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1. Introduction

We start with necessary notation and definitions. All considered spaces are
assumed to be metric and all mappings are continuous. We denote by N the
set of all positive integers, by R the real line, by I the closed unit interval [0, 1]
of reals, and by S! the unit circle {(x, y) € R?: x® + y2=1}.

Given a subset A of a space X, we denote its cardinality by card 4, its
dimension by dim A, its diameter by diam 4, its closure by cl A, its interior by
int A, its boundary by bd A.

A. Spaces

An arc is defined as a homeomorphic image of the interval I, and a simple
closed curve means a homeomorphic image of the unit circle St. A continuum
means a compact connected space. A curve means a one-dimensional conti-
nuum. A space is said to be locally connected provided that each of its points
has an arbitrarily small connected neighborhood. A subset of a space is said
to be arcwise connected provided that every two of its points can be joined by
an arc lying in this set. An arc with end points a and b will be denoted by ab.

A property of a continuum is said to be hereditary provided each subcon-
tinuum of the continuum has the property. A continuum X is defined to be
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A REPRESENTATION THEOREM FOR GENERALIZED
WIENER PROCESS IN CONUCLEAR SPACE

BY ToMASZ BOJDECKI*t AND JACEK JAKUBOWSKI*

1. Introduction

Relations between general martingales and the Wiener process have been
investigated by many mathematicians, from several different points of view.
One approach consists in embedding a martingale in a Wiener process by
means of a random time change (cf.,e.g., [13]), another possibility is to try,
for a fixed Wiener process, to represent a martingale as the stochastic integral
with respect to this process (cf.,e.g., [11, Theorem 5.5]). Still another problem
is to look for a Wiener process, perhaps in a somewhat augmented probability
space, such that a given martingale can be written as the stochastic integral
with respect to this Wiener process.

In this paper we adopt the latter approach, which seems particularly impor-
tant since, besides yielding an insight into the structure of continuous martin-
gales with absolutely- continuous Doob-Meyer processes, it constitutes a link
between martingale problems and the investigation of weak solutions of sto-
chastic differential equations (see, e.g., [16], [14]). The results for the finite
dimensional case are well known (see [16, Theorem 4.5.2]). The Hilbert space
case was considered in [17], where a continuous, Hilbert space-valued martin-
gale with an absolutely continuous tensor Doob-Meyer process was represented
as the stochastic integral with respect to, suitably constructed, a cylindrical
Brownian motion in this space. This result has been applied in [10] to derive a
representation theorem for martingales and the Wiener process in the dual of a
nuclear Fréchet space. Such a theorem is useful and important, since the duals
of nuclear spaces, i.e. conuclear spaces, (typically, the spaces of distributions)
are natural state spaces for various limit models, describing some complex
physical phenomena, such as, for instance, fluctuations of interacting parti-
cle systems (see, e.g., [7], [8], [9]). To investigate these limits an appropriate
stochastic analysis apparatus in nuclear spaces must be constructed.

The representation theorem in [10] has been obtained under some addition-
al, rather restrictive assumptions, both on the space and the processes. The
principal aim of the present paper is to generalize that theorem. We consider a
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LINEAR PROGRAMMING AND INFINITE HORIZON
PROBLEMS OF DETERMINISTIC CONTROL THEORY*

By DANIEL HERNANDEZ-HERNANDEZ AND ONESIMO HERNANDEZ-LERMA

1. Introduction

The optimal control problem (OCP) we shall be dealing with is the following:
Given the infinite-horizon, n-dimensional deterministic control system

(1.1) x(t) = g(x(), u(@)) if t>0
1.2) x(0) = xo, xp € R”,

the objective is to minimize the functional
(1.3) Jeow = [ e fo), uot
0

over all U-valued control functions u, where U C R™ is a compact set and
A > 01is the discount factor. Conditions over the running cost f and the system
function g will be given in the following section. The main objective of this
paper is to study the linear programming formulation of the OCP (1.1)<1.3)
and present an approximation scheme to OCP through linear programs.

The idea is to embed the OCP in a linear program (P) defined on a space
of linear functionals. Using duality theory we introduce the dual program
(P*), which is to find the supremum among all smooth subsolutions of the
dynamic programming (or Hamilton-Jacobi-Bellman) equation. We then prove
the existence of an optimal solution to (P) and, even though an optimal solution
for the OCP is not guaranteed, we show the equivalence of (P) and OCP in the
sense that

(1.4 min(P) = V(xo),

where V is the value function of OCP valued at the initial condition xo in (1.2).
This, in turn, implies that the optimal solution to (P) belongs to the convex
closure of the set of feasible solutions to the OCP (in a suitable topology—see
Corollary (4.3)).
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APPROXIMATION SCHEMES FOR
ITO-VOLTERRA STOCHASTIC EQUATIONS*

By CONSTANTIN TUDOR AND MARIA TUDOR

1. Introduction

As shown in [2] stochastic equations of It-Volterra type can be used as
models for systems perturbed by noise.

Existence or existence and uniqueness theorems for such equations can be
found in [1], [3], [4], [8], [9], [14], [16] in the diffusion case and in [7], [13], [15],
[17] for semimartingale differentials.

However, as in the case of It equations, explicitly solvable It6-Volterra
equations are rare in practical applications. For this reason it becomes im-
portant to find approximation schemes which can be used for the simulation
of the paths of the solution. We mention the work by Makroglou [10], where
collocation methods as applied to deterministic Volterra integro-differential
equations are extended to solve stochastic Volterra integro-differential equa-
tions. -

In the present paper we consider a general strong approximation scheme
for Itd-Volterra equations in the diffusion case (Theorem (2.1)). This extends
to Volterra equations a result obtained in [11] for Itd equations. The general
formulation in Theorem (3.1) is complemented by some examples which are
introduced in section 4.

2. Some Preliminaries

Let {W;}:>0 = {(W}, ..., W™")}:>0 be a m-dimensional Brownian motion and
let {@(£)}t>t,, to > 0, be a cadlag and %-adapted real valued process defined
on a complete filtered probability space (0, #, P, { % }+>0)-

Let c(t, s, x): R2 x R? — R be a continuous function such that:

(i) c(¢, ¢, x) is Lipschitz in x, uniformly in ¢.
(1) c1(¢ s, x) == %(t, s, x) is Lipschitz in x, uniformly in (¢, s).

For 0 < j < m define the process {I:{(s, @)}s>t, by
-~ s .
@1 L )= [ 51, os0)dW,
to
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