k+ ,

where δ+ ≥ 0 is the drift and k+ > 0 is the killing rate. Similarly, with δ− ≥ 0, we
have

(2.30) φ−(z)= logE [exp(zH−(1))]=−δ−z−
∫

(0,∞)
(1− e−zy)µ−(y. ) .

We recall that the integrability condition
∫ ∞

0 (1∧ y)µ±(d y)<∞ holds. The Wiener-
Hopf factorization then reads off as follows

(2.31) Ψ(z)=−φ+(z)φ−(z), for any z ∈ iR.

Definition (2.32). We denote by P the set of positive measures on R+ which
admit a non-increasing density.

Before we formulate the next result we introduce the two main hypothesis:
(H1) Assume further that −∞ < E [ξ1] and that one of the following conditions

holds:
i): µ+ ∈P and there exists z+ > 0 such that for all z with, ℜ(z) ∈ (0, z+), we

have |Ψ(z)| <∞.
ii): Π+ ∈P .

(H2) Assume that
i): µ+ ∈P , k+ > 0 and µ− ∈P .

Then the following result has been proved by Pardo, Patie & Savov [49].

THEOREM (2.33). Assume that ξ is a Lévy process that drifts to −∞ with char-
acteristics of the ladder height processes as in (2.29) and (2.30). Let either (H1) or
(H2) holds. Then, in both cases, there exists a spectrally positive Lévy process Y
with a negative mean whose Laplace exponent ψ+ takes the form

(2.34) ψ+(−s)=−sφ+(−s)= δ+s2 +k+s+ s2
∫ ∞

0
e−syµ+(y,∞)d y, s ≥ 0,

and the following factorization holds

(2.35) I(ξ) d= I(−H−)× I(Y )

where d= stands for the identity in law and × for the product of independent random
variables.
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The above result has been recently improved by Patie and Savov [52]. The
obtained identity can be looked from another perspective. Let us have two sub-
ordinators with Lévy measures µ± such that µ+ ∈ P , k+ > 0 and µ− ∈ P . Then
according to Vigon’s theory of philanthropy, see [58], we can construct a process ξ
such that its ladder height processes have exponents as in (2.29) and (2.30) and
hence ξ satisfies the conditions of the previous Theorem. Therefore this method
can be used to synthesize examples starting from the building blocks, i.e. the
ladder height processes. This was observed in [49].

COROLLARY (2.36). Let µ± be the Lévy measures of two subordinators and
µ+ ∈ P , k+ > 0 and µ− ∈ P . Then there exists a Lévy process which drifts to −∞
whose ascending and descending ladder height processes have the Laplace expo-
nents respectively given by (2.29) and (2.30). Then all the claims of the Theorem
(2.33) hold and in particular we have the factorization (2.35).

Another interesting problem is determining the behaviour of the density of the
exponential functional I(ξ) at 0 and at ∞. This problem has been recently studied
by Kuznetzov [37] for Lévy processes with rational Laplace exponent (at 0 and at
∞) and by Patie [51] for spectrally negative Lévy processes (at ∞). In most of the
applications, it is enough to have estimates of the tail behaviour P(I(ξ) ≤ t) when
t goes to 0 and/or P(I(ξ) ≥ t) when t goes to ∞. The tail behaviour P(I(ξ) ≤ t) was
studied by Pardo [48] in the case where −ξ is spectrally positive Lévy process and
its Laplace exponent is regularly varying at infinity with index γ ∈ (1,2). That is
the content of the following result.

PROPOSITION (2.37). Let I(ξ) be the exponential functional associated to a spec-
trally negative Lévy process ξ. Suppose that ψ, the Laplace exponent of −ξ, varies
regularly at +∞ with index β ∈ (1,2). Then

(2.38) − logP
(
I
(
ξ
)< 1/x

)∼ (β−1)
(
H(x) as x →+∞,

where
(
H(x)= inf

{
s > 0 , ψ(s)/s > x

}
.

In the case where the Lévy process is the negative of a subordinator several
results are available to describe the left and right tail distribution of the expo-
nential functional. Haas and Rivero [30] studied the case when ξ is the negative
of a subordinator under several different frameworks, obtaining very precise es-
timates of the right tail behavior of the law of I, and described the maximum
domain of attraction of I. One of the main results in [30] is the following descrip-
tion of the hazard rate function of an exponential functional of the negative of a
subordinator.

THEOREM (2.39). Let −ξ be a subordinator, q ≥ 0, andϕΠ,q the function defined
in (2.64) below. Ieq (ξ) has a density k such that

1. if a = 0 and liminfx→0+ xΠ(x)∫ x

0
Π(u)du

> 0,

k(t)
P(Ieq (ξ)> t)

∼t→∞
ϕΠ,q(t)

t
, − logP(Ieq (ξ)> t)∼t→∞

∫ t

c

ϕΠ,q(u)
u

du.
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2. if a > 0 and 0< liminf
x→0+

xΠ(x)∫ x

0
Π(u)du

≤ limsup
x→0+

xΠ(x)∫ x

0
Π(u)du

< 1,

k(t)
P(Ieq (ξ)> t)

∼t→1/a aϕΠ,q

(
t

1−at

)
.

3. if a > 0 and Π(0,∞)<∞,
(

1
a
− t

)
k(t)

P(Ieq (ξ)> t)
∼t→1/a

Π(0,∞)+ q
a

.

In the first two cases the Von-mises condition is satisfied

k(t)
∫ ∞

t
P(Ieq (ξ)> s)ds/(P(Ieq (ξ)> t))2 −−−→

t→tF
1.

To describe the behaviour of the distribution at 0 of the negative of a subordi-
nator we introduce the following assumption.
(A) The Lévy measure Π belongs to the class Lα for some α≥ 0, that is to say that
the tail Lévy measure Π satisfies

(2.40) lim
x→∞

Π(x+ y)

Π(x)
= e−αy, for all y ∈R.

Observe that regularly varying and subexponential tail Lévy measures satisfy
this assumption with α = 0 and that convolution equivalent Lévy measures are
examples of Lévy measures satisfying (2.40) for some index α> 0.

THEOREM (2.41). Let q ≥ 0 and ξ = −σ, where σ is a subordinator such that
when q = 0 the Lévy measure Π satisfies assumption (A). The following asymptotic
behaviour holds for the density function k of the exponential functional Ieq .

i) If q > 0, then
k(x)−→ q as x ↓ 0.

ii) If q = 0, then E[I−α]<∞ and

k(x)∼E
[
I−α

]
Π(log1/x) as x ↓ 0.

From this result it is possible to derive estimates for the exponential functional
of the negative of a type of spectrally negative Lévy process, see [50].

Furthermore, the tail behaviour P(I ≥ t) has been studied in a general setting,
see for instance [19, 45, 54, 56], which is far from being an exhaustive list of
references. We quote the following result from [54, 56].

THEOREM (2.42). (i) Assume that ξ1 is no-lattice and it satisfies the condi-
tions

E
[
exp(γξ1)

]= 1 and E
[
ξ+1 exp(γξ1)

]<∞.
In this case we have that tγP(I > t)−−−→

t→∞ Cγ ∈ (0,∞).
(ii) Assume q = 0, that there exists a γ > 0 s.t. ξ is convolution equivalent with

index γ,

lim
t→∞

P(ξ1 > t+ s)
P(ξ1 > t)

= e−γs, s ∈R, lim
t→∞

P(ξ2 > t)
P(ξ1 > t)

= 2E[eγξ1 ],

and E[eγξ1 ] < 1. If 0 < γ ≤ 1, we assume furthermore that E[ξ1] ∈ (−∞,0).
Under these hypotheses

P(I > t)∼ cγE(I |1−γ|)Πξ(log(t),∞)= t−γ`(t), t →∞,
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with ` an slowly varying function.

More results about exponential functionals and their relations with other areas
of probability theory can be found in the thorough review by Bertoin and Yor [9].

(2.3) Asymptotic behaviour. The asymptotic behaviour of positive self-similar
Markov processes X (x) with initial state x > 0 was studied by Lamperti (Theorem
7.1 in [44]). This property is inherited by the asymptotic behaviour of its associ-
ated Lévy process ξ and the fact that,

lim
t→0

τ(t)
t

= 1 Px −a.s.

Particularly, we have the following result due to Lamperti [44].

THEOREM (2.43). Let ξ a Lévy process that admits a law of the iterated loga-
rithm, i.e. for some function g : [0,+∞)→ [0,+∞) and some constant c ∈R

liminf
t→0

ξt

g(t)
= c or limsup

t→0

ξt

g(t)
= c, almost surely.

Then for x > 0, X (x), its associated self-similar Markov process, satisfies

liminf
t→0

X (x)
t − x
g(t)

= C(x, c) or limsup
t→0

X (x)
t − x
g(t)

= C(x, c), almost surely,

where C(x, c) is a constant that only depends on x and c.

Of course, we would like to know if we can use the Lamperti representation to
the study of the asymptotic behaviour of X (x) at +∞. Also, we would like to know
if we can study the lower and upper functions of positive self-similar Markov
processes starting from 0 at small times.

Several partial results on the lower envelope of X (0) have already been estab-
lished before, the oldest of which are due to Dvoretsky and Erdös [25] and Motoo
[46] who studied the special case of Bessel processes. More precisely, when X (0) is
a Bessel process with dimension δ> 2, we have the following integral test at 0: if
f is an increasing function then

P(X (0)
t < f (t), i.o., as t → 0)=

{
0
1 according as

∫
0+

(
f (t)

t

) δ−2
4 dt

t

{ <∞
=∞ .

The time inversion property of Bessel processes, induces the same integral test
for the behaviour at +∞ of X (x), x ≥ 0.

Rivero [53] studied the lower functions of increasing self-similar Markov pro-
cesses via the Lamperti representation. Following the method of Motoo [46] ap-
plied to (e−t X (x)

et−1, t ≥ 0), the Ornstein-Uhlenbeck process associated to X (x) (see
Carmona et al. [15] for a proper definition), and under the assumption that the
density ρ is decreasing in a neighborhood of +∞ and bounded, Rivero [53] gave
the following integral test for the lower envelope at +∞.

THEOREM (2.44). Let x > 0 and X (x) an increasing self-similar Markov pro-
cesses starting from x. If h is a decreasing function then

P
(
X (x)

s < s1/αh(s), i.o., as s →+∞
)
= 0 or 1
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according as ∫ ∞
ρ
(
1/h(s)

)ds
s

is finite or infinite.

A similar integral test for the lower envelope at 0 is obtained by Rivero via
some reversal properties of X (x). From estimates of ρ and from the above result,
Rivero [53] deduced the following laws of the iterated logarithm.

THEOREM (2.45). Let α> 0, and ξ be a subordinator whose Laplace exponent φ
is regularly varying at +∞ with index β ∈ (0,1). Suppose that the density ρ, of the
Lévy exponential functional I(−αξ) of ξ satisfies that is decreasing in a neighbor-
hood of +∞, and bounded. For x ≥ 0, let X (x) be the increasing positive self-similar
Markov process associated to ξ with scaling index 1/α. Define

f (t)= φ(log | log t|)
log | log t| , t 6= e, t > 0,

then for any x ≥ 0

liminf
t→+∞

X (x)

(t f (t))1/α =αβ/α(1−β)(1−β)/α almost surely,

and

liminf
t→0

X (0)

(t f (t))1/α =αβ/α(1−β)(1−β)/α almost surely.

This result extends the laws of the iterated logarithm of Friested [28] and Xiao
[61].

We now present some general results on the lower envelope of X (0) at 0 and
at ∞. The next result obtained by Chaumont and Pardo [19] means in particular
that the asymptotic behaviour of X (0) only depends on the tail behaviour of the
law of I(−ξ), and on this of the law of

Iq(−ξ) (def)=
∫ T̂−q

0
exp

{
−ξs

}
ds,

with T̂x = inf{t :−ξt ≤ x}, for x ≤ 0. So also we set

F(t) (def)= P(I(−ξ)> t) and Fq(t) (def)= P(Iq(−ξ)> t).

THEOREM (2.46). The lower envelope of X (0) at 0 is described as follows. Let f
be an increasing function.

(i) If ∫
0+

F
(

t
f (t)

)
dt
t

<∞ ,

then for all ε> 0,

P(X (0)
t < (1−ε) f (t), i.o., as t → 0)= 0 .

(ii) If for all q > 0, ∫
0+

Fq

(
t

f (t)

)
dt
t

=∞ ,

then for all ε> 0,

P(X (0)
t < (1+ε) f (t), i.o., as t → 0)= 1 .
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(iii) Suppose that t 7→ f (t)/t is increasing. If there exists γ> 1 such that,

limsupt→+∞P(I > γt)/P(I > t)< 1 and if
∫

0+
F

(
t

f (t)

)
dt
t

=∞ ,

then for all ε> 0,

P(X (0)
t < (1+ε) f (t), i.o., as t → 0)= 1 .

As can be expected, there is a version of the last result for large times but
Chaumont and Pardo proved that it could be extended also for X (x), for x > 0.

We now consider two types of behaviour of F(t). The first type of tail behaviour
that we consider is the case where F is regularly varying at infinity, i.e.

(2.47) F(t)∼λt−γL(t) , t →+∞ ,

where γ > 0 and L is a slowly varying function at +∞. It is not difficult to see
that, under this assumption, for any q > 0 the functions Fq and F are equivalent,
i.e. Fq ³ F. More precisely, if (2.47) holds then for all q > 0,

(2.48) (1− e−γq)F(t)≤ Fq(t)≤ F(t) ,

for all t large enough. This last inequality is consequence from (2.47) and the
independence of the processes (ξs,0 ≤ s ≤ T̂−q) and (ξs+T̂−q

−ξT̂−q
, s ≥ 0). It is im-

portant to note that the Dvoretzky and Erdös integral test is consequence of this
result when X (0) is a transient Bessel process. Another example of such behaviour
is when the process ξ satisfies the hypotheses of Theorem (2.42).

The second type of behaviour that we shall consider is when logF is regularly
varying at +∞, i.e.

(2.49) − logF(t)∼λtβL(t) , as t →∞,

where λ> 0, β> 0 and L is a function which varies slowly at +∞. Under this as-
sumption, the conditions of part (iii) of the general integral tests due to Chaumont
and Pardo are satisfied.

Define the function ψ by

(2.50) ψ(t) (def)= t
inf{s : 1/F(s)> | log t|} , t > 0 , t 6= 1 .

Chaumont and Pardo found that the lower envelope of X (0) satisfies the following
law of the iterated logarithm:

(i)

(2.51) liminf
t→0

X (0)
t

ψ(t)
= 1 , almost surely.

(ii) For all x ≥ 0,

(2.52) liminf
t→+∞

X (x)
t

ψ(t)
= 1 , almost surely.

Note that this result extends the laws of the iterated logarithm found by Xiao
[61] and Rivero [53] in the increasing case, but not their integral tests. Also, note
that the assumption that the density of I(−ξ) is decreasing in a neigbourhood of
+∞ in the law of the iterated logarithm due to Rivero [53] is not necessary but it
is really important for his integral tests. In what follows we will describe some
integral tests obtained in [47].
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Let us define

Ḡ(t) (def)= P
(
S1 < t

)
and F̄(t) (def)= P

(
I(−ξ)< t

)
,

where S1 denotes the first passage time of X (0) above the level 1. We also denote
by H0 the totality of positive increasing functions h(t) on (0,∞) that satisfy

i) h(0)= 0, and

ii) there exists β ∈ (0,1) such that sup
t<β

t
h(t)

<∞.

The following result is extracted from [47].

THEOREM (2.53). Let h ∈H0.
i) If ∫

0+
Ḡ

(
t

h(t)

)
dt
t
<∞,

then for all ε> 0

P0

(
X (0)

t > (1+ε)h(t), i.o., as t → 0
)
= 0.

ii) If ∫
0+

F̄
(

t
h(t)

)
dt
t
=∞,

then for all ε> 0

P0

(
X t > (1−ε)h(t), i.o., as t → 0

)
= 1.

A similar integral test holds for large times. As in the case for the lower en-
velope of X (0), these results can be applied to two type of estimates of the tail
behaviour of I and νI. First, we discuss the case when F̄ and Ḡ satisfy

(2.54) ctαL(t)≤ F̄(t)≤ Ḡ(t)≤ CtαL(t) as t → 0,

where α> 0, c and C are two positive constants such that c ≤ C and L is a slowly
varying function at 0. An important example included in this case is when F̄ and
Ḡ are regularly varying functions at 0. The “regularity” of the behaviour of F̄ and
Ḡ gives the following integral tests obtained in [47].

THEOREM (2.55) (Regular case). Under condition (2.54), the upper envelope of
X (0) at 0 and at +∞ is as follows. Let h ∈H0, such that either limt→0 t/h(t) = 0 or
liminft→0 t/h(t)> 0, then

P
(
X (0)

t > h(t), i.o., as t → 0
)
= 0 or 1,

according as ∫
0+

F̄
(

t
h(t)

)
dt
t
<∞ is finite or infinite.

Note that under condition (2.54), we may drop the factor (1+ ε) and that the pre-
vious integral test depends only of F̄. This result extends the integral test of
Khintchine [34] for a stable subordinator. This is consequence of the following
estimate of F̄,

F̄(t)∼ ktβ+1 as t → 0,
and since in the increasing case this integral test determines the upper envelope
of increasing pssMp.
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The second type of behaviour that we shall consider is when log F̄ and logḠ are
regularly varying at 0, i.e

(2.56) − logḠ(1/t)∼− log F̄(1/t)∼λtβL(t), as t →+∞,

where λ> 0, β> 0 and L is a slowly varying function at +∞. Under this assump-
tion, the upper envelope of X (0) may be described as follows. Define the function

φ(t) (def)= t inf
{
s : 1/F̄(1/s)> | log t|}, t > 0, t 6= 1.

The following result has been obtained in [47].

THEOREM (2.57) (Log-regular case). Under condition (2.56), the future infi-
mum process satisfies the following law of the iterated logarithm:

i)

limsup
t→0

X (0)
t

φ(t)
= 1, almost surely.

ii) For all x ≥ 0,

limsup
t→+∞

X (x)
t

φ(t)
= 1, almost surely.

It can be seen using the results in Theorem (2.37) that there is a large family
that satisfies the condition (2.56). From this estimate Pardo obtained the fol-
lowing law of iterated logarithm for the future infimum process in terms of the
following function.
Let us define the function

f (t)= ψ(log | log t|)
log | log t| for t > 1, t 6= e,

with ψ the Laplace exponent of −ξ, with ξ a spectrally negative Lévy process. By
integration by parts, we can see that the function ψ(λ)/λ is increasing, hence it
is straightforward that the function t f (t) is also increasing in a neighbourhood of
∞. Using this in [47] it has been proved that if ψ is regularly varying at +∞ with
index β ∈ (1,2), then

(2.58) limsup
t→0

X (0)
t(

t f (t)
)1/α =αβ/α(β−1)−(β−1)/α almost surely,

and,

(2.59) limsup
t→+∞

X (x)
t(

t f (t)
)1/α =αβ/α(β−1)−(β−1)/α almost surely.

We finish this section with the following interpretation of the result of existence
of a limit measure P0. If (ξ,P) is a subordinator, associated to a pssMp (X ,P) via
Lamperti’s transformation, and has finite mean m := E(ξ1) < ∞, we know that
there exists a measure P0+ such that

Px(X1 ∈ d y)
weakly−−−−−→
x→0+

P0+(X1 ∈ dx)= m−1 yαP
(
I−1/α ∈ d y

)
,

where I = ∫ ∞
0 e−αξs ds. It is furthermore known that if E(ξ1)=∞, then

Px(X1 ∈ d y)
weakly−−−−−→
x→0+

δ∞(d y).
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Due to the self-similarity

Px(X1 ∈ d y)=P1 (xX1/xα ∈ d y) ,

hence the latter is equivalent to

X t

t1/α
Law−−−→
t→∞

{
Z, if E(ξ1)<∞, Z has the same law as X1 under P0+;
∞, if E(ξ1)=∞.

A further problem that has been addressed in [13] describes the rate at which
X t/t1/α tends towards ∞, when the mean of the underlying subordinator ξ is not
finite. The main result by Caballero and Rivero [13] is the following.

THEOREM (2.60). Let {X (t), t ≥ 0} be a positive 1/α-self-similar Markov process
with increasing paths. The following assertions are equivalent:

(i) φ :R+ →R+, is regularly varying at 0 with an index β ∈ [0,1].
(ii) Under P1 the random variables

{
log(X (t)/t1/α)/ log(t), t > 1

}
converge weakly

as t →∞ towards a r.v. V .
(iii) For any x > 0, under Px the random variables

{
log(X (t)/t1/α)/ log(t), t > 1

}
con-

verge weakly as t →∞ towards a r.v. V .

In this case, the law of V is given by: V = 0 a.s. if β= 1; V =∞, a.s. if β= 0, and if
β ∈]0,1[, its law has a density given by

α1−β2β sin(βπ)
π

v−β(2+αv)−1dv, v > 0.

(2.4) Quasi-stationary distributions. Another topic that has been studied re-
lated with the asymptotic behaviour of pssMp is the existence of Yaglom limits
and quasi-stationary distributions. The main difference with the asymptotic be-
haviour described before relies on the idea that pssMp that hit zero at a finite
time may be at an equilibrium state before being absorbed at 0. The main ques-
tions that were addressed in the paper [30] are the following. Assuming that the
self-similar Markov process hits zero in a finite time with probability one, deter-
mine

QS-I whether there exists a probability measure µ on R+ such that for any
t > 0, ∫

R+
µ(dx)Px(X t ∈ d y|t < T0)=µ(d y), y≥ 0,

i.e. µ is a quasi-stationary measure for the pssMp (X ,P);
QS-II whether there exists a function g : R+ → R+ \ {0} and a non-degenerate

probability measure ν on R+ such that

P1

(
X t

g(t)
∈ d y

∣∣∣∣t < T0

)
weakly−−−−−→
t→tF

ν(d y),

we will say that ν is the limit in the Yaglom sense of X normalized by g;
tF = sup{t > 0 :P1(T0 > t)> 0}.

QS-III what is the relation between µ and ν.

These questions were studied by Haas in [29] under the assumption that X has
non-increasing paths and that the Lévy measure of the associated Lévy process is



SELF-SIMILAR MARKOV PROCESSES 225

regularly varying at 0. In [30] the general case has been studied. We will assume
wlog that the self-similarity index is equal to 1. In other case, the process

Yt = Xα
t , t ≥ 0,

is a 1-pssMp. A QS-law for X exists iff a QS-law for Y exists. Analogously for
Yaglom limits.

The problem of existence of quasi-stationary distributions was tangentially
studied by Bertoin and Yor [7] in the case where the process has non-increasing
paths. A slight modification of their main results read as follows.

THEOREM (2.61). If X has non-increasing paths, that is −ξ is a subordinator,
then

• there exists a QS-law for X ,∫
R+
µ(dx)Px(X t ∈ d y|t < T0)=µ(d y), y≥ 0.

• µ is characterized by its entire moments; there is a β> 0∫
R+

xnµ(dx)=β−n
n∏

i=1
φ(i), n ≥ 1,

with φ(λ)=− logE(eλξ1 ), λ> 0,
• let R follow the law µ and assume it is independent of ξ, then

R×
∫ ∞

0
eξs ds ∼Exponential(β).

So, in order to answer the question (QS-I) one should deal with the case where
the paths are allowed to increase. In Theorem 1.1 in [30] it is proved that a
necessary and sufficient condition for the existence of a QS-law for a pssMp is
that the process has non-increasing paths. The main argument in proving the
necessity of this condition is the following. Assume µ is a QS-law for X , the simple
Markov property implies that there exists an index θ > 0 such that∫

(0,∞)
µ(dx)Px(t < T0)= e−θt, t ≥ 0.

The self-similarity of X implies

e−θt =
∫

(0,∞)
µ(dx)Px(t < T0)=

∫
[0,∞)

µ(dx)P1(t < xT0).

Recall then that (T0,P1) Law= (I,P), where I = ∫ ζ
0 eξs ds. Then if R ∼ µ and R is

independent of I, we have that

RI Law= e/θ.

This identity and the independence imply that I has moments of all positive or-
ders. An easy argument allows to prove that the totality of Lévy processes for
which the exponential functional I has moments of all positive orders are exactly
non-increasing Lévy processes. This concludes the argument because Lamperti’s
transform preserves the path of the process.

A by product of the above discussion is that the existence of QS-laws is closely
related to factorizations of he exponential r.v. as the product of two independent
r.v., one of which is an exponential functional. As we will see below this extends
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to Yaglom limits and give also rise to factorizations of Pareto and Beta r.v. Be-
fore giving a precise result we state a key observation that allows to transform
the problem of existence of Yaglom limits into a problem of maximum domain of
attraction for exponential functionals.

LEMMA (2.62). Let X be a pssMp that hits 0 in a finite time and ξ the Lévy
process associated to it via Lamperti’s transformation, which necessarily drift to-
wards −∞ or has a finite lifetime. We denote I := ∫ ∞

0 eξs ds. For t > 0, we have the
equality of measures

P(I − t ∈ d y|t < I)=P1(X t Ĩ ∈ d y|t < T0),

where Ĩ has the same law as I and is independent of (Xs, s ≤ t).

This result is an straithforward consequence of Lamperti’s transformation.
With this result at hand we have the following answer to question (QS-II) about
Yaglom limits.

THEOREM (2.63). Let X be a pssMp that hits 0 in a finite time. The following
assertions are equivalent.

1. The process (X t, t ≥ 0) admits a Yaglom limit.
2. The process (X t Ĩ, t ≥ 0) admits a Yaglom limit, with Ĩ Law= I and independent

of X .
3. There exists a function g : R+ → R+ \ {0} and a non-degenerate probability

measure Λ̃ on R+ s.t.

P
(

I − t
g(t)

∈ d y
∣∣∣∣t < I

)
weakly−−−−−→
t→∞ Λ̃(d y).

4. I is in the maximum domain of attraction of a Gumbel, Weibul or Fréchet
distribution.

In this case,
• if I ∈ MDA(Gumbel), Λ̃(d y)= e−yd y, y≥ 0;
• if I ∈ MDA(Weibul), ∃γ> 0 s.t. Λ̃(d y)= γ(1− y)γ−1d y, y ∈ (0,1);
• if I ∈ MDA(Frechet), ∃γ> 0 s.t. Λ̃(d y)= γ(1+ y)−γ−1d y, y≥ 0.

As we mentioned before the problem of existence of Yaglom limits is also re-
lated to factorisations of r.v. The Lemma (2.62) and the latter theorem have the
following consequence: if X admits a Yaglom limit, then there exists a non trivial
independent random variable

R Law= weak- lim
t→∞

X t

g(t)
|t < T0,

s.t.

R× I ∼


Exponential(β), for some β> 0,
Beta(1,γ), for some γ> 0,
Pareto(γ), for some γ> 0.

A systematic study of this type of factorisations and some consequences is carried
out in [31].

We will next quote two of the main results from [30] providing some neces-
sary and sufficient conditions for I to be in a maximum domain of attraction of a
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Gumbel or Frechet distribution. Further cases are treated in [30], together with
precise results about descriptions of the Weibull case.

Assume X has non-increasing paths and let ξ the underlying Lévy process. It
is known that

− logE(eλξ1 )= q+aλ+
∫ ∞

0
1− e−λxΠ(dx), λ> 0,

with Π a measure on (0,∞) such that
∫

(0,∞) 1∧ xΠ(dx)<∞, q,a ≥ 0. We denote by
ϕΠ,q the inverse function of the mapping

(2.64) t 7→ t∫ ∞

0
(1− e−tx)Π(dx)+ q

;

the inverse is well defined on [0,∞) if q > 0 and on
[
(
∫ ∞

0 xΠ(dx))−1,∞)
in other

case. We denote Π(x) :=Π(x,∞).

THEOREM (2.65). Let X be a pssMp with non-increasing paths, and ξ the un-
derlying Lévy process. Assume that −ξ is a subordinator with killing term q ≥ 0,
drift a = 0 and Lévy measure Π such that

(2.66) liminf
x→0

xΠ(x)∫ x

0
Π(u)du

> 0.

In this case I ∈ MDAGumbel, tF =∞ and

P1

(
ϕΠ,q(t)X t

t
∈ ·

∣∣∣∣ t < T0

)
−−−→
t→∞ µ(e)

I .

µ(e)
I is the unique probability measure such that if R ∼ µ(e)

I , and R⊥I then RI ∼
Exp(1).

Reciprocally, if I ∈ MDAGumbel and tF =∞, then −ξ is a subordinator with drift

zero and g(t)∼

∫ ∞

t
P(I > s)ds

P(I > t) = E1(X t|t < T0)E(I).

The proof of this result rely on precise estimates for the tail distribution of
an exponential functional of a non-increasing Lévy processes, some of which are
described in Theorem (2.39) here, and this allow to verify that the so-called Von-
Mises condition is satisfied which is well known to be a necessary and sufficient
condition for a r.v. to be in the maximum domain of attraction of a Gumbel distri-
bution.

To deal with the non-monotone case, which happens to be the one correspond-
ing to the domain of attraction of a Frechet distribution, the following result has
been obtained in [30].

THEOREM (2.67). The following are equivalent:
• X is a pssMp with non-monotone paths and that admits a Yaglom limit.
• I ∈MDAFréchet.
• t 7→P(I > t) is regularly varying at infinity with some index −γ, γ> 0.

In this case

(2.68) P1

(
X t

t
∈ ·

∣∣∣∣ t < T0

)
−−−→
t→∞ µ

(Pγ)
I .
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The probability measure µ(Pγ)
I is the unique p.m. such that if R ∼ µ

(Pγ)
I , and R⊥I

then
P(RI ∈ d y)= γ(1+ y)−γ, y> 0.

A necessary condition for I ∈MDAFréchet is

E[eθξ1 ]≤ 1, ∀0≤ θ ≤ γ, and E[eδξ1 ]> 1,∀δ> γ,

for some γ> 0.

Sufficient conditions for the above theorem to hold were given in Theo-
rem (2.42).

3. Real valued self-similar Markov processes

In previous sections, we studied positive self-similar Markov processes and
their relationship with Lévy processes via the Lamperti representation. In
this section we survey some recent results on real valued self-similar Markov
processes which turn out to be associated to Markov additive processes via a
Lamperti-type representation.

The structure of real valued self-similar Markov processes has been investi-
gated by Chybiryakov [21] in the symmetric case, and by Kiu [35] and Chaumont
et al. [18] in general. Inspired from [38], here we give an interpretation of those
authors’ results in terms of a two-state Markov additive process. We begin with
some relevant definitions.

We focus on real-valued self-similar Markov processes (rssMp) X = (X t, t ≥ 0)
with self- similarity index α> 0 and starting from x ∈R\{0}. Let (Px)x∈R\{0} denote
its probability laws starting from x.

In [18], the authors confine their attention to processes in “class C.4”. A real
valued self-similar Markov process X is in this class if,

Px(∃t > 0 : X t X t− < 0)= 1, ∀x 6= 0.

By the strong Markov property this implies that, with probability one, the process
X changes sign infinitely often. This assumption will be in force in the sequel.

The other cases introduced in [18], namely C.1-3, are those where either the
process changes once, and only once, of sign, and those where the process never
changes of sign. In the former cases the construction of real valued ssMp can be
easily deduced using the ideas to deal with the cases where the process changes
of sign infinitely many times. In the latter case, the real-ssMp is constructed
by applying Lamperti’s transformation to the process when started at a positive
(negative) position using two Lévy processes, one to describe the positive values of
the path and the other for the negative values. We do not provide further details
about these cases.

(3.1) Markov additive processes. Let E be a finite state space and (Gt)t≥0 a
standard filtration. A càdlàg process (ξ, J) in R×E with law P is called a Markov
additive process (MAP) with respect to (Gt)t≥0 if (J(t))t≥0 is a continuous-time
Markov chain in E, and the following property is satisfied, for any i ∈ E, s, t ≥ 0:

(3.1) given {J(t)= i}, the pair (ξ(t+ s)−ξ(t), J(t+ s)) is independent of Gt,

and has the same distribution as (ξ(s)−ξ(0), J(s)) given {J(0)= i}.
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Aspects of the theory of Markov additive processes are covered in a number of
texts, among them [1] and [2].

Let us introduce some notation. We write Pi =P(·|ξ(0)= 0, J(0)= i); and if µ is
a probability distribution on E, we write Pµ = P(·|ξ(0) = 0, J(0) ∼ µ) =∑

i∈E µ(i)Pi.
We adopt a similar convention for expectations.

It is well-known that a Markov additive process (ξ, J) also satisfies (3.1) with t
replaced by a finite stopping time. Furthermore, it has the structure given by the
following proposition; see [2, §XI.2a] and [33, Proposition 2.5].

PROPOSITION (3.2). The pair (ξ, J) is a Markov additive process if and only if,
for each i, j ∈ E, there exist a sequence of iid Lévy processes (ξn

i )n≥0 and a sequence
of iid random variables (Un

i j)n≥0, independent of the chain J, such that if T0 = 0
and (Tn)n≥1 are the jump times of J, the process ξ has the representation

ξ(t)= 1{n>0}(ξ(Tn−)+Un
J(Tn−),J(Tn))+ξn

J(Tn)(t−Tn), for t ∈ [Tn,Tn+1), n ≥ 0.

For each i ∈ E, it will be convenient to define, on the same probability space, ξi
as a Lévy process whose distribution is the common law of the ξn

i processes in the
above representation; and similarly, for each i, j ∈ E, define Ui j to be a random
variable having the common law of the Un

i j variables.
Let us now fix the following setup. Firstly, we confine ourselves to irreducible

Markov chains J. Let the state space E be the finite set {1, . . . , N}, for some N ∈N.
Denote the transition rate matrix of the chain J by Q = (qi j)i, j∈E . For each i ∈ E,
the Laplace exponent of the Lévy process ξi will be written ψi, in the sense that
eψi(z) = E[ezξi(1)], for all z ∈ C for which the right-hand side exists. For each pair
of i, j ∈ E, define the Laplace transform G i j(z) = E[ezUi j ] of the jump distribution
Ui j, where this exists; write G(z) for the N ×N matrix whose (i, j)–th element is
G i j(z). We will adopt the convention that Ui j = 0 if qi j = 0, i 6= j, and also set
Uii = 0 for each i ∈ E.

A multidimensional analogue of the Laplace exponent of a Lévy process is pro-
vided by the matrix-valued function

(3.3) F(z)= diag(ψ1(z), . . . ,ψN (z))+Q ◦G(z),

for all z ∈ C where the elements on the right are defined, where ◦ indicates ele-
mentwise multiplication, also called Hadamard multiplication. It is then known
that

Ei[ezξ(t); J(t)= j]= (
eF(z)t)

i j, for i, j ∈ E,

for all z ∈ C where one side of the equality is defined. For this reason, F is called
the matrix exponent of the MAP ξ.

(3.2) Lamperti type representation of real valued self similar Markov
processes. Let X be a real valued self-similar Markov process. In [18] it has
been proved that X may be identified up to the first hitting time of 0,

T0 = inf{t ≥ 0 : X t− = 0 or X t = 0},

as the time-changed exponential of a certain complex-valued process E , which
from the terminology used in [18] it will be called the Lamperti-Kiu representation
of X . The main result in [18] is summarised in the following theorem.
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THEOREM (3.4). Let X be a rssMp in class C.4, and let x 6= 0. It is possible to
define independent sequences (ξ±,k)k≥0, (ζ±,k)k≥0, (U±,k)k≥0 of iid random objects
with the following proprties:

1. The elements of these sequences are distributed such that: the ξ± are real-
valued Lévy processes; ζ± are exponential random variables with parameters
q±; and U± are real-valued random variables.

2. For each x 6= 0, define the following objects:

(ξ(x,k),ζ(x,k),U (x,k))=
{

(ξ+,k,ζ+,k,U+,k), if sgn(x)(−1)k = 1
(ξ−,k,ζ−,k,U−,k), if sgn(x)(−1)k =−1,

T (x)
0 = 0, T (x)

n =
n−1∑
k=0

ζ(x,k),

N(x)
t =max{n ≥ 0 : T (x)

n ≤ t},

σ(x)
t = t−T (x)

N(x)
t

,

E (x)
t = ξ(N(x)

t )

σ(x)
t

+
Nt−1∑
k=0

(ξ(x,k)
ζ(x,k) +U (x,k))+ iπN(x)

t , t ≥ 0,

τ(t)= inf
{
s > 0 :

∫ s

0
|exp(αE (x)

u )|du > t|x|−α
}
, t < T0.

Then, the process X under the measure Px has the representation

X t = xexp(E (x)
τ(t)), 0≤ t < T0.

3. Reciprocally, any process constructed in this form is a real-valued ssMp.

The case where X is a stable process killed at its first hitting time of 0 or
conditioned to avoid zero is studied in detail in [18].

The abundance of notation necessary to be precise in this context may obscure
the fundamental idea, which is as follows. At any given time, the process E evolves
as a Lévy process ξ±, moving along a line ℑ(z) = πN, up until an exponential
‘clock’ ζ± (corresponding to the process X changing sign) rings. At this point the
imaginary part of E is incremented by π, the real part jumps by U±, and the
process begins to evolve as the other Lévy process, ξ∓.

Particularly in light of the discussion in the previous section, the latter result
can be formulated using Markov additive processes. This is the purpose of the
following result proved in [38].

PROPOSITION (3.5). Let X be an rssMp, with Lamperti–Kiu representation E .
Define furthermore

[n]=
{

1, if n is odd,
2, if n is even.

Then, for each x 6= 0, the process

(ξ(t), J(t))= (ℜ(E (x)
t ),

[ℑ(E (x))t/π+1{x>0}
])

defined in Proposition 3 is a Markov additive process with state space E = {1,2},
and X under Px has the representation

X t = xexp
(
ξ(τ(t))+ iπ(J(τ(t))+1)

)
, for 0≤ t < T0,
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where we note that (ξ(0), J(0)) is equal to (0,1) if x > 0, or (0,2) if x < 0. Further-
more, the time-change τ has the representation

(3.6) τ(t)= inf
{
s > 0 :

∫ s

0
exp(αξ(u)) du > t|x|−α

}
, for t < T0,

in terms of the real-valued process ξ.

Note that the MAP (ξ, J) under P1 corresponds to the rssMp X started at a
point x > 0, and the MAP under P2 corresponds to the rssMp started at a point
x < 0.

Furthermore, we observe from the form (3.6) of the time-change τ that under
Px, for any x 6= 0, the following identity holds for T0, the hitting time of zero:

|x|−αT0
Law=

∫ ∞

0
eαξ(u) du.

Implicit in this statement is that the MAP on the right-hand side has law P1 if
x > 0, and law P2 if x < 0.

(3.3) Exponential functionals of MAPs. We start by describing the existence
of the leading eigenvalue of the matrix F, which will play a key role in our analysis
of MAPs. This is sometimes also called the Perron-Frobenius eigenvalue; see [2,
§XI.2c] and [33, Proposition 2.12].

PROPOSITION (3.7). Suppose that z ∈ C is such that F(z) is defined. Then, the
matrix F(z) has a real simple eigenvalue κ(z), which is larger than the real part
of all its other eigenvalues. Furthermore, the corresponding right-eigenvector v(z)
may be chosen so that vi(z)> 0 for every i ∈ E, and normalised such that

πv(z)= 1(3.8)

where π is the equilibrium distribution of the chain J.

This leading eigenvalue features in the following probabilistic result, which
identifies a martingale (also known as the Wald martingale) and change of mea-
sure analogous to the exponential martingale and Esscher transformation of a
Lévy process; cf. [2, Proposition XI.2.4, Theorem XIII.8.1].

PROPOSITION (3.9). Let

M(t,γ)= eγξ(t)−κ(γ)t vJ(t)(γ)
vJ(0)(γ)

, for t ≥ 0,

for some γ such that the right-hand side is defined. Then,
i) M(·,γ) is a unit-mean martingale with respect to (Gt)t≥0 under any initial

distribution of (ξ(0), J(0)).
ii) Define the change of measure

dP(γ)

dP

∣∣∣∣
Gt

= M(t,γ).

Under P(γ), the process ξ is still a Markov additive process, and it has the
following characteristics, for each i, j ∈ E:

– P(γ)(Ui j ∈ d x)= eγx

G i j(γ)
P(Ui j ∈ d x), and hence G(γ)

i j (z)= G i j(z+γ)
G i j(γ)

,

– q(γ)
i j = v j(γ)

vi(γ)
qi jG i j(γ) and
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– ψ
(γ)
i (z)=ψi(z+γ)−ψi(γ).

Furthermore,

F (γ)(z)= (diag(vi(γ), i ∈ E))−1[F(z+γ)−κ(γ)Id]diag(vi(γ), i ∈ E),

and hence,
κ(γ)(z)= κ(z+γ)−κ(γ).

Making use of this, the following proposition with properties of κ are often used
in the literature.

PROPOSITION (3.10). Suppose that F is defined in some open interval D of R.
Then, the leading eigenvalue κ of F is smooth and convex on D.

In Section 2.2, we studied the exponential functional of Lévy processes, now we
are interested in describing some results that are useful to compute the law of an
integrated exponential functional associated to Markov additive processes.

For a MAP ξ, let

I(−ξ)=
∫ ∞

0
exp(−ξ(t)) d t.

One way to characterise the law of I(−ξ) is via its Mellin transform, which we
write as M(s). This is the vector in RN whose ith element is given by

Mi(s)=Ei[I(−ξ)s−1], for i ∈ E.

We will shortly express a functional equation for M, analogous to the functional
equation for the Mellin transform for the exponential functional of Lévy processes
which we saw in Section 2.2. For Lévy processes, proofs of the result can be found
in [15], [45] and [55].

We make the following assumption, which is analogous to the Cramér condition
for a Lévy process; recall that κ is the leading eigenvalue of the matrix F, as
discussed in Section 3.1.

Definition (3.11) (Cramér condition for a Markov additive process). There ex-
ists z0 < 0 such that F(s) exists on (z0,0), and some θ ∈ (0,−z0), called the Cramér
number, such that κ(−θ)= 0.

Since the leading eigenvalue κ is smooth and convex where it is defined, it
follows also that κ(−s)< 0 for s ∈ (0,θ). In particular, this renders the matrix F(−s)
negative definite, and hence invertible. Furthermore, it follows that κ′(0−) > 0,
and hence (see [2, Corollary XI.2.7] and [33, Lemma 2.14]) that ξ drifts to +∞
independently of its initial state. This implies that I(−ξ) is an a.s. finite random
variable.

PROPOSITION (3.12). Suppose that ξ satisfies the Cramér condition (Assump-
tion 3.11) with Cramér number θ ∈ (0,1). Then, M(s) is finite and analytic when
ℜ(s) ∈ (0,1+θ), and we have the following vector-valued functional equation:

M(s+1)=−s(F(−s))−1M(s), for s ∈ (0,θ).
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CONVEX RISK MEASURES: A SELECTION OF PROPERTIES AND ITS
APPLICATIONS

LEONEL PÉREZ HERNÁNDEZ AND ERICK TREVIÑO AGUILAR

ABSTRACT. Fundamental problems in financial markets involve the understand-
ing of risks at different levels. In this note we start with the axiomatic framework
of a convex measure of risk and illustrate some of the new aspects being under
research. We focus on a selection of properties capturing more aspects of real
risks and allowing a more accurate modeling. We address the question of the
minimality of the penalty function associated to a convex measure of risk, which
for instance plays a central role in robust optimization problems. We also explain
how our general result specializes to a Lévy filtration. It is interesting that many
models based on Lévy processes include non bounded financial payoffs and we re-
view recent advances in the representation of conditional risk measures for non
bounded variables. We also discuss the key property of time consistency which
is crucial in the dynamical minimization of risks. As an application illustrating
the results being presented, we review the valuation of American options and the
identification of times of maximal risk

1. Introduction

A fundamental step impulsing the development of the theory of convex risk
measures is the axiomatic formulation building upon intuitive properties delin-
eated by Ph. Artzner, F. Delbaen, J. Eber and D. Heath [3]. The financial prin-
ciple ‘diversification does not increase risk’ transforms into a convexity property,
and by methods of convex analysis Föllmer and Schied [20, 21] and Frittelli and
Rosazza Gianin [22] clarify the general form of convex risk measures by means of
robust numerical representations and penalty functions. Artzner et al. [3] work
in a finite probability space. Representations of risk measures in a general prob-
ability space were obtained by Delbaen [8] for subadditive, first degree positive
homogeneous risk measures, and by [20, 21] and [22] in the general convex case.
These seminal papers initiated a new theory for the quantification of risks.

Efforts have been made to include more aspects of risk. Our goal in this note is
to illustrate through a selection of results some recent developments in the theory
and its applications.

The paper is organized as follows. In Section 2 we present results on risk
measures. In Subsection 2.1 we introduce the axioms underlying the concept of
a convex measure of risk and immediately become clear the role that minimal
penalties will play. In Subsection 2.2 we discuss the minimality property of the
penalty function in the context of Lévy filtrations. It turns out to be quite relevant,
and it is a desirable property that is hard to prove in general. For instance, in the
study of robust portfolio optimization the property is crucial; see [37] and [26]. In

2010 Mathematics Subject Classification: 60H30, 91B25, 91B30.
Keywords and phrases: American options, convex risk measures, Lévy processes, minimal penalty

functions, time consistency.
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Subsection 2.3 we present a result clarifying the general structure of a conditional
risk measure quantifying non bounded payoffs. In subsection 2.4 we recall a key
result on time consistent risk measures due to Föllmer and Penner [17] which is
crucial for the next part. In Section 3 we present the solution to the valuation
problem of American options as well as the existence of times of maximal risk.

2. Convex measures of risk

(2.1) Axiomatic setting. Let us first recall from Föllmer and Schied [20] the
definition and some basic properties of convex risk measures.

Definition (2.1). Let X be a linear space of bounded functions containing the
constants. A mapping ρ :X →R is called a monetary measure of risk if it satisfies
the following conditions for all X ,Y ∈X .

1. Monotonicity: If X ≤Y , then ρ(X )≥ ρ(Y ).
2. Cash invariance: If m ∈R, then ρ(X +m)= ρ(X )−m.

Definition (2.2). A monetary risk measure ρ :X →R is called a convex measure
of risk if it satisfies

• Convexity: ρ(λX + (1−λ)Y )≤λρ(X )+ (1−λ)ρ(Y ), for 0≤λ≤ 1.

Definition (2.3). A convex measure of risk ρ : X → R is called a coherent mea-
sure of risk if it satisfies

• Positive homogeneity: If λ≥ 0, then ρ(λX )=λρ(X ).

Given any class A of subsets of Ω, a set function Q : A→R is said to be finitely
additive if Q(;) = 0, supA∈A |Q(A)| <∞, and Q(A∪B) =Q(A)+Q(B), for A, B ∈A
disjoint. We say that a set function Q : F → [0,1] is a probability content if it is
finitely additive and Q (Ω) = 1. The set of probability contents on this measurable
space is denoted by Qcont.

From the general theory of static convex risk measures (see in [19, Chapter 4]),
we know that any map ψ : Qcont → R∪ {+∞}, with infQ∈Qcont ψ(Q) ∈ R, induces a
static convex measure of risk as a mapping ρ :Mb →R given by

(2.4) ρ(X ) := supQ∈Qcont

{
EQ [−X ]−ψ(Q)

}
.

Here M denotes the class of measurable functions and Mb the subclass of bounded
measurable functions. The function ψ will be referred as a penalty function.
Föllmer and Schied [20, Theorem 3.2], and Frittelli and Rosazza Gianin [22,
Corollary 7] proved that any convex risk measure is essentially of this form. More
precisely, a convex measure of risk ρ on the space of bounded functions Mb (Ω,F )
has the representation

(2.5) ρ(X )= sup
Q∈Qcont

{
EQ [−X ]−ψ∗

ρ (Q)
}

,

where

(2.6) ψ∗
ρ (Q) := sup

X∈Aρ

EQ [−X ] ,

and Aρ := {
X ∈Mb : ρ(X )≤ 0

}
is the acceptance set of ρ. The penalty ψ∗

ρ is called
the minimal penalty function associated to ρ. Furthermore, for the minimal
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penalty function, the next biduality relation is satisfied

(2.7) ψ∗
ρ (Q)= sup

X∈Mb(Ω,F )

{
EQ [−X ]−ρ (X )

}
, ∀Q ∈Qcont.

We now introduce a probability space (Ω,F ,P). We denote by L0(F ) the lin-
ear space of equivalence classes of random variables which are measurable with
respect to F . For p satisfying 1≤ p <+∞ the linear space

Lp(F ),

is the set of elements X in L0(F ) such that EP[|X |p] <+∞. We denote by L∞(F )
the linear space of elements in L0(F ) which are essentially bounded with respect
to P. The set of probability measures defined in the measurable space (Ω,F ) which
are absolutely continuous with respect to P is denoted by P .

We consider convex risk measures defined on the Banach space X = L∞(F ). A
convex risk measure ρ on the Banach space of bounded measurable function on
(Ω,F ) may be viewed as a convex risk measure on L∞(F ) if it respects the P-null
sets, i.e.,

ρ(X )= ρ(Y ), if X =Y P−a.s.

The next theorem clarifies the structure of a convex risk measure on L∞(F ), by
extending Delbaen’s representation theorem for coherent measures of risk to the
general convex case; see [8, Theorem 3.2].

THEOREM (2.8). Suppose X = L∞(F ), and ρ : X → R is a convex measure of
risk. Then the following properties are equivalent.

1. There is a “penalty function” α :P → (−∞,∞] such that

(2.9) ρ(X )= sup
P∈P

(EP [−X ]−α(P)) , for all X ∈X ,

with

α(P) := sup
X∈X

(
EP [−X ]−ρ(X )

)
.

2. ρ possesses the Fatou property: If the sequence (Xn)n∈N ⊂ X is uniformly
bounded, and Xn converges to some X ∈X in probability, then ρ(X )≤ liminfn
ρ(Xn).

3. If the sequence (Xn)n∈N ⊂X decreases to X ∈X , then ρ(Xn)→ ρ(X ).

In the coherent case, the representation (2.9) reduces to the representation

(2.10) ρ(X )= sup
Q∈Q

EQ[−X ], for all X ∈X .

for the family Q= {Q ∈P |α(Q)= 0}.

Proof. See Theorem 6 in Föllmer and Schied [21], parts 1, 3, 4.

For a systematic exposition of risk measures and a comparative analysis of its
properties see e.g., Denuit and Dhaene [10], Föllmer and Schied [19] and Hult et
al [27].
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(2.2) Minimal penalty functions. Let Q (Ω,F ) be the family of probability
measures on the measurable space (Ω,F ) . We denote by Q≈ (P) the subclass of
equivalent probability measure. Of course, Q≈ (P) ⊂ P ⊂ Q (Ω,F ). Among the
measures of risk, the class of them that are concentrated on the set of probability
measures Q⊂Qcont are of special interest.

When we deal with a set of measures K ⊂P it is necessary to make reference
to some topological concepts, meaning that we are considering the corresponding
set of densities and the strong topology in L1 (P) .

LEMMA (2.11). For a functionψ :K⊂P →R+∪{+∞} with infQ∈Kψ(Q) ∈R define
the extension ψ(Q) :=∞ ∀Q ∈Qcont \K with K a convex closed set. Also define the
function Ψ with domain in L1 as

Ψ (Z) :=
{
ψ (Q) if Z = dQ/dP
∞ otherwise .

Then for the convex measure of risk ρ(X ) := sup
Q∈Qcont

{
EQ [−X ]−ψ (Q)

}
associated to

ψ holds:
(a) If ρ has as minimal penalty ψ∗

ρ the function ψ (i.e. ψ = ψ∗
ρ ), then Ψ is a

proper convex function and lower semicontinuous w.r.t. the (strong) L1-topology or
equivalently w.r.t. the weak topology σ

(
L1,L∞)

.
(b) IfΨ is a proper convex function and lower semicontinuous w.r.t. the (strong)

L1-topology or equivalently w.r.t. the weak topology σ
(
L1,L∞)

, then ψ1P =ψ∗
ρ1P .

See [25] for details.

2.2.1. Density processes and penalty functions. We want to indicate now how
to take advantage of Lemma (2.11) in a concrete probability space. We say that
L := {L t}t∈R+ is a Lévy process for this probability space if it is an adapted càdlàg
process with independent stationary increments starting at zero. The filtration
considered is F := {

FP
t (L)

}
t∈R+ , the completion of its natural filtration. The jump

measure of L is denoted by µ : Ω× (B (R+)⊗B (R0)) → N where R0 := R\ {0}. The
dual predictable projection of this measure, also known as its Lévy system, satis-
fies the relation µP (dt,dx) = dt×ν (dx), where ν (·) := E[

µ ([0,1]×·)] is the inten-
sity or Lévy measure of L. Denote by Aloc (resp. A+

loc) the collection of adapted
processes with locally integrable variation (resp. adapted locally integrable in-
creasing processes). For a càdlàg process X we denote by X− := (X t−) the left
hand limit process, where X0− := X0 by convention, and by 4X = (4X t) the jump
process 4X t := X t − X t−. Further, we denote by Pd ⊂ F ⊗B (R+) the predictable
σ-algebra and by P̃ :=Pd ⊗B (R0) . With some abuse of notation, we write θ1 ∈ P̃
when the function θ1 : Ω×R+×R0 →R is P̃-measurable and θ ∈Pd for predictable
processes. For a semimartingale U let

(2.12)
L (U c) := {

θ ∈Pd : ∃ {τn}n∈N sequence of stopping times with τn ↑∞
and E

[τn∫
0
θ2d [U c]

]
<∞ ∀n ∈N

}
be the class of predictable processes θ ∈Pd integrable with respect to the contin-
uous part U c in the sense of local martingale, and by

Λ
(
U c) :=

{∫
θ0dU c : θ0 ∈L

(
U c)}
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the linear space of processes which admits a representation as the stochastic in-
tegral with respect to U c. For the Lévy process L with jump measure µ, denote
by

(2.13) G
(
µ
)≡{

θ1 ∈ P̃ :

{√∑
s≤t

{θ1 (s,4Ls)}2 1R0 (4Ls)

}
t∈R+

∈A+
loc

}
.

the domain of the functional θ1 → ∫
θ1d

(
µ−µP

)
. We use the notation

∫
θ1d(µ−

µP ) to write the value of this functional in θ1. It is important to point out that this
integral functional is not, in general, the integral with respect to the difference
of two measures. For a detailed exposition on these topics see He, Wang and Yan
[24] or Jacod and Shiryaev [29], which are our basic references.

We say that the semimartingale U has the weak property of predictable repre-
sentation when

(2.14) Mloc,0 =Λ
(
U c)+{∫

θ1d
(
µU −µPU

)
: θ1 ∈G

(
µU

)}
,

where the previous sum is the linear sum of the vector spaces, and Mloc,0 is the
linear space of local martingales starting at zero. Given an absolutely continuous
probability measure Q¿P in a filtered probability space, where a semimartingale
with the weak predictable representation property is defined, the structure of the
density process has been studied extensively by several authors; see Theorem
14.41 in He, Wang and Yan [24] or Theorem III.5.19 in Jacod and Shiryaev [29].
Denote by Dt := E

[
dQ
dP

∣∣∣Ft

]
the càdlàg version of the density process. For the in-

creasing sequence of stopping times τn := inf
{
t ≥ 0 : Dt < 1

n
}

n ≥ 1 and τ0 := supn τn
we have Dt (ω)= 0 ∀t ≥ τ0 (ω) and Dt (ω)> 0 ∀t < τ0 (ω) , i.e.

(2.15) D = D1[[0,τ0[[

and the process

(2.16)
1

Ds−
1[[D− 6=0]] is integrable w.r.t. D,

where we abuse of the notation by setting [[D− 6= 0]] := {(ω, t) ∈Ω×R+ : Dt− (ω) 6= 0} .
Both conditions (2.15) and (2.16) are necessary and sufficient in order a semi-
martingale to be an exponential semimartigale, i.e. D = E (Z) the Doléans-Dade
exponential of another semimartingale Z. In that case we have

(2.17) τ0 = inf {t > 0 : Dt− = 0 or Dt = 0}= inf {t > 0 :4Zt =−1} .

The following Lemma deals with such a characterization for the case of a Lévy-
process, which as known fulfills the weak property of predictable representation
for its completed natural filtration.

LEMMA (2.18). For any absolutely continuous probability measure Q¿P there
are coefficients θ0 ∈L (W) and θ1 ∈G

(
µ
)
, such that

(2.19)
dQt

dPt
= dQt

dPt
1[[0,τ0[[ = E

(
Zθ

)
(t) ,

where Zθ
t ∈Mloc is the local martingale given by

(2.20) Zθ
t :=

∫
]0,t]

θ0dW +
∫

]0,t]×R0

θ1 (s, x)
(
µ (ds,dx)−ds ν (dx)

)
.
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The coefficients θ0 and θ1 are dt×P-a.s and µP
P (ds,dx)×P-a.s. unique on [[0,τ0]]

and [[0,τ0]]×R0 respectively .The coefficients can be choosen with θ0 = 0 on ]]τ0,∞[[
and θ1 = 0 on ]]τ0,∞[[×R .

Now, we shall introduce a family of penalty functions for the density processes
described in Lemma (2.18), for the absolutely continuous measures Q ∈P .

Let h : R+→R+ and h0 ,h1 R→R+ be convex functions with 0 = h (0) = h0 (0) =
h1 (0). Further define the penalty function

ϑ (Q) : = EQ
h

 T∧τ0∫
0

h0 (θ0 (t))+
∫
R0

h1 (δ (t, x)θ1 (t, x))ν (dx)

dt

1P (Q)

+∞×1Qcont\P (Q) ,(2.21)

where θ0, θ1 are the processes associated to Q from Lemma (2.18), and δ (t, x) :
R+×R0 →R+ is an arbitrary fixed nonnegative function δ (t, x) ∈G (

µ
)
. Since θ0 ≡ 0

on [[τ0,∞[[ and θ1 ≡ 0 on [[τ0,∞[[×R0 we have from the conditions imposed to h,h0,
and h1

ϑ (Q) = EQ

h

 T∫
0

h0 (θ0 (t))+
∫
R0

h1 (δ (t, x)θ1 (t, x))ν (dx)

dt

1P (Q)

+∞×1Qcont\P (Q) .(2.22)

Further, define the convex measure of risk

(2.23) ρ (X ) := sup
Q∈P

{
EQ [−X ]−ϑ (Q)

}
.

Notice that ρ is a normalized and sensitive measure of risk.
The next theorem establishes the minimality of the penalty function introduced

above for the risk measure ρ. Its proof is based on the sufficient conditions given
in Theorem 2.11 and details might be found in [25].

THEOREM (2.24). The penalty function ϑ defined in (2.21) equals the restriction
on P of the minimal penalty function of the convex risk measure ρ given by (2.23).

(2.3) Conditional measures of risk in spaces beyond L∞(F ). The Banach
space of essentially bounded random variables represents the payoff of financial
positions with limited size of a loss. In many situations this is an unrealistic
assumption, e.g., losses produced by high leverage.

The quantification of financial payoff ’s as measurable random variables with-
out any integrability condition is only possible if we allow the value +∞ so that
there are positions which are going to be unacceptable, no matter how we reduce
its size through a marginal reserve. More precisely: If the space (Ω,F ,P) is atom-
less, then there is no normalized, real-valued convex risk measure ρ defined in the
space of measurable random variables L0(F ). The result is proved by Delbaen [8],
Theorem 5.1 for coherent risk measures. The proof for the convex case is similar.

However, if we consider the spaces Lp(F ), which satisfy L∞(F ) ⊂ Lp(F ) ⊂
L0(F ), we may insist on real-valued quantifications of risk and still obtain inter-
esting classes of measures of risk. Quantifying risks beyond L∞(F ) has been the
subject of recent research; see e.g., Cheridito and Li [7], Filipović and Svindland
[14], Kaina and Rüschendorf [30].
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In a period of time, say one year, new information arrives. Thus, a question of
interest is, how to construct measures of risk whose quantifications incorporate
the benefit of new information. This question has motivated the development
of conditional convex risk measures and more in general of dynamical risk mea-
sures. The discussion of this new class and the crucial robust representations
have been considered in the literature. A systematic study of dynamical convex
risk measures in L∞(F ) is presented by Föllmer and Penner [17].

Thus, risk measures quantifying random variables beyond the space of
bounded payoff ’s L∞(F ) and explicitly taking into account the arrival of new in-
formation, together with an analogous robust representation, is interesting and
required by realistic applications.

In order to study the general structure of such risk measures we go into more
details.

Let us start with the definition of a conditional convex risk measure in the
setting of Detlefsen and Scandolo [11].

Definition (2.25). Let G be a sub-σ-algebra of F . A map ρ : L∞(F ) → L∞(G) is
called a conditional convex risk measure if it satisfies the following properties for
all X ,Y ∈ L∞(F )

1. Conditional cash invariance: For all Z ∈ L∞(G), ρ(X +Z)= ρ(X )−Z.
2. Monotonicity: X ≤Y implies ρ(X )≥ ρ(Y ).
3. Conditional convexity: For all λ ∈ L∞(G), 0≤λ≤ 1:

ρ(λX + (1−λ)Y )≤λρ(Y )+ (1−λ)ρ(Y ).

4. Normalization ρ(0)= 0.

A conditional convex risk measure is called a conditional coherent risk measure if
it has in addition the conditional positive homogeneity property

ρ(λX )=λρ(X ), for λ ∈ L∞(G) with λ≥ 0.

For the structure of this class of risk measures see Detlefsen and Scandolo [11],
Theorem 1. We see an extension to conditional risk measures in the following
setting. We denote by L

0
(G) the family of G-measurable random variables taking

values in R∪ {+∞,−∞}.

Definition (2.26). A conditional convex risk measure ρ : Lp(F ) → L
0
(G) is real-

valued if it takes values in L1(G). More precisely, for each X ∈ Lp(F ) we have
ρ(X ) ∈ L1(G).

We distinguish a special class of absolutely continuous probability measures:

(2.27) Qq :=
{

Q ∈P | dQ
dP

∈ Lq(P)
}

.

Definition (2.28). Let Q ⊂ Qq be a class of absolutely continuous probability
measures. A penalty function is a correspondence of the form

α :Q→ L
0
+(G).

The pair (Q,α) represents the convex risk measure ρ if

(2.29) ρ(X )= esssupQ∈Q
{
EQ[−X |G]−α(Q)

}
,P−a.s, for each X ∈ Lp(F ).
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In this case, we say that the conditional convex risk measure ρ is representable
and (2.29) defines a robust representation.

Let us introduce the class

Qq
e,loc := {Q ∈Qq | EP

[
dQ
dP

|G
]
> 0,P−a.s.}.

Definition (2.30). Let α :Qq
e,loc → L

0
+(G) be a penalty function. We say that α is

a coercive penalty function if there exist real constants a,b with b > 0 and

(2.31) EP[α(Q)]≥ a+b EP

 1

EP

[
dQ
dP |G

]E
1
q
P

[(
dQ
dP

)q
|G

] , Q ∈Qq
e,loc.

The next result clarifies the general structure of a real-valued conditional con-
vex risk measure.

THEOREM (2.32). 1. Let α : Qq
e,loc → L

0
+(G) be a penalty function. Assume

there exists Q0 ∈Qq
e,loc such that α(Q0) ∈ L∞(G). Let us define a mapping ρ

by
ρ(X ) := esssupQ∈Qq

e,loc

{
EQ[−X |G]−α(Q)

}
, X ∈ Lp(F ).

Then ρ is a real-valued conditional risk measure, if α is coercive.
2. Conversely, let ρ be a real-valued conditional convex risk measure. If the pair

(Qq
e,loc,α) represents the convex risk measure ρ, then the penalty function α

must be coercive.

In a first step it is proved that real-valued conditional convex risk measures al-
ways admit a numerical representation in terms of a nice class of “locally equiva-
lent” probability measures. The extended Namioka-Klee Theorem, due to Biagini
and Frittelli [6], is crucial in this part. In a second step, duality of continuous
operators in spaces Lp is important. The robust representation, together with
an invariance property characterize conditional convex risk measures defined in
a space L∞(F ) which can be extended to a space Lp(F ), and at the same time
continue to be real-valued. See [40, Theorems 2.7, 2.9] for details.

In particular the measure of risk AVaR, can be extended from their natural do-
main L∞(F ) to a space Lp(F ), For details see [40, Example 5.3]. Let us illustrate
how we can construct a conditional real-valued version of AVaR in a space Lp(F ).

Let λ be a G-measurable random variable such that

0<λ≤ 1, P−a.s.

The conditional Average Value at Risk at the stochastic level λ is defined by the
representation:

(2.33) AV aRλ(X )= esssupQ∈Qλ
EQ[−X |G], P−a.s.

where Qλ is the set of all absolutely continuous probability measures whose P-
density dQ

dP is P-a.s. bounded by 1
λ

and moreover

EP

[
dQ
dP

|G
]
= 1, P−a.s.
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The numerical representation (2.33) involves the minimal penalty function

αmin(Q)=
{

0, if Q ∈Qλ,
+∞, if Q 6∈Qλ,(2.34)

which is coercive if
1
λ
∈ Lq(G),

where q is the conjugate number of p. In this case, the conditional Average Value
at Risk defines a real-valued conditional risk measure in Lp(F ).

(2.4) Dynamical convex risk measures. Time consistency is a principle for
decision making in an intertemporal setting. An insight on how to consistently
update the quantification of an uncertain lottery taking into account new infor-
mation is provided by Epstein and Schneider [13]. Building upon the atemporal
multiple-priors model of Gilboa and Schmeidler [23], Epstein and Schneider ax-
iomatize preferences which are able to summarize those dynamic behaviors par-
tially committing to a future course of action. Their robust representation, Theo-
rem 3.2, clarifies the general structure of dynamically consistent preferences.

We will see in the context of risk, a version of a time consistency axiom and the
corresponding numerical representation.

Take a filtration in discrete time of the probability space (Ω,F ,P), that is, a
family {Ft}t=0,...,T of σ-algebras satisfying Ft−1 ⊂Ft ⊂F . Denote by L∞

t the class
of random variables of L∞ which are measurable with respect to Ft.

Definition (2.35). A sequence of conditional risk measures {ρt}t=0,...,T is called
time-consistent, if for any X ,Y ∈ L∞ and for t = 0, . . . ,T the following condition
holds:

ρt+1(X )= ρt+1(Y ),P−a.s.=⇒ ρt(X )= ρt(Y ),P−a.s.

The following family of probability measures plays a crucial role in character-
izing time consistency

Q∗ := {Q ∈P |Q ≈P and αmin
0 (Q)<∞},

where
αmin

t (Q)= esssupX∈L∞ {EQ[−X |Ft]−ρt(X )}.

The following characterization of time consistency is due to Föllmer and Penner
[17, Theorem 4.5].

THEOREM (2.36). Let {ρt}t=0,1...,T be a sequence of conditional convex risk mea-
sures such that each ρt is continuous from above, and assume that Q∗ is non empty.
Then, the following conditions are equivalent:

1. {ρt}t=0,1...,T is time consistent
2. For all Q ∈Q∗ and all X ∈ L∞, the process

VQ
t (X ) := ρt(X )+αmin

t (Q),

is a Q-supermartingale.

In each case, the dynamic risk measure admits a robust representation in terms of
the set Q∗.
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In Section 3.2 we present an application to time-consistency in the context of
American options. We conclude this section with the class of conditional entropic
risk measures. Given an “index of risk aversion” γ> 0, they are defined by

ρ
γ
t (X ) := 1

γ
logEP[e−γX |Ft].

The entropic risk measure is time consistent: Take two random variables X and
Y such that

ρ
γ
t (X )= ργt (Y ).

Then
EP[e−γX |Ft]= EP[e−γY |Ft].

As a consequence
EP[e−γX |Ft−1]= EP[e−γY |Ft−1],

due to the “tower property” of conditional expectations. Then we get

ρ
γ

t−1(X )= ργt−1(Y ),

which is precisely the property of time consistency. The entropic risk measure
is introduced by Föllmer and Schied [18] in the static case and its conditional
version is discussed by Detlefsen and Scandalo [11]. This class is characterized
as the only dynamic risk measure which is law invariant, time consistent and
relevant, see Kupper and Schachermayer [34].

3. American options

The role of derivatives in real economics have been advanced e.g., through the
Arrow-Debreu securities. Futures are seen as contracts improving the “efficiency”
of the real-economic market by easing exchanges of goods. For example, Ross
[35] studies the completion of the market by call and put options. Interestingly,
in recent research, some papers start by the completion of a market with some
exogenous contracts for the valuation of complex derivatives. We can also think
of derivatives written on commodities which many times are used as a form of
insurance.

An American call option is a financial contract giving the right to buy an
amount of an underlying asset at a prespecified exercise price. The holder of
the contract has the right to exercise in a period of time.

The two sides of the contract are confronted to several intertemporal decisions:
Is the price fair?, from the point of view of the buyer, given new information of
how market is evolving, when is the best time to exercise? From the point of view
of the seller, how should the hedging portfolio be readjusted?

Profit and Losses for both parts are risky due to the unpredictability of the
market. Time consistency is crucial at different levels depending on replicability
of the contract. If it is replicable, only the party not being able to follow a time
consistent discipline, suffers a loss. This is what we learn from an analysis based
on no arbitrage prices.

If the contract is non replicable, the typical situation in incomplete markets,
the analysis is far more complex. Time-consistency continues to be crucial and
lies as one of our most basic assumptions: The agents take prices in view of future
actions and they have the discipline to commit to a plan. Indeed, as we are going
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to see, it is crucial to determine rules of exercise and how to adjust the hedging
portfolio.

In complete financial markets, the valuation of American options is character-
ized through its Snell envelope with respect to the unique equivalent martingale
measure of the underlying price process. The Snell envelope is a supermartingale
with a Doob-Meyer decomposition into a martingale and a non increasing pre-
dictable process. The representation of the martingale part as stochastic integral
with respect to the underlying price process yields a hedging strategy for the seller
of the American option. The stopping problem giving rise to the Snell envelope,
determines an optimal exercise for the buyer. The expected reward of optimal
stopping characterizes a ‘fair’ price; see Bensoussan [4] and Karatzas [31].

In incomplete markets, the analysis becomes more complex and has motivated
the development of new techniques. In this more general setting, the class of
martingale measures is infinite and the valuation of an American option is solved
through robust versions of the Snell envelope, the lower- and the upper- Snell en-
velopes. The upper Snell envelope has been studied by El Karoui and Quenez
[12], Kramkov [33], Föllmer and Kramkov [16], and Föllmer and Kabanov [15]. It
has the remarkable property of having a decomposition into a stochastic integral
part and a non increasing optional process, this is the celebrated optional decom-
position theorem. The stochastic integral dominates the underlying payoff in a
minimal way. It characterizes an strategy of a “complete insurance” for the seller
and it is called a superhedging strategy. It characterizes the upper bound of no
arbitrage prices.

The lower Snell envelope for American options has been systematically stud-
ied by Föllmer and Schied [19]. It characterizes the lower bound of no arbitrage
prices.

Our goal in this section is to review the solution of the valuation of American
options in a general semimartingale model. Our exposition is based on the discus-
sion of chapter six in Föllmer and Schied [19] and the presentation in continuous
time of [38].

Take a stochastic base (Ω,F ,F = {Ft}t∈[0,T],P), with finite time horizon. We
model the discounted price of an asset in a financial market by an F-adapted
semimartingale X := {X t}0≤t≤T , defined in the domain Ω× [0,T], whose trajec-
tories are right continuous and have finite left limits (càdlàg). We assume the
market is free of arbitrage opportunities in the sense that the set of equivalent
local martingale measures defined by

(3.1) M := {P ∼P | X is a local martingale under P},

is nonempty. For the precise formulation of the relationship between the notion
of an arbitrage free market and the family of martingale measures we refer to
Delbaen and Schachermayer [9] and references therein. For any martingale mea-
sure P ∈M, we denote by EP [·] the corresponding P-expectation. Denote by T
the family of F-stopping times with values in [0,T]. We model the payoff of an
American option by an F-adapted non negative process H := {Ht}0≤t≤T with càdlàg
trajectories. It must satisfy the following integrability condition

(3.2) sup
P∈M

sup
θ∈T

EP [Hθ]<∞.
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An admissible strategy is a pair (c,ξ) where c ∈ R+ is a positive constant, and
ξ := {ξt}0≤t≤T is a F-predictable process ξ :Ω×[0,T]→R such that the value process
V c,ξ

t := c+∫ t
0 ξsdXs is well defined and nonnegative. In this case we say that ξ is a

c-admissible strategy and the family of c-admissible strategies is denoted by Adc.

REMARK (3.3). Admissible strategies as considered here are sufficient for our
purposes of exposition. This is a subtle issue. For example, the optimal portfo-
lio allocation with respect to a real-valued utility function in the entire interval
(−∞,+∞) requires a larger class of admissible strategies, see e.g., [36], [5].

It is natural to ask whether it is possible to hedge the risk in an American
option completely. This leads us to the concept of a superhedging strategy. A
superhedging strategy for H is a pair (c,ξ) ∈R+× Adc such that

V c,ξ ≥ H.

Definition (3.4). The American option H is called replicable if there exists a
superhedging strategy (c,ξ) for some c ∈R+, and a stopping time τ ∈ T , such that
V c,ξ

t∧τ is a martingale for each P ∈M and

V c,ξ
τ = Hτ.

In this case, we say that the strategy (c,ξ) replicates the American option H.

We will see that superhedging strategies exist, and we are interested in the
minimal capital that allows to construct such strategies.

Definition (3.5). The superhedging cost of the American option H is defined by

inf{c ≥ 0 | ∃ξ ∈ Adc, (c,ξ) is a superhedging strategy}.

A superhedging strategy (c0,ξ) with c0 being equal to the superhedging cost is
called minimal.

The superhedging cost of the American option H is characterized in the follow-
ing important result.

THEOREM (3.6). The superhedging cost of the American option H is equal to

(3.7) U↑
0 = sup

P∈M
sup
θ∈T

EP [Hθ],

and there exists a minimal superhedging strategy (U↑
0 ,ξ).

The proof requires a special uniform decomposition clarified in the optional
decomposition theorem in the following form.

THEOREM (3.8). Let {Ut}0≤t≤T be a positive càdlàg M–supermartingale with

U0 = sup
P∈M

sup
θ∈T

EP [Uθ]<∞.

Then, there exists ξ ∈ AdU0 , and an increasing optional process {Ct}0≤t≤T with
C0 = 0, such that

Ut =U0 +
∫ t

0
ξsdXs −Ct, for all t ∈ [0,T].

For the original papers see El Karoui and Quenez [12], Kramkov [33], Föllmer
and Kramkov [16], and Föllmer and Kabanov [15].
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(3.1) Arbitrage free prices and the lower Snell envelope. A superhedging
strategy in the underlying market acts as total insurance of an American option.
The superhedging cost is the minimal capital in order to construct such a portfolio.
We are going to see that this is a price itself, in a precise sense, only if H is
replicable. In the general case, it determines an upper bound for no arbitrage
prices. We start by recalling the structure of arbitrage free prices, building upon
the theory developed in [19].

Definition (3.9). A real number c is called an arbitrage free price for H if the
following two conditions are satisfied.

• There exists a stopping time τ ∈ T and a martingale measure P ∈M such
that c ≤ EP [Hτ].

• For any stopping time τ′ ∈ T there exists P ′ ∈M such that c ≥ EP ′ [Hτ′ ].
The set of all arbitrage free prices for H is denoted Π(H), and we set

πinf(H) := infΠ(H) and πsup(H) := supΠ(H).

According to this definition, given c ∈Π(H), the following inequality holds

(3.10) sup
θ∈T

inf
P∈M

EP [Hθ]≤ c ≤ sup
θ∈T

sup
P∈M

EP [Hθ] .

The right-hand term equals πsup(H) and is finite, due to our condition (3.2). We
have just seen in Theorem (3.6) that πsup(H) = U↑

0 . Thus, the upper bound is
sharp and the proof makes a crucial use of the optional decomposition Theorem
(3.8). The lower bound is also sharp as we quote in the next result.

THEOREM (3.11). Assume that H is upper semicontinuous in expectation from
the left with respect to any probability measure P ∈M. Then, the set of arbitrage
free prices Π(H) is an interval with infimum

(3.12) πinf(H)= inf
P∈M

sup
θ∈T

EP [Hθ]= sup
θ∈T

inf
P∈M

EP [Hθ]

and supremum

(3.13) πsup(H)= sup
P∈M

sup
θ∈T

EP [Hθ]= sup
θ∈T

sup
P∈M

EP [Hθ] .

The result is proved in discrete time by [19, Theorem 6.33]. In continuous
time, the characterization (3.13) has been proved in the literature above cited.
The identity (3.12) is a consequence to the minimax identity:

(3.14) sup
θ∈T

inf
P∈M

EP [Hθ]= inf
P∈M

sup
θ∈T

EP [Hθ] .

It has been established in discrete time by Föllmer and Schied [19, Theorem 6.42],
and in Karatzas and Kou [32, Proposition 5.14], in a Brownian filtration. In a
general model in continuous time the minimax identity has been proved by [39,
Corollary 3.2]. The proof involves the following important concept.

Definition (3.15). The lower Snell envelope associated to H with respect to M,
is an F-adapted process which we denote by U↓ (following the notation of [19]),
such that the equality

(3.16) U↓
t = essinfP∈Messsupθ∈T [t,T]EP [Hθ |Ft],

holds P-a.s., for all t ∈ [0,T].
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The minimax identity (3.14) is consequence to the existence of a saddle point:

PROPOSITION (3.17). For ρ a stopping time, the random variable

(3.18) τ↓ρ := essinfQ∈Mτ
Q
ρ ,

is a stopping time and is optimal in the following sense

(3.19) Z↓
ρ = essinfQ∈MEQ[H

τ
↓
ρ
|Fρ].

In particular for τ↓0:

(3.20) inf
Q∈M

EQ[H
τ
↓
0
]= sup

θ∈T
inf

Q∈M
EQ[Hθ].

For a proof see [39, Proposition 3.1]. The following result characterizes the
replicability of H in terms of its upper bound πsup(H).

PROPOSITION (3.21). Let us assume the conditions of Theorem (3.11). Then,
the following conditions are equivalent

1. H is replicable.
2. There exists P0 ∈M such that UP0

0 =U↑
0 .

In this case, we have that UP
0 =U↑

0 , for arbitrary P ∈M.

REMARK (3.22). Proposition (3.21) is an important characterization. The result
was first obtained by Ansel and Stricker [2] and Jacka [28] for European options.
The form presented in Proposition (3.21) appears in [38, Proposition 1.21]. The
proof makes a crucial application of the optional decomposition theorem.

REMARK (3.23). An analogous characterization of replicability in terms of the
lower price πinf(H) has been recently established in discrete time by Acciaio and
Svindland [1, Theorem 2.3]. They make a crucial application of the stopping time
τ
↓
0. The extension to continuous time involves the Snell envelope in continuous time.

A first step in this direction is the construction of a right-continuous modification;
see [39, Theorem 2.4].

(3.2) Times of maximal risk. As an application to the time consistency prop-
erty we report a result on the existence of a stopping time of maximal risk as
presented in [41].

Let us consider a discrete time setting with dates t = 0, . . . ,T and take a time
consistent risk measure Φ= {ρ0, . . . ,ρT } with the Fatou property. We say that τt is
of t-maximal risk if

ρt(−Hτt )=UΦ
t := esssupθ∈T [t,T]ρt(−Hθ).

In the next result we show that times of maximal risk exists by making a crucial
use of time consistency

THEOREM (3.24). The upper Snell envelope satisfies the backwards representa-
tion

(3.25) UΦ
t = Ht ∨ρt(−UΦ

t+1).

The stopping time defined by

τt := inf{s ≥ t | Hs =UΦ
s },

is of t-maximal risk.
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Proof. Let θ be a stopping time with t ≤ θ ≤ T. Then

ρt(−Hθ)= 1{θ=t}Ht +1{θ>t}ρt(−Hθ),

due to the localization property [11, Proposition 1]. This identity clearly implies
the following inequality

ρt(−Hθ)≤ Ht ∨ρt(−UΦ
t+1).

Thus
UΦ

t ≤ Ht ∨ρt(−UΦ
t+1).

Now we prove the converse. There exists a sequence of stopping times {θn}∞n=1
with t+1≤ θn ≤ T such that

ρt+1(−Hθn )→UΦ
t+1.

Then:
UΦ

t ≥ ρt(−Hθn )= ρt(−ρt+1(−Hθn )),
due to the time-consistency of the risk measure ρ. Hence

UΦ
t ≥ liminf

n→∞ ρt(−ρt+1(−Hθn ))≥ ρt(−UΦ
t+1),

since the conditional risk measure has the Fatou property.
Clearly we have P(τt ≤ T)= 1, since UΦ

T = HT , since we are considering normal-
ized risk measures. Note that τT = T. By way of induction, we get

UΦ
t = HT ∨ρt(−Hτt+1 ),

due to the recursive formula (3.25). To conclude the proof, we show

Ht ∨ρt(−Hτt+1 )= ρt(−Hτt ).

The following relationships are clear

τt = 1{τt=t}t+1{τt>t}τt+1.

Now, let us define A := ρt(−Hτt+1 ). Then

Ht ∨ρt(−Hτt+1 )= Ht1{Ht≥A} + A1{Ht<A}.

Moreover
ρt(−Hτt )= Ht1{τt=t} +ρt(−Hτt+1 )1{τt>t}.

We then conclude with the set equalities

{τt = t}= {Ht =UΦ
t }= {Ht ≥ ρt(−Hτt+1 )}.
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TWO APPLICATIONS OF PERMUTATION TESTS IN BIOSTASTICS

LUIS LEÓN-NOVELO, KAISA M. KEMPPAINEN, ALEXANDRIA ARDISONNE, AUSTIN
DAVIS-RICHARDSON, JENNIE FAGEN, KELSEY GANO, ERIC W. TRIPLETT, AND TEDDY

STUDY GROUP

ABSTRACT. We show two examples of how we answer biological questions by
converting them into statistical hypothesis testing problems. We consider gene
abundance data, and apply permutation tests. Though these tests are simple,
they allow us to test biologically relevant hypotheses. Here we present the anal-
ysis of data rising from two studies on Type 1 Diabetes. In the first study [3] are
interested in comparing the gut bacterial biodiversity in children at risk and not
at risk of developing diabetes. In the second study, [4] compare the gut bacterial
biodiversity of children in six different sites in USA and Europe. The statistical
analyses presented here are parts of the “statistical methods” in two papers men-
tioned above. Here we offer a detailed explanation of the “Statistical Methods”
addressed to readers with a statistics background.

1. Introduction

The main focus of this paper is to present in more detail the “statistical method-
ology” of two relevant studies [3] and [4] in Type 1 Diabetes (T1D). A deeper ex-
planation of the data set and biological interpretation can be found there. Here
we aim to explain the biological question and the structure of the data that it is
analyzed there in. In [3], the researchers found that children who developed T1D
later in life have a more different gut bacterial biodiversity than children who
do not develop T1D. In [4],the gut diversity of individuals in different geographic
locations is measured across time. The researchers are interested in testing if
the gut bacteria diversity evolves similarly at these sites. In Sections 2 and 3 we
present the first and second examples respectively. There is also a small discus-
sion section at the end.

2. First example

The study of [3] is motivated by several animal studies suggesting that rats
that develop T1D have a significantly different gut bacteria than rats that are
resistant to the disease. They were interested in seeing if the same applies to
human beings. The researchers wanted to determine whether the children in the
control group have a gut bacteria population (microbiome) more similar to one
another than the corresponding microbiomes of the case group.

2010 Mathematics Subject Classification: 62-07.
Keywords and phrases: analysis of covariance, permutation test, Shannon diversity index, type 1

diabetes, unifrac distance.
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(2.1) Data. The data come from eight Finnish children participating in the Di-
abetes Prediction and Prevention study [8, 5, DIPP]. For each child, three stool
samples were obtained at three time points, obtaining a total of 24 separate sam-
ples. There are four cases and four controls, the cases are children that became
autoimmune and developed T1D. This is a paired design, each child in the case
group was matched with a child in the control group of the same age and T1D-
susceptibility genotype that did not develop autoimmunity or T1D during the
study. Though the matching is used in other statistical analyses in [3], in the
analysis discussed here this matching is ignored.

The stool samples of the 8 individuals provide the data for this paper. High-
throughput, 16S ribosomal ribonucleic acid (16S rRNA) sequencing was performed
on the stool samples. 16S rRNA gene sequencing is a widely used technology that
allows the classification of bacteria. The 16S rRNA is a highly conserved gene
found in all bacteria that contains hypervariable regions. The nucleic acid se-
quence of these regions is unique to different species of bacteria and can be used
to identify bacteria. The set of 16S rRNA sequences that are amplified from a
sample during high-throughput sequencing are clustered into Operational Tax-
onomic Units (OTUs) based on sequence similarity. Different OTUs correspond
to different groups of bacteria that share a certain level of 16S rRNA sequence
similarity. Every OTU has a name and the data used here are counts of OTUs in
each sample. Table 2.1 shows some rows of the data set corresponding to the first
and third individuals at time 1. We will use the data in this table as an example
below.

First individual Counts
First individual

01_FS63YEP02GADJS 7
01_FS63YEP02GWM9M 9
01_FS63YEP02HBHGD 2
01_FS63YEP02HLYA0 1
01_FS63YEP02JJMWG 2

Third individual
20_FS63YEP02FGL4W 2
20_FS63YEP02FLYRR 1
20_FS63YEP02JVBDD 1
20_FXCV9AW02H57E6 5
20_FXCV9AW02IFECK 95
20_FXCV9AW02J3H7K 1
20_FXCV9AW02JTQOI 21

Table 1. A subsample of the data corresponding to the first and third
individuals at time 1.

The first row of the Table 2.1 indicates that the OTU “FS63YEP02GADJS” was
observed 7 times in the first individual at time point 1. Two different OTUs cor-
respond to two different bacteria, but two OTUs may be similar. The similarity is
a measure based on the sequences and it is measured in a 0-100% scale. A simi-
larity matrix can then be built, and with it a phylogenetic tree is built. This is a
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Figure 1. Phylogenetic tree corresponding to the OTUs in Table 1. The
counts are given between parentheses.

weighted tree in the Theory of Graphics sense, where every leaf corresponds to an
OTU. Every branch of the tree has a weight associated to it. The tree is built in
such a way that the similarity between two leaves is the sum of the weight of the
branches we have to pass in order to go from the leaf to the root of the smallest
subtree containing both leaves. Figure 1 shows the phylogenetic tree correspond-
ing to the OTU in Table 1. For example, the similarity between the first and third
most upper leaves (labeled 20_FXCV9AW02IFECK and 01_FS63YEP02GADJS)
tree is 0.161+0.024= 0.185.

(2.2) Statistical Analysis. In this subsection we explain how we used the
Unifrac distance [6] and a permutation test inspired in the P-test of [7] to compare
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the gut diversity of the case and control groups. In particular, we are interested in
testing if the gut microbiome of the control groups are more similar to one another
than the microbiomes in the case group.

The phylogenetic tree considers the similarity between OTUs but not the OTU
counts. The weighted version of the UNIFRAC distance [6] incorporates the OTU
count and the OTU similarity information. Using the phylogenetic tree with the
OTUs of two individuals, we can compute the weighted UNIFRAC distance be-
tween the two bacteria populations. It is defined as

(2.1) u =
n∑

i=1
bi

∣∣∣∣ A i

AT
− Bi

BT

∣∣∣∣
Here, n is the total number of branches in the tree, bi is the length of branch i,
A i and Bi are the number of descendants of branch i from communities A and
B respectively, i = 1, . . . ,n. AT and BT are the total number of sequences from
communities A and B respectively. To adjust for different sample sizes, A i and Bi
are divided by AT and BT . In our toy example (See Figure 1), if A and B represent,
respectively, the community coming from the first and third individuals, n = 22,
AT = 21, BT = 126,

u =0.048
∣∣∣∣ 9
21

− 96
126

∣∣∣∣+0.069
∣∣∣∣ 7
21

− 96
126

∣∣∣∣+0.024
∣∣∣∣ 0
21

− 96
126

∣∣∣∣
+0.161

∣∣∣∣ 0
21

− 95
126

∣∣∣∣+·· ·+0.166
∣∣∣∣ 9
21

− 0
126

∣∣∣∣
=0.45

The more different the two populations are, the larger the unifrac distance is.
[7] proposes a permutation test called “P test” to determine if two populations are
significantly (i.e., statistically) different. Under the null hypothesis, i.e. under the
assumption that both bacteria populations are equal, the population labels of the
OTUs are exchangeable. The test consists in permuting the population labels in
the phylogenetic tree, with the permuted labels, compute u? according to (2.1). We
repeat the process M times to obtain u(1)

? , . . . ,u(M)
? . The p-value is the proportion

of times that u > u?, in math, p-value= ∑M
m=1 1(u > u(m)

? )/M, where 1(A) is the
indicator function of the event A. Rejecting the null hypothesis is claiming that
the bacteria populations are different. In other words, the difference between the
OTU counts are not due to random chance. It is worth it to mention that the
Unifrac distance measures the difference in the diversity of two populations. This
is, a large unifrac distance indicated that one population is more diverse than the
other. Two populations can be equally diverse but completely different. This is,
two samples or populations could be statistically similar even though they might
not contain any common bacteria.

As mentioned earlier, [3] were interested in knowing if the controls have a more
similar gut bacteria population to one another than the case individuals. To test
so, in [3], we performed the following permutation test, inspired in the P-test:

1. Denote with ai, o j the case i and control j individuals respectively, i, j =
1,2,3,4; and u(ä,◦) the unifrac distance between the individuals ä and ◦.
For each one of the six possible pairs of individuals in the case group we
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Figure 2. Histogram of simulated D?s along with the 95% percentile,
Dobs and p-value for each one of the times in the study. See

compute the unifrac distances and sum them to obtain

Sobs
a = u(a1,a2)+u(a1,a3)+u(a1,a4)+u(a2,a3)+u(a2,a4)+u(a3,a4)

Similarly, we define Sobs
o as the sum of the unifrac distances of each of the

six possible pairs of individuals in the control group. Our test statistic is

Dobs = Sobs
a −Sobs

o .

2. For each phylogenetic tree, we randomly permute the labels of the indi-
viduals (children) and, as we computed Dobs but now considering these
permuted-label trees, we compute D?.

3. We repeat step 2 a total of M = 105 times to get a sample of differences, i.e.,
of D?: D?

1 , . . . ,D?
M

4. We compute the p-value as the proportion of D?s greater than Dobs. In
math,

p−value= (1/M)
M∑

m=1
1(Dobs > D?

m).

Since the Unifrac distance is a measurement of how far apart two microbiomes
(i.e., bacteria populations) of two individuals are, a large value of Dobs would sug-
gests that the case microbiomes are more different to one another than the control
microbiomes. Equivalently, Dobs large is evidence that the control microbiomes
are more similar to each other than the case microbiomes. The question becomes
now what large means. If all the populations were equal, the population labels in
every phylogenetic tree would be exchangeable. Following the idea of the P-test,
simulated samples from the null distribution of the statistic D are obtained by
permuting the population labels in every phylogenetic tree.

Figure 2 shows the histogram of the D?s for each time. The short and long
arrows indicate the 95% quantile and Dobs respectively. The long arrow is at the
right of the 0.95 quatile (short arrow) just at time 2. That is, we are able to claim
that at time 2 the population of microrganisms in the control group are more
similar to one another than in the case group. The data suggest that the same is
true at time 1 and 3 but is not conclusive.
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3. Second Example

The second example is part of the statistical analysis in the paper [4]. Inspired
by the findings of [3] and others, researchers suspect that the gut microbiome has
a role in the development of T1D. The composition of the gut microbiome of chil-
dren in six different locations was analyzed across time. The sampling units are
children genetically at high risk for T1D but currently free of islet autoantibodies
or disease. The TEDDY group gathered data about the the composition of the gut
microbiome of children across time in six different locations. The sampling units
are children genetically at high risk for type 1 diabetes but currently free of islet
autoantibodies or disease. In the current manuscript, we explain and reproduce
the statistical analysis that yields them to conclude that the microbiome diversity
across time differs in the six study sites.

(3.1) Data. [4] analyzed stool samples taken monthly from children starting at
age four months old until they turned 19 months old. The data correspond to
90 children, 15 from each one of the six different participating sites: Finland,
Germany, Sweden, Washington state, Colorado, and Georgia/Florida. As in the
example in Section 2, high-throughput 16S rRNA sequencing was performed on
these stool samples. The data consists of a table of genus-level OTU counts for
every stool sample (not shown). Since we are interested in the bacterial diversity
the biologists work with the Shannon Diversity Index [10, SDI],

SDI=
R∑

i=1
pi log pi,

where i indexes the different OTUs in the sample, pi is the proportion of OTUs
i in the sample, and R is the total number of different OTUs in the sample. The
more diverse the bacteria population is, the larger the SDI is. For our purposes the
data were reduced to a sequence of SDI measurements across different time points
for every child. These sequences are shown in Figure 3. Every line represents the
SDI of a child across time. Visually, we cannot appreciate any clear difference
among the SDI curves across the sites, except, probably, Sweden where the SDI
seems to have less variance. [4] speculate that the reason for this may be that
the Sweden children are the least exposed to antibiotics of all the sites in the
study. Since there are few stool samples for the youngest and oldest ages, we
have removed from this analysis the data corresponding to ages under 100 days
and over 550 days.

(3.2) Statistical Analysis. The aim of this statistical analysis is to test if the
curves of the SDI are statistically different or not. In order to do so we need to
introduce a statistical model. We consider the following mixed model

(3.1) yi jk =µ+αi +β j +γtk +δi tk +ηt2
k +εi jk,

where, yi jk represents the k-th measurement of the SDI for child j at site i, µ is
the over all mean, αi is the fixed site effect (for estimation purposes we impose∑

iαi = 0), β j ∼ N(0,σ2
child) is the child-specific random effect, tk is the child age

in days (treated as a continuous variable standardized to have sample mean and
variance equal to 0 and 1 respectively) when the k-measurement was taken, the
fixed effect δi is the interaction coefficient between days and site (also assuming∑

i δi = 0), η is also a fixed effect, and εi jk ∼ N(0,σ2
ε ) is a random error. In the
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context of the model, testing if the SDI curves are statistically significant reduces
to test

(3.2) H0 :α1 =α2 = ·· · =α6 = 0 vs H1 :
∑

i
α2

i > 0

Strictly speaking, in order to test if the curves are the same for all sites, we should
not only test that all αi are zero but also that all δis are equal to zero. Neverthe-
less, rejecting the null hypothesis as stated above would make us conclude not all
curves are equal.

We can think of the model in (3.1) as an Analysis of covariance ANCOVA [2, See
p. 62 on ] where the covariate is time (in days). Fitting the model in a statistical
package is straightforward. We used the function “aov” in the lme4 R package [9]
by [1]. The R code is,
> model=aov(Shannon \sim Site+Error(1/Patient)+Time+Time:Site+Time2)

where Shannon is the SDI, Site takes one of the six possible locations, Time
is the standardized time in days and Time2= Time2 fits the model. An F test of
(3.2) is straightforward, (R code >summary(model))

Df Sum Sq Mean Sq F value Pr(> F)
Site 5 30.98 6.20 25.58 < 2×10−16

Time 1 20.42 20.42 84.29 < 2×10−16

Time2 1 0.00 0.00 0.01 0.9217
Site:Time 5 2.93 0.59 2.42 0.0341
Residuals 1099 266.17 0.24

As one can see Site is highly significant and we reject the null in (3.2). We notice
that the site time interaction (Site : Time) is significant. One of the assumptions
of ANCOVA is that the “covariate is not related with the treatment” [2, See p. 63
on ]. This is not the case if there is an interaction between Site and treatment. Ad-
ditionally, the Kolmogorov-Smirnov test rejects (not shown) the normality of the
residuals. The ANCOVA is known to be robust against the normality assumption
of the errors as long as the symmetry of the errors follows. We test the symmetry
of the residuals following [11], explained below. Let x= x1, . . . , xn denote the sam-
ple of size n from a distribution with mean µ, median ν and standard deviation
σ. Let x̄, M and s denote the sample mean, median and standard deviation. They
propose a Bootstrap test of symmetry consisting in

1. Define Cobs = (x̄−M)/s, the sample version of the measure of skewness (µ−
ν)/σ

2. Define the symmetrized empirical distribution F̂s as the CDF that gives
1/(2n) to all possible values in the sample and to all points in {2M −
x1, . . . ,2M− xn}

3. Obtain T bootstrap samples F̂s of size n. For each bootstrap sample x?
compute its sample mean, median and standard deviation x̄?, M?, s? and
obtain C? = (x̄?−M?)/s?

4. The bootstrap p-value is then the proportion of |C?|s greater that |Cobs|.
Here |x| denotes the absolute value of x.

This test applied to the residuals (with T = 106 boot strap samples in step 3)
yields a boot-strap p-value of < 10−6. The residuals and then the error terms are
not symmetric.
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Figure 3. Shannon Diversity Index per child through time (days) in the
six different study sites. Every line represents the measurement of the
Shannon Diversity Index of a child across time. For visual purposes, the
line joints the time/SDI points of the child it represens.

To deal with the violation of the assumptions of the ANCOVA model, we apply
a permutation test. Large values of F indicate that the null hypothesis is false.
We apply the following simple permutation test permuting the labels of Site.

1. Compute Fobs, the F statistic in the ANCOVA table testing for the model in
(3.1) testing (3.2).

2. Permute the “Site” label, and compute the F statistic T times to obtain a
sample F?(1), . . . ,F?(M)

3. The p-value of this permutation test is the percentage of F?s greater than
Fobs

Applying this permutation test (with T = 105) we obtain a p-value < 10−5. The
data provide enough evidence to reject the null hypothesis in (3.2). This is, the
SDI curves are not all equal in the six sites.

4. Discussion

Through this paper we have shown two examples of the application of simple
permutation tests to answer relevant biological questions. These examples are the
product of joint work with researchers at the University of Florida and are part
of the “Statistics Methods” section of two biology papers. The main merit of these
analyses is the collaboration between biologists and statisticians to formulate the
biological problem in statistical terms. In the first example a permutation test
allowed us to answer a relevant question without the need to depend on model
assumptions. In the second example, a model is required. A standard F-test is
applied to the parameters of the model. If the data followed the assumptions
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of this F-test (normality or at least symmetry of the random errors), the F-test
would be valid. This is not the case, we obtain evidence against the symmetry of
the distribution of the random errors trough a boot-strap test of symmetry applied
to the residuals of the model. The F-test is not valid. Nevertheless, we are able to
take advantage of this F-test by incorporating it into the scheme of a permutation
test. With this we avoid more complicated models in order to get an answer to the
biological question.
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LÉVY-DRIVEN PROCESSES IN BAYESIAN NONPARAMETRIC
INFERENCE

LUIS E. NIETO-BARAJAS

ABSTRACT. In this article we highlight the important role that Lévy processes
have played in the definition of priors for Bayesian nonparametric inference. We
review some of the main properties and characterization of Lévy processes, and
show several applications where these processes have demonstrated good proper-
ties, when they are used as nonparametric prior distributions for Bayesian infer-
ence. These applications include: inference for mixed Poisson processes; survival
analysis; and density estimation.

1. Introduction

Statistical inference is the process of making decisions about a phenomenon
that is subject to variability. Decisions are based on a series of realizations of
the phenomenon, known as sample. Inference procedures can be classified into
two paradigms: the frequentist, which makes exclusive use of the data, usually
maximizing the probability of having observed them under certain model assump-
tions; and the Bayesian, which treats all decisions under the axiomatic decision
theory and quantifies all knowledge and uncertainty of the phenomenon through
probability distributions. Within this Bayesian paradigm, it is also possible to in-
corporate prior knowledge about the phenomenon in the decision making process.

Regardless of the paradigm you choose to make decisions, there are a series
of assumptions you need to make in order to characterize the phenomenon of in-
terest. These are called model assumptions. If the number of parameters used to
describe the model is finite then we say that the model is parametric. On the other
hand, if the number of parameters is infinite the model is termed nonparametric.

Bayesian nonparametric theory handles statistical inference by assuming a
nonparametric model and making decisions via the Bayesian paradigm. Since
the Bayesian decision theory requires to express prior knowledge on the unknown
quantities, a Bayesian nonparametric prior is a probability measure on an infinite
dimensional space. What makes a prior to be nonparametric was clearly stated
by [8] in his Annals of Statistics paper, “a nonparametric prior must have large
support in the sense that any fixed probability measure can be arbitrarily approx-
imated by a probability measure generated by the prior.”

In notation, let X1, . . . , Xn be a sample of random variables (r.v.) such that, con-
ditionally on a fixed cumulative distribution function (c.d.f.) F defined on (X ,B),
the r.v.’s are independent and identically distributed (i.i.d.), that is, X i|F iid∼ F,

2010 Mathematics Subject Classification: 62F15, 62G07, 62N01.
Keywords and phrases: Bayesian nonparametrics, density estimation, increasing additive process,

Markov process, mixed Poisson process, survival analysis.
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where X ⊂ IR is the sample space and B the Borel’s σ-algebra. Being nonparamet-
ric means that the law F that describes the behaviour of the X i ’s is all unknown.
To place our prior knowledge about F, we rely on stochastic processes whose paths
are c.d.f.’s. In notation, F ∼P , where P , defined on (F ,A), is the nonparametric
prior, with F the set of all c.d.f.’s and A an appropriate σ-albebra of subsets of F .
If we think on the probability measure induced by F, then we say that this is a
random probability measure.

In this paper we will review some Bayesian nonparametric priors which are
Lévy-driven. For this we mean priors that are based on a Lévy or increasing ad-
ditive process. In Section 2 we define Lévy processes and present some of their
properties. In Section 3 we describe different nonparametric priors that can be de-
fined in terms of Lévy processes. We briefly discuss posterior inference in Section
4 and show some illustrations in Section 5.

Before we proceed we introduce notation: Ga(α,β) denotes the gamma density
with mean α/β; Po(c) is a Poisson density with mean c; N(µ,σ2) is a normal density
with mean µ and variance σ2.

2. Lévy processes

A stochastic process can be thought of as a family of random variables linked
via a parameter which takes values on a specific domain. According to [7], a sto-
chastic process is the mathematical abstraction of an empirical process whose de-
velopment is governed by probabilistic laws. Let {Z(x); x ∈X } denote a stochastic
process with domain X and range or state space Z . For simplicity let us assume
that X ⊂ IR and Z ⊂ IR.

An independent increments process, or additive process, satisfies the condi-
tion that for x1 < x2 < ·· · < xk ∈ X , the increments defined as Z(x1), Z(x2) −
Z(x1), . . . , Z(xn)−Z(xn−1) are independent. The two principal members of this class
are the Wiener and Poisson processes. According to, e.g., [10], every stochastically
continuous process with independent increments can be represented as the sum
of a Wiener process and an integral of Poisson processes.

A stochastic process Z(x) with independent increments is said to be homoge-
neous if the increments are stationary, that is, if the distribution of Z(x+ t)−Z(x)
only depends on t. Lévy processes are homogeneous independent increments pro-
cesses, and are usually referred as random walks in continuous time.

Lévy processes can have non-monotonic paths, however, the Lévy processes
used for defining priors in Bayesian nonparametric inference are bound to be
nondecreasing, nonnegative and with piecewise constant paths. They are known
as pure jump Lévy processes. Moreover, the homogeneity constraint that char-
acterises a Lévy process is relaxed to nonhomogeneous cases in the definition of
nonparametric priors. Strictly speaking such processes are not Lévy anymore and
a more appropriate name would be increasing additive processes, but we will still
refer to them as nonhomogeneous Lévy processes.

The probability law of a pure jump (homogeneous or nonhomogeneous) Lévy
process is characterized by its Laplace transform and is given by

(2.1) E
{

e−φZ(x)
}
= exp

{
−

∫ x

−∞

∫ ∞

0

(
1− e−φv)ν(dv,ds)

}
,
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where ν(dv,ds) = ρ(dv|s)α(ds) is called the Lévy intensity, ρ(·|s) is a measure on
IR+ that controls the jump sizes for every location s, and α(·) is a measure on IR
that determines the jump locations. The Lévy intensity must satisfy the condition∫

A

∫ ∞

0
min{v,1}ν(dv,ds)<∞,

for any bounded A ⊂ X . If the measure ρ is independent of the locations s, i.e.,
ρ(dv|s)= ρ(dv), the process Z(x) is homogeneous.

There are several Lévy intensities that satisfy the previous condition, most of
them can be seen as particular cases of the following two nonhomogeneous Lévy
intensities:

(i) Generalized gamma: ρ(dv|s) = Γ(1− ε)−1v−(1+ε)e−β(s)vdv, with ε ∈ {(0,1)∪
{−1}}, and

(ii) Log-beta: ρ(dv|s)= (1− e−v)−1e−β(s)vdv,

with a non-homogeneous parameter function β(s) ≥ 0 for all s ∈ IR, together with
a measure α(s) on IR. In particular, for case (i) and with ε=−1, the Lévy measure
becomes finite, i.e., the number of jumps in a finite interval is finite, whereas
infinite Lévy measures have an infinite number of jumps in a finite interval.

A Lévy process can be generalized to include fixed jump locations χ1,χ2, . . .,
with independent nonnegative jump sizes Z{χ1}, Z{χ2}, . . . (also independent of the
rest of the process), then a general Lévy process becomes

Z(x)= Zc(x)+∑
j

Z{χ j}I(χ j ≤ x),

where, Z{x}= Z(x)−Z(x−) and Zc(x) is a Lévy process without fixed points of dis-
continuity, also known as “continuous” part, whose law is characterized by (2.1).
Although Zc(x) is called “continuous”, Zc(x) is almost surely discrete, so it can be
represented as Zc(x) = ∑

j J c
j I(χc

j ≤ x) [9, e.g.], where {J c
j } are random jump sizes

and {χc
j } are random locations.

If we think of µ as the measure induced by the Lévy process Z(x). That is,
for a set A ⊂X , say A = (a0,a1] for a0,a1 ∈X , then µ(A) := Z(a1)−Z(a0). Then,
in measure theory, µ is called completely random measure. These measures are
important since they can be generalized to more general complete and separable
metric spaces. We refer the reader to [6] for details.

3. Lévy-driven priors

(3.1) Definition. In general, a Lévy-driven process is any process defined as a
function of a Lévy process. The specific form of the Lévy-driven processes used
to construct Bayesian nonparamtric priors are Lévy-driven mixtures of a kernel
k(x, s) with weights (or mixing measure) given by a Lévy process Z(s). In notation,
a Lévy-driven process W(x) has the form

(3.1) W(x)=
∫

k(x, s)Z(ds)

As a Lévy process, the Lévy-driven process defined in (3.1) is a Markov process.
Depending on the choice of the kernel k, a Lévy-driven process can have piece-
wise constant paths, smooth increasing paths, or non-monotonic paths. These
behaviours can be seen in Figure 1, where we show random paths of Lévy-driven
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processes for different choices of the kernel k. Note that the jump sizes and lo-
cations were kept the same across the different panels in Figure 1 to better ap-
preciate the influence of the kernel. The general condition we require on a kernel
k(x, s) is to be nonnegative for all x and s. Further conditions need to be imposed
according to the specific use of the process to properly define a prior. These will
be described later in this section.
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Figure 1. Random Lévy-driven paths for different kernels: k(x, s)= I(s ≤
x) (top left); k(x, s) = {1− (s/x)}I(s ≤ x) (top right); k(x, s) = exp{−(x−
s)}I(s ≤ x) (bottom left); and k(x, s)= 3(x−s)2 exp{−(x−s)3}I(s ≤ x) (bot-
tom right). In each panel the lines represent different random realizations
of the process W(x).

(3.2) A limit theorem. There are several ways of characterizing a Lévy-driven
process. In this section we describe a way of obtaining a gamma Lévy-driven
process as a limit of autoregressive gamma processes in discrete time.

[23] established a connection between Gibbs and autoregressive processes.
Considering this connection and by taking a suitable limit, they showed that a
particular autoregressive gamma process converges to a Lévy-driven process. We
sketch the derivation here.

[20] introduced a Gibbs type gamma process in discrete time, {λk}, for k =
1,2, . . .. This process is defined in terms of a set of latent variables {uk} as:
λ1 ∼ Ga(α,1) with uk|λk ∼ Po(cλk) and λk+1|uk ∼ Ga(α+ uk,1+ c). This process
has conditional expectation

(3.2) E(λk+1|λk)= α+ cλk

1+ c
,



LÉVY-DRIVEN PROCESSES IN BAYESIAN NONPARAMETRIC INFERENCE 271

and the process is strictly stationary with marginal distribution λk ∼Ga(α,1).
Starting from the Gibbs construction, [23] derived the innovation term for an

autoregressive process to be stationary gamma. In particular they obtained that
by taking λk = ρλk−1 +ρζk, with ρ = c/(1+ c), ζk|ξk ∼ Ga(ξk,1), ξk|γk ∼ Po(γk/c)
and γk ∼ Ga(α,1), implies that {λk} is a strictly stationary process with Ga(α,1)
marginals and with conditional expected value as that of the Gibbs type process,
given in (3.2).

To define a process in continuous time, we define a partition for each n, via
0= xn,0 < xn,1 < xn,2 < ·· · , with xn,k = k/n for k = 0,1, . . ., and make cn depend on n
via cn = cn for some c > 0. We thus define a piecewise constant process Wn(x) as
Wn(0)=λn,0 and, for x > 0

Wn(x)=λn,k I
(
xn,k−1 < x ≤ xn,k

)
,

where λn,0 ∼ Ga(α,1) and {λn,k} is either the Gibbs or the autoregressive process.
This continuous time process Wn(x) is strictly stationary with marginal distribu-
tion Ga(α,1) for all x ≥ 0.

[23] showed that the autocorrelation function of process Wn(x), regardless of
the choice of {λn,k} to be of Gibbs type or autoregressive, converges to e−x/c, which
is the autocorrelation function of a Lévy-driven process of the form (3.1). However,
the only process that does converge to a Lévy-driven is Wn(x) defined in terms of
the autoregressive process. In this case, the limiting Lévy-driven process, say
W(x), is a shot-noise process of the form

W(x)=
∫ x

0
e−(x−s)/cZ(ds),

where Z(s) is a Lévy process with a fixed jump at zero and finite Lévy measure
for the continuous part ν(dv,ds)= (α/c)e−vdvds. This implies that W(x)∼Ga(α,1)
marginally for all x ≥ 0. Bottom left panel in Figure 1 presents random paths
from a shot-noise process. They have non-monotonic paths and present sudden
increments (shots) with exponential decays.

(3.3) Nonparametric priors. As was mentioned in Section 1, a nonparametric
prior is a probability measure P on the space F of all cumulative distribution
functions. Broadly speaking, we can think of a nonparametric prior as a probabil-
ity measure on the space of probability models. Therefore, we can place the prior
on densities, cumulative distributions, survival functions, hazard rates, or any
other function that characterizes the behaviour of the observable random vari-
ables. In survival analysis, for instance, it is customary to place the prior on the
space of survival or hazard functions. For density estimation, the nonparametric
prior is usually placed on the density or cumulative distribution functions.

A Lévy-driven process prior is thus, a suitable transformation of a Lévy-driven
process, together with some constraints on the kernel k, such that the paths of the
transformed process satisfy some propriety conditions over the space of functions
where the prior is defined.

A nonparametric prior on the space of cumulative distribution functions can be
obtained via a normalization of a Lévy-driven process W of the form

(3.3) F(x)= W(x)

W̃
,
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where W̃ = limx→∞W(x). These type of priors are called normalized random mea-
sures driven by increasing additive processes and were introduced by [19]. The
denominator W̃ plays the role of the (random) total mass induced by the process
W(x), and makes the paths of the new F(x) process to be constrained to lie in the
interval [0,1].

For prior (3.3) to be well defined we require that the kernel k and the
Lévy measure ν satisfy the following conditions: (a) k(x, s) must be nonde-
creasing and right continuous as a function of x, and limx→−∞ k(x, s) = 0; (b)∫

IR
∫

IR+ [1− exp{−φvk̃(s)}]ν(dv,ds) < ∞, for φ > 0 and with k̃(s) = limx→∞ k(x, s);
and (c) ν(IR+×IR)=∞. The Lévy measures (i) and (ii) defined in Section 2 satisfy
these properties.

Two particular choices of the kernel become relevant. If k(x, s)= I(−∞,x](s), then
the process F(x) reduces to a normalized Lévy (increasing additive) process whose
paths are almost surely (a.s.) discrete. See [24] for the distribution of means of
these processes. On the other hand, if k(x, s) is absolutely continuous as a function
of x, for every s ∈ IR, then the process F(x) has absolutely continuous paths (a.s.)
with respect to the Lebesgue measure. In this case, the process F(x) admits a
density function of the form

f (x)=
∫

k′(x, s)
Z(ds)

W̃
,

where k′(x, s)= d
dx k(x, s).

If we re-write expression (3.3) in terms of the Lévy process Z(s) and the limit
kernel k̃(s) we obtain

F(x)=
∫

k(x, s)Z(ds)
limx→∞

∫
k(x, s)Z(ds)

=
∫

k(x, s)

k̃(s)

k̃(s)Z(ds)∫
k̃(s)Z(ds)

=
∫

k∗(x, s)P(ds),

where k∗(x, s) = k∗(x, s)/k̃(s) is a normalized (probability) kernel, and P(ds) =
k̃(s)Z(ds)/

∫
k̃(s)Z(ds) is a normalized weighted or perturbed Lévy process. These

processes were used by [18] to study the impact of the weighting function k̃(s) in
the posterior inference for density estimation. [18] showed that the perturbation
function k̃ has little or almost null effect in the posterior density estimates, what
makes these type of models to be not sensitive to prior misspecifications.

If k̃(s) is constant for all s, then the prior (3.3) reduces to the class of mixtures
of normalized Lévy processes, better known as mixtures of normalized random
measures. In particular, [15] and [16] study the properties of mixtures of normal-
ized inverse Gaussian processes and mixtures of normalized generalized gamma
processes, respectively. The posterior distribution of these priors in given in [14].
Additionally, [1] present a review of these processes when used for density estima-
tion and clustering. Via a simulation study the authors show that these kind of
processes are a good default choice for density estimation. They also created com-
putational algorithms for fitting these models and made them available though
the R package BNPdensity. In Section 5 we will illustrate its use with a real
dataset.

In the study of nonnegative random variables, as is the case for survival anal-
ysis, nonparametric priors are placed on the survival function S, which is de-
fined as the complement to one of a cumulative distribution function F, that is,
S(x) = 1−F(x), for x ≥ 0. In this case, a negative exponential transformation of a
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Lévy-driven process W is commonly used. In notation,

(3.4) S(x)= e−W(x).

This transformation can be seen as another way of “normalization” of the process
W(x), since it transforms the unbounded W process to the unit interval. However,
differing from (3.3), here the process W(x) plays the role of a cumulative haz-
ard function, so strictly speaking, the Lévy-driven process places a prior on the
space of (cumulative) hazard functions. Priors defined by (3.4) have been stud-
ied by several authors, including [21]. This prior is properly defined as long as
the kernel k(x, s) is nondecreasing and right continuous as a function of x, and
limx→0 k(x, s) = 0, for all s ≥ 0; moreover, the Lévy measure ν has to be defined on
IR+× IR+. This is achieved by taking the jump locations of the process from an
α(s) measure defined on [0,∞).

Generalization of prior (3.4) to include covariates has been proposed in
[22]. There, the way that covariates are included is via a proportional haz-
ards model [4]. Assuming that the covariates are time dependent, say ui(x)′ =
(u1i(x), . . . ,uqi(x)), with q the number of covariates, then the semiparametric prior
becomes

(3.5) Si(x)= exp
{
−

∫ x

0
eθ

′ui(s)W(ds)
}

,

for individual i ∈ {1, . . . ,n}, where θ′ = (θ1, . . . ,θq) is a vector of covariate coeffi-
cients.

Within the case of nonnegative random variables, other transformations of
Lévy-driven processes can also be used to define nonparametric priors. For ex-
ample, [17] proposed the semiparametric transformation

(3.6) Si(x)=
{

1+ λi

θi
W(x)

}−θi

,

for i = 1, . . . ,n, where λi and θi are nonnegative parameters interpreted as the
short– (limx→0) and long– (limx→∞) term hazard ratios between individual i and
a baseline individual j such that λ j = θ j = 1. In this case, the Lévy-driven process
W(x) turns out to be the odds function {1−S j(x)}/S j(x) of the baseline individual
j. Broadly speaking, transformation (3.6) can be seen as another “normalization”
of the process W(x). Conditions on the kernel k and Lévy process Z are the same
as those for prior (3.4).

The semiparametric transformation (3.6) is interesting since it includes several
models as particular cases: the proportional hazards model [4], when λi = θi; the
proportional odds model [2], when θi = 1; and crossing hazards, when (λi −1)(θi −
1)< 0. Again, covariates can be included in the model via logarithmic links of the
form λi = exp(δ′ui) and θi = exp(γ′ui), with ui a fixed time vector of q covariates
for individual i.

In a totally different context, nonparametric priors can also be used to make
inference on the functional parameters of stochastic processes. To be specific,
consider a nonhomogeneous Poisson process, that is, X (t)∼Po(Λ(t)), with Λ(t) the
cumulative intensive (mean) function of the process. Then, a Lévy-driven prior
as in (3.1) can be used as a prior distribution for Λ(t). Alternatively, consider a
more general mixed Poisson, Cox, or doubly stochastic processes [11] X (t) such
that X (t)|Λ ∼ Po(Λ(t)), and Λ(t) ∼ Lévy(α(·),β(·)), where α(·) (unknown) and β(·)
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(known) are the functions that characterize the Lévy measure described in Section
2. Thus, we can use a Lévy-driven prior to express our prior knowledge on α(s)
and make inference. These models were studied in detail by [12].

4. Posterior inference

Within the Bayesian paradigm, statistical inference is carried out through the
posterior distribution of the unknown quantities. This is the result of updating
the prior distributions (prior knowledge) with the observed data via the Bayes’
Theorem. In the context of survival analysis, data are not always observed com-
pletely (X i = xi), and only partial information is available, for example, in the form
of right censored observations (X i > xi). Both types of observations are useful in-
formation that need to be taken into account in the Bayesian updating process.
Let us denote by A i either, an exact or right censored, observation.

Recall that our functional parameter W(x) is a function of the Lévy process
Z(x), and that the law of Z is characterized by its Laplace transform (2.1). There-
fore, posterior distribution of W will be characterized by the posterior Laplace
transform of Z. That is, we are interested in finding

(4.1) E
{

e−
∫
φ(s)Z(ds)

∣∣∣A}
=

E
{

e−
∫
φ(s)Z(ds)P(A|Z)

}
E{P(A|Z)}

,

where A= (A1, . . . , An) denotes the observed data such that P(A|Z)=∏n
i=1 P(A i|Z),

and with P(A i|Z) becoming the density or the survival function according to
whether A i denotes an exact or a right censored observation, respectively.

Expression (4.1) is nothing but the Bayes’ Theorem written in terms of expected
values of a specific negative exponential function. Since the law of an stochastic
process is characterized by its Laplace transform, expression (4.1) can be seen as
the Bayes’ Theorem for stochastic processes.

Finding the posterior Laplace transform for the priors described in Section 3 is
not an easy task. It requires to be familiar with a bunch of useful mathematical
identities. The inclusion of latent variables is also useful, and in many cases, nec-
essary to obtain analytical expressions. If the Lévy-driven process W is embedded
into a semiparametric model, as is the case for priors (3.5) and (3.6), posterior
characterization of the driving process Z is done conditionally on the other pa-
rameters, and a Gibbs sampler [25, e.g.] will be needed to produce numerical
results. Details about the posterior characterization of all priors mentioned in
Section 3 can be found in their respective references.

5. Illustrations

(5.1) Density estimation. To illustrate the use of Lévy-driven processes in den-
sity estimation, we consider the Mexican stamp thickness data [13]. This dataset
contains 486 thickness measurements (in millimeters) of the 1872 Hidalgo stamp
issue of Mexico. This issue consisted of stamps printed with the image of the
national independence hero Miguel Hidalgo y Costilla, lasted in circulation until
1874 and included stamps of five denominations (6, 12, 25, 50 and 100 cents). The
data are available as the object stamp in the R package locfit.

We will take a nonparametric prior of the form (3.3) with an absolutely con-
tinuous kernel k such that the prior admits a density. In particular we take
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k′(x, s)=N(x|s1, s2
2), that is, a normal density for x with mean s1 and standard de-

viation s2. This choice of kernel implies that k̃(s)= 1 for all s. The Lévy intensity
measure is characterized by the generalized gamma ρ measure (i) with ε = 0.4,
β(s)= 0, and α measure given by α(ds)=N(s1|0.09,0.0005)ds1 ×Ga(s2|a0,a1)ds2.

Posterior density estimates are shown in Figure 2. Top two graphs are obtained
when taking (a0,a1)= (1,2), whereas for the last two we take (a0,a1)= (1,1). The
underlying histograms, in the first and third panels, were produced with the raw
data with 30 and 20 bins respectively. We deliberately chose a differentiated num-
ber of bins to justify the third mode around value 0.07 (shown in the top panel).
The difference in the posterior density estimates is due to the prior choice on the
standard deviation s2, with a prior favouring smaller values on the first panel
and larger values on the third panel. In the second and fourth panels of Figure
2, we show the posterior distribution for the total number of groups induced by
the mixture, with the second panel favouring three groups and the fourth panel
with a distinctive mode in two groups. [13] suggested three mixture components
when estimating the density for these data. Our model suggests that two mixture
components are also adequate.

(5.2) Survival analysis. We now illustrate the use of a Lévy-driven process in
survival analysis. We consider the well known Stanford heart transplant data.
There are several version of these data, one of them is that studied in [5] and
consists on survival information of 103 patients who were accepted into the heart
transplant program. Patients were accepted into the program and when a donor
heart became available, medical judgement was used to select the receiving can-
didate. Among the 103 patients, 69 received transplants, and from them 24 were
still alive at the end of the study. The data are available as the object heart in the
R package survival.

The reason why this dataset has been so famous is because patients change
treatment status during the course of the study, and thus defining a time depen-
dent covariate. If we denote by wi the waiting time from acceptance to the day of
transplant, for those lucky enough to have a matching donor, then ui(t)= I(t ≥ wi)
is a time dependent indicator variable which takes the value of one or zero accord-
ing to whether the patient has or has not received a transplant by time t.

To analyse these data we will use model (3.5) and concentrate on the hazard
rates which take the form

hi(x)=− d
dx

log{Si(x)}= eθ
′ui(x)

∫ x

0
k′(x, s)Z(ds).

To define the prior we use a kernel k(x, s) =
{
1− e−a(x−s)b

}
I(s ≤ x). This cor-

responds to a location Weibull c.d.f. Here b is a smoothing parameter and a
determines the rate of decay, so in particular we take b = 2 and a hyper prior
a ∼ Ga(1/2,1/2). The Lévy intensity measure is characterized by the generalized
gamma ρ measure (i), with ε=−1 so that the measure is discrete, β(s) = 1 and α

measure given by α(ds) = Ga(s|1,0.001)ds. Finally, the prior for θ was a N(0,10).
The model was implemented in Fortran and is available upon request from the
author.

Posterior hazard rate estimates (posterior means) are shown in Figure 3. The
solid thin line correspond to the hazard rate for a patients who did not receive
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Figure 2. Mexican stamp thickness data. First and thrid panels: his-
togram of the raw data, density estimate (solid line) and 95% credible
intervals (dashed lines). Second and fourth panels: Posterior distribution
of the number of mixture components. Top two: (a0,a1) = (1,2); and
last two: (a0,a1)= (1,1).
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Figure 3. Hazard rate estimates for stanford heart transplant data. With
no transplant made (solid thin line), transplant made at time zero
(dashed line), and transplant made at time 500 days (thick grey line).

transplant, i.e. wi =∞. The dashed line corresponds to a patient who received
a heart transplant immediately after being accepted in the program, i.e. wi = 0.
The effect of a heart transplant can be clearly seen by a lower hazard rate for the
patient who did receive a transplant. In fact, this reduction can be quantified by
the parameter θ which has a posterior mean of −0.68 and a 95% credible interval
(−1.09,−0.24). These values imply a 50% reduction (in average) in the risk of
dying after the transplant. Moreover, the thick grey line in Figure 3 corresponds
to the hazard rate estimate of a patient who received a heart transplant 500 days
after being accepted into the program (wi = 500). In the figure, we can see that
this hypothetical patient starts with the no transplant group (higher) hazard rate
and at time 500 it changes to the transplant group (lower) hazard rate. This
clearly shows the implication for a patient when changing treatment group during
the course of the study.

In summary, Lévy-driven priors are useful stochastic processes who have shown
to be analytically tractable and are very flexible to produce good results in a wide
range of Bayesian nonparametric inference problems.
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NONPARAMETRIC TESTS METHODS FOR STATISTICAL
INFERENCE IN POINT PROCESSES

CARLOS DÍAZ-AVALOS

ABSTRACT. Modeling and inference for point processes is a topic that has been
investigated broadly in the last years. Application fields such as forestry, epi-
demiology and ecology have been the main engine driving such rised interest.
Subjects of interest in point processes modeling range from pattern detection,
modeling clustering and interaction, as well as spatial prediction. Separabil-
ity of some dimensional components is a common assumption in the context of
multidimensional point processes. This hypothesis is especially convenient since
each component of a separable process may be modeled and estimated individ-
ually, and this greatly facilitates model building, fitting, and assessment. Also,
the inclusion of spatially varying covariates in the models for the intensity func-
tion is becoming of particular interest. Little attention has been paid to testing
formally either the assumption of separability or the significance of covariates.
Testing separability and significance of covariates is important if one seeks model
adequately the data and to explain which covariates have an effect in the spatial
distribution of the point pattern observed. We present the results of the use of
non parametric significance tests, using kernel estimation and statistical tests
based on discrepancies between the null and the alternative model. Also, two
application examples are also presented to illustrate the use of the tests and the
conclusions that may be drawn form them.

1. Introduction

Point processes are useful statistical tools that can be applied in a variety of
scientific fields such as forestry, epidemiology or ecology. A space-time point pro-
cess X (t) may be defined as a finite random subset of a given bounded space-time
region S ×T ⊂ R2 ×R. A realization of such process is a space-time point pat-
tern (x, t)= {(x1, t1), . . . , (xn, tn)} of n space-time points or events contained in S×T
(Moller and Waagepetersen, 2006). In many studies there is a property m ∈M
that can be associated to each point of X (t) called the mark, and we will refer
to such proces as a marked space-time point process in S ×T ×M. For example,
when X (t) is is used to model an epidemic outbreake, the mark of a given event
may be the severity of the disease. This idea may be extended to incorporate more
components, giving place to the so called multi dimensional point processes.

Modeling and inference for spatial and spatio-temporal point processes is a
subject investigated broadly in the last years. The wide range of application
fields has been the main engine driving such raised interest. In paricular, spa-
tial Poisson Processes play an important role in both statistical theory (Daley and
Vere-Jones, 1973), and applications (Diggle, 2003). Spatio-temporal marked point
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process models have been increasingly used in a wide variety of environmental
applications to represent observations of events such as earthquakes, wildfires,
sightings of rare species or incidence of epidemics (see Comas and Mateu, 2011;
Comas et al.,2009, Diggle, 2003; Guttorp, 1995, Juan et al., 2012, Ripley, 1976,
Schoenberg et al., 2002).

Multi-dimensional point processes are typically modeled by specifying the con-
ditional intensity function (CIF) of the process, which may be defined as the limit-
ing expected rate of occurrence of points per space-time-mark volume conditional
on Ht, the history of the process prior to time t. When this function exists, the
conditional intensity λ(t,x,m)|Ht) may be defined as the limiting expected rate of
occurrence of points per space-time-mark volume conditional on the history Ht,
i.e.

(1.1) λ(t,x,m)|Ht)= lim
|B|→0

E[N(B)|Ht]
|B|

where B = (t, t+∆t)× (x,x+∆x)× (m,m+∆m), N(B) is the total number of points
in B, and |B| is the volume of B.

Modeling the joint distribution of spatial locations, occurrence times, marks
and covariates (if any) is challenging, and only a few models are flexible enough to
be applied over a wide range of applications. However, existing models commonly
in use in such applications almost invariably have a conditional intensity that
has a product form, or that, in the terminology of Cressie (1993), is separable.
Despite the importance of this assumption, the separability of such processes is
rarely rigorously scrutinized, except some notable exceptions (Schoenberg, 2004,
Assunçao and Maia, 2007). Similarly, the inclusion of spatially varying covariates
in models for the intensity function is becoming of particular interest because
this allows modeling non constant trends in the conditional intensity function
and because the estimated coefficients associated to such covariates often have a
meaning in the context of ecological, epidemiological or other fields of application.

The separability hypothesis is especially convenient since each component of
a separable process may be modeled and estimated individually. A space-time
spatial point process X (t) is separable if its conditional intensity function can be
expressed as

(1.2) λ(x, t)=λ1(x)λ2(t)

where the term λ1(x) is usually modeled as λ1(x)= exp{c′
β}, with c ∈ C a vector of

spatially varying covariates and β a vector of coefficients.
The concept of separability may be extended to multi-dimensional point pro-

cesses X ∈ S ×T ×M×C . For instance, for a multi-dimensional point process
with time-varying covariates {c j(t, x), j = 1, . . . ,k} is completely separable, i.e., the
spatial-temporal coordinates, the mark, and the k covariates are all separable
from each other, if its conditional intensity function can be written as

(1.3) λS(t,x,m; c1(t,x), . . . , ck(t,x)|Ht)=λ1(t,x|Ht) f0(m) f1(c1(t,x)) . . . fk(ck(t,x))

where λ1 is a nonnegative predictable process and f0, f1, . . . , fk are fixed nonnega-
tive functions.

From the ecological and practical point of view, choosing between a separable
or a non separable model may be a key issue given the different implications that
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both models pose. A separable model implies that given two different regions A
and B ∈ D, the ratio

(1.4)

∫
A λ(x, t)dxdt∫
Bλ(x, t)dxdt

does not change with time. On the other hand, testing the significance of spa-
tial covariates is of interest in applications where the goal of the study is to iden-
tify which factors are related to the incidence of events and how the effect of such
factor varies across an area of interest (Díaz-Avalos et al, 2013).

Motivated by previous papers published in both topics, we present here the
results of two separate studies: one is focused on the evaluation of nonparametric
test statistics for separability and the other focuses on nonparametric tests for
significance for covariates in multi-dimensional point processes. Both analyses
are exemplified with application in the modeling of forest fires incidences in two
separate localities. The rest of the paper is organized as follows: in section 2 we
present some basic concepts and definitions for space-time point processes, section
3 is devoted to the results of the analysis of separability test statistics, with an
application to modeling forest fires in Oregon. Section 4 presents the results of
the analysis of non parametric tests for significance in multi-dimensional point
processes. We finish the paper with a discussion of the results and conclusions
regarding the benefits and drawbacks of non parametric tests for point process
inference.

2. Spatial Point Processes

A point process is a random collection of points in some metric space. In gen-
eral, a point process is formed by locations or spatial coordinates, a temporal coor-
dinate, and a uni- or multi-dimensional mark. In such case we are in the context
of spatio-temporal marked point processes. In addition, it is also common to have
covariates defined in the region where this point process lies. Modeling and in-
ference for spatial and spatio-temporal point processes is an issue that has been
broadly investigated in the last years. In their most basic form, see Gelfand et
al. (2010), spatio-temporal point process data consist of a time-ordered sequence
of events ((xi, ti), : i, ...,n), where x = (x1, ..., xn) denotes the spatial location, t de-
notes time of occurrence of an event that falls within a spatial region D and a
time-interval [0,T].

Following Chang and Schoenberg (2011), for the case of spatio-temporal marked
point processes, each point may be represented as a point (t,x,m) ∈Rn+2, where t
is a one-dimensional temporal coordinate, x= (x1, . . . , xn) is an n-dimensional spa-
tial coordinate, and m is a one-dimensional mark. Note that if M= {1, . . . ,k}, the
marked spatial point process X is a multitype point process with k different types
of points. Multitype point processes may be thought as a k−tuple of unmarked
spatial point processes {X1, . . . ,Xk}.

A characteristic basic to point process modeling is the Conditional Intensity
Function (CIF) λ(t,x,m)|Ht), which was defined in equation (1.1). Following
Schoenberg (2004), we say the marked point process is separable with respect
to the mark m if its CIF can be expressed as
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(2.1) λS(t,x,m|Ht)=λ1(t,x|Ht) f (m)

where λ1 is a nonnegative predictable process and f is a fixed nonnegative func-
tion.

Complete separability is particularly convenient in modeling point processes
with covariates, since in such cases one may readily inspect and model the influ-
ence of the covariate on the intensity of the point process simply by inspecting
this covariate individually, and under quite general conditions, the parameters
governing each component of the model may be consistently estimated individu-
ally by maximum likelihood as in Schoenberg (2006).

Let c1(t,x), . . . , ck(t,x) be k covariates. The process N is completely separable,
i.e., the spatial-temporal coordinates, the mark, and the k covariates are all sep-
arable from each other, if the CIF can be expressed as

(2.2) λS(t,x,m; c1(t,x), . . . , ck(t,x)|Ht)=λ1(t,x|Ht) f0(m) f1(c1(t,x)) . . . fk(ck(t,x))

where λ1 is a nonnegative predictable process and f0, f1, . . . , fk are fixed nonnega-
tive functions.

Then, one may inspect the separability of a covariate with respect to a mark
of the process. Note that we have done explicit the possible dependence of the
covariates on time. In the case of separability of a covariate with respect to one or
more spatio-temporal coordinates of the process, the CIF can be expressed as

λS(t,x,m; c1, . . . , ck|Ht) = λ j(t,x; c j|Ht)λ− j(m, c1, . . . , c j−1, c j+1, . . . , ck|Ht)

= λ1(t,x|Ht) f j(c j)h(m, c1, . . . , c j−1, c j+1, . . . , ck)

(2.1) Estimation of CIF’s. Following the strategy of previous works by Schoen-
berg (2004), Assunçao and Maia (2007), and Chang and Schoenberg (2011), we
consider nonparametric kernel estimation of the conditional intensity functions.
Assume that λ̂NS(t,x,m|Ht) is a nonparametric kernel estimate of the nonsepa-
rable CIF of a spatio-temporal-marked point process N, then

(2.3) λ̂NS(t,x,m|Ht)=
∫
χ

Kn+2(t− t′,x−x′,m−m′)dN(t′,x′,m′)

where Kd denotes a d-dimensional kernel density. Let λ̂1(t,x|Ht) denote a non-
parametric kernel estimate of the CIF of the marginal spatio-temporal point pro-
cess consisting exclusively of the locations and times of points of N, and ignoring
the marks, then

(2.4) λ̂1(t,x|Ht)=
∫
χ

Kn+1(t− t′,x−x′)dN(t′,x′,m)

Similarly, consider a nonparametric kernel estimate f̂ (m) of the mark density
f ,

(2.5) f̂ (m|Ht)= 1
N(χ)

∫
χ

K1(m−m′)dN(t,x,m′)

where N(χ) is the total number of points in χ. Under the null hypothesis of sepa-
rability, a separable estimate of λ(t,x,m|Ht) is given by

(2.6) λ̂S(t,x,m|Ht)= λ̂1(t,x|Ht) f̂ (m|Ht)
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Under the null hypothesis of separability, the two CIF estimates, λ̂NS(·) and
λ̂S(·), given in (2.3) and (2.6), respectively, should be similar. For details and
guidelines for optimally selecting densities and bandwidths for kernel smoothing,
and for correcting for boundary effects, see Silverman, (1986).

(2.2) CIF estimation in the presence of covariates. Suppose now that the
CIF for a spatio-temporal marked point process depends not only on the time,
spatial location, and mark but also on a set of covariates. While Schoenberg
(2004) suggests ordinary kernel smoothing of the marginal densities of the process
with respect to the coordinates of the process, it is clear that different approaches
are necessary in examining the separability of a spatial-temporal marked point
process model with covariates. In particular, if the distribution of a covariate is
non-uniform, then a simple kernel regression estimate of f j[c j(t,x)] will be sub-
stantially biased, and an adjustment must be made. Instead, an adjustment anal-
ogous to the Nadaraya-Watson estimator may be used (see Silverman, 1986), that
is, one may compute a quantity of the form

(2.7) ĝ j(c)=
∫
χK1(c− c′)dN(t,x,m; c)∫
RK1(c− c′)dN(c′)

=

n1∑
i=1

K1(c− c′i)

n2∑
i=1

K1(c− c′i)

where the summation in the numerator of equation (2.7) is taken over all n1 ob-
served points in which the covariate is observed at the same temporal instant
that the phenomenon under study, and denoted by c′i, and the summation in the
denominator is taken over all n2 temporal instants on which the covariate is ob-
served.

The function g j(c) may be interpreted as a relative hazard, corresponding to
those temporal instants when the jth covariate achieves a value of c. As with
kernel CIF estimates, it is natural to desire a version of f j scaled to integrate to
n1, so a natural estimate of the contribution f (c) associated with a covariate of
value c is given by

(2.8) f̂ j(c)= ĝ j(c) ·n1∫
R ĝ j(υ)dυ

Assume now that we have a complete point process given by N = (t,x,m, c) ∈
Rn+3, i.e. we have spatial locations in Rn, temporal instants t ∈ R, a
mark variable m ∈ R, and a covariate c ∈ R. We are now interested
in analyzing the separability between the covariate and the rest of compo-
nents. Let λ̂NS(t,x,m; c|Ht) denote the estimator of the nonseparable CIF, and
λ̂S(t,x,m; c|Ht)= λ̂1(t,x,m|Ht)λ̂2(c) the corresponding one for the separable case.

Following now an adjustment analogous to the Nadaraya-Watson estimator, as
commented before, we have that

ĝNS(t,x,m; c) =
∫
χKn+3(t− t′,x−x′,m−m′, c− c′)dN(t′,x′,m′, c′)∫

RK1(c− c′)dN(c′)

=

n1∑
i=1

Kn+2(t− t′i,x−x′
i,m−m′

i)K1(c− c′i)

n2∑
i=1

K1(c− c′i)
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for the nonseparable case, and

ĝS(t,x,m; c) =
∫
χKn+2(t− t′,x−x′,m−m′)dN(t′,x′,m′, c) 1

N(χ)

n1 ·
∫
RK1(c−′)dN(′)∫

χK1(c− c′)dN(t,x,m, c′)

=

n1∑
i=1

Kn+2(t− t′i,x−x′
i,m−m′

i)
n1∑
i=1

K1(c− c′i)

n1 ·
n2∑
i=1

K1(c− c′i)

for the separable one. Finally, the corresponding CIFs will be of the form

(2.9) λ̂NS(t,x,m; c|Ht)= ĝNS(t,x,m; c) ·n1∫
χ ĝNS(t′,x′,m′; c′)dt′dx′dm′dc′

and

(2.10) λ̂S(t,x,m; c|Ht)= ĝS(t,x,m; c) ·n1∫
χ ĝS(t′,x′,m′; c′)dt′dx′dm′dc′

(2.3) Non parametric test statistics . Schoenberg (2004) proposed several
nonparametric test statistics, some based in absolute discrepancies (2.11), others
in squared discrepancies (2.19) as well as likelihood ratios (2.20) of the following
form

S1 = sup


∣∣λ̂NS(t,x,m|Ht)− λ̂S(t,x,m|Ht)

∣∣√
λ̂S(t,x,m|Ht); (t,x,m) ∈ N


S3 =

∫ T

0

∫
Rn

∫
R

[λ̂NS(t,x,m|Ht)− λ̂S(t,x,m|Ht)]2dmdxdt

S4 =
∫
χ
[log{λ̂NS(t,x,m|Ht)}− log{λ̂S(t,x,m|Ht)}]dN ×

×
∫ T

0

∫
Rn

∫
R

[λ̂NS(t,x,m|Ht)− λ̂S(t,x,m|Ht)]2dmdxdt

Assunçao and Maia (2007) derived a score test statistic T and showed that
there is a close relationship between the score test statistic T and the test statistic
S4 proposed by Schoenberg (2004). They assumed that, if the process is nonsep-
arable, there exists a constant ε ≥ 0 and a certain predictable function g(t,x,m)
such that

(2.11) λ(t,x,m|Ht)=λ1(t,x|Ht) f (m)[1+εg(t,x,m)]

where g(t,x,m) is the relative difference between λ(t,x,m|Ht) and
λ1(t,x|Ht) f (m). Note that if ε = 0, λ(t,x,m|Ht) = λ1(t,x|Ht) f (m) and the
CIF is separable with respect to the marks. Assunçao and Maia (2007)then
derived the score test statistic T based on the log-likelihood of the model in (2.11):

(2.12) T =∑
i

λ̂NS(ti,xi,mi|Ht)
λ̂S(ti,xi,mi|Ht)

−
∫
χ

[
λ̂NS(t,x,m|Ht)− λ̂S(t,x,m|Ht)

]
dtdxdm−n
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and showed using first-order Taylor expansions that the test statistic S4 is ap-
proximately equal to the score test statistic T under the null hypothesis of sepa-
rability.

Díaz-Avalos et al. (2013a) considered test statistics based on the fact that, if∫
χ

λ(t,x|Ht)∫
χλ(u,y|Ht)dudy

= 1

then

f (t,x)= λ(t,x|Ht)∫
χλ(u,y|Ht)dudy

is a density in Rd ×R.
A natural estimator for f (t,x) is given in its general form by p̂ = λ̂(t,x|Ht)∑

λ̂(t,x|Ht)
,

which is evaluated for each individual and using both the separable and nonsep-
arable expressions for the CIFs. We thus have for each i = 1, . . . ,n

(2.13) p̂NS
i = λ̂NS(ti,xi|Ht)∑

j
λ̂NS(t j,x j|Ht)

and

(2.14) p̂S
i = λ̂S(ti,xi|Ht)∑

j
λ̂S(t j,x j|Ht)

Large values of any of these test statistics suggest departures from separa-
bility. As suggested in Schoenberg (2004), p-values for these test statistics may
readily be obtained using simulations of separable marked point processes each
with CIF equal to λ̂S(t,x,m|Ht).

The performance of the test statistics described in the previous subsection was
analyzed using simulation under different scenarios:

• Inhomogeneous Poisson point patterns in the unit hypersquare in Rd , for
d = 3,4,5 with intensity function

(2.15) λ(t, x, y,m, c)= 100+100ε
(

1
4

)−k
I[.5,.75]k (v)

where ε is a non negative constant and v is a vector containing the k coordi-
nates that are being tested for separability.

to consider all combinations of dimensions for the spatio-temporal
marked point patterns with covariates.

• A clustering structure given by Neymann-Scott point processes
Point patterns coming from inhomogeneous Poisson processes with intensity

given in (2.15) and from Neymann-Scott processes become approximately sepa-
rable for values of ε close to 0, and depart from separability as ε increases. We
simulated point processes with intensity as in (2.15) and from the Neymann-Scott
process, for a sequence of values of ε in the [0,10] interval. For each resulting pat-
tern Values of S3, S4, T, KL and H were computed to get a sample of 1000 values
of each test statistic under the null and the alternative hypothesis. For each one of
the test statistics, we computed their quantiles under the null hypothesis. Next,
for ε ∈ (0,10] we counted the number of times that a particular test statistic value
obtained under the alternative hypothesis was above the i−th quantile under Ho,
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and the result divided by the number of simulations. The quantiles under the null
hypothesis can be considered as values for α when testing Ho vs Ha.

Figures 1 and 2 as well as Figures 3 and 4 show image plots (left panels) of the
matrices corresponding to the 1−β values for the five test statistics. The matrices
are arranged such that the x−axis represents 1−α whilst the y−axis represents
ε for the different simulation experiments. The right panels of these figures show
the corresponding plots of the probability of Type II error for each test statistic
and for ε= 3.0 in (2.15). We can see that when the intensity function corresponds
to the form in (2.15), the inhomogeneous Poisson case, the performance of the
tests T, KL and H is similar (see Figures 1 and 2). In that case, the probability
of Type II error for KL and H decreases faster than for any other test statistic,
except at high values of α.

For the Neymann-Scott models, the statistics KL and H always showed a bet-
ter performance in terms of β, except for high α when testing separability of time t
and spatial coordinates (x, y) (see Figures 3 and 4). In that case, the test based on
T has a lower value of β. We note and increased power associated with the KL and
H statistics compared with S3 and S4 for the inhomogeneous cases. This is not
generally true for the cluster cases. This is something expected as our statistics
do not depend on the statistical distribution of the data, and on the probabilistic
information coming out of it. Thus for Poisson cases where everything is random
(and the statistical information is weak) our statistics do as well as when some
spatial structure is present in the data, while providing strong power values com-
pared with the other statistics. Of course the increase of power is directly related
to an increase of the Type I error, the fact that the lines for the different tests
crossed for some experiments indicates that under those conditions there is not a
uniformly most powerful test among those studied here.

(2.4) Separability test for lightning ignitions in the US Pacific Nortwest.
To illustrate the application of the separability test statistics to real data, we used
the test statistics studied in this paper with a dataset of lightning caused forest
fires in the US Pacific Northwest. The data are the ignition locations of 5847 fires
in the Blue Mountains area, Oregon. The ignitions were recorded between April
1 1986 to November 30th 1993. This example was shown in Díaz-Avalos et al.
(2013a). Figure 5 shows the geographic location of the Blue Mountains area as
well as the spatial location of the ignitions and a non parametric kernel estimate
of the spatial intensity function.

For each ignition, latitude, longitude, day of occurrence, elevation, vegetation
type and slope were recorded. Also, the average daily temperature for the Blue
mountains during the time span of the data was available, so we associated such
temperature to the day of occurrence of each ignition. This dataset has been
analysed by Díaz-Avalos et al. (2001) in the context of Markov random fields, and
by Møller and Díaz-Avalos (2010) in the context of spatial point processes.

Møller and Díaz-Avalos (2010) proposed the following shot-noise point process
model

(2.16) λ(t, x, y,c,T)=λ1(x, y,c)λ2(t,T)S(t, x, y)

where
λ1(x, y,c)= exp(cβ1)
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Figure 1. Inhomogeneous Poisson case with intensity function as in
(2.15). Testing separability between (x, y) and t.
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Figure 2. Inhomogeneous Poisson case with intensity function as in
(2.15). Testing separability between (t, x, y) and m.
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Figure 3. Neyman-Scott case. Testing separability between (x, y) and t.
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Figure 4. Neyman-Scott case. Testing separability between (t, x, y) and
m.
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Figure 5. Location of the Blue Mountains area (upper figure) and the
spatial location of 5847 lightning caused ignitions occurring between
April 1, 1986 and November 25, 1993 (lower figure, left), together with
a non-parametric kernel estimate (lower figure, right).

is the intensity function of the point process in space, which includes the effect
of space-varying covariates (vegetation type, elevation, slope and exposure) in the
linear predictor;

λ2(t,T)= exp[F(t,T)β2]

is the intensity on time, which includes the effect of the time-dependent average
temperature T and a polynomial time trend in the matrix F, and S(t, x, y) is a
separable shot noise point process.

Separability of space and time was assumed by Møller and Díaz-Avalos (2010),
and although the fitted models did not show serious lack of fit problems, the
hypothesis of separability was not tested either formally or non parametrically.
Díaz-Avalos et al. (2013a) applied the testing procedures described in previous



294 CARLOS DÍAZ-AVALOS

0 1000 2000 3000

−2
0

0
20

40
60

Days since April 1st 1986

Av
er

ag
e 

Te
m

pe
ra

tu
re

0 500 1000 1500 2000 2500

0
1

2
3

4

Days since April 1st 1986

(N
um

. o
f f

ire
s)
(1

4)

Figure 6. Average daily temperature in Fahrenheit (upper panel) and
square root of the daily number of fire occurrences (lower panel, solid
dots) in the Blue Mountains area, together with a non-parametric kernel
estimate (lower panel, solid line) and a parametric estimate (lower panel,
dashed line) of the temporal intensity function λ2(t). The x-axis in both
panels shows days t = 1, . . . ,2796 corresponding to the period from April
1, 1986 to November 25, 1993.

sections to the lightning ignition data to check if the data set analysed by Møller
and Díaz-Avalos (2010) shows evidence of spatio-temporal separability.
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By following the procedure described by Møller and Díaz-Avalos (2010) to ob-
tain simulated patterns from model (2.16), Díaz-Avalos et al. (2013a) obtained
100 such patterns and for each pattern they estimated the separable and non-
separable CIFs λ̂S(t, x, y, c,T) and λ̂NS(t, x, y, c,T). Using 100 simulated patterns
from model (2.16), the nonseparable kernel estimator was computed as

(2.17) λ̂NS(t, x, y, c,T)=
n1∑
i=1

Kn+2(t− t′i, x− x′i, y− y′i,T −T ′
i)I{‖c−ci‖≤ε}(c− ci)

The factor I‖c−ci‖≤ε(c− ci) was included to make the summation in the kernel
only for those sites where the categorical covariates vegetation and slope-exposure
had close values by choosing ε small enough. The separable kernel estimator is
given by

(2.18) λ̂S(t, x, y, c,T)=
n1∑
i=1

Kn(x− x′i, y− y′i, )K2(t− t′i,T −T ′
i)I‖c−ci‖≤ε(c− ci)

The hypothesis of separability of time and temperature was tested, that is,
the validity of model (2.16) was under testing. With the resulting values for the
test statistics computed from the kernel estimators, Díaz-Avalos et al. (2013a)
obtained the empirical p−values for each test statistic with the following results:
T = 0.22; S3 = 0.38; S4 = 0.53; KL = 0.37 and H = 0.32.

None of the tests reject the hypothesis of separability of time and temperature,
the two variables that describe the seasonal variation in the number of fire ig-
nitions in the Blue Mountains. As a result, we may conclude that model (2.16)
is adequate to describe the Blue Mountains ignition pattern. A consequence of
the separability of space and time is that the shape of the intensity function λ1
does not change in a significant way along time, and that such spatial pattern
is only shifted upwards or downwards as time, and hence average temperature,
vary along the different seasons. In other words, for two points xi and x j, the ra-
tio λ(xi/x j) remains constant over time. A possible explanation for this is that fire
ignition is associated to vegetation type through the litter shape, thickness and
moisture (Omi, 2005). None of these factors changes along time, except for mois-
ture, which is directly related to average temperature. The fact that separability
is not rejected allows to give a local estimate of fire risk based only in covariate
estimation and day of the year, something of great usefulness both for the public
and for fire management agencies.

(2.5) Non parametric significance tests. For a wide variety of models, it is
common to assume that the intensity function takes the form λ̂(·) = h(cβ) =
h(

k∑
i=1

ciβi), where h is a link function. Assume now that we have a point pro-

cess given by N = (t,x,c) ∈R1+n+k. Here we are interested in testing the signifi-
cance of the j-th covariate, this is, we want to test the null hypothesis Ho : β j = 0
against the alternative Ha : β j 6= 0. Let λ̂F (t,x,c|Ht) denote the CIF estimator
under the alternative hypothesis (full model), and λ̂R(t,x,c|Ht) = λ̂1(t,x|Ht)λ̂2(c)
the corresponding reduced model under the null hypothesis. Then, the discrep-
ancies between λ̂F and λ̂R can be used to test the null hypothesis. We present
in the next section some nonparametric tests of significance for spatial or spatio-
temporal covariates.
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Consider the case of interest of an unmarked spatio-temporal point process
with covariates, N = {t,x,c}, and with corresponding CIF λ(t,x,c|Ht) defining the
limiting expected rate of occurrence of points per space-time-covariate volume
conditional on the history of the process prior to time t. Schoenberg Schoenberg
(2004) proposed several nonparametric test statistics, some based on squared dis-
crepancies (2.19) and others based on likelihood ratios (2.20) of the following form

(2.19) S3 =
∫ T

0

∫
Rn

∫
Rk

[λ̂F (t,x,c|Ht)− λ̂R(t,x,c|Ht)]2dcdxdt

S4 =
∫
χ
[log{λ̂F (t,x,c|Ht)}− log{λ̂R(t,x,c|Ht)}]dN −(2.20) ∫ T

0

∫
Rn

∫
Rk

[λ̂F (t,x,c|Ht)− λ̂R(t,x,c|Ht)]dcdxdt

A natural estimator for f (t,x,c) is given in its general form by

p̂ = λ̂(t,x,c|Ht)∑
λ̂(t,x,c|Ht)

,

which is evaluated for each event and using both expressions for the CIFs, one
under the null (λ̂R) and the other under the alternative hypothesis (λ̂F ). We thus
have for each i = 1, . . . ,np

(2.21) p̂R
i = λ̂R(ti,xi,ci|Ht)∑

j
λ̂R(t j,x j,c j|Ht)

and

(2.22) p̂F
i = λ̂F (ti,xi,ci|Ht)∑

j
λ̂F (t j,x j,c j|Ht)

Díaz-Avalos et al. (2013b) proposed the use of the Kullback-Leibler measure
(KL) and the Hellinger (H) distance to measure the difference between the two
estimated densities. Under the null hypothesis Ho : β j = 0, p̂R ≡ p̂F , and the
Kullback-Leibler measure can be defined as

(2.23) KL =
np∑
i=1

log

(
p̂F

i

p̂R
i

)
∗ p̂F

i

whilst the Hellinger distance is given by

(2.24) H =
np∑
i=1

{(√
p̂F

i −
√

p̂R
i

)2}
.

The statistical properties of these two tests are analyzed through intensive simu-
lation studies are shown in Díaz-Avalos et al. (2013b).

In all cases, we considered a trend given by intensity functions of the form

(2.25) log(λ(t,x,c))=β0 +β1c1(t,x)+·· ·+βk ck(t,x).

In particular, we restricted to planar spatial coordinates so that x = (x, y), and
considered only three covariates (then k = 3) with coefficients β0, β1, and β2. The
first covariate, c1, was built as the exponential of an isotropic Gaussian random
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field in [0,1]2 with zero mean and covariance with range 0.3, and C(0)=1.0. The
second covariate, c2, was obtained discretizing the exponential of the previous
isotropic Gaussian random field in [0,1]2, dividing it into four categories. Finally,
the third covariate, c3, was obtained as a non-linear transformation of Cov1. The
first covariate was assumed to vary over time (in [0,1]) in a linear way, while
keeping constant in time the second and third covariates.

Díaz-Avalos et al. (2013b) also fitted the corresponding intensity model and
obtained the corresponding β values, obtaining information on their empirical
distribution. They tested the hypothesis of normality using the Anderson-Darling
test. To save space, we only show and compare the results coming from the new
test based on KL with the previously proposed in the literature based on S3.
In their paper, Díaz-Avalos et al. (2013b) showed that the new test H provides
similar results than KL, and S4 is quite similar (although less powerful) than S3.
As an illustration, the empirical distributions of S3 and KL for the Poisson and
Gibbs structures, different number of events and β1 values are shown in Figures 7
and 8. It is a general case, as expected, that the empirical distribution of the test
statistics under the null hypothesis (in black) takes lower values, much closer
to zero than those values coming from the test statistics under the alternative
hypothesis (in red). In all cases we note that as β1 increases, for a fixed sample
size, the separation of the empirical distribution of the test statistics becomes
more evident. This separation behaves clearly different for each test statistic and
point structure. For Poisson and Gibbs models, the separation can be noted at
very small values of β coefficient (as small as β1 = 0.5), whereas in the case of
Neymann-Scott processes, the separation is only detected at higher values of β
coefficient.

Regarding the number of points in the pattern, increasing such number facil-
itates the gap or separation between both empirical distributions when consider-
ing inhomogeneous Poisson and Gibbs models. In the particular case of Neymann-
Scott models, this separation as the number of points increases can be noticed
only for high values of β1. This reinforces the fact that in the presence of clus-
tered structures testing for significance of a covariate has to be taken with more
care. The performance of the test statistics S3, S4, KL, and H under the three
distinct point structures and samples sizes is also summarized in terms of em-
pirical p− values (see Table 1). For inhomogeneous Poisson and Gibbs process,
all the statistics perform in a similar fashion, except S4, which is only able to
reject the null model at big sample sizes. For cluster Neyman-Scott processes all
the statistics can only reject the null model at high values of np and when the
corresponding β1 parameter is high enough.

In summary, in all cases we can see that as β1 increases, for a fixed sample size,
the separation of the empirical distributions of the test statistics under the null
and alternative hypothesis becomes more evident. This separation is different
for each statistic. In addition, for Poisson and Gibbs models, the separation can
be noted at very small values of β parameter, while for clustered patterns the
separation is detected at higher values of β. This gives evidence that in these
cases, it is more difficult to detect significance of the covariates.

Table 2 shows the results of the Anderson-Darling Normality test applied to the
estimated values of β1 parameter. This test has been applied when considering
the three point structures, three samples sizes and considering β1 = 0.0,0.5,2.0.
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Figure 7. Empirical distribution of S3 statistic under Inhomogeneous
Poisson structures when testing the significance of the continuous co-
variate Cov1: Left: β1 = 0.5, Center: β1 = 1.0 and Right: β1 = 2.0. First
line: n = 100, Second line: n = 200, and Third line: n = 500. Empirical
distribution of the test statistics under the null hypothesis (in black) and
under the alternative hypothesis (in red).

The normality test is rejected in specific cases and it does not show a consistent
behavior. For example, normality is rejected only for β1 = 2 and n = 100 for the
inhomogenous Poisson case, and for β1 = 0 and all n in the case of the Gibbs
model. For this last case, when β1 = 2.0 and n = 200 we are close to rejection.
Part of this inconsistency may be explained because as β1 increases, the intensity
function gives more weight to c1, increasing the density of points in a smaller
area. This suggests that the assumption of normality is not related to the number
of points in D but to the density of points in areas where λ takes high values.
The results in Table 2 show that the hypothesis of asymptotic normality has to be
taken with caution. To reinforce these results, Figures 9-11 show the histograms
of the empirical distributions of β1 and the corresponding theoretical quantiles.
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Figure 8. Empirical distribution of KL statistic under Inhomogeneous
Gibbs structures when testing the significance of the continuous covariate
Cov1: Left: β1 = 0.5, Center: β1 = 1.0 and Right: β1 = 2.0. First line:
n = 100, Second line: n = 200, and Third line: n = 500. Empirical
distribution of the test statistics under the null hypothesis (in black) and
under the alternative hypothesis (in red).

3. Application: Lightning ignitions in a Spanish province

To illustrate the application of the significance tests to real data, we use the
test statistics presented in this paper to analyze the trend behavior of the spatial
patterns produced by wildfire incidences in Castellón (Spain) (see Figure 12), dur-
ing the years 2001 to 2006. Figure 12 also shows the image of the elevation in this
zone, elevation that clearly decreases from West to East as we approach the sea.
Testing the significance of this covariate in the spatio-temporal intensity function
is shown in this paper.

We fitted and considered a space-time model exhibiting both a degree of spa-
tial inhomogeneity that takes into account the trend in terms of covariates and
an infinite order of interactions, as well as a seasonal time trend depending on a
single covariate. These models are the so-called inhomogeneous Area-Interaction
processes (Baddeley and van Lieshout, 1995). We considered three spatial covari-
ates (Aspect, Elevation and Slope) affecting the spatial trend and daily average
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IP NS Gibbs
S3 0.4713 0.4820 0.4825 0.4629 0.5519 0.8203 0.510 0.495 0.405

0.0279 0.0035 0 0.6356 0.6461 0.7285 0.0074 0 0
0 0 0 0.247 0.0966 0.0259 0 0 0

KL 0.4927 0.4857 0.4765 0.3737 0.4096 0.6604 0.514 0.490 0.501
0.0071 0.0003 0 0.4934 0.4357 0.4244 0.0791 0.0001 0

0 0 0 0 0.058 0.0208 0 0 0
H 0.4860 0.4827 0.5627 0.4426 0.4917 0.7529 0.511 0.493 0.493

0.0188 0.0018 0 0.6049 0.5815 0.5933 0.051 0.0001 0
0 0 0 0.2627 0.1256 0.0371 0 0 0

S4 0.4785 0.4984 0.4144 0.4962 0.5035 0.5014 0.526 0.585 0.560
0.7592 0.3884 0.5464 0.6088 0.5529 0.3418 0.009 0 0
0.2656 0 0 0.2627 0.1256 0.0371 0 0 0

Table 1. p-values when testing significance of the covariate Cov1 with
the test statistics S3, S4, KL, and H under inhomogeneous Poisson
(IP), Neymann-Scott (NS) and Gibbs models. For each statistic, rows
correspond to values of β1 (0.0,0.5,2.0), and columns correspond to
different sample sizes (n = 100,200,500 ).

Model n = 100 n = 200 n = 500
IP 0.4308 0.0935 0.5979

0.646 0.221 0.8481
0.0397 0.3704 0.8678

NS 0.099 0.6119 0.2925
0.8998 0.3805 0.7505
0.1672 0.6046 0.05159

Gibbs 0.003965 0.03074 0.00191
0.1243 0.512 0.4667
0.1192 0.05599 0.1634

Table 2. Anderson-Darling Normality Test applied to the estimated val-
ues of β1 parameter. Each row corresponds to β1 = 0.0,0.5,2.0.

temperature as the covariate affecting the time trend. Slope is the steepness or
degree of incline of a surface. Aspect is the orientation of the slope, measured
clockwise in degrees from 0 to 360, where 0 is north-facing, 90 is east-facing, 180
is south-facing, and 270 is west-facing. Finally the altitude was considered as the
elevation above sea level, and measured in meters.

We considered a separable model with intensity function of the form

λ(x, t)=λ1(x)λ2(t)

Both λ1 and λ2 are assumed to be densities in the spatial and temporal win-
dows respectively. The multiplicative structure of the model assumed allows to
estimate the covariate coefficients of λ1 and λ2 separately. We used the R library
Spatstat to estimate the coefficients of the spatial component of the model, and the
R glm function to estimate the coefficients of the temporal component. Given the
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Figure 9. First row: Histograms of estimated values of β1 under an in-
homogeneous Poisson model obtained with β1 = 2.0 in the trend term.
Second row: Corresponding normal quantile plots for n = 100 (first col-
umn), n = 200 (second column) and n = 500 (third column).

seasonal pattern of fires in Castellón, we considered only models with a temporal
component of the form

(3.1) λ2(t)=α0 +α1T +α2T2 +α3T3 +α4 sin(t)+α5 cos(t)+α6 sin2(t)+α7 cos2(t)

with T denoting the average daily temperature in the province of Castellón. The
estimates for the α coefficients are shown in Table 3. Given that most of the terms
in the model assumed for λ2(t) lack a physical interpretation, for this temporal
component of the intensity function we did not test for significance. Also, because
we are more interested in testing the effect of the spatial covariates. The models
we considered for λ1(x) are shown in Table 4. We chose a hierarchical structure for
the spatial trend models in order to illustrate what a sequential modeling process
would be.

The empirical distribution for the differences between the statistical test KL
as well as the empirical quantiles are shown in Figure 13. The left column of
plots shows the differences of KLo −KL1, i.e the differences after the inclusion
of the elevation as a covariate in the spatial component of the intensity function.
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Figure 10. First row: Histograms of estimated values of β1 under a
Newmann-Scott model obtained with β1 = 2.0 in the trend term. Second
row: Corresponding normal quantile plots for n = 100 (first column),
n = 200 (second column) and n = 500 (third column).

Coefficient Estimate
α0 -5.982
α1 1.662e
α2 -0.2385
α3 0.01537
α4 0.2830
α5 -0.6244
α6 0.3873
α7 0.05248

Table 3. Coefficient estimates for the time component of the intensity
function for the fire occurrences in the province of Castellón, Spain, for
the years 2001-2006.

The center and the right columns of plots show the differences KL1 −KL2 and
KL2 −KL3, respectively.
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Figure 11. First row: Histograms of estimated values of β1 under a
Gibbs model obtained from the superposition of Strauss processes with
β1 = 2.0 in the trend term. Second row: Corresponding normal quantile
plots for n = 100 (first column), n = 200 (second column) and n = 500
(third column).

Code Model β0 β1 β2 β3
0 Constant 7.268
1 Elevation 7.722 -0.00068
2 Elevation+Orientation 7.681 -0.00069 0.0003
3 Elevation+Orientation+Slope 7.679 -0.00069 0.0003 0.0003

Table 4. Fitted models and parameter estimates for the trend under
an inhomogeneous Area-Interaction model for Castellón fires.

From the histograms we note that there is a significant difference when Eleva-
tion is included in the model for λ1(x), but that inclusion of Elevation and Slope
does not result in a significant improvement in terms of KL. The null model is
rejected (empirical p− value < 0.0116), and we conclude that for the data set an-
alyzed, Elevation explains a significant amount of the spatial variation of the oc-
currence of forest fires in Castellón. These results validate the field observations
that most fires happen at low and intermediate elevations and that seasonal vari-
ation of average daily temperature is associated to the seasonal pattern of fire
occurrences. A similar conclusion regarding significance of the covariates in the
model for λ1(x) can be reached if the test statistic S4 is used (p−value < 10−6).
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Figure 12. First row: Location of the provence of Castellón, Spain(left),
and digital elevation map for the area that includes Castellón. Second
row: wildfire occurrences in 2001-2002 (left), 2003-2004 (center) and
2005-2006 (right).

The empirical distribution for the differences S3i −S3 j, S4i −S4 j and Hi −H j
for i = 0,1,2 and j = 1,2,3 (not shown) as well as the corresponding normal quan-
tile plots suggest that the differences have a normal-shape distribution, and in
fact, the Anderson-Darling test for normality is not rejected in all cases. In all
cases, we note that the addition of the Elevation to the model for λ1(x) is sig-
nificant but the inclusion of Orientation and Slope does not provide a significant
amount of information to explain the spatial variation of the observed fire occur-
rences in Castellón. The positive coefficient for Elevation in the model for the
spatial intensity function indicates that the expected occurrence of fires will be
higher with the Elevation.

A point of interest is the comparison between the different test statistics used
to make inferences about the inclusion of spatial covariates to explain fire occur-
rences in Castellón. Table 5 shows the performance of the different test statis-
tics in terms of the empirical p − values for each added term in the model for
log[λ1(x)]. As mentioned earlier, all the test statistics happen to detect that el-
evation is a significant term in the log intensity function model. However, the
p-values in the first row of Table 5 show that the p-values of S4 and S3 are much
smaller than those of KL and H distances, and therefore have a higher power for
the added term tests.

4. Concluding Remarks

It is clear that the condition of separability in the modeling of multidimen-
sional point processes cannot be overstated. It is typically extremely difficult to
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Figure 13. Histogram of estimated differences of KL values for different
models for the spatial component λ1(x) of the intensity function , and
corresponding normal quantile plots for Castellón fires.

Term KL S4 S3 Hellinger
β1 0.0116 < 10−6 < 10−6 0.008
β2 0.514 0.478 0.490 0.510
β3 0.512 0.204 0.522 0.518

Table 5. Monte Carlo p−values for the added terms in the log linear
model for λ1(x), using the four different test statistics.

construct realistic models for multidimensional point processes in the presence of
marks and with many covariates. Common practice looks for empirically-based
models, and one method for constructing such a model would be to investigate
individually the distribution of each coordinate, and the individual contribution
to the conditional intensity of each, or perhaps small collections of, covariates.
Under separability, these marginal distributions of the process could then be es-
timated separately, and the parametric forms for each could readily be inspected
for goodness-of-fit.

As stated by Schoenberg (2006) and Schoenberg (2004), when separability may
safely be assumed, not only is the derivation of a parametric form for the rela-
tionship between one covariate and the CIF greatly facilitated due to an effective



306 CARLOS DÍAZ-AVALOS

reduction of the dimensionality of the process, but in addition the parameters
governing each component of the model may be estimated individually with con-
sistency.

In this paper we are motivated by the fact that there was a need of new, sim-
ple and practical sepraability and significance tests under the case of marks and
covariates in the context of spatio-temporal point processes, with indication and
investigation of the power and other statistical properties of the tests. The inclu-
sion of spatially and temporally varying covariates in the models for the intensity
function is becoming of particular interest, and in this paper we have introduced
different tests to study the significance of these covariates when playing a role in
the intensity function of a point pattern. Testing the significance of covariates is
important to explain which covariates have an effect in the spatial distribution of
the point pattern observed. We opt here for the flexibility given by the conditional
intensity function, and its nonparametric kernel-based estimation.

In this line, we have proposed new tests based on nonparametric estimation of
the CIFs, we have developed an intensive simulation study to provide informa-
tion on the statistical properties of our test, and have compared them with other
existing tests. Our new tests are competitive with the existing ones, in particular
under those cases of large dimensions. Note that since all the separability tests
used here are nonparametric, such departures from nonseparability cannot be at-
tributed to the lack of fit of a model used in the estimation of the contribution
from a particular covariate.

Our approach calculates thinning probabilities under the conditions of pres-
ence and absence of a set of covariates and compares them through divergence
measures. We approximate the statistical properties of our tests under a variety
of practical scenarios.We also assess under which general conditions the asymp-
totic normality assumptions are adequate (Waagepetersen and Guan, 2009). An
appealing characteristic of our approach is that it permits the use of covariates
of any form, including both discrete and continuous, and that the model fitted is
not restricted to have an intensity function of a lineal form. This allows the use of
wider classes of trend functions in the process of modeling point patterns regard-
less of the application field. The conceptual simplicity of our approach makes it
accessible to users with only a basic statistical background.

The differences between KL, S4, S3 and H distances for each added term may
be thought of as an analogous of the extra sum of squares used to test the signifi-
cance of an extra term in an ordinary linear model. Except for S3, such differences
are not related to squared discrepancies between two models, but in neither case
there is a warranty that the empirical distributions of the differences converge
fast to a normal distribution. The use of Monte Carlo tests is widely justified in
nonparametric situations (Besag and Diggle, 1977), thus justifying its use in the
analysis of the fire patterns in Castellón. The use of Monte Carlo tests for sta-
tistical inference in spatial point patterns is not a novel idea. Recent use of the
Monte Carlo approach for point processes inference are described in Diggle et al.
(2005) and in Kelshall and Diggle (1998), but to the best of our knowledge, such
tests have not been used in the context of significance tests for the inclusion of
covariates.
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The only restriction for the use of the method proposed here is the possibil-
ity to simulate point patterns from the parametric model proposed. Simula-
tion of spatial point processes, however, has advanced considerably in the last
decade, and today it is possible to simulate many complicated models (Møller and
Waagepetersen (2003); Møller and Waagepetersen (2004); Møller and Rasmussen
(2005). Although it is not a particular goal here, it would be wise to depict opti-
mal bandwidth estimation, a long standing problem in nonparametric statistical
estimation. Our study is also related to obtain optimal subsets of covariates when
the number of present covariates is large. This is yet an open problem. Further
research is also needed related to the analysis of the performance of our tests un-
der large dimensions, when combining covariates, marks and very large sample
sizes. In any case we should note that our approach is completely general and
able to run under highly complicated cases combining times, locations, marks and
covariates. The mathematical treatment and formulation is thus set for all such
cases. The more practical problem we may face is the goodness-of-fit of the kernel
estimate. Having complicated combinations of all those terms increases the num-
ber of dimensions and thus the dimension of the kernels involved in the tests. We
in fact anticipate certain problems in dealing with the appropriate kernel function
and with the election of the bandwidth parameter.
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ANALYSIS OF REPEATED EVENTS AND PANEL COUNT DATA

E. JUAREZ-COLUNGA AND C. B. DEAN

ABSTRACT. Recurrent event data arise when there is an event that may repeat
over time. This type of data is common in many areas of the sciences, social
sciences, medicine and elsewhere. In this article we review counting process
models, in particular, Poisson and mixed Poisson models for recurrent event data,
as well as models for aggregated data, where only the number of events occurring
in intervals of time, called panel data, are available. Estimation is conducted
through likelihood and estimating equations. We illustrate the methods through
an example of recurrence of superficial bladder cancer tumors in a clinical trial.
We also briefly discuss optimal recurrent event designs.

1. Introduction

In the last few decades there has been great interest in monitoring longitudinal
processes. One type of longitudinal process arises when there is an event that may
repeat over time; data arising from such a process are called recurrent event data,
and are common in many fields. For example, in business, interest may be in
monitoring insurance claims, in engineering, in monitoring lines of faulty code,
and in medical research, in studying the occurrence of adenomas in the colon, or
the occurrence of superficial bladder cancer tumors.

An example considered in greater detail later typifies the sort of scenario
through which recurrent data arise in clinical trials. This study, conducted by the
Veterans Administrative Co-operative Urological Research Group, investigated
the effects of placebo pills, pyridoxine pills, and periodic instillation of thiotepa
into the bladder on the frequency of recurrence of bladder cancer [2]. The data
appear in [1]. All 116 patients had bladder cancer when they entered the study;
the tumors were removed and the patients were randomly assigned to one of the
three treatments. Two covariates were considered which may reflect cancer sever-
ity at baseline: the number of tumors and the size, in centimetres, of the largest
tumor. Figure 1 displays the recurrences for the three treatment groups.

One of the main classifications of recurrent event analyses is based on whether
the focus is on analyzing the timing between events, or the counts of events. Both
are based on counting processes. While the first scenario focuses on modeling the
hazard between events, the second develops models for the intensity, or the mean
number of events. When the system is sharply different each time a new event
occurs, either because of the effect of the event itself, or the effect of the interven-
tions employed after events occur, other models than the ones considered here are
utilized. In these cases, time to first event, then time between first and second

2010 Mathematics Subject Classification: 62M86, 62N86, 62P10.
Keywords and phrases: clinical trial, counting process, design, life-history data, Poisson

regression.
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Figure 1. Bladder cancer data: the lines in the plot display the obser-
vation times ending at τi, termination times, for individuals, while the
‘+’ indicates event times. For the display of the covariates (size and
tumors) and individual-specific rates, the length of the lines are pro-
portional to the size of the largest tumor, the number of tumors, and
the rate of events, respectively; additionally, lighter colors are used to
highlight large values of these variables.

event, etc., may be considered in separate models. Cook and Lawless [3] provides
a comprehensive source on models and methods for recurrent event analyses.

Often, in order to monitor longitudinal processes, individuals are examined at
specific followup times, and only the number of events that occurred between fol-
lowup visits are recorded; these give rise to what is termed panel data. In this
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article we focus on inference for both recurrent event data and panel data based
on counting processes. We discuss estimation of recurrent event models through
likelihood and estimating equations. Estimating equations provide a robust es-
timation approach. In Section 2 we introduce the counting process likelihood, as
well as Poisson and mixed Poisson models, for both recurrent and panel count
data. In Section 3 we discuss estimation of recurrent event models, while in
Section 4 we illustrate these methods. We close with a discussion of other con-
siderations in the analysis of recurrent event data in Section 5. In this section
we outline a key result regarding optimal design of panel data studies, building
on the robust approach to estimation developed in this paper using estimating
equations.

2. Models Based on Counting Processes

(2.1) Counting Process Likelihood. Models for recurrent events are typically
formulated through their intensity functions, which are the probability distribu-
tion of the events occurring in a small interval of time [t, t+δt), given the history
of events up to time t [3]. Let {N(t), t ≥ 0} be the right-continuous counting pro-
cess that records the number of events for an individual over the interval [0, t];
we define N(0) = 0 for simplicity. If H(t) = {N(s) : 0 ≤ s < t} represents the history
if the process up to time t, then the intensity process function is defined as

(2.1) λ(t|H(t))= lim
∆t→0

Pr{∆N(t)= 1|H(t)}
∆t

.

It is assumed that the probability of two or more events occurring over the in-
terval [t, t+∆t) is o(∆t), so Pr(∆N(t)= 1|H(t))=λ(t|H(t))∆t+o(∆t), and Pr(∆N(t)=
0|H(t)) = 1−λ(t|H(t))∆t+ o(∆t). The likelihood, obtained via product integration
[7], based on n event times 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ τ occurring during the time
[0,τ] for fixed τ is

L =
[

n∏
j=1

λ(t j|H(t))exp

(
−

∫ t j

t j−1

λ(u|H(u))du

)]
exp

(
−

∫ τ

tn

λ(u)du
)

(2.2)

=
[

n∏
j=1

λ(t j|H(t))

]
exp

(
−

∫ τ

0
λ(u|H(u))du

)
.(2.3)

Maximum likelihood methods can then be employed for inference by invoking
usual asymptotic theory.

The definition of the intensity function in (2.1) can be extended to include co-
variate information up to and including time t through an extended definition of
the history of the process, specifically H(t)= {N(s) : 0≤ s < t; x(s) : 0≤ s ≤ t}, where
x(s) is the covariate vector at time s.

(2.2) Poisson and Mixed Poisson Models. The specification of the model
through the intensity function in (2.1) is very general, but in practice assump-
tions are often made regarding the history of the process based on scientific input
and these may aid estimation. Poisson processes are often utilized because of
their memoryless property; they simplify the history to only that at time t, i.e.
the instantaneous probability of the occurrence of a new event in a small window
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of time depends on the history only through t. In this case, the intensity has the
following form:

(2.4) λ(t|H(t))= h(t),

which implies that the number of events N(s, t) in a time interval (s, t] follows a
Poisson distribution, i.e.

(2.5) Pr{N(t)−N(s)= n}=
{∫ t

s λ(u)du
}n

exp
{
−∫ t

s λ(u)du
}

n!
,

where the mean E(N(s, t)) is µ(s, t)= ∫ t
s λ(u)du. The expected cumulative number

of events occurring from time 0 to time t is known as the cumulative intensity
function or cumulative mean function, and has the form

(2.6) µ(t)=
∫ t

0
λ(u)du.

Another important property of the Poisson process is that the number of events
occurring in disjoint intervals are independent random variables.

Since under a Poisson model the intensity function does not depend on the his-
tory of the process, we have λ(t|H(t))dt = h(t)dt = E[dN(t)] (see Equation (2.4)),
interpreted as both a conditional and a marginal probability, or an expectation.
The function h(t) is sometimes referred to as the rate function.

Covariate information is in practice commonly included in a multiplicative
form as

(2.7) λ(t|H(t))= ρ(t)g(x(t);β),

where ρ(t) is known as the baseline intensity function, and it may modeled non-
parametrically or parametrically. Here we will focus on parametric forms through
a parameter α of dimension dα, i.e. ρ(t) = ρ(t;α); forms such as the exponential
(exp(αt)) and Weibull (αtα−1) are often used. The function g(x(t);β) is often spec-
ified as g(x(t);β)= exp(x ′(t)β) to ensure λ(t|H(t)) is positive, and in this case, the
coefficients β may be interpreted as log-relative risks. For simplicity in presenta-
tion, we will consider time-independent covariates, i.e. λ(t; x)= ρ(t;α)exp(x

′
β).

Consider M individuals, and assume each individual is observed up to time τi
referred to as the termination time, i = 1, . . . , M. Let the observation process for
the i−th individual {Yi(t), t ≥ 0} be 1 if individual i is under study at t and 0 oth-
erwise, and assume that {Yi(t), t ≥ 0} is independent of the counting process Ni(t).
Thus the observed counting process may be defined as N̄i(t) =

∫ t
0 Yi(u)dNi(u),

t ∈ [0,τi] for individual i, i = 1, . . . , M. The Poisson counting process has intensity
λ(t; x i) = ρ(t;α)exp(x

′
iβ), which implies that E(Ni(t)) = µi(t) = Ri(t;α)exp(x ′

iβ),
i = 1, . . . , M, where Ri(t;α) = ∫ t

0 Yi(t)ρ(u;α)du. Let the total aggregated count of
events for individual i be ni, i.e. N(τi) = ni. For ni events observed at times
{ti1, ti2, . . . , tini }, the likelihood for individual i has the following form [9]
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L i =
ni∏
j=1

λ(ti j; x i)exp
{
−

∫ τi

0
λ(u; x i)

}
(2.8)

=
{

ni∏
j=1

ρ(ti j;α)
Ri(τi;α)

}
×{

Ri(τi;α)exp(x ′
iβ)

}ni exp
{−Ri(τi;α)exp(x ′

iβ)
}
.(2.9)

The first term in the likelihood (2.9) corresponds to the conditional distribution
of the event times given the number of events, while the second is the likelihood
kernel for the distribution of total number of events ni. The Poisson model has
the constraint that Var(Ni(τi)) = E(Ni(τi)) = µi(τi), which is too limiting in many
cases. Often, the variability observed exceeds what can be explained through
covariates available. In these cases, is common to use a mixed Poisson model,
in which the rate function for subject i is νiλ(t; x i) where νi ’s are independent
positive random variables that follow a distribution G(ν;φ) such that Var(νi) =
φ. The function λ(t; x) is now interpreted as a population average rate function
among subjects with covariate vector x, since E(dNi(t)|x)=λ(t; x)dt. As well, the
random effect νi represents the effect of covariates which are unaccounted for in
the regression model. Note that νi may also be a cluster effect, taking the same
value for all individuals within the same cluster. This can be used to account
for unknown hospital effects, for example, where patients are clustered within
hospitals. When νi follows a Gamma distribution, the marginal distribution of
ni is negative binomial. In this case, the variance has the form Var(Ni(τi) =
µi(τi)+µ2

i (τi)φ accommodating extra-Poisson variation in the second term. In
addition, if s1 < t2, Cov(Ni(t1, s1), Ni(t2, s2)) = φµi(t1, s1)µi(t2, s2). The parameter
φ reflects both the degree of overdispersion and the degree of association between
disjoint interval counts.

(2.3) Likelihood for Panel Count Data. Panel data arises when counts of
events are recorded at specified followup times. Such data are quite common as
continuous followup is expensive; when it is not ethically required, or seen to be
too invasive given the clinical context, panel studies are employed. For example,
studies investigating recurrence of superficial bladder cancer tumors commonly
collect information in a panel followup framework; as an illustration, Vancouver
Coastal Health in Canada is currently conducting a clinical trial on bladder can-
cer with followup every 3 months for the first two years, every 6 months for the
next two years, and yearly thereafter [12].

Let the e i +1 individual-specific panel followup times be denoted by Ti,0 = 0 <
Ti,1 < Ti,2 < . . . < Ti,e i = τi. Panel counts for individual i are denoted as nip =
N̄i(Ti,p)− N̄i(Ti,p−1), p = 1,2 . . . , e i, and the total aggregated count of events for
individual i is ni+ =∑e i

p=1 nip.
The counting process Ni(t) is again modeled here as a mixed Poisson process

with intensity function λi(t) = νiρ(t;α)exp(x
′
iβ), given νi, an individual-specific

random effect accounting for overdispersion. We set E(νi)= 1 without loss of gen-
erality, and let var(νi)=φ. A particular scenario that may be of interest, as in the
bladder cancer study, is where it is required to test treatment efficacy in reducing
the number of recurrences. Let x i be a k×1 treatment indicator vector for the i-th
individual, such that xi1 = 1 represents an intercept term, and xi j = 1 if individual
i received treatment j, or 0 otherwise, j = 2, . . . ,k. Thus the corresponding β’s are
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parametrized such that the treatment effects are measured relative to treatment
1; β1 reflects the overall mean, and α describes the shape of the baseline intensity
function ρ(t,α).

Writing the cumulative baseline intensity function for the entire followup time
for individual i as Ri =

∫ τi
0 Yi(t)ρ(t;α)dt, then µi+ = µi(τi) = Ri exp(x

′
iβ). Sim-

ilarly, defining the cumulative baseline intensity function in panel period p as
Rip = ∫ Ti,p

Ti,p−1
Yi(t)ρ(t;α)dt, we have µip =µi(Ti,p−1,Ti,p)=E(nip)= Rip exp(x

′
iβ).

The likelihood based on panel count data may be written as the product of
two terms 1) a conditional distribution of the number of events in each panel nip
given the total number of events ni+, and 2) the distribution of the total number
of events ni+. Specifically, the likelihood has the following form:

(2.10)

Lp(θ )=
M∏

i=1

[(
ni+

ni1, ...,nie i

) e i∏
p=1

(Rip

Ri

)nip
]
×

M∏
i=1

∫ ∞

0

(νiµi+)ni+ e−νiµi+

ni+!
G(νi)dνi.

Note that if there is a single panel, Lp(θ ) (2.10) will reduce to the simple mixed
Poisson kernel.

3. Use of Estimating Equations for Inference in Recurrent Event Models

Inference for Poisson and mixed Poisson models may be based on likelihood
methods, and alternatively, on more robust approaches only assuming the form
of the mean. These alternative approaches estimate the variance by using either
a robust model-based variance or a robust empirical variance. In this section we
provide details on how estimation can be carried out using estimating equations;
we build the estimating equations for regression parameters from the negative
binomial distribution for the counts of events.

Let the intensity function of the counting process of the events, given the
subject-specific random effect νi, be

(3.1) λi(t)= νiρ(t;α)exp
{
x

′
iβ

}
.

Let θ = (β ′,α ′,φ)′, and let ωipl be the time of the l-th event, from the start
of the study, for the i-th individual in panel period p, i = 1, . . . , M, p = 1, . . . , e i,
l = 1, . . . ,nip. The likelihood kernel based on either the full data (subscripted by
d = f ) or the panel data (subscripted by d = p) factorizes as:

(3.2) Ld(θ )= Lα,d(α)×
M∏

i=1

∫ ∞

0

(νiµi+)ni+ e−νiµi+

ni+!
G(νi)dνi, d ∈ { f , p}

where

(3.3) Lα, f (α)=
M∏

i=1

e i∏
p=1

nip∏
l=1

ρ(ωipl ;α)
Ri

,

and

(3.4) Lα,p(α)=
M∏

i=1

[(
ni+

ni1, ...,nie i

) e i∏
p=1

(Rip

Ri

)nip
]

.
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Lawless [8] provides the first and second derivatives of the negative binomial
likelihood with respect the parameters, which provides the basis for likelihood
estimation along with (3.2).

Let gd = (g ′
β
, g ′

α,d , gφ) = 0′ denote the full set of estimating equations for the
panel (d = p) or the full (d = f ) data. Since the likelihood is a function of β only
through the second term in (3.2), the estimating equations for this parameter
are developed here as the usual quasi-likelihood equations (∂µ/∂β)′U−1

o (n−µ) =
0, where Uo = diag{µi+(1+φµi+), i = 1, . . . , M}, n = (n1+, . . . ,nM+)′ is a vector of
counts, and µ = (µ1+, . . . ,µM+)′ is the vector of their expected values. Defining
U = diag{µi+, i = 1, . . . , M}, this becomes

(3.5) gβ = X ′UU−1
o (n−µ)= 0.

We obtain an estimating equation for α by combining ∂ logLα,d /∂α, d = f , p,
with quasi-likelihood estimation as both first and second terms in (3.2) depend on
α, yielding

(3.6) gα,d = ∂ logLα,d(α)
∂α

+W ′UU−1
o (n−µ)= 0,

where W is a matrix with entries

(3.7) wia = ∂ logRi

∂αa
, i = 1, . . . , M, and a = 1, . . . ,dα.

Several choices may be considered for the estimating equation of the overdis-
persion parameter φ. In our examples, we use the pseudo-likelihood estimator,
which has been popular since its introduction by [4]. It has performed well in
simulation studies for simple overdispersed count analyses and has documented
optimality properties [11]. The pseudo-likelihood estimating equation for φ is

(3.8) gφ =
M∑

i=1

(ni+−µi+)2 − (1−hi)µi+(1+φµi+)
(1+φµi+)2

= 0,

where hi = diag(U1/2V ′(V ′UV )−1V ′U1/2), V = ( X W ); hi is the diagonal of the
hat matrix and represents a correction to reduce small sample bias in this simple
second moment equation.

Let the estimator of θ from either full (d = f ) or panel (d = p) data be de-
noted by θ̂d . Under standard conditions for the application of asymptotic results
to estimating equations,

p
M(θ̂d −θ ) is asymptotically normal with asymptotic

covariance

(3.9) E
(
− lim

M→∞
∂gd
∂θ

)−1
E{ lim

M→∞
gd g ′

d}
{

E
(
− lim

M→∞
∂gd

∂θ

)−1}′

.

Finite sample variance estimates are obtained by substituting θ̂d for θ and omit-
ting the expressions limM→∞. In this case there are two options for approximating
the expectation of the terms in (3.9). The first is a model-based approach, which
in this case requires specification of 3rd and 4th moments of the counts. The sec-
ond is an empirical approach, which substitutes E{

∑M
i=1 g id g′

id} by {
∑M

i=1 g id g′
id};

where g id denotes the contribution to the score equation from individual i.
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Full Data 2-Panel Data
Estimates Standard Errors Estimates Standard Errors

NB QL NB MB EMP NB QL NB MB EMP
β1 -3.449 -3.428 0.348 0.275 0.333 -2.976 -2.947 0.503 0.477 0.486
β2 0.133 0.118 0.316 0.302 0.287 0.118 0.108 0.313 0.301 0.286
β3 -0.541 -0.540 0.317 0.264 0.291 -0.553 -0.551 0.315 0.263 0.290
β4 0.245 0.240 0.072 0.057 0.065 0.240 0.236 0.072 0.056 0.065
α 1.019 1.015 0.069 0.055 0.068 0.886 0.880 0.124 0.117 0.121
φ 1.144 0.848 0.285 0.193 0.275 1.122 0.846 0.282 0.193 0.275

Table 1. Parameter estimates and their standard errors, resulting from
the likelihood (NB) and quasi-likelihood (QL) analyses, using both a
robust model-based (MB) and a robust empirical (EMP) approach, fit to
the bladder cancer data. The regression parameters β1,β2,β3 correspond
to the three treatment groups, parametrized with respect to the placebo,
and β4 to the covariate, number of tumors at baseline.

4. Analysis of Bladder Cancer Data

In this section we estimate the treatment effects for the bladder cancer study
[1] discussed in Section 1 under a design with continuous followup as well as a
panel design, for illustrative purposes, with 2 equally spaced scheduled followup
visits over 64 months; for the panel design, we record information on event re-
currences at the scheduled followup times 32 and 64 months, and at termination
times.

Figure 1 displays the recurrences of events. Note that the rate of occurrence
of events seems to be slightly lower in the thiotepa group. Figure 1 shows that
the three treatment groups are very similar in terms of the distributions of the
termination times, the number of tumors, and the size of the largest tumor at
baseline.

Table 1 reports parameter estimates for a model with Weibull baseline, and
their standard errors: likelihood based, robust model-based and robust empir-
ical, under a 2-panel design, as well as from an analysis of the full data with
continuous followup. Since the estimated coefficient corresponding to the size of
the largest tumor at baseline is not significant, this variable has been excluded
in the subsequent discussion. The estimates under the negative binomial and
quasi-likelihood are quite close, except for the overdispersion parameter, which is
slightly larger based on the negative binomial analysis. The standard errors are
also similar, with likelihood values larger than the robust model-based estimates.
The robust empirical estimates are data-driven (not model-based) and are quite
close to those from the negative binomial analysis. The difference is again more
pronounced for estimates of the overdispersion parameter. The thiotepa treat-
ment may have a significant protective effect on recurrences, while the pyridox-
ine treatment effect is non-significant. There is substantial overdispersion in the
data, and the estimate of the Weibull shape parameter α is quite close to unity.

Importantly, note that the estimates of the treatment effects (relative to
placebo) from the panel design are quite close to those from the full data analysis,
indicating cost efficiency would be gained from well-designed panel designs with
relatively little loss of information regarding treatment effects. There are larger
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differences observed in panel versus full data analyses for estimates of other pa-
rameters. For example, the estimate of the standard error of α̂ is considerably
higher in the 2-panel design than that of the corresponding estimate from the full
data analysis.

5. Other Approaches and Topics

Dependent termination time of the recurrent event process is one of the topics
that has drawn more attention in the last few years. This topic requires appro-
priate modeling when the end of the study, for example death, is related to the oc-
currence of the events. A popular approach to model this dependency is through
shared individual frailties, where the recurrent event process and the survival
process are linked [10].

This approach of shared individual frailties linking recurrent event and sur-
vival outcomes has also been used to model dependency when considering mul-
tivariate recurrent event processes [5, 13]. This may be useful when modeling
recurrent event processes that may evolve differently over time, but are likely to
be intrinsically associated.

In summary, in this article we have presented briefly some counting based
models, and have discussed approaches where we have both full data available,
through the timing of events, and where only panel counts are available; we also
discussed inference based on likelihood and estimating equations in both situa-
tions. Juarez-Colunga et al [6] built from this inference framework an investiga-
tion of the loss of efficiency of a treatment estimator in panel designs as compared
to designs using continuous followup. A main result of this investigation states
that little is lost when the distributions of both the termination times and the
covariates adjusted for in the analysis are close across treatment groups. A sim-
ple example of similarity in such distributions would be if the termination times
over the covariates are identical across the treatment groups; for example, if the
covariate is sex, and there are two treatments (A and B), this would mean that
the same number of females and males are allocated to the treatment groups, and
that the termination times for each gender under treatment A are the same as for
those under treatment B. Juarez-Colunga et al [6] provides details on conditions
for optimal panel designs, broadly as well as several illustrative examples.
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GROUP DECISION MAKING

M. D. L. DOLORES SÁNCHEZ CASTAÑEDA AND STEPHEN G. WALKER

ABSTRACT. In this paper, we describe a novel approach to group decision mak-
ing. We develop theory specifically for a group rather than rely on standard
maximizing expected utility rules based on treating group aggregations from in-
dividuals as a super–individual who adheres to axioms of rational behavior. The
maximization of expected utility rule demands strong assumptions from decision
makers. This problem is more complex for group decision making due to the
conflict of interest within the group. To assume probabilistic preferences, and
random utility models, seems a more realistic approach to group decision mak-
ing. However, standard literature on probabilistic choice does not incorporate
the uncertainty about certain events under which the decision making process
takes place. Additionally, the aggregation of beliefs about the uncertain events of
the world and the aggregation of utilities attached to them, become an important
issue in the group decision making process. Our idea is to combine theory from
individual rational choice and random utility models to propose a new rational
choice for group decision making. We assume the decisions makers preferences
are probabilistic due to uncertain states of the world. We present illustrations.

1. Introduction

Decision theory aims to give a decision rule on what action is the best choice
assuming decision makers behave rationally. However, the concept of rationality
restricts the individual to certain conditions on choice behavior that are norma-
tive. This is, normative approaches give a prescription of what action is the one
that the decision maker should choose, they do not describe how people actually
behave. Decision theory is closely related to utility theory, where the point of any
agent facing any type of decision is to achieve an optimal outcome. In social choice,
where decisions are made for the society, utility theory is more complex, since it
involves both individual and the collective interests. The problem is how to rec-
oncile these two aspects when people may have different views or considerations
about what is the best for the society as a whole.

It is well known that decision theory is about taking actions with imperfect
knowledge. The main idea is to construct a utility function on actions and out-
comes with a probability specified on the uncertain future outcome. Hence, one
is able to derive a fully specified expected utility, and [38] were among the first
to formalize the axioms of rational behavior, leading to the well known maxi-
mization of expected utility rule. The axioms where restated within a subjective
probabilistic framework by [36], whose work is also based on [32]. Whether it is
considered with an objective or subjective probabilistic perspective, these set of
axioms are well known as the coherence or rationality axioms. The normative

2010 Mathematics Subject Classification: 91B06, 91B10, 91B82.
Keywords and phrases: group decision making, social choice, expected utility, rationality, democ-

racy, random utility, opinion pooling, weighted likelihood bootstrap.

319



320 M. D. L. DOLORES SÁNCHEZ CASTAÑEDA AND S.G. WALKER

approach to decision making consists on choosing the action which maximizes the
expected utility, under the assumption that every decision maker adheres to the
rationality axioms. However, given the uncertainty about external events that
affect outcomes from an action taken and due to imperfect perception about the
attributes of the set of alternatives, it has been found that such coherence axioms
are not always satisfied [2, 37, 17]. As an alternative, other models of choice have
been develop to describe individual choice behavior, i.e. how the individual actu-
ally behaves, instead of how she should behave. Such are the cases of random
utility models, [3, 22]; and prospect theory, [16].

The aim of this work is to propose a coherent group decision rule which does
not involve a voting process, and is based on a descriptive choice behavior, rather
than a normative one. The utility is typically described as a cardinal number or
an increasing monotonic function, but the approach to be used here is to represent
the utility as a random function, taking ideas from random utility models; see [3],
and [20]. We provide a formal framework and an axiom system for group decision
making under probabilistic choice behavior.

To set the notation, we define the action space A as the set of all possible ac-
tions or alternatives {a j ∈A }, j = 1, . . . , J that are available to the decision maker.
A is typically finite, although considering the extension to the infinite case is also
valid. The states of the world θ ∈Θ are the uncertain events. The decision maker
has no control over them but they are relevant because they will have an effect on
the outcome in conjunction with the set of alternatives. The states of the world
form a partition of the algebra Θ, such that {θ ∈Θ} if the state space is a contin-
uum or {θl ∈ Θ} with l = 1, . . . ,L if it is discrete. The description of the states of
the world can include all the possible events, or it can be a subset including only
the relevant events for the decision problem in question. The set of consequences
{cl ∈ C }, l = 1, . . . ,L, are the outcomes derived from a realization of a particular
state of the world and a particular action taken, i.e. c = c(a,θ). Although indi-
viduals show preferences over pure consequences, these consequences are always
an associated result of the action taken. Hence, preferences over consequences
induce a preference over actions. C is typically finite, although considering the
extension to the infinite case is also valid. A binary or pairwise preference relation
denoted by º, is used to compare and order the elements in the action space A ,
and in the set of consequences C . The utility function over the set of alternatives
and the uncertain events, U(a,θ) quantifies the preference relations, and it is de-
rived from a valued-scale function v over the consequences, v(c(a,θ))=U(a,θ); see
[14] for more details.

Describing the layout of the paper; in Section 2 we review the random util-
ity model. (RUM). Section 3 introduces the representation of the random utility
model which includes the random variable capturing the uncertainty of the ex-
ternal events of the world. Section 4 describes our approach to group decision
theory. In Section 5 we present some examples and applications, and we have a
brief discussion in Section 6.

2. Random utility models

Probabilistic theories of preference were developed to acknowledge inconsis-
tencies and deviations from the normative expected utility rule. These theories
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attempt to describe individual choice behavior in a more realistic way, assuming
that for repeated choices under the same circumstances and, with the same avail-
able alternatives, individuals choose sometime one alternative and sometime they
choose another. Therefore, one can assign a probability distribution on the space
of alternatives to estimate and describe the proportion of times that the decision
maker selects one alternative over the other. Probabilistic choice admits intransi-
tivities and multiple comparisons of alternatives, [27, 33] a more realistic way to
incorporate randomness from individual choice.

The random utility model in the probabilistic choice approach is derived from
the problem in proving the existence of numerical scales of utility and subjec-
tive probability. However, it should also take into account external uncertainty in
some way. [27] and [22] introduced the random utility model, in which the utility
function is not known at the moment of choice, but is assumed to be randomly de-
termined on each presentation to the subject. Once selected, the subject’s decision
or outcome is completely determined by the relevant utilities, just as in the alge-
braic models. Hence, the utility function is selected according to some postulated
probability mechanism that is perceived as to be the largest value of the utility.
Since non–random utility models are considered inadequate in descriptive theo-
ries of choice, these models were intended to relax the assumptions of normative
theory in order to have weaker models that describe and forecast behavior in a
better way.

As [3] remarks, a way to weaken the non-stochastic theory is to make the or-
dinal utility function as a random one. Hence, RUMs assume that choice proba-
bilities reflect the underlying utility function of individual preferences and that
individuals choose alternatives according to what they perceive as a maximization
of that utility. Therefore, RUMs fill the gap between normative and descriptive
behavior, while retaining the principle of optimality.

Probabilistic preferences are assumed to satisfy the set of axioms stated by [23]
as the conditions for a simultaneous conjoint measurement for binary relations.
These axioms where extended to the multiple comparison case by [19]. According
to notation in Section 1, choice probabilities for binary preferences over alterna-
tives in A , are defined as follows.

Definition (2.1) (Choice probability). When the subject is forced to choose be-
tween two elements {ai,a j ∈A } , the probability of choosing ai over a j is P(ai,a j),
and P(a j,ai) is the probability of choosing the reverse order, i.e. choosing a j over
ai, where P is a real-valued function that satisfies

1. P : A ×A → [0,1]
2. P(ai,a j)+P(a j,ai)= 1
3. P(ai,a j) ∈ (0,1) ∀ j 6= i, follows from 1.

An individual will prefer alternative ai over a j if P(ai, a j) > P(a j, ai). If
P(ai,a j) = 1 then we say that there exists perfect discrimination between ai and
a j. If there are only two elements in A and if P(ai,a j) = 1/2 = P(a j,ai) we say
that the individual is indifferent to both alternatives. Also, P(a,a)= 1/2, is a con-
sequence of 2 in Definition (2.1). However, the contrary is not true. When two
alternatives have probability 1/2 of being selected, it does not mean that both al-
ternatives are necessarily the same. In economic terms, it can mean that both
alternatives are the substitutes of each other.
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In a similar way, we can define choice probabilities over subsets of alternatives.
To say, for S ⊂ T ⊆A , PT (S) is the probability of choosing the set of alternatives
S when the set T of alternatives is presented to the decision maker. In general,
we assume that these probabilities also satisfy the following axiom stated by [20]:

AXIOM (2.2) (Probability axiom). 1. For S ⊂ T, 0≤ PT (S)≤ 1.
2. PT (T)= 1
3. For all Si ⊂ T such that

⋂
i∈I Si =;, then

PT

(⋃
i∈I

Si

)
= ∑

i∈I
PT (Si).

A generalization of part 3. for elements of S ⊂ T implies

PT (S)= ∑
a∈S

PT (a)

Although, initially it was not specified, choice probabilities are subjective in
the sense of [32] and [36]; since they represent individual views about personal
preferences.

Another fundamental axiom in probabilistic choice by [20], is the choice axiom.

AXIOM (2.3) (The choice axiom). Let T be a finite subset of A such that, for ev-
ery R ⊂ S ⊂ T, where PS(R) is the probability of choosing the subset of alternatives
R from the subset S,

1. If P(ai,a j) 6= 0 or 1 for all ai,a j ∈ T, then for R ⊂ S ⊂ T
PT (R)= PS(R)PT (S);

2. If P(ai,a j)= 0 for some ai,a j ∈ T, then for every S ⊂ T
PT (S)= PT−{ai} (S− {ai}).

In terms of conditional probability, this axiom is equivalent to say that if
PT (S) > 0, then the conditional probability of choosing the subset of alternatives
R given that the individual has already chosen the set S from T is

PT (R|S)= PT (R∩S)
PT (S)

.

The importance of this axiom is that with this assumption it is easy to deal
with the problem involving both perfect and imperfect discrimination and it helps
to define the properties of general choice probability. In words, the axiom says
that if we include more alternatives in the relevant set, the choice probabilities
are not affected. Hence, the extension of this axiom also applies when instead
of considering just one irrelevant alternative ai, we consider a set of irrelevant
alternatives, say E = {ai|ai ∈ S}⊂ S such that P(ai,a j)= 0 for all ai ∈ E.

A weak utility model allows to state any order-preserving function to be re-
stated in terms of probabilities, given that the preference order is defined by a
real-valued function w, this is equivalent to one alternative having probability
1/2 of being selected over the other one.

Definition (2.4) (Weak utility). A weak (binary) utility model is a set of pref-
erence probabilities for which there exists a real-valued function w over A such
that

(2.5) P(ai,a j)≥ 1
2

if and only if w(ai)≥ w(a j), ∀ai a j ∈A .
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Another important concept in probabilistic choice that reflects to certain extent
the strength of preferences is the stochastic transitivity; which is a probabilistic
extension of the algebraic transitivity property for probabilistic preferences, and
it is defined for the binary relations as follows:

Definition (2.6) (Stochastic transitivity). Given three alternatives, ai, a j, ak ∈
A , and min[P(ai,a j), P(a j,ak)]≥ 1

2 the binary preferences satisfy:

1. Weak stochastic transitivity if and only if

P(ai,ak)≥ 1
2

2. Moderate stochastic transitivity if and only if

P(ai,ak)≥min[P(ai,a j),P(a j,ak)]

3. Strong stochastic transitivity if and only if

P(ai,ak)≥max[P(ai,a j),P(a j,ak)]

The intuitive interpretation of this property is that an individual prefers ai
over a j if P(ai,a j) > 1/2. This is equivalent to saying that when facing repeated
decision situations, at least 50% of the times she chooses ai over a j. An equivalent
condition to moderate stochastic transitivity is

P(ai,a j)≥ 1
2

if and only if P(ai,ak)≥ P(a j,ak).

[4] link choice probabilities with utility functions. The implication is that weak
stochastic transitivity is a necessary condition for the existence of a utility func-
tion. Hence, under some conditions the comparison of probabilities can be inter-
preted as a difference in cardinal utilities.

Definition (2.7). For a given subject, a real valued function w on A is called
the utility function if and only if, for any a1, a2, a3, a4 ∈A ,

P(a1,a2)≥ P(a3,a4) if and only if w(a1)−w(a2)≥ w(a3)−w(a4).

provided neither P(a1,a2) nor P(a3,a4) are equal to 0 or 1.

Then one will feel compelled to look for a cardinal utility function w such that
P(a1,a2)> P(a3,a4) to be equivalent to w(a1)−w(a2)> w(a3)−w(a4). At this point,
we would be willing to make a link with normative theory through the cardinal
utility. For instance, strong stochastic transitivity is a necessary and sufficient
condition for the existence of a utility function on a set of alternatives.

Now we present the definition of a random utility model. Let A ⊆ A be the
finite subset of alternatives, and U be a random vector of utilities on A, such
that U= [U1(a1), . . . ,Un(an)], with each Ui(ai) also denoted as U(ai), is called the
random utility of ai ∈ A ⊆A . No assumption is made about dependency relations
between these random variables.
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Definition (2.8) (Random utility model). A random utility model is a set of pref-
erence probabilities defined for all subsets of a finite A for which there is a ran-
dom vector U= [U1(a1), . . . ,Un(an)] on A , such that for ai ∈ A ⊆A ,

PA(ai)=P
[
Ui(ai)≥U j(a j)∀ j ∈ A

]
(2.9)

=
∫ ∞

−∞
P
[
Ui(ai) ∈ dt,U j(a j)≤ t, ∀ j ∈ A

]
.

Here P is a probability measure over the Borel σ–algebra σ, the probability space
is (A ,σ,P) and {ai ∈A : U(ai) ≥U(a j) for all a j ∈A , j 6= i}, defining a utility ran-
dom variable U on A . If the definition is only asserted for the binary preference
probabilities, i.e.

(2.10) P(ai,a j)=P
[
Ui(ai)≥U j(a j)

]
then the model is called a binary random utility model. If the random vector U
consists of components that are independent random variables, then the model is
said to be an independent random utility model.

In other words, there is a random vector U = [U1(a1), . . . ,Un(an)], such that
each Ui(ai) also denoted as U(ai), is called the random utility of ai and it is
unique up to an increasing monotone transformation such that,

(2.11) P(ai,a j)=P
[
U(ai)≥U(a j)

]
is the probability of choosing ai over a j. Definition (2.8) represents the decision
maker’s probability that ai will maximize her random utility function. That is, if
forced to choose, she will choose ai over all the alternatives with probability P(ai).
In general, the most common random utility models used to model and estimate
choice probabilities are the Fechnerian and the strict random utility models [22].
The work of [5] is also relevant for random utility theory since he provides the nec-
essary and sufficient conditions on choice probabilities for the existence of RUM
models. The work of [28] is remarkable given that the random utility models he
proposed are still used in econometrics and consumer choice, such as the condi-
tional logit model. Also, [33] and [34] extend the representation and characteriza-
tion problems of random utility models to the case of doing multiple comparisons
or m-ary relations.

3. RUM with states of the world

In the preceding section, the ideas do not consider the states of the world ap-
proach to construct a random utility model. We now use the idea of random utility
to model random choice within an individual, where actions are taken in the pres-
ence of an unknown state of the world θ. So let Θ denote the possible states of
the world, and Π(θ) denote its probability distribution, that is, the decision mak-
ers belief distribution as to the possible outcome of θ: the true state of the world
[32, 36]. Here, we are proposing a random utility model on a finite set A for a ran-
dom vector of utilities U= (U1, . . . ,UJ ) that was defined in Section 2 as U j =U(a j),
but now it is defined as U j =U(a j,θ), a j ∈A , j = 1, . . . , J and θ ∼Π(θ). Hence, the
random vector of utilities is now given by

U= [U(a1,θ), . . . ,U(aJ ,θ)].
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The probability that the decision maker selects ai over all options in A is

(3.1) P(ai)=P
[
U(ai,θ)≥U(a j,θ)∀a j ∈A

]
.

Now, consider a partition {Bi} of Θ such that it is known that if θ ∈ Bi then ai
maximizes {U(a j,θ); ∀ j 6= i}. Hence, by (3.1), P(ai|θ) = Π(Bi), and choosing the
action ai is equivalent to choosing the interval Bi. Moreover, if we define

(3.2) Bi j = {θ : U(ai,θ)>U(a j,θ)},

so that Bi j∩B ji =; and Bi j∪B ji =Θ then P(ai,a j|θ)=Π(Bi j). In a similar way as
above, it is known that if θ ∈ Bi j, then ai maximizes {U(a j,θ); ∀ j 6= i}. The decision
maker believes that action ai is the best action with probability Π(Bi), since she
believes that θ lies in Bi with probability Π(Bi). What the decision maker does
with this piece of information and what we propose it can be used for with respect
to decision making, in particular group decision making, is outlined in Section
4.3.

We briefly discuss the extension to an infinite A . We define a(θ) to be the
unique maximizer of U(a,θ) for θ ∈Θ. That is U (a(θ),θ) ≥U(a,θ) for all {a ∈ A }.
Then define BA = {θ : a(θ) ∈ A ⊂A } so that θ ∈ BA if and only if a(θ) ∈ A. Therefore,
ΠΘ induces a probability distribution on A via PA (A)=ΠΘ(BA). In particular, we
can easily sample from PA by drawing a θ from ΠΘ and evaluating a(θ). Hence,
instead of maximizing the expected utility, we maximize the induced distribution
of ai. Utility functions considered in this approach are all possible functions that
can be expressed in terms of the alternatives ai, and the states of the world θ,
and those include typical utility or loss functions used for statistical inference.
Examples of these are the quadratic utility function, the log–score utility function
or the exponential utility function. This idea leads to a random function model in
the next section.

(3.1) Random function model. With regard to probabilistic choice approaches,
there is a strong relationship between the random utility approach, the random
relations approach and the random function approach. In fact, [34] extend re-
sults in [33], [12] and [13], in which they investigate the characterization problem
and prove that there is a general representation of random utilities in terms of a
random preference relational structure or a random valued function. This is also
true for the representation of a random preference relational structure in terms
of a random utility representation or a random valued function; and finally of a
random function in terms of a random relation or a random utility representation.

Based on the latter, here we describe an alternative probabilistic choice model
based on the idea that the action a can be defined via a function h(·) ∈H , H :Θ→
A . Where h is a one-to-one function on the unknown state of the world θ, which,
as previously, is assigned a subjective probability Π(θ). The action a depends on θ

and h via the relation a = h(θ) which is known to maximise U(a,θ). If A is finite
then we may as well take Θ to be finite with elements the same number as in A ,
and ai = h(θi) for all i = 1, . . . ,n. Also, as discussed in Section 3, PA (ai) =Π(θi).
When A is infinite then P(a ∈ A) = Π(θ ∈ BA) where BA = {θ : h(θ) ∈ A ⊂ A }.
Hence, action a depends on the occurrence of a single θ.

One could attempt to put this in a utility framework via e.g.

U∗(a,θ)= 1 (a,h(θ)) ,
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where 1 is the indicator function for a = h(θ), but any choice of utility would ap-
pear to be arbitrary here. For instance, the choice of U∗(a,θ)=− (a−h(θ))2 seems
inappropriate and unnecessary to add such an arbitrary utility to the problem
when one simply knows that a = h(θ) and it is only θ which is unknown. Hence,
to known the explicit function on which a depends on θ, only needs maximiza-
tion on the said random function, and attaching a utility to a(θ) and h(θ) is not
necessary and appears to be redundant. Since any RUM can be expressed as a
random function model; if θ is known, then the correct action is a(θ)= h(θ), which
is the unique maximizer of U(a,θ) for a ∈ A . In addition, assuming h is strictly
monotone,

Pr(a ≤ y)=Pr
(
θ ≤ h−1(y)

)
(3.3)

=Π(h−1(y)).

Let g = h−1, then the density function for a is

(3.4) p(a)= g′(a)Π′ (g(a)) .

Hence, the action maximizing the random function model can be obtained via
derivatives or sampling from p(a). Attempts to incorporate descriptive with nor-
mative theories of choice have failed, but here, using the random function repre-
sentation we have reached a stage where we have effectively used both normative
and descriptive theory. However, we now require a means by which the decision
maker confronted with an uncertain choice can formally make a decision.

4. Group decision making

This section represents our main contribution in the form of a novel approach
to group decision making. A group decision problem is a joint decision for the
benefit of the group or the society as a whole on whose behalf it is acting. Clearly
conflict of interest is a milestone in this process. Different approaches to group
decision theory aim to find a compromise solution to resolve the conflict of inter-
ests. [1] recognizes that there are two ways of arriving at a social decision; one
of them is through a market mechanism, as in economic problems, and the other
is through a voting process, as in politics and decisions made by committees. An
important aspect to group decision is the notion of democracy understood as the
ruling of the majority in which all members of a group or society have equal power
and are equally represented, the term carries the sense of equality and the idea
of solving conflicts, making decisions in a fair way, as well as the idea of justice,
and the balance between the individual and the society’s welfare. Social choice is
based on individual preferences and its respective rationality assumptions. The
main problem has been how to aggregate and characterize individual preferences
and uncertainties into a group preference framework. Arrow’s work was semi-
nal in trying to find a method of aggregating preferences that satisfies desirable
democratic, as well as the coherence conditions. He found that even if individuals
behave or want to behave in a rational way, it does not imply that the group will
be rational giving place to important contradictions. The first axiom that Arrow
consider is that the preference of the society or group for the alternatives are a
weak order, implying that these alternatives are reflexive, connected and transi-
tive. The rest of the assumptions or axioms refer to the democratic requirements,
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to mention the universal domain of the set of alternatives, the positive associa-
tion of values, the independence of irrelevant alternatives, the sovereignty of the
citizen’s, and finally dictatorship (see [1]). Arrow proves that given the previous
set of axioms a group of rational individuals in the sense described by [38] will
not always satisfy the whole set of them. Arrow’s Possibility theorem states that
assuming a rational decision maker facing a group decision problem she might
not be able to satisfy all axioms, and that at least one will be violated, mainly
resulting in either a non-weak order of the alternatives, intransitivity of them
or dictatorship and imposed welfare function. Democratic elections takes voting
as a general method of preference aggregation, where the outcome is a winning
alternative or a ranking of some or all of the alternatives. The outcome or final
ranking may vary depending on the voting method or counting rule that is used.
Arrow’s results can be illustrated in voting methods in which results are typically
to choose an alternative from an aggregated ordering that even though it comes
from transitive individual orderings, it will not be transitive in the aggregated
ordering. This means that the winner alternative, having the highest number of
votes from pairwise comparisons, may not be transitive in a consistent way with
the individual orderings and cycles can appear. This property is known as the
intransitivity of the majority rule. Violation to non-dictatorship or sovereignty
properties are also common.

Traditional procedures in social choice theory deal with completely determin-
istic preferences and are based on the entire or partial preference orderings of the
alternatives by each individual [7]. On the other hand, [15] proposed a proba-
bilistic model for social choice, in which the social probabilities are derived from
the individual probabilities that will induce a social ordering of alternatives from
which a winning alternative can be inferred. Statistical decision making has given
main attention to both combining expert opinions, [29] and Nash equilibrium [21],
which involves competing utilities, such as the multi-Bayesian approach, [40].
The latter develops the extension of Bayesian decision theory to a group. [40] con-
sider a geometric pool of prior distributions for its Bayesian properties and also
because the arithmetic pool leads to dictatorship and it is multimodal, as shown in
[11]. However, their approach assumes that collective rationality of preferences
is implied by individual rationality axioms of Von Neumann and Morgenstern,
ignoring that maximum expected utility is not prescribed for the group context.
Moreover, only a few theorists such as [30], [15] and [8] have considered the case
when choices are probabilistic.

Despite the attempts to combine rational and probabilistic social choice, these
theories always converge to Arrow’s (1963) possibility theorem of a contradiction
or inconsistency as [9] discuss, since they start from the assumptions that individ-
ual rationality implies group rationality. Before describing our approach to group
decision making we address the aggregation issue for the individual utilities and
probabilities.

(4.1) Aggregation of probabilities. With respect to the inclusion of uncer-
tainty in the decision process, the aggregation of individual beliefs into a group’s
distribution of beliefs plays a significant role. However, it is also required to sat-
isfy some desirable properties analogous to those stated by [1] (see [9]).
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While there is a wide discussion on which aggregation methods is the most
appropriate, we conclude that it depends on the specific problem. However, we
propose that the logarithmic pool defined below, which consists on the geometric
average of the prior distributions, and we consider best due to its properties.

Definition (4.1) (Logarithmic opinion pool). The logarithmic pool T : [0,1]n →
[0,1] is such that

(4.2) T [Π1, . . . ,Πn] (θ)= `(θ)
∏n

i=1Πi(θ)wi∫
`(θ)

∏n
i=1Πi(θ)wi dµ

, µ−a.e.,

where ` is a bounded function and in general it will be a likelihood function ` :
Θ→ [0,∞) derived from some evidence on which the group agrees, the wi ’s are
constant non–negative weights such that

∑n
i=1 wi = 1, µ is a dominating measure

on Θ, and 0< ∫
`(θ)Π(θ)dµ<∞.

The logarithmic pool consists of a weighted geometric mean of the individual
beliefs; and it is a log–linear combination of the individual beliefs, hence its name.
[10] proved that the logarithmic pool is the only pooling operator which satisfies
external Bayesianity condition [24].

PROPERTY (4.3) (External Bayesianity). Suppose that the group agrees on the
likelihood function ` : Θ→ [0,∞) derived from some evidence. It is said that a pool
operator T is Externally Bayesian if it satisfies

(4.4) T
[

`(θ)Π1∫
`(θ)Π1dµ

, . . . ,
`(θ)Πn∫
`(θ)Πndµ

]
= `(θ)T [Π1, . . . ,Πn]∫

`(θ)T [Π1, . . . ,Πn]dµ
µ−a.e.

This condition requires that the updating process commutes with the aggre-
gation process in what it is known as a prior to posterior coherent way. This
property ensures that in case of updating beliefs by means of new information,
the process of combining the prior distributions will produce the same group dis-
tribution whether the updating process happens before or after the pooling. If this
property is not satisfied, what the group learns from the data would depend on
whether they learn it before or after forming their consensus. If the pooling oper-
ator is not externally Bayesian, the posterior distribution of beliefs is affected by
the order in which the pooling and updating process are done. External Bayesian-
ity relies on the fact that members of the group have agreed on the likelihood for
the observed new evidence, which is equivalent to say that all are observing the
same data.

Moreover, it is considered by [39] and others the best way to combine beliefs,
given that it is typically uni-modal, scale invariant and less dispersed than for
example, the linear pool. According to [41], this pool characterizes consensual
values in a better way than the linear pool, and is Pareto optimal in the sense
that there is no other alternative apart from the consensual value that makes one
individual better off without making worse at least to one of the rest members
of the group. Also, if the operator pool is multi-modal, then there is no charac-
terization of consensual values. If the opinion pool is scale invariant, the group
decision will depend on the normalization chosen, but decisions should not be af-
fected should any order-preserving affine transformation is used. If the weights
are the same for all members, the anonymity property is also satisfied [9].
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The group distribution of beliefs about θ, ΠG(θ), using the logarithmic pool is:

(4.5) ΠG(θ)= `(θ)
∏n

i=1Πi(θ)wi∫
`(θ)

∏n
i=1Πi(θ)wi dµ

, µ−a.e.,

where
∑n

i=1 wi = 1.

(4.2) Aggregation of utilities. The additive aggregation may lack of certain de-
sirable properties, but it is a practical way to synthesize the group preferences,
[18]. We present a new idea to aggregate utility functions. Assume that individ-
ual utilities will differ not as functions but via parameters of functions, φ; i.e. now
the utility function of individual i, is denoted as Ui(a,θ) = U(a,θ;φi). Then, ad-
ditive utility aggregation seems wrong as the fundamental shape of the utility is
disturbed. This means that the linear pool may produce a group utility that does
not look anything like the individual utilities and these ones only differ in pa-
rameters, then the linear pool is misrepresenting the individual utilities. Hence,
individual utilities have the same interpretation for all members but the differ-
ence is only about the values of the parameters of these functions. Therefore,
more appropriate perhaps would be to aggregate on the parameters

(4.6) UG(a,θ)=U

(
a,θ;

n∑
i=1

λiφi

)
.

where UG(a,θ) is the group utility, λi > 0,∀i
∑n

i=1λi = 1, are weight scaling con-
stants and φi ’s are the parameters of the utility function. In this way we avoid
misrepresentation of individual utilities. It is important to keep in mind that θ
remains being the variable measuring uncertainty.

(4.3) Group decisions. In this section we present the main axioms and decision
rule for group decision making under a random utility model with states of the
world. The first assumption here is that the group has agreed in the aggregation
of individual utilities and probability functions. Let UG(a,θ) be the agreed group
utility function. Since the uncertainty of θ induces uncertainty in the decision,
U(a,θ) is also a random variable. The probability that the group chooses action
ak over all options is

(4.7) PG(ak)=PG
[
UG(ak,θ)≥UG(a j,θ) ∀ j ∈A

]
.

with θ ∼ΠG(dθ). Given ΠG(dθ), consider now the partition of Borel sets on Θ
∞⋃

k=1
Bk = Θ, where(4.8)

Bk = {
θ : U(ak,θ)>U(a j,θ)∀a j, k 6= j

}
.

Then the partition {Bk} exists on Θ since each θ is in a Bk for some k, and be-
cause the {U(ak,θ)} are ordered for each value of θ, since additionally the non-
coincidence condition holds: i.e.

(4.9) PG
[
UG(ak,θ)=UG(a j,θ)

]= 0.

Consequently, the group believes that θ lies in Bk with probabilityΠG(Bk). Hence,
the probability that the group chooses action ak is equal to the probability of
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{θ ∈ Bk},

ΠG(Bk) = PG
[
UG(ak,θ)≥UG(a j,θ) ∀ j ∈A

]
(4.10)

= PG(ak).

Similarly, the group believes action ak is the best with probability ΠG(Bk). If the
group is facing a voting process, one would expect that the votes would represent
such beliefs and a proportion close to ΠG(Bk) would vote for action ak. But this
can not be taken for granted since irregularities in individual voting strategies
can occur. Hence, we look for a way to incorporate the beliefs without demanding
a vote. We discuss the case when the choices of action are countable. To arrive at
a decision rule we make an assumption about the group size:

AXIOM (4.11) (Group size). Given UG and ΠG , the size of the group is irrelevant
to the decision making.

In essence, the fact that the group have reached agreement about UG and ΠG
means that the work of the individual within the decision making process has now
come to an end and some other mechanism not involving individuals should take
over, to say the altruistic supra–decision maker. This is why now, the size of the
group should not affect the decision made. Given this, we also have the following
axiom:

AXIOM (4.12) (Equivalent groups). Let G1 and G2 be two groups facing the
same action space A and same states of the world Θ. If both groups have the same
probability distribution of beliefs, ΠG1 =ΠG2 and the same group utility function
UG1 =UG2 , then both groups should reach the same decision.

This assumption seems to be obvious, if two different groups have the same
utility function and same distribution of beliefs, then the decision should be the
same. This is also an implicit assumption of the expected utility rule, and it is
important to give coherence to the decision making, except that for this rule there
are additional assumptions to be made.

Let us consider the group G2 of infinite size, or arbitrarily large size, for which
the proportion of people who would vote for each alternative is known, i.e. the
proportion of individuals who vote for action ak is given by ΠG2 (Bk), for k = 1,2, . . .
We need to consider the infinite group so that we can obtain an arbitrary value for
ΠG2 (B j) for each j. Actually, when agreement was sought for a group probability,
each individual declared precisely their opinion about on which set from {Bk}∞k=1
that θ lies. If the proportion of people providing Bk as the answer is ΠG2 (Bk) ,then
ΠG2 is the group probability for G2. If this group G2 now vote under the simple
majority rule, they will do so according to these proportions, so that the proportion
of people who would vote for action ak is ΠG2 (Bk) from equation (4.10). Moreover,
if ΠG2 (ak)>ΠG2 (a j) for all j ∈A then ak, having the greatest proportion of votes,
is the action that wins. If we now set ΠG1 (Bk) =ΠG2 (Bk) for all sets {Bk}∞k=1 and
let UG1 =UG2 then, according to Axioms (4.11) and (4.12), and assuming a simple
majority voting rule, the action a for G1 to take is the mode of PG1 (a), since the
mode is the action with the highest probability, or equivalently, the value with the
greatest proportion of votes.
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(4.4) Comments on Aggregation. The theory equally applies to an individual,
a group of size 1. We have already declared that the size of a group should be irrel-
evant when a group utility and group probability have been established. However,
this raises an issue of internal consistency and a way of pooling the probability be-
liefs. If individual i has probability Πi(B j) of choosing action a j, then according to
our statement, individual i votes for action j if Πi(B j)>Πi(Bk)∀k 6= j. Therefore,
overall, in a group of size n, action a j attracts n j number of votes, to say

(4.13) n j =
n∑

i=1
1
(
Πi(B j)>Πi(Bk)∀k 6= j

)
.

Where 1 is the indicator function. If ΠG(B j) represents the group allocation of
probability to the set B j, then to be consistent we would require that

(4.14) n j > nk ⇐⇒ΠG(B j)>ΠG(Bk).

Therefore, we would define

(4.15) ΠG(B j)∝
n∑

i=1
1
(
Πi(B j)>Πi(Bk) ∀k 6= j

)
.

This appears to be a new pooling strategy. An interesting outcome is that if Πi(B j)
is not maximal for any individual i, then the group probability assigned to B j is
precisely 0. This makes sense in that if an action is no one’s first preference,
then that action must not be adopted as the status quo would be preferred to take
any other action. Also, only a partial specification of Π is determined but all the
important probabilities P(a j) are defined.

In the case of the random function approach from Section 3.1 for a group, the
idea that a = h(θ) is common knowledge, that all members of the group have pre-
viously accepted and agreed, then h would not be derived via aggregation from
various individual hi, since this makes no sense. Therefore, it is only the subjec-
tive probabilities of θ for each individual that need aggregation. However, dealing
with another issue of internal consistency for aggregation of utilities needs to
be mentioned. If all individuals believe θ is correct, then individual i chooses
hi(θ), which maximizes Ui(a,θ). Then for internal consistency, in order to guar-
antee that the group h(·) is the one providing the greatest number of votes, if
A = {1,2, . . .}, then

(4.16) h(θ)= argmax
j

{
n∑

i=1
1 (hi(θ)= j)

}
.

This also appears a new strategy for aggregation of utilities.

5. Applications

This section presents some examples and applications of the decision rule pre-
sented in Section 4.3. The first example refers to a group decision theoretic ap-
proach to a parameter estimation problem, and the second one refers to a portfolio
allocation problem.
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(5.1) Statistical parameter estimation. [31] introduced the weighted likeli-
hood bootstrap (WLB) to approximate a posterior distribution of a parameter
without the need for a prior distribution. The WLB is an easy method to im-
plement when the maximum likelihood estimator exists and can be computed.
The WLB is described as an extension of the Bayesian bootstrap [35] and it con-
sists in maximizing a weighted likelihood function. For example, let x1, . . . xn be
an i.i.d. sample with probability density function f (x;θ). Consequently, the likeli-
hood function is given by

(5.1) L(θ)=
n∏

i=1
f (xi;θ).

Instead of maximizing L(θ) to obtain the maximum likelihood estimator, the WLB
maximizes the random function L̃(θ), given by

(5.2) L̃(θ)=
n∏

i=1
f (xi;θ)wn,i ,

where the vector wn = (wn,1, . . . ,wn,n) is a random vector of weights. The natural
distribution for the weight vector is a Dirichlet distribution with all the param-
eters set to 1. The simulation of an approximate posterior distribution works on
repeated samples of weight vectors and the maximization of L̃ as a function of θ.
Therefore, the sample is not from any posterior distribution, but an approxima-
tion to a possible posterior. For this reason, [31] recommend adjusting the WLB
by a kernel density estimate and then with SIR (sample importance re–sampling),
and in this way the WLB sample will supposedly be a better approximation of a
true posterior. It should be mentioned at this point that the paper of [31] was not
universally accepted; the prime reason was that it lacked any formal justification.
Let us now consider our approach to statistical parameter estimation. An often
used utility function when using f (x;θ) as an approximate or substitute for the
true distribution P(x) is the logarithmic score, defined as

U(θ,P)=
∫

log f (x;θ)dP(x).

The negative of this is a commonly used loss function. Suppose, now that we use
a Dirichlet process prior for P [6].

If we now have conditionally i.i.d. observations x1, . . . , xn|P ∼ P and P has a
Dirichlet process prior, written as P ∼ Dir(c,P0), then the conditional distribution
of P given x is also a Dirichlet process;

(5.3) (P|x1, . . . , xn)∼ Dir
(
c+n,

cP0 +nFn

c+n

)
,

where Fn is the empirical distribution, Fn = n−1 ∑n
i=1δxi , and δx is the Dirac mea-

sure. In particular, the posterior mean is

Pn = cP0 +nFn

c+n
.

Therefore, returning to the decision problem for θ, the expected utility with re-
spect to the Dirichlet posterior is

(5.4) Un(θ)=
∫

U(θ,P)Dir(dP|x),



GROUP DECISION MAKING 333

and so with the log-score utility function,

Un(θ)= wn

∫
log f (x;θ)dP0(x)+ (1−wn)

∫
log f (x,θ)dFn(x)

where wn = c/(c+n). An interesting observation here is that if we now choose to
put c = 0, so the posterior Dirichlet process becomes

(P|x1, . . . , xn)∼ Dir (n, Fn) ,

commonly known as the Bayesian bootstrap [35]. While the prior may not exist
with c = 0, the posterior does. In particular then, E(P|x1, . . . , xn)= Fn. So now

Un(θ)=
∫

log f (x,θ)dFn(x)= n−1
n∑

i=1
log f (xi,θ)

and the maximizer of the posterior expected utility is precisely the maximum
likelihood estimator.

Now, P is distributed according to the Bayesian Bootstrap and we can sample
such a P via

(5.5) P =
n∑

i=1
wn,iδxi

where the weights (wn,1, . . . ,wn,n) are drawn from a Dirichlet (1, . . . ,1) distribution.
This follows quite easily from the representation of a Dirichlet process from its
finite dimensional distributions; see Rubin (1981).

Consider now

(5.6) U(θ,P)=
n∑

i=1
wn,i log f (xi;θ),

which is maximized via the maximization of the weighted likelihood bootstrap
n∏

i=1
f (xi,θ)wn,i .

The posterior distribution of θ obtained by the weighted likelihood bootstrap ap-
proach is equivalent and hence justified by the random utility model and the the-
ory we have presented in Section 4.3. For us, the distribution created on Θ space
is a valid distribution of beliefs about the parameter θ when the current state of
beliefs about the true distribution function is represented by the Bayesian boot-
strap. Such a distribution could be warranted in robust parameter estimation
problems. Of course now we would recommend the mode of the density function
induced on Θ space as the optimal parameter estimate.

(5.2) Portfolio analysis. In finance, investors face the problem of capital allo-
cation in assets under uncertainty. Investors diversify, allocating a proportion of
the capital into different assets. Moreover, according to maximum expected utility,
the rational investor will try to optimize the proportion invested in the different
assets in order to get the maximum expected total return. However, due to the
volatility of assets, the combination yielding maximum expected return can lead
to a higher risk, therefore another goal of the investors is to minimize the risk or
the variability, which is another reason why diversification is recommended.

According to [25], the criteria to allocate portfolio diversification should not
be only in terms of maximum expected return, but also looking to minimize the
variance given that in many cases the assets with the highest returns tend to



334 M. D. L. DOLORES SÁNCHEZ CASTAÑEDA AND S.G. WALKER

have a higher risk associated. Hence, the idea of evaluating portfolio efficiency by
the two elements is not in conflict, since decision makers tend to be risk averse in
the domain of gains and to show risk preference in the domain of losses, and this
is the basis for the mean–variance portfolio analysis. Therefore, there will be a set
of portfolios that for a fixed level of expected return minimize the variance, or for a
fixed variance maximize the expected return, these are called efficient portfolios,
and the set constitutes what is called the efficient frontier. It is important to
remark that the portfolio problem is considered in a single-time period situation
and not over time. Let X be the total return of the portfolio, then the expected
portfolio income or return and the variance of the expected return are defined in
the equations below as a linear combination of the expected rate of returns of each
asset:

E(X )=
n∑

i=1
wiRi(5.7)

V (X )=
n∑

i=1

n∑
j=1

wiw j(Ri −E(Ri))(R j −E(R j))(5.8)

where wi is the weight allocated in asset i and Ri is the corresponding annual
expected return. The mean–variance theory optimizes the portfolio allocation by
obtaining the efficient frontier, i.e. all the possible portfolios that have minimal
variance given a certain level of returns or that have a maximal return for a given
level of variance. Then the investor may choose any portfolio in the efficient fron-
tier, in fact it is recommended to choose assets that move in opposite directions
given that this will compensate the risk. The classic portfolio theory assumes
that the vector of returns is normally distributed with mean R and covariance
matrix Q. Thus the portfolio return also has a normal distribution with mean
E(X ) = RTw and variance V(X)=wTQw. Assuming also that the utility function
of the total return is exponential, i.e.

v(X )= 1−exp{−kx},

where k > 0 is a constant related to risk aversion. Hence, the expected value of
the preference scaling function is given by

E(v(X ))=
∫ ∞

−∞
(1−exp{−kx})P(dx)

=1−exp
{
−kE(X )+ 1

2
k2V (X )

}
=1−exp

{
−kRTw+ 1

2
k2wTQw

}
,(5.9)

where P(dx) is the density function of the total returns. The exponential util-
ity and the normal distribution of returns are assumed due to their convenience
of giving exact results for the expected utility maximization. Although it is well
known that the returns are not normally distributed. Hence, due to the mono-
tonicity of the exponential function, maximizing (5.9) is equivalent to maximizing
the following:

(5.10) U
(
w, (R,Q)

)
= RTw− k

2
wTQw.



GROUP DECISION MAKING 335

[26] argues that the reason for performing a mean–variance analysis is more con-
venient in terms of costs and feasibility rather than doing the theoretical expected
utility maximization. Also, he says that it is more expensive to find a utility max-
imizing portfolio than to trace out an entire mean–variance frontier. Hence, the
need to maximize the part between the brackets of (5.9) or equivalently (5.10),
with respect to w, subject to the constraints

∑n
i=1 wi = 1 and wi > 0. This idea

assumes (R,Q) are known. However, using our approach in section 4.3 and 5.1,
we assign a possible prior distribution to (R,Q), say

R ∼N(µ,Σ)(5.11)

Q−1 ∼W(ρ, (ρΩ)−1).(5.12)

From this we can simulate (R,Q), yielding a random maximizer w of

(5.13) h(w;R,Q)=RTw− k
2

wTQw.

Hence, simulation of (R,Q) builds up a distribution on w space. For the illustra-
tion of this example we have a portfolio of three assets. For the simulation, the
following values were chosen; µ= (0.1, 0.2, 0.15), ρ = 3, k = 3

Ω=Σ=
 0.005 −0.010 0.004

−0.010 0.040 −0.002
0.004 −0.002 0.023

 .

Then we procede to do the maximization using the quadratic programming with
100,000 iterations. The three–dimensional histogram in Figure 1 for the frequen-
cies of (w2, w3) shows a diagonal histogram as a consequence of the symmetric
covariance. This confirms that it is always better to diversify in assets that are
complements, because they will compensate the risk. Complement assets will
give returns in the opposite direction, hence they will have negative correlation.
A histogram with very thin bins will produce a good estimate of the mode. The
mode corresponds to the vector of weights ŵ= (0,0.51,0.49). With this we confirm
that the asset 1 is not significant and the other two assets compensate, permitting
almost the same allocation of capital.

6. Discussion

Normative theories of choice are not satisfied by all individuals, less so when
aggregated into a group, and descriptive theories do not provide a decision rule.
Moreover, group decision theory cannot give a decision rule because of the ex-
istence of conflicting interests and when decisions are taken by voting schemes,
each strategy or counting rule produces a different winner. Whereas, probabilis-
tic choice models have been for the benefit of an observer of individuals making
choices.

Our perspective is of a decision maker modeling herself who having followed
axioms of rational behavior is equipped with a utility function U(a,θ) which de-
pends on an unknown state of the world θ and a subjective probability for it Π(θ).
The random or probabilistic aspect is clear. The best action a∗ is uncertain and
has a probability P(a∗) attached to it simply because the whereabouts of the un-
known state of the world is uncertain and has a probability for it lying in any
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Figure 1. Histogram of w2, w3.

particular set or interval. So just as in probabilistic choice theory the decision
maker can write down the probability of choices.

The inclusion of the states of the world as a latent variable in the RUM’s repre-
sentation is novel yet necessary since it captures the uncertainty about the states
of the world as well as the randomness in the choice itself. On the other hand, to
make a group decision when the simple majority rule applies, pooling the corre-
sponding individual utilities and beliefs, and finding the mode of the group prob-
ability distribution is equivalent to a voting mechanism without actually asking
the group to vote. The new proposal is to replace the decision rule of maximizing
the expected utility U(a) with the maximization of P(a).
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