Superficies cuadriculadas en espacios geométricos.

Autor: Juan Pablo Díaz González
Coautor(es): G. Hinojosa, A. Verjovsky.
Esta plática trata sobre superficies poliedrales construídas por cuadrados congruentes que forman parte de las caras de teselaciones regulares cúbicas euclideanas e hiperbólicas de dimensiones 3 y 4. Se demuestra que todas las superficies topológicas (incluso no compactas) pueden cuadricularse en estos espacios geométricos. Todas las superficies orientables en los espacios 3-dimensionales y todas las no orientables en los 4-dimensionales. También se demuestra que no todas las superficies se pueden cuadricular en espacios euclideanos.