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SUR LA CONJECTURE DE REMMERT

BERTRAND DEROIN

ABSTRACT. This paper is a survey of the main works on the so-called Rem-
mcrt's conjecture, if X11 is a closed, homogeneous complex manijóla with au-
tomorphiam group Aut(X) then dim(AutUO) < n2 + 2n. We describe the
structurc of a closed, homogeneous complex manifold X, prove Remmert's
conjecture for Káhler homogeneous manifolds, then describe the counterex-
amples constructed by Snow and Winkelman with dim(X) — 3m + 1 and
dimíAut(X)) = 3m +- 3m, and finally show Akhiezer's theorem (which givcs
a bound on dim(Aut(X)) for fixed n, being thus a weak versión of Remmert's
conjecture).

0. Introduction

Si X est une varíete complexe, son groupe d'automorphismes Aut{X) peut
étre un groupe de Lie complexe (X = C), un groupe de Lie réel (X — H), ou
un groupe de dimensión infinie (X = C2}. Mais si X est compacte, Aut(X) est
un groupe de Lie de dimensión finie, dont l'algébre de Lie est celle des champs
de vecteurs holomorphes sur X [B-M]. A n fixé, le groupe d'automorphismes
d'une varíete complexe compacte X" de dimensión n peut étre de dimensión ar-
bitrairement grande. Des excmples simples sont les surfaces de Hirzebruch Fm

dont le groupe d'automorphismes est de dimensión m + 5 (voir exemple (1.8)).
Cependant, lorsque X est homogéne, c'est-á-dire que tout point peut étre en-
voyé sur n'importe quel autre par un automorphisme de X, Akhiezer [Akl]
a demontre que la dimensión de Aut(X) est majorée par une fonction 8(n) ne
dépendant que de la dimensión ndeX. Si la borne 6(n)donnée par Akhiezer est
tres grossiére, de l'ordre de (5/i) ̂ ^, elle ne dépasse pas n(n + 2) pour beaucoup
de classes de varietés complexes compactes homogénes X. Par exemple Borel et
Remmert [B-R] ont demontre que si X est une varíete kahlérienne compacte
holomorphiquement homogéne, alors Aut(X) est de dimensión inférieure a
n(n + 2), avec égalité si et seulement si X est biholomorphe a í'espace projectif
complexo CP". C'est done aussi le cas de toutes les varietés projectives ho-
mogénes. D'autres exemples sont les varietés compactes holomorphiquement
parallélisables, c'est-á-dire celles dont le fibré tangent est holomorphiquement
trivial, qui sont homogénes et dont le groupe d'automorphismes est de méme
dimensión que la varíete [Wa], C'est une ancienne question posee par Rem-
mert que de savoir si parmi les varietés complexes compactes de dimensión n,
í'espace projectif complexe est celle qui a le plus d'automorphismes.
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ON THE LARGEST PRIME FACTOR OF (ab + l)(ac + l)(6c + 1)

SANTOS HERNÁNDEZ AND FLORIAN LUGA

ABSTRACT. Wc prove a more general form of a conjecture of Gyóry, Sárkózy
and Stewart concerning the largest prime factor of expressions of the form
(ab + IXac + l)(í>c + 1) with distinct positive integers a, b, c.

1. Introduction

Recently, Bugeaud, Corvaja, and Zannier (see [2]) proved the following
result.

THEOREM(l.l). Leta> landb> I be multiplicatively independentpositive
integers. Then, for every e > O there exists a positive integer n£ such that

(1.2) gcd(a" - 1, 6" - 1) < exp(erc)

holds for all n > ne.

They also mention in their paper that the method they used to prove the
above Theorem can also be employed to get non-trivial upper bounds on ex-
pressions of the form gcd(un, vn), where («ft)n>o and (cw)n>o are power sums
with integer coefficients and positive integer roots (i.e., linear combinations
with non-zero integer coefficients of functions of the type n t—> af with a¡ pos-
itive integers) provided that («ra)n>o and (un)n>o satisfy some mild technical
assumptions (such as, for example, that (w^)n>o admits a dominant root and
that (un)»>o does not divide (un)«>o ^n the ring of such power sums).

In a different direction, but of a somewhat similar flavour, the second author
(see [6]) has recently proved that if

(1.3) un := ca" + dbn for n = O, 1,...

is such that a, b, c, d are non-zero integers with a and 6 coprime and a/6 and
c/d multiplicatively independent, then

(1.4) gcd(un, um) < exp(clx/m)

holds for all positive integers m > n> O, with an explicit constant Ci depending
on a, b, c, d, and a similar type of inequality as (1.4) above is also valid for
large m > n for an expression (wn)n>o as shown in formula (1.3) but with the
pair (c, d) replaced by (c(ra), £¿(71)), where c(x) and d(x) are polynomials with
integer coefficients such that the rational function c/d is not a constant (see
[71)..

20W Mathematics Subject Classification: 11D75, 11J61.
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ON THE FLOW OUTSIDE AN UNSTABLE EQUILIBRIUM POINT
OR INVARIANT SET

J. H. ARREDONDO AND R SEIBERT

ABSTRACT. The flow of a dynamical or semidynamical sy-stem near an unsta-
ble equilibrium point or invariant set is studicd in Ihe nontrivial case where
instability is not determined by a single solution ("Zubov's condition"). The
principal result describes the structure of the prolongation of the point or set
in question, improving and extending an older criterion of R. W. Bass.

Introduction

A compact positively invariant set M in the state space X of a dynamical
or semidynamical system is stable (in the sense of Lyapunov) if every neigh-
bourhood of M contains a positively invariant neighbourhood of the set. The
negation of stability is called instability. There are two ways of character-
izing stability and instability. One is using Lyapunov functions (in the case
of instability usually called Chetayev functions), the other is by describing
the structural characteristics of the flow in the vicinity of the point or set in
question. The subject matter of this paper is of the second kind.

In the trivial case (negation of "Zubov's condition" [10], [2j) instability is
determined by the existence of a single orbit outside of M with the property
that an arbitrary point of it belongs to positive semiorbits with initial points in
arbitrarily small neighbourhoods of M. This condition is sufficient for insta-
bility, but not necessary, as the example below shows. In general, instability of
M can be characterized by the fact that the prolongation of M (in the sense of
[7], [3], [6]; see definition in sect. 2) contains M as a proper subset. This holds
for differential systems in a ñnite dimensional Euclidean space [7], or, in gen-
eral, for dynamical systems in a locally compact metric space [3]. In order to
be true for a (semi-)dynamical system in a general metric space, an additional
condition must be imposed such as asymptotic compactness, which is the one
we adopt in this paper. With the prolongation determining instability, the nat-
ural question is what can be said about the structure of the prolongation. This
subject was first studied by R. W. Bass in [2], but the characterization given
by him has certain limitations. In particular, it does not give an adequate
description of certain relatively simple cases such as

x = xy2, y = -y3,

which represents a semidynamical system (also, a local dynamical system),
the origin being unstable though it satisfies Zubov's condition.

2000 Mafhematics Subject Classification: 37B25, 34D2Ü, 54H20.
Keywords and phrases: structural characterization of instability.
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THE FOURIER-BESSEL TRANSFORMATION AND THE
GELFAND-SHILOV SPACES OF TYPE W

I. MARRERO

ABSTRACT. The even functions in the Gelfand-Shilov spaces of type W are
known to determine basic spaces invariant under the Fourier-Bessel transfor-
mation. In this paper such spaces are characterized by symnietric decay con-
ditions on their elements and their Fourier-Bessel transforms. As a byprod-
uct, an intrinsic characterization of the evon functions in the Gelfand-Shilov
spaces of type S is obtained.

1. Introduction and motivation

Let / = (O, oo) and consider the set

K = {M e C2[0, oo): M(0) = M'(0) = O, Af'(oo) - oo, M"(x) > O (x e /)}.

Interesting properties of this class of functions have been collected in [11] and
[7]. For every M e K we may consider its Young conjúgate M*, given by

M x(p) = sup (xp - M(x)) (p e /)

([11], p. 19). Then Mx e K and (Mx)x - M. Also in [11], with the purpose
of investigating uniqueness of solutions to the Cauchy problem for partial dif-
ferential equations, the spaces of type W were defined as follows.

Definitions (1.1). Let M, O € K.
(i) The space WM consists of all <p e C^(E) such that

\Dmy(x) < Cmexp{-M(a|a;|)} (m e N0, x € M)

for some Cm, a > 0.
(ii) The space Wn consists of all entire functions (p = <p(z] on C satisfying

<C¿exp{a(6|Im2)} (k 6 N0, 2 € C)

for some C¿, 6 > 0.
(iii) The space WSí consists of all entire functions y — <p(z) on C such that

\<p(z}\) + ÍK6¡Im2|)} U e C)

for some C,a,b> 0.

20QQ Mathemaiics Subjec-t Classification: 46F05.
Keywords and phrases: Fourier-Bessel transformation, Hankel transfonnation, spaces of type
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AN EXTENSIÓN OF THE TOEPLITZ-HAUSDORFF THEOREM

V1NICIO GÓMEZ GUTIÉRREZ AND SANTIAGO LÓPEZ DE MEDRANO

ABSTRACT. The Toeplitz-Hausdorff Theorem asserts that for any operator A
acting on a complex Hilbert space H, the sct of numbers of the form (Az, 2),
where z varios over tho unit sphere of H, is always a convex subset of C. In this
paper we obtain the same result for non-homogeneous quadratic functions of
the form (Az, z) + (a, z} + (z, ¡3) + c. This implies, in particular, that the set
of numbers of the form (Az, z), where z varíes over any sphere in H, centered
or not at the origin, is always convex. We also show by an exarnple that the
corresponding result is not true for pairs of operators on a real Hilbert space.

1. Introduction

The famous Toeplitz-Hausdorff Theorem states that the numerical range
of an operator A is always convex, where the numerical range of A is, by
definition, the set of complex numbers of the form f(z) — (Az, z}, where 2 varíes
over the unit sphere of a complex Hilbert space. See the book by Halmos ([2],
sections 166 of the first edition, 210 of the second one) for a detailed description
and history of this theorem. Several proofs are known, of which the simplest
is probably the one given by Halmos himself in the second edition of his book
(pp. 314-315).

In this paper we will extend this theorem by showing that the image under
f of any sphere in a Hilbert space, centered or not at the origin, is also convex,
and that this holds also for a more general type of non-homogeneous quadratic
functions. The proof follows the same pattern as Halmos' proof of the Toeplitz-
Hausdorff Theorem, but the details are more complicated. It is based on some
standard ideas of the theory of singularities of functions on a manifold and on
an elementary fact about minima of functions of two variables.

2. Statement of results

Let H denote a Hilbert space over the set of complex numbers C with Her-
mitian product { , } and let f : H — » C be a function of the form

where A is a linear operator from H to itself, a, p are elements of HÍ and c is a
complex number. Let S£ be the sphere with center at p € H and radius r:

THEOREM (2.1). IfM.has dimensión greater than 1, thenfor every p^M
r >"0, f(Sp) is a convex subset ofC.

2000 Mathematics Subject Classiftcation: 47A12, 32R
Keywords and phrases: numerical range, convexity.
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GENERAL HÉLICES AND SUBMANIFOLDS

N. EKMEKCI AND K. ILARSLAN

ABSTRACT. In this paper we give some characterizations for a Cartan framed
nuil curve in the Lorentzian manifold to be a general helix. Also, we prove
the following theorem: "Let Afi(dim MI > 3) be a Lorentzian submanifold of
a pseudo-Riemannian manifold M¿. If every Cartan framed nuil general helix
in M\s also a Cartan framed nuil general helix in M¡, then MI is a totally
geodesic submanifold in M¿".

1. Introduction

A general helix in Euclidean space R3 is defined by the property that the
tangent makes a constant angle with a fixed straight line (the axis of the
general helix). A classical result stated by M. A. Lancret in 1802 and first
preved by B. de Saint Venant in 1845 is: A necessary and sufficient condition
that a curve be a general helix is that the ratio ofcurvature to torsión be constant
[5], [8].

The curve is called a circular helix if the curvature and torsión iré constant.
A characterization for a time-like curve to be a circular helix in a Lorentzian

manifold MI (dim MI > 3) is given by T. Ikawa in [4].
Afterwards, this characterization was generalized for a general helix by N.

Ekmekci and H. H. Hacisalihoglu in [2].

2. Preliminaries

A curve in a Lorentzian manifold MI is a smooth mapping

y : I -> MI,
where I is an open interval in the real line R.

If y is a space-like or a time-like curve, we can reparametrize it such that
(y (t), y (t)} = EO (where e0 = +1 if a is space-like, e0 = -1 if y is time-like
and e0 = O if y is nuil (light-like) respectively). In this case y is said to be unit
speed, or it has are length parametrization [1], [4], [7].

Now let Ma be an ^.-dimensional pseudo-Riemannian manifold of índex a
(O < a < ft)isometricallyimmersedintoanra-dimensional pseudo-Riemannian
manifold M¡ of Índex i. Then Ma is called a pseudo-Riemannian rubmanifold
of M¿. If a = 1, MI is called a Lorentzian submanifold of M¿. We denote the
metrics of MI and M¿ by the symbol ( , ) and the covariant differentiation of
MI (resp. MÍ) by D(resp. D). The Gauss formula is:

DXY = DXY + B(X,Y),

2000 Mathematics Subject Classification: Primary 53B30; Secondary 53C50.
Keywords and phrases: nuil curves, general helix, Lorentzian manifold, totally geodesic
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THE SPACE OF SIZE MAPS IS HOMEOMORPHIC TO THE
HILBERT SPACE 12

ALICJA SAMULEWICZ

ABSTRACT. A theorem about order preserving maps on compact partially or-
dered spaces is proved that yields the answers to questions, posed by Illanes
and Nadler ([7], Question 83.16, p.472 and [7], Questions, p. 458), about the
spaces of size maps and Whitney maps on hyperspaces.

All spaces considered in the paper are assumed to be metric separable. By a
continuum we mean a compact connected space. By 2X (or C(X)) we denote the
space of nonempty compact subsets (subcontinua, respectively), equipped with
the Hausdorff metric. By a hyperspace ofX we mean a compact !K such that
C(X) C 'K C 2X . A partially ordered space is a topological space P endowed
with a partial order < whose graph is a closed subset of P x P. Min P and
Max P denote the sets of minimal and maximal elements of P, respectively. It
is known that, given a continuum X, 2X and C(X) are continua and partially
ordered spaces with respect to the inclusión, thus every hyperspace ÍK of X
is partially ordered. A size map for a partially ordered compact space P is a
continuous order-preserving function a : P — » [O, oc) with o-(Min P) — {0} and
cr(Max P) = {max a(P)}. A Whitney map for P is a size map for P such that
for every p,q £ P the conditions p ^ q and p ^ q imply o-(p) < o-(q). We use
the following notation:

S(P) — (a : P — > [Of oc) : a is a size map for P},

Si(P) - {o- e S(P) : o-(MaxP) = {!}},

W(P) = {a : P -> [O, oc) : a is a Whitney map for P} ,

Wl(P) = {ae W(P): o-(MaxP) = {!}}.

We consider S(P), Si(P), W(P) and Wi(P) as subspaces of the function space
C(P, IR) consisting of all continuous functions from P to R with the "sup metric"
induced by the "sup norm" . If P is a compact partially ordered space such
that Min P and Max P are disjoint closed sets then Wi(P) c Si(P) is nonempty
(see [9], Theorem 2.1).

LEMMA (0.1). Let P be a compact, partially ordered space. Then
(*) W(P) is homeomorphic to the space W\(P) x (O, oo);
(**) S(P) is homeomorphic to the open cone ouer S-[(P), i.e., the quotient space

(S1(P)x[0,oo))/(S1(P)x{0}).

2000 Mathematics Subject Classification: Primary: 54B20, 54C35, 46T10; Secondary: 54F05,
54F15.

Keywords and phrases: continuum, Hilbert space 12, hyperspace of subcontinua, size map,
Whitney map.
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ON SOME GENERALIZATIONS OF COMPACTNESS IN SPACES
CP(X, 2) AND CP(X, Z)

A. CONTRERAS-CARRETO AND A. TAMARIZ-MASCARÚA

ABSTRACT. We discuss topological properties of a space X which imply that
the spaces CP(X, 2) and CP(X, Z) have properties similar to compactness, such
as <7-compactness and cr-countable compactness. In particular, for a zero-
dimensional space X, we prové: (1) X is normal and CP(X, 2) is cr-compact iff
X is an Eberlein-Grothendieck space and the set of non-isolated points in X is
Eberlein compact, and (2) CP(X, T.} is <r-compact iff X is an Eberlein compact
space.

1. Introduction

All spaces are assumed to be Tych°n°ff urdess otherwise stated. Given two
spaces X and Y, we denote by C(X, Y) the set of all continuous functions from X
to y, and CP(X, Y) is the set C(X, Y) equipped with the topology of pointwise
convergence (that is, the topology inherited by C(X, Y) as a subspace of the
space Yx of all functions from X to y with the Tychonoff product topology).
The space CP(X, E) is denoted as CP(X), and C*(X) stands for the subset of all
bounded elements in CP(X). For points XQ, ..., xn in X and subsets AI, ..., An of
y, we will denote by [XQ, ..., xn\ ..., An] the subset of y^ of those functions
f such that f(x¿) e A¿ for every i e {O,...,«}.

The symbols R, /, w, Z and 2 stand for the real line, interval [0,1], the
natural numbers, the discrete group of the integer numbers and the discrete
group {O, 1}, respectively. The letters t, n, m, k will denote natural numbers;
and if £ is a natural number, we will use the same symbol t to denote the
discrete space of cardinality t, For topological spaces X and Y, the symbol
X = Y means that X and Y are homeomorphic. The space /3(o>) is the Stone-
Cech compactification of the natural numbers, and ¿u* is equal to /3(w) \ If 3>
is a topological property, then a space X is cr-9 if X is the countable unión of
subspaces satisfying CP. A space X is a P-space if the intersection of a countable
family of open subsets of X is still an open set. A subspace Y of X is bounded
in X if for every f e C(X), f f y is a bounded function, or equivalently, if every
sequence of open sets in X, which meets y, has an accumulation point in X.
A subspace y of a space X is C*-embedded in X if for every f e C*(Y) there
is g e C*(X) such that g \ = f . A space X is (o-discrete if every subset y of
X of cardinality < HQ is discrete; and X is b-discrete if every subset y of X of
cardinality < KQ is discrete and C*-embedded in X.

2000 Mathematics Subject Ctassification: 54C35, 54D45; 54C50, 54A25.
Keywords and phrases: spaces of continuous functions; Ca-compact spaces; a-pseudocompact
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COUNTABLY COMPACT GROUPS AND p-LIMITS

S. GARCIA-FERREIRA AND A. H. TOMITA

ABSTRACT. For 0 ^ M C w", a space X is said to be quasi M-compact, if for
every sequence (xn}n<u in X there are p G M and x € X such that for every
neighborhood V of * in X, {n < w : xn e V} 6 p. This concept strengthens
countable compactness. Assuming p = c, we construct a selective ultrafilter
p 6 W* and a quasi T(p)-compact topological group G whose square is not
countably compact, where T(p) is the type of p in w*. We also construct,
via forcing, a countably compact group which is not quasi M-compact for any
M e [ü>*]<2C; and a family of topological groups {GQ : a < 2C} such that for
a subset / of 2 C , Y[a&¡ ^a *s count;ably compact if and only if j/| < 2C .

0. Introduction

In this paper, the spaces are Tychonoff, and the topological groups are
Hausdorff (henee, they are Tychonoff). /3(w) is identified with the set of all
ultrafilters on o», and w* = /3(w) \ with the set of all free ultrafilters on o>.
The Rudin-Keisler pre-ordering on w* is defined as follows: For p,q e o>*,
P <RK Q if there is a function f : w —> cu such that {/"HA) : A e q} C p,
and p ~ q means that p <RK Q and q <RK p. The type of p e w* is the set
T(p) — {q e w* : p tz q}. If f, g : w —* <*) are two functions, then f <* g will
mean that there is k < co such that f(ri) < ^(n), for every k < n < w. For the
definition of the cardinal numbers b and p the reader is referred to [Va].

The following concept was introduced by A. R. Bernstein [B].

Definition (0.1). [B] Let p e w* and let (xn)n<ai be a sequence in a space X.
We say that x is ap—limit point of(xn)n<(a and we write x = p - lim^-.^ xn, if
for every neighborhood V ofx, {n < o) : xn e V] e p.

It is not difficult to see that a space X is countably compact iff every sequence
of pointsinX has a p—limit point for somep € co*. Thus it is natural to consider
the following class of spaces (also introduced by A. R. Bernstein):

Definition (0.2). [B] Let p e w*. A space X is said to be p—compact if for
every sequence (xn)n<t¡J ofpointsofX there isx e X such that x = p-lim^^^x^.

The authors of [GS] proved that all powers of a space X are countably
compact iff there is p € tu* such that X is p-compact. As p—compactness is
preserved under arbitrary producís, for every p e w* ([B]), there are countably
compact spaces which are not p-compact for any p e w* (see [GJ]). The main
notion of this paper is the following:

2000 Mathernatics Subject Classification: Primary 54G20, 54D80, 22A99. Secondary 54H11.
Keywords and phrases: p-limit, p-compact, almost p-compact, quasi M-compact, countably

compact, topological group.
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RATIONAL FUNCTION SPACES

KUNG-KUEN TSE

ABSTRACT. We calcúlate the size of the rationalization of the function space
Map(X, E) for E being the total space of a principal fibration induced by a map
between two loop spaces. We then discuss the rational homotopy types among
the path components of the function space with CPn as the target space.

1. Introduction

One of the central problems in homotopy theory is to classify the maps from a
topological space X to another topological space Y up to homotopy.

The problem of the homotopy classification of the function (mapping) space
Map(X, Y) is the problem of finding the path components of Map(X, Y}. In
general, [X, Y], the set of path components of Map(X, Y), has more than one
element. In this case, if we are able to describe [X, Y], then a finer and more
interesting problem is to describe the space of all homotopic functions to a given
one, /", namely the path component, Map^X, Y), of Map(X, Y) containing f .

When Y is an //-group (a group up to homotopy), then the path components
are all of the same homotopy types (the homotopy inverse of Y gives the
homotopy equivalence). But when Y is not an H-group, then in general, the
path components may be of different homotopy types.

The homotopy types of the path components of Map(X, Y) were studied in [9],
for the case X being an n-dimensional sphere. Later, Federer in [5] described a
spectral sequence for computing the homotopy groups of the path components
of the function space. Then, Thom in [14] studied the function space, for the
case Y being an Eilenberg-Mac Lañe space. More recently, Hansen in [81
studied the case X being a closed connected oriented n-dimensional manifold
and Y being an /i-dimensional sphere.

The rational homotopy of the path components of Map(X, Y) has been stud-
ied by M011er and Raussen [10], for the case X and Y being complex projective
spaces. Recently, S. Smith [11] considered the case X — Y.

Federer's spectral sequence collapses for the rationalization of the path
component containing the constant map, and the homotopy groups can be
expressed in terms of the cohomology groups of X and the homotopy groups
of Y. For the other components, the computation of the homotopy groups is
not as easy. All we know is they are, in each grading, sub-vector spaces of the
homotopy group of the path component containing the constant map.

The objective of this paper is two-fold. First, to study the number of path
components of Map(X, Y), when Y is the pullback of a map between two loop

2000 Mathematics Subject Classification: 55P15, 55P62.
Keywords and phrases: rational homotopy, function spaces, mapping spaces.
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SOME NEW IMMERSIONS AND NONIMMERSIONS OF
2r-TORSION LENS SPACES

THOMAS A. SHIMKUS

ABSTRACT. We obtain new results, four of which are optimal, for the immer-
sion problem for 2r-torsion lens spaces. We do this using obstruction theory to
prove the possibility or impossibility of lifting the map which classifies the sta-
ble normal bundle over the lens space L2n+1(2r)toamapL2/I+1(2r) —> B0(k),
for the relevant valúes of n, r, and k. These results compare nicely with recent
work of J. González in [11].

1. Statement of results

For positiva integers n and r, let L2n+1(2r) be the (2n + l)-dimensional 2r-
torsion lens space, i. e., the orbit space oíS2""*"1 C C"+1 bytherestrictiontoZ2^ of
the diagonal action of S1. Let RP2/l+1 be L2n+1(2), the (2n + l)-dimensional real
projective space, and let CP" be the 2rc-dimensional complex projective space.
In [11] González shows thatifCP" immerses in E', then L2n+1(2r) immersesin
R/+1, and if L2n+1(2r+1) immerses in R', then L2n+1(2r) immerses in R'. Thus,
known resuits of immersions of CP" (see [3] and [5]) and nonimmersions of
RP2/1+1 (see [4]) yield immersion and nonimraersion results for L2rt+1(2r). We
use obstruction theory involving calculations with modified Postnikov towers
(MPTs) to improve upon some of these results or González's result in [II] that
if r > a(n), the number of l's in the binary expansión of n, then L2"+1(2r) does
not immerse in R4«-2«(">.

Our new results are the following:

THEOREM (1.1). If n is odd and a(n) = 2, then L2n+1(4) immerses in
ot immerse ¿n ^4n-2a(n)+l_

THEOREM (1.2). If n is euen, a(n] - 2 and r > 2, then L2n+1(2r) does not
immerse inR4n-2a(n}+2.

COROLLARY (1.3). If n is odd, a(n) = 3 and r > 2, then L2n+1(2r) does not
immerse in R4«-2«(»\M (1.4). Ifn = 2 mod 4, a(n) = 3 and r>2, then L2n+1(2r) does not

immerse in R4"-2<*<">.

THEOREM (1.5). If n is even and a(n) = 3, then L2n+1(4) immerses in
ni)4n-2or(/i}+2
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Keywords and phrases: immersions, lens spaces, obstruction theory, modified Postnikov

towers.

339


