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A CUT-AND-PASTE APPROACH TO CONTACT TOPOLOGY

WILLIAM H. KAZEZ

Abstract. This expository paper gives an introduction to some of the
techniques used to study tight contact structures on 3-manifolds. The goal
is to develop cut-and-paste techniques that are analogous to Haken and
sutured manifold decompositions. Many examples and sketches of ideas
behind some of the main theorems are given.
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1. Convex Surfaces

Unless otherwise stated, M denotes a compact oriented 3-dimensional mani-
fold that may have nonempty boundary. Throughout this paper we assume that
all manifolds and submanifolds are oriented.

Definition (1.1). A (positive) contact structure, ξ on M , is a smooth 2-plane
bundle ξp ⊂ TM such that there exists a 1−form α, satisfying

1. kerp(α) = ξp for all p ∈ M and
2. α ∧ dα > 0.

Example (1.2). Figure 1 shows a family of planes in R3 that is invariant under
rotation about the z-axis or translation in the z-direction. The indicated line
L is Legendrian, that is, TxL ⊂ ξx for all x ∈ L. Note the planes twist slowly
to the left as you move along L in either direction. This example can be made
more explicit by taking ξ to be the kernel of α = r2dθ + dz and checking that it
is a contact structure.

The next definition and many of the results in the section are due to Giroux,
[18].
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L

Figure 1. A rotationally symmetric contact structure on R3.
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Figure 2. Dividing curve on a convex surface.

Definition (1.3). A vector field ~v is called a contact vector field for ξ if flowing
in the ~v direction preserves the contact planes. A surface S ⊂ (M, ξ) is convex if
there exists a contact vector field ~v transverse to S. If ∂S 6= ∅, we also require,
for S to be convex, that ∂S be Legendrian.

Example (1.4). If ξ is the contact structure of Example (1.2), it follows that
any horizontal plane is convex by considering the constant vector field ~v = ∂

∂z
.

Indeed it follows that any surface in R3 transverse to the vector field ∂
∂z

is convex.

Roughly, S is convex if and only if S has a product neighborhood. Convexity
is a global condition; all smooth surfaces are locally convex.

Definition (1.5). If S ⊂ (M, ξ) is convex, the dividing set is denoted ΓS and
is defined to be {x ∈ S | ~v(x) ∈ ξx}.

Intuition: If we think of the vector field ~v as vertical or perpendicular to S, then
ΓS are those points whose contact planes are perpendicular to S.

Definition (1.6). The induced (singular) foliation FS on S is defined by inte-
grating the line field ξp ∩ TpS on S.
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Figure 3. The induced foliation near a dividing curve.
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Figure 4. The induced foliation on a small sphere.

Since we are assuming that manifolds and submanifolds are oriented, and
since our contact structures are positive, the contact planes inherit a transverse
orientation. Orientations on M , S, and ξ allow us to orient the leaves of FS .
Comparing these orientations leads to two ways of thinking about dividing sets:

1. The dividing set ΓS divides S into regions where the contact planes are
right side up or upside down relative to S and as shown in Figure 2.

2. With respect to the induced foliation on S, ΓS divides S into source and
sink regions, labeled S+ and S−, respectively, in Figure 3.

Example (1.7). Figure 4 shows the induced foliation and dividing set on a
small round sphere about the origin of Example (1.2). Contact structures are
locally homogeneous by Pfaff’s Theorem. It follows that there exist small spheres
like this about every point of any contact structure.
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Figure 5. Coordinates near a convex surface.

Proposition (1.8). The dividing set ΓS is a 1-dimensional submanifold of S
transverse to FS.

Proof. Choose coordinates x ∈ S and t in the ~v direction. Then the 1-form
defining ξ may be written α = β(x) + f(x)dt where β(x) is a 1-form on S, and
f is a function on S. Since kerα = ξ we have:

1. αx

(
∂
∂t

)
= 0 if and only if f(x) = 0, and therefore ΓS = f−1(0).

2. 0 6= α∧dα = (β+fdt)∧(dβ+dfdt) = β∧dβ+βdfdt+fdtdβ = βdfdt+fdtdβ.
Therefore, if f(x) = 0, then βdfdt 6= 0, and in particular df 6= 0. It now follows
that ΓS = f−1(0) is a submanifold of S.

3. Let ~w be tangent to ΓS . Then dt(~w) = df(~w) = 0, so βdfdt 6= 0 implies
that β(~w) 6= 0, that is, ~w /∈ kerβ = TFS. It now follows that ΓS is transverse to
the induced foliation on S.

The next several results are used throughout the paper.

Proposition (1.9). The isotopy class of ΓS does not depend on the choice
of the contact vector field ~v.

Definition (1.10). Let L be a Legendrian curve that is a boundary component
of a surface S. The twisting of ξ with respect to the framing induced by S is
denoted by t(L, FrS). Since we are assuming S and ξ are oriented, t(L, FrS)
will be an integer. We use the convention that if the planes of ξ twist to the left
with respect to S as we move around L, then t(L, FrS) is negative.

Theorem (1.11) (Existence of convex surfaces). Every closed surface can be
approximated by a convex surface. If S is a surface with Legendrian boundary,
and if the twisting of ξ with respect to S is negative on each boundary component
of S, then S can be approximated, relative to ∂S, by a convex surface.

Theorem (1.11) was proved by Giroux [18] for closed surfaces and by Honda for
surfaces with boundary [20]. The approximating convex surfaces can be chosen to
be C∞ close to S on the interior of S and C0 close to S along ∂S. Convex surfaces
with Legendrian boundary were first used by Kanda [25]. Theorem (1.11) follows
from

Proposition (1.12). If ∂S is Legendrian and the induced foliation FS is
Morse-Smale, that is,
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Figure 6. Legendrian divide.

1. FS has a finite number of closed leaves and Morse type singularities,
2. there are no saddle-saddle connections,
3. the holonomy about closed leaves is linear and either attracting or repelling,

then S is convex.

Example (1.13). Proposition (1.12) gives sufficient, but not necessary condi-
tions for a surface to be convex. Figure 6 shows a portion of convex surface whose
induced foliation has a circle’s worth of singularties. The circle of singularities
is called a Legendrian divide. The contact structure hinted at in the figure is
invariant under translation in the vertical direction or parallel to the Legendrian
divide. Note that a Legendrian divide is not a dividing curve.

Figure 7 shows a product neighborhood of the Legendrian divide and the
effect of a slight perturbation of the original surface on the induced foliation.

This example hints at a remarkable theorem about the possible induced folia-
tions that can occur on perturbations of a convex surface. Roughly, the Giroux
Flexibility Theorem states that we can force the induced foliations to be what-
ever we like, within reason. The statement of the theorem will make more sense
after reading the definitions which follow it.

Theorem (1.14) (Giroux Flexibility Theorem [18]). Let S ⊂ (M, ξ) be a
convex surface with dividing set ΓS, and let F be an arbitrary singular foliation
on S divided by ΓS, then there exists an isotopy of S fixing ΓS (and keeping S
transverse to ~v) such that at the end of the isotopy, F is the induced foliation on
S.

Definition (1.15). We say ΓS divides F if ΓS cuts S into a maximal number
of sink and source regions, that is, regions in which the induced foliation either
points in at every boundary component or out at every component of each region,
respectively.

Example (1.16). Figure 8 shows three foliations. The first and last are divided
by the indicated curves, but the middle example is not; it is not cut into a
maximal number of sink and source regions as the third example shows. Another
example to which the Giroux Flexibility Theorem can be applied is to replace
the indicated foliation on the annular region between the two dividing curves of
the third example with a Legendrian divide.
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S

Figure 7. Flexibility near a Legendrian divide.

Figure 8. Hypothetical induced foliations.

Definition (1.17). (M, ξ) is tight if there does not exist an embedded disk
D ⊂ M such that D is tangent to ξ along its boundary (i. e., TxD = ξx for all
x ∈ ∂D). (M, ξ) is called overtwisted if it is not tight.

Overtwisted contact structures are classified by their underlying 2-plane bun-
dles [11]. The notion of tightness is analogous to tautness or non-existence of
Reeb components in foliation theory or incompressibility of surfaces. We shall see
that tight contact structures reflect the underlying topology of the 3-manifolds
which carry them.

Figure 9 shows an overtwisted disk that would live in the contact structure
described in Example (1.2) if the contact planes were allowed to rotate too
quickly along rays leaving the origin.
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Figure 9. An overtwisted disk.

Proposition (1.18) (Giroux [19]). If S ⊂ (M, ξ) is convex, a product neigh-
borhood of S is tight if and only if one of the following is satisfied:

1. S = S2, and ΓS is connected
2. S 6= S2, and no component of ΓS is null-homotopic in S.

Sketch. (⇒) If either (1) or (2) is false, use the Giroux Flexibility Theorem
to realize a null-homotopic Legendrian divide, as discussed in Example (1.16).
The disk in S bounded by the Legendrian divide is an overtwisted disk.

(⇐) We need a starting point and gluing theorems. That is, until this point,
we have not even stated that there are any tight contact structures on any man-
ifold. The next theorem addresses this. Given simple examples of tight contact
structures we require gluing theorems to produce more complicated examples.
This paper will eventually describe several gluing theorems. Another strategy,
used by Giroux, is to produce models in which the desired S and ΓS exist and
must be tight.

Theorem (1.19). There exists a tight contact structure on B3. Moreover,
two tight contact structures which induce the same foliations on ∂B3 are diffeo-
morphic.

The existence portion of the theorem is due to Bennequin [1], and the unique-
ness portion is due to Eliashberg [12]. In light of the Giroux Flexibility Theorem,
we paraphrase Theorem (1.19) by saying that there is a unique tight contact
structure on B3.

Convex surfaces are required to have Legendrian boundary. Therefore to
decompose manifolds with convex boundaries along convex surfaces, we need to
know which curves on a convex surface S can be “made Legendrian”. That is,
we need to know which curves are contained in the leaves of some foliation F

divided by ΓS . Knowing this will allow us to decide if S can be perturbed so
that ∂S becomes Legendrian. The next definition and theorem of Honda’s [20]
exactly answers this question.

Definition (1.20). A properly embedded 1-submanifold C of a convex surface
S is non-isolating if
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α β γ

δ

Figure 10. Hypothetical Legendrian curves.

1. C is transverse to ΓS and
2. the closure of every component of S\C intersects ΓS .

Theorem (1.21) (Legendrian Realization Principle). If C is non-isolating
then C can be made Legendrian.

Sketch. The non-isolating condition guarantees that C can be extended to a
foliation divided by ΓS . Then use Giroux Flexibility to realize this foliation on
S.

Example (1.22). Of the curves shown in Figure 10, only β and γ are non-
isolating. Notice that any curve, such as β, which intersects ΓS is non-isolating.
It is not too hard to extend, say β, to a singular foliation on S divided by ΓS ;
however, β will end up passing through singularities, that is, it may not be a
smooth curve on S. Note also that in the definition of non-isolating, C is not
necessarily connected or closed.

2. Preview

At this point we have enough of the foundational tools in place to sketch, in
general terms, some of the issues and techniques involved in studying contact
structures from a cut-and-paste point of view.

Classification: Given a 3-manifold M and a collection of curves Γ contained
in ∂M , how many tight contact structures, up to equivalence, are there on M
with Γ∂M = Γ? Equivalence might be either diffeomorphism or isotopy taking
one contact structure to another.

To be specific, consider the case of a solid torus with four dividing curves on
its boundary shown in Figure 11.

Decomposition: How many “sensible” ways are there to decompose such an
(M, Γ)?

Continuing with the solid torus example, Figure 11 suggests that there are just
two possible decompositions, thus, there are at most two tight contact structures
carried by (M, Γ).

Gluing: Which of the decompositions into tight pieces can be glued to form a
tight union?

Unlike many situations in 3-dimensional topology, it is very difficult to give
general conditions under which the union of tight pieces is tight. The problem
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↓↓ (M, Γ)

Figure 11. Different convex decompositions.

is that a manifold can contain a large overtwisted disk, but when it is chopped
into small pieces, none of the pieces may contain overtwisted disks themselves.

It turns out that regluing either of the decompositions shown in Figure 11
gives a tight contact structure. A priori, we do not know that these two contact
structures are different. By gluing we can conclude only that (M, Γ) carries at
least one tight contact structure.

Invariants: Of the various ways of gluing into a tight union, which result in
non-isotopic contact structures?

In our example, an Euler charactistic type invariant shows that the two gluings
result in different contact structures. It follows that (M, Γ) carries exactly two
tight contact structures.

3. Convex Decompositions

A convex decomposition can be viewed in two ways. First, you can start
with a contact structure on a 3-manifold M and keep splitting M along convex
surfaces until the pieces are balls. Alternatively, you can start with M and a
collection of curves Γ on ∂M that you hope will end up being dividing curves for
a contact structure that you are trying to build, and then split along surfaces
which you hope will end up being convex. We need to see how actual convex
surfaces intersect so that this structure can be correctly modelled in the definition
of a convex decomposition.

Example (3.1). The kernel of αk = sin(2πkz)dx + cos(2πkz)dy defines a con-
tact structure on R3 shown in Figure 12. In this example, the contact planes all
contain the z-axis, that is, any vertical line is Legendrian. The foliation induced
on horizontal planes is a linear foliation with slope changing as the height of the
plane increases. The vector field given by ∂

∂r
in cylindrical coordinates is a con-

tact vector field, thus a cylinder at constant distance from the z-axis is convex.
The dividing curves on this cylinder start on the x-axis and spiral upwards at a
rate depending on k. Figure 12 also shows the tangencies of the contact planes
and the cylinder as long dashed lines starting on the y-axis.
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x

y

z

Figure 12. The neighborhood of a Legendrian curve.

Let D2 be the unit disk. By restricting to the cylinder D2 × [0, 1] and identi-
fying D2 × {0} and D2 × {1}, αk defines a contact structure on D2 × S1. The
key features of this contact structure are:

1. T = ∂(D2 × S1) is convex
2. #ΓT = 2
3. slope(ΓT ) = − 1

k

The next theorem may be paraphrased by saying that Legendrian curves, such
as the quotient of the z-axis in the previous example, have standard neighbor-
hoods.

Theorem (3.2) (Kanda [25], Makar-Limanov [26]). There is a unique tight
contact structure on D2 × S1 such that (1), (2), and (3) hold.

When we start with a manifold with convex boundary and cut it along a con-
vex surface, the cutting surface, by definition of convexity, intersects the bound-
ary in a Legendrian curve. The next example is a portion of the region shown
in Figure 12. From it we see how the dividing curves on a pair of intersecting
surfaces are related near their Legendrian curve of intersection.

Example (3.3). In Example (3.1) the xz-plane is convex with respect to the
contact vector field ∂

∂y
and similarly the yz-plane is convex with respect to ∂

∂x
.

Figure 13 shows portions of these planes, labelled F and G and their dividing
curves. Notice that ΓF and ΓG are horizontal lines starting on the z-axis and
ending at a point of tangency of a contact plane and the vertical cylinder.
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F

G
W

Figure 13. Intersecting convex surfaces.

FG FG FG

Figure 14. Dividing curves before and after smoothing.

From this we see that for general intersecting convex surfaces F and G, the
endpoints of ΓF and ΓG alternate along curves of F ∩ G. Further examination
of Figure 13 shows that if the corner of the wedge W subtended by F and G is
smoothed, the manifold produced has convex boundary and the dividing curves
of F and G are joined by turning to the right (when viewed from the outside of
W ). The “turn to the right” rule that is forced on us in the presence of a positive
contact structure serves as the model for defining the orientation conventions in
convex decompositions.

Figure 14 shows three views of W . The first shows W before rounding corners,
the second is after rounding corners. The last picture shows W without the
corner rounded, but it shows the effect on the dividing curves of corner rounding.
Most of the figures in this paper are drawn in this fashion.

Definition (3.4). (M, γ) is a sutured manifold if:

1. γ ⊂ ∂M is a union annuli and tori,
2. (∂M)\γ is a disjoint union of two subsurfaces R+(γ) and R−(γ), and
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R+(γ)

γ
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−

Figure 15. B3 with a single suture.

(M ′, γ′)(M, γ)

S

+
+−

−
+

+

+
+−

− −

S
Ã

Figure 16. Sutured manifold splitting.

3. crossing an annular suture takes you from R±(γ) to R∓(γ).

Gabai [14] defined sutured manifolds to study taut foliations. We are primarily
concerned with the case that all sutures are annuli. Figure 15 shows two views
of a solid ball with a single annular suture. The first view shows a manifold with
corners, as it should be drawn. The second shows how sutures are drawn; the
manifold appears smooth, and the sutures are very skinny.

Definition (3.5). If S is an oriented properly embedded surface in (M, γ),

(M, γ)
S
 (M ′, γ′) is defined by M ′ = M\S and introducing sutures as needed

to separate the positively and negatively oriented portions of ∂(M\S) as shown
in Figure 16.

Definition (3.6). A convex structure is a pair (M, Γ) such that:
1. Γ is a disjoint union of curves in ∂M ,
2. ∂M split along Γ is the disjoint union of two subsurfaces, R+(Γ) and R−(Γ),

and
3. crossing a dividing curve takes you from R±(Γ) to R∓(Γ).
Also assume each component of ∂M has dividing curves on it.

A sutured manifold (M, γ) is a manifold with corners. Convex structures
(M, γ) are smooth. Figure 17 shows portions of a sutured manifold near a
suture and a convex structure near a dividing curve. Notice that the 2-planes
along each arc α turn over as α is traversed, but they do so in different fashions.

Of course we hope that (M, Γ) will carry an actual tight contact structure,
just as Gabai would like (M, γ) to carry a taut foliation; however there is no a
priori reason that it will. When discussing a surface with curves on it, such as
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α

γ

α

Γ

Figure 17. An arc crossing a suture compared to an arc crossing a

dividing curve.

S S+ S−

∂M+

+

+

+

−

−− (S,σ)
Ã

(M, Γ) (M ′, Γ′)

Figure 18. A convex splitting,

(S, σ) in the next definition, there is no need to distinguish between an “abstract”
convex surface and an actual convex surface, for a contact structure is uniquely
determined in a (product) neighborhood of S by the dividing curve configuration
σ.

Definition (3.7). Let (S, σ) be a convex surface in (M, Γ) such that ∂S is non-
isolating in ∂M , and the endpoints of σ alternate with points of Γ ∩ ∂S along

∂S. Define (M, Γ)
(S,γ)
 (M ′, Γ′) by M ′ = M\S and by adding new portions of

dividing curves to (σ∪Γ)\S using the “turn to the right” rule shown in Figure 18.

A sutured manifold with annular sutures (M, γ) naturally determines a convex
structure (M, Γ) by replacing each annulus of γ by its core. To be able to use
Gabai’s existence theorems for sutured manifold decompositions in our setting,
we must be able to start with a sutured manifold splitting (the top row of
the following diagram) and then produce a convex surface, (S, σ), such that
the diagram commutes. We discuss how this can be done through a series of
examples.

(M, γ)
S
 (M ′, γ′)

↓ ↓

(M, Γ)
(S,σ)
 (M ′, Γ′)

Example (3.8). Figure 19 shows how to introduce boundary-parallel dividing
curves, σ, so that the diagram commutes. This technique works, provided that
every component of ∂S has nonempty intersection with Γ.
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S
Ã

(S,σ)
Ã

↓ ↓

(M ′, γ′)(M, γ)

(M, Γ) (M ′, Γ′)

Figure 19. A commuting diagram of sutured manifold and convex splittings.

Definition (3.9). A convex surface (S, σ) has boundary-parallel dividing curves
if ∂S is nonempty, every component of ∂S intersects σ, and σ is collection of
arcs each of which bounds a half disk that contains a portion of ∂S but no other
arcs of σ.

Example (3.10). Now consider the possibility that ∂S ∩ Γ = ∅. Such an
S might have isolating boundary, that is, it might not be possible to make
it Legendrian and hence S convex. Figure 20 shows first a sutured manifold
splitting along a surface S with ∂S ∩ Γ = ∅. The second two portions of the
figure show two possible ways of introducing intersections between ∂S and Γ and
of adding boundary-parallel σ to S.

There are two key features in this example. First, the strategy of introducing
intersections can only work if there are dividing curves on the same component
of ∂M as ∂S – this will show up in the definition of “sutured manifold with
annular sutures” below. And second, only one of the perturbations of S makes
the splitting diagram commute.

Figure 21 is similar to Figure 20 in that ∂S ∩ Γ = ∅, but in this case there
are multiple portions of ∂S, each with its own orientation preference for creating
a pair of intersections with Γ, and they cannot all be satisfied simultaneously.
Rather than describe how to get around this, we just point out that Gabai con-
fronted a similar situation in developing sutured manifold theory. He introduced
a notion of “well-groomed” sutured decompositions, that is, he showed that split-
tings could be assumed to have coherently oriented boundary components, and
for such splittings we can produce a commutative splitting diagram using the
technique of Example (3.10).

Theorem (3.11). Let (M, γ) be an irreducible sutured manifold with annular
sutures, and let (M, Γ) be the corresponding convex structure. The following are
equivalent.

1. (M, γ) is taut.
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S S
+

S
−

(S,σ)
Ã

(S,σ)
Ã

S
Ã

Figure 20. Two possibilities for (S, σ).

S S S

Figure 21. There is no consistent way to introduce intersections

between ∂S and Γ.

2. (M, γ) has a sutured manifold decomposition.
3. (M, γ) carries a taut foliation.
4. (M, Γ) carries a universally tight contact structure.
5. (M, Γ) carries a tight contact structure.
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Definition (3.12). A sutured manifold has annular sutures if each component
of M has nonempty boundary, every boundary component contains at least one
annular suture, and if there are no toroidal sutures.

(M, γ) is taut if R+(γ) and R−(γ) are Thurston norm minimizing in their ho-
mology class in H2(M, γ). A sutured manifold decomposition of M is a sequence
of splittings

(M, γ)
S1

 · · ·
Sm

 ∪(B3, S1 × I)

where (B3, S1 × I) denotes the sutured manifold shown in Figure 15.
A foliation is taut if every leaf intersects a closed transversal.

A contact structure is universally tight if (M̃, ξ̃) is tight.

Thurston [28] proved (3) implies (1). Gabai [14] proved (1) implies (2) and (2)
implies (3). Eliashberg and Thurston [13] showed (3) implies (4). It is immediate
that (4) implies (5). All of these results apply without the additional assumption
of annular sutures. Since S3 carries a tight contact structure but cannot support
a taut foliation, some additional hypothesis is necessary for (5) to imply (1).

The techniques of (5) implies (1) are not used in the rest of the paper, so we
instead sketch a direct proof of (2) implies (4) that has the advantages of making
the importance and utility of universal tightness clear. The proof introduces a
gluing strategy that is used repeatedly.

Proof of (2) implies (4). First replace the given sutured manifold decompo-
sition with a corresponding convex decomposition

(M, Γ)
(S1,σ1)
 · · ·

(Sm,σm)
 ∪(B3, S1)

By Theorem (1.19), (B3, S1) carries a (universally) tight contact structure.
By construction, the surfaces (Si, σi) have boundary-parallel dividing curves
(see Definition (3.9)). This portion of the theorem follows from the next gluing
theorem.

Theorem (3.13) (Colin [7]). Suppose that (M ′, Γ′) is obtained from (M, Γ)

by splitting along a convex surface (S, σ), that is, (M, Γ)
(S,σ)
 (M ′, Γ′). If M

is irreducible, S has boundary parallel dividing curves, and (M ′, Γ′) carries a
universally tight contact structure, then so does (M, Γ).

Sketch. We will illustrate key ideas of our interpretation [22] of Colin’s gluing
theorem with examples. The proof strategy is to:

1. Suppose the contact structure on (M, Γ) obtained by gluing (M ′, Γ′) along
(S, σ) is overtwisted, and let D be an overtwisted disk.

2. (In small steps) isotop S to S ′ and eventually off D.

3. While isotoping S, make sure that M\S ′ stays universally tight.
This strategy gives a contradiction once S ′ ∩ D = ∅, for M\S′ is both tight

and contains the overtwisted disk D.
“In small steps” refers to a fundamental idea due to Honda [21]. That is, any

isotopy of a convex surface S can be expressed as a sequence of bypasses.

Definition (3.14). A bypass consists of:
1. a Legendrian arc α connecting 3 dividing curves in S,
2. a Legendrian arc β joining ∂α,
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α

β

Figure 22. A bypass attached to S along α.

α

S S
′

Figure 23. The effect on ΓS of isotoping S through a bypass at-

tached along α.

3. a convex half disk in M\S with boundary equal to α ∪ β which contains a
single dividing curve.

Figure 23 shows the effect on σ of isotoping S across a bypass. Notice that
the “turn to the right” rule for dividing curves going around corners looks more
like a “turn to the left” rule when it is viewed from inside the manifold.

Example (3.15). The global effect on the dividing curves of a bypass move
depends very much on how the local picture sits with respect to the entire sur-
face and dividing curve set. Figure 24 shows an example in which the arc of
attachment connects two parallel dividing curves to a third. Isotoping S across
this bypass has the effect of removing two dividing curves from S.

Continuing with the gluing theorem, we now consider some examples of by-
passes that S might have to be isotoped through while moving S off of D.
Hopefully universal tightness of M\S ′ follows from universal tightness of M\S
in each case.

Example (3.16). Notice that the dividing curves in Figure 25 are boundary-
parallel. If such a bypass were to exist in M , then, as shown, S ′ would contain
a null-homotopic dividing curve. Proposition (1.18) implies the existence of an
overtwisted disk near S ′. Since S′ may be thought of as living in the comple-
ment of S, and we are assuming M\S is universally tight, the bypass drawn in
Figure 25 cannot exist.
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α

S S
′

Figure 24. This bypass removes two parallel dividing curves.

S S
′

Figure 25. This bypass cannot exist in a tight contact structure.

S S
′

Figure 26. A trivial bypass.

Example (3.17). Figure 26 shows a similar-looking bypass that has a very
different effect on the dividing curves of σ. Up to isotopy, the dividing curves
are unchanged. Though we omit the proof here (see [22]), it is a consequence
of the uniqueness of tight contact structures on a ball that S and S ′ cobound
a contact product. It follows that M\S and M\S ′ are contactomorphic, hence
both are universally tight.
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S S
′

Figure 27. It is not clear what the implications of such a bypass

are in general.

Example (3.18). Figure 27 shows the most mysterious of these examples.
There is no reason for M\S ′ to be tight if we only assume tightness of M\S.
However, α represents a nontrivial element of π1(S) or π1(M), and any cover

M̃\S is still tight (by universal tightness). If we lift to the right cover, α is
unwound, and this example becomes the same as the previous example. Thus
the proof strategy may be continued in this and subsequent covers.

There are several other types of bypass configurations to check, but this pat-
tern repeats itself. Bypasses are of three types: those which cannot exist, those
which cause no trouble if they do exist, and all of the rest. The typical situation
is that troublesome bypasses can be dealt with in the right cover. This is the
point and power of the assumption of universal tightness.

4. Tori

Example (4.1). Let αk = sin(2kπz)dx + cos(2kπz)dy as in Example (3.1).
Restricting αk to the cube [0, 1]× [0, 1]× [0, 1] and identifying the front with the
back face and the left with the right face defines a contact structure on T × I .
Neither T ×{0} nor T ×{1} is convex. Perturbing T ×{0} and T ×{1} so that
they are convex gives the contact structure ξk on T × I shown in Figure 28. A
vertical annulus, such as the one shown on the front face, is convex and has 2k
closed dividing curves.

The next theorem gives a very general, but rough, classification theorem for
tight contact structures.

Theorem (4.2). If M is irreducible, then M carries finitely many tight (or
universally tight) contact structures if and only if M is atoroidal.

The if direction is due to Colin, Honda, and Giroux [10], and the only if
direction is due to Colin [8, 9] and Honda, Kazez, and Matić [22].

Proof. We will explain the following portions of the proof of finiteness direc-
tion:

1. There is a finite collection of branched surfaces in M which carry every
tight contact structure.
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Figure 28. ξ2 on T × I .

Figure 29. Isotoping an edge of τ across a bypass.

2. If a branched surface carries infinitely many tight contact structures then
it carries tori.

Proof of (1).
• Pick a triangulation τ of M , and isotop it until τ 1 is a collection of Legen-

drian arcs.

• Isotop τ2 relative to τ1 so that each face is convex.

• Isotop τ to remove interior ∂-parallel dividing curves. Figure 29 shows how
to pry a two cell open along an edge to effect a bypass move and accomplish this.

• For each ∆ ∈ τ3, group the dividing curves in ∂∆3 so that, except for a
bounded number of dividing curves near the vertices, they are contained in at
most 5 prisms Pi. See Figure 30.

• Use Giroux Flexibility to force the foliation induced by ξ on each ∂vPi to
be a union of vertical arcs and on ∂hPi to be a fixed non-singular foliation.

• By the uniqueness of tight contact structures on B3 we may assume all
vertical arcs in Pi are Legendrian.

• The union over ∆ ∈ τ3 is naturally a neighborhood N(B) of a branched
surface B, and by construction there are only finitely many such B.

• Each component of ∆3 − N(B) is a polygonal ball. The number of such
polygonal balls is bounded, and the possible dividing curve configurations on
the boundary faces of each polygonal ball is also bounded. Thus ξ is defined by
ξ |N(B) up to finitely many choices.
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Pi

Pj

∂hPi ∂vPi

Figure 30. Dividing curves on ∂∆ are carried by a family of prisms.

Proof of (2). Suppose two contact structures ξ0, ξ1 are carried by B. By con-
struction the foliations induced on ∂hN(B) agree, thus ξ1 is defined by ξ0 and a
finite set of integer weights on the sectors of B which describe the twisting of the
planes of ξ1 relative to the planes of ξ0 along vertical Legendrian arcs of N(B).

An infinite collection of contact structures all carried by one branched surface
give an infinite collection of weights. Since the contact structures are all positive,
there is a lower bound, perhaps negative, on these weights. It follows that there
must be a non-negative collection of integer weights on B. In the standard way,
these non-negative weights can be used to piece together a surface in N(B) that
is transverse to the vertical Legendrian arcs. The induced foliation on such a
surface has no singularities, thus the surface is either a torus or a Klein bottle.

We draw two conclusions from this portion of the argument.
• Changing weights along a torus does not change the homotopy class of the

2-plane bundle, thus it follows that only finitely many 2-plane bundles support
tight contact structures.

• The only way to produce infinitely many contact structures on a given space
is to insert twisting in a neighborhood a torus of the sort exemplified by ξk, as
defined in Example (4.1).

With this in mind we sketch some of the remaining steps in the infinitely
many portion of the theorem.

3. A toroidal manifold has a universally tight contact structure.

4. Inserting ξk near the torus preserves universal tightness

5. and changes the contact structure.

Proof of (3).We will assume ∂M = T . This is just one gluing theorem away from
full generality. The sutured manifold (M, T ), where T is a toroidal suture, is
automatically taut, and by Gabai’s theorem it has a sutured manifold decompo-
sition. For simplicity, assume the first splitting surface S intersects T in a single

curve, and say (M, T )
S
 (M ′, γ′). The new suture γ′ is the annulus obtained

by splitting T along ∂S.
We would like to consider the corresponding convex decomposition, but first

we must fix the toroidal suture. Pick two parallel curves on T dual to S ∩ T
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(M, T ) (M ′, γ′)

(M, Γ) (M ′, Γ′)

S

(S, σ)

S
Ã

(S,σ)
Ã

↓↓

Figure 31. Introducing dividing curves on a torus suture.

and define them to be Γ. Figure 31 shows how we can force the usual corre-
spondence between the sutured manifold decomposition on the first row and the
convex structure on on the second row. It is particularly important to note that
(S, σ) has boundary-parallel dividing curves. Since (M ′, γ′) has a sutured man-
ifold decomposition, (M ′, Γ′) carries a universally tight contact structure. By
Theorem (3.13) (M, Γ) does also.

The technique of adding a pair of parallel dividing curves to a boundary
component with no sutures can be used in other settings as well.

Proof of (4).
Continuing with the same M, S, and T , we need to show that the contact

structure on M ∪ (T × I) obtained by gluing the structure built in (3) and ξk is
universally tight. Gluing along T is beyond the scope of Theorem (3.13). Instead
we will compare

(M, Γ)
(S,σ)
 (M\S, Γ′)

and

M ∪ (T × I)
S∪A
 (M\S) ∪ (T × I\A)

where the contact structure on T × I is ξk, S is the first decomposing surface,
and A is an annulus extending ∂S that is used to keep track of the k twists in
ξk.

The first row of Figure 32 shows two views of M\S near T\S. In the first
3-dimensional picture, a pair of dividing curves becomes a single dividing curve
after corner rounding. In the second, the same neighborhood is expressed as a
product with S1, and the single dividing curve is shown as a point. The second
row of the figure gives a similar view of (M\S) ∪ (T × I\A) in the case k = 1.
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T\S

M\S

M\S

(M\S) ∪ (T × I)\A

(M\S) ∪ (T × I)\A

× S1

× S1

S

=

=

Figure 32. Views of M\S near the boundary before and after

adding T × I\A.

The second figure in the second row shows a convex surface transverse to the S1

direction that detects the twisting along ξk.
We now show that our contact structure (M\S) ∪ (T × I\A) is tight. This

is done by finding an embedded copy of this space in the tight space M\S, and
then using the obvious (but useful!) fact that a subset of a tight space is tight.
Here is how this is done.

The curve C parallel to ∂S shown in Figure 33 is isolating. Pass to a cover,
without changing notation, in which the number of boundary components of S
is increased, and then C becomes non-isolating. Then use flexibility to make C
a Legendrian divide. Figure 34 shows a product with S1 view of M\S near T\S.
The region shown is the product of a convex disk and S1. This disk is shown
with part of two dividing curves that end on the two points of intersection with
C, and these two points of C are shown as hollow dots.

Figure 35 shows (M\S)∪ (T × I\A). Finally, Figure 36 shows a larger version
of (M\S) than Figure 34. The shaded subset of Figure 36 is contact isomorphic
to (M\S) ∪ (T × I\A) and is necessarily (universally) tight.

Next we show the contact structure on M ∪ (T × I) is tight. This requires
a gluing theorem along S ∪ A, which unlike S, does not have boundary-parallel
dividing curves. Figure 37 shows ΓS∪A.

We use the same gluing strategy:
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S

C

Figure 33. The curve C is isolating.

C

× S
1

Figure 34. C is now a Legendrian divide.

C

× S
1

Figure 35. M ∪ (T × I) split along S ∪ A.

C

× S
1

Figure 36. Enlarged view of M ∪ T split along S shown with a

distinguished subset.

(a) Assume the union along S ∪ A is overtwisted.
(b) Isotop, via bypasses, S ∪ A off of the overtwisted disk, and
(c) argue that the split manifold stays tight during (b).
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S
A

Figure 37. Dividing curves on S ∪ A.

C

× S
1

Figure 38. A possible location of a bypass.

There is an important change in perspective though. From the point of view of
S ∪ A, performing an isotopy in (b) is equivalent to digging a bypass out of one
side of S ∪ A and adding it to the other side. We prove (c) by showing that
there are no troublesome bypasses that can be dug from either side of S ∪ A in
M ∪ (T × I).

We have discussed bypasses which involve only boundary-parallel dividing
curves in the proof of Theorem (3.13), so now we consider the existence of a
bypass involving the closed dividing curves on S ∪ A.

Example (4.3). Figure 38 shows a bypass attached along a dotted curve α
connecting three different dividing curves on the boundary of (M∪T×I)\(S∪A).
Figure 35 showed the same space, but it showed a convex disk with a different
set of dividing curves. Certainly this bypass, if it exists, is not a subset of that
convex disk. Indeed the bypass itself may be very large and reach out of the
portion of the manifold shown in either of these figures.

Proposition (4.4). The bypass shown in Figure 38 cannot exist.

Proof. Consider the space obtained by adding the product of a bypass at-
tached along α and S1 that is shown in Figure 39. The null-homotopic dividing
curve that is created implies the contact structure is overtwisted.

The opposite conclusion is reached if we add the same set and consider its
relationship to the convex disk that we know is contained in (M ∪T ×I)\(S∪A).
The union is shown in Figure 40. We see that this space must be tight, for it also
is a “fold along C”, that is, it can be found as a subset of M\S. This completes
the proof of the Proposition and hence Step (4).

Proof of (5).
We will only give the idea behind the technique used in producing invariants

that distinguish the various contact structures on M ∪ (T × I). Let F be a
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C

× S
1

Figure 39. Detecting a bypass by adding a “template”.

C

C C

× S
1

× S
1

× S
1

=

Figure 40. The actual result of adding the template.

properly embedded convex surface which intersects the boundary component
T × {1} of M ∪ (T × I), and let δ be a homotopically essential arc in F which
starts and ends on T × {1}. The minimum of #|δ ∩ ΓF | over all such δ and F
is an invariant which tends to infinity as the twisting, that is, the k in ξk , is
increased.

5. Surface bundles

We will give a classification of tight contact structures on Σ × I such that

(*) Σ is a closed surface with genus at least two, and the dividing curves on
each component of ∂(Σ × I) are a pair of parallel non-separating curves.

Example (5.1). In Figure 41, notice that on Σ1, χ(R+) = χ(Σ1) and
χ(R−) = 0. This is analogous to the product foliation on Σ × I in the sense
that the contact 2-planes have outward pointing normal vectors everywhere on
Σ1, at least as measured by Euler charactertistic. This structure is a special case
of an extremal contact structure.
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γ×{1}

+

+

−

−

Σ1

γ×{0} − Σ0

Figure 41. Dividing curves and splitting annulus on Σ × I .

Definition (5.2). A contact structure on a surface bundle with fibre Σ is ex-
tremal if the Euler class, e(ξ), of the 2-plane bundle satisfies e(ξ)(Σ) = ±χ(Σ).
Equivalently, if Σ is convex either χ(R+) = χ(Σ) or χ(R−) = χ(Σ).

Theorem (5.3). [23] There are exactly 4 (universally) tight non-product con-
tact structures satisfying (*). They correspond to a choice of dividing curve on
each of Σ0 and Σ1.

This theorem is used to prove the following theorems.

Theorem (5.4). Let ϕ be a pseudo-Anosov map of a closed surface Σ. There
is a unique extremal, tight (or universally tight) contact structure on
(Σ × I)/(ϕ(x), 1) ∼ (x, 0).

Theorem (5.5) (Gabai-Eliashberg-Thurston Theorem). If M is Haken and
H2(M) 6= 0, then M carries a universally tight contact structure.

Theorem (5.5) follows from Gabai’s work [14] on the existence of taut folia-
tions and Eliashberg and Thurston’s perturbation technique [13] for producing
universally tight contact structures from taut foliations. The proof we give [24] is
a direct construction which has the advantage of helping us discover new gluing
theorems.

Sketch of proof of Theorem (5.3). We concentrate only on the dividing curve
configuration shown in Figure 41. What the proof strategy lacks in subtlety it
makes up in directness. We start by decomposing Σ× I along a vertical annulus
γ×I whose boundary components are shown in Figure 41 and analyze all dividing
curve configurations that can occur on γ × I .

Figure 42 shows γ × I cut by a vertical arc into a rectangle, and it lists all
possible dividing curve configurations such that the boundary components of
γ × I intesect the dividing curves twice each.
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+
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+

−
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− −
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γ × {1}

γ × {0} n = 4

n = 3

k = −1

k = 1

k = 0

Type Ik

Type II+

n

Type II−
n

Figure 42. Possible dividing curves on γ × I .

We will show how Type II+
2 can be reduced to Type II+

0 , that is, if we start
with a convex annulus of Type II+

2 , we can find another convex annulus of
Type II+

0 . This case is fairly typical of the type of arguments we use to prove
this classification theorem.

Figure 43(A) shows the result of splitting Σ × I along an an annulus of
Type II+

2 , and Figure 43(B) shows the dividing curves on Σ\σ × {0}. After
rounding the corners and gathering the dividing curves on the two vertical an-
nuli of (M\σ) × I , the result is shown in Figure 43(C). Cut this along a convex
rectangle δ × I , and again we must consider all possible dividing curve configu-
rations on a splitting convex surface.

Suppose first that the dividing curve configuration on δ × I has a boundary-
parallel component whose half disk contains the point labelled 2 in δ × I . (Fig-
ure 43(D) shows a different configuration.) This would imply the existence of a
bypass with arc of attachment running from 1 to 3. Consider how this bypass
is situated relative to σ × I – it crosses two parallel dividing curves and ends
on a third curve in Figure 43(A). But a quick computation (Example (3.15))
shows that the effect of pushing σ × I across such a bypass removes both closed
dividing curves from σ× I , that is, it produces a Type II+

0 annulus that we had
promised to find.

The same logic shows that if any dividing curve is boundary-parallel and
centered on the point 3, 4, or 5, a Type II+

0 can be shown to exist. We are
left with the dividing curve configuration of Figure 43(D). The result of cutting
along δ × I and rounding corners is shown in Figures 43(E,F).

Lemma (5.6). There must exist a bypass along the arc of attachment shown
in Figure 43(E).

Sketch of proof of lemma. If such a bypass exists, then pushing the vertical
annulus of Figure 43(E) through it produces three dividing curves rather than
just the one shown in Figure 43(F). One step in a complete proof is arguing
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+

+

−
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(A) (B)

(C) (D)

(E) (F)

δ×{1}

δ×{0}

(Σ\γ)×{0}

1

2

3

4

5

6

Bypass?

δ

Figure 43. Decomposing Σ × I .

that there is a vertical annulus with three dividing curves near the given vertical
annulus. This is very similar to the part of the proof of tightness in the toroidal
case, shown in Figure 36, in which a more complicated space was shown to
exist inside a manifold with a single dividing curve on a vertical annulus in its
boundary. In short, the annulus is shown to exist by a folding argument along
an isolating curve that is shown to exist near the original annulus. This more
complicated annulus implies the existence of the desired bypass.
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Pushing δ×I through this bypass produces a new dividing curve configuration
on δ × I which has boundary-parallel dividing curves centered on the points
labelled 3 and 4. As above, this allows us to modify γ × I and produce an
annulus of Type II+

0 . The rest of the proof of Theorem (5.3) requires:

1. Many other similar reductions.
2. Existence of the four types of contact structures must be shown.
3. Uniqueness of these contact structures must be established.

We will show the existence and uniqueness of Type II+
0 tight contact contact

structures. Figure 44(A,B) shows Σ×I cut along γ×I . Notice that the dividing
curves on γ × I are boundary-parallel. The result of rounding corners and the
next splitting surface is shown in Figure 44(C). Since δ × I intersects only two
dividing curves, there is no choice for the diving curve set on δ × I , it must be
the single boundary-parallel arc shown in Figure 44(D). The result of cutting
along δ × I and rounding corners is shown in Figure 44(E,F). Next, choose ε
such that ε × I intersects dividing curves just twice. Continuing in this fashion
we produce a convex decomposition by splitting surfaces which have boundary-
parallel dividing curves. Morever, as long as null-homotopic dividing curves on
the splitting surfaces are not allowed, the choice of dividing curves is unique.

Since the splitting surfaces all have boundary-parallel dividing curves in this
case, (2) follows from Theorem (3.13). It is worth emphasizing that a convex
decomposition determines the contact structure near ∂M and the splitting sur-
faces. Furthermore, by the uniqueness of tight contact structures on B3, the
contact structure is determined on the rest of M as well. Since there is just one
possible choice of dividing curves on the splitting surfaces, (3) follows.

This completes the sketch of the proof of Theorem (5.3).

The statement of Theorem (5.3) refers to a choice of dividing curves. This
choice can be described explicitly using the notion of a straddled dividing curve.

Definition (5.7). A dividing curve in ∂(Σ × I) is straddled if there exists a
dual convex annulus with a boundary-parallel dividing curve centered on it.

We record a couple of consequences of Theorem (5.3) that are used in appli-
cations.

Corollary (5.8) (Addition). Let ξ1 and ξ2 be tight, non-product contact
structures on Σ× [0, 1] and Σ× [1, 2], respectively, that agree on Σ× {1}. Then
ξ1 ∪ ξ2 is tight if and only if no dividing curve on Σ × {1} is straddled in both
Σ × [0, 1] and Σ × [1, 2].

Corollary (5.9) (Freedom of Choice). Let ξ be a non-product tight contact
structure on Σ× I, and let α1 and α2 be a pair of parallel, non-separating curves
on Σ. Then there exists a convex embedding of Σ in Σ× I that is isotopic to the
inclusion of a boundary component, such that ΓΣ = α1 ∪ α2.

The next proposition is self-evident and very useful [20].

Proposition (5.10) (Imbalance Principle). Let S1 × [0, 1] be a properly em-
bedded convex annulus in M such that S1 × {0} intersects fewer dividing curves
than S1 × {1}. Then S1 × [0, 1] contains a bypass centered on a dividing curve
intersecting S1 × {1}.
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(A) (B)

(C) (D)

(E) (F)

δ×{1}

δ×{0}

(Σ\γ)×{0}

δ

ε

Figure 44. Existence of uniqueness of Type II+
0 .

Sketch of the proof of Theorem (5.4).

• Given a surface bundle with pseudo-Anosov monodromy ϕ, pick a fibre,
isotop it until it is convex, and cut the bundle along the fibre. The dividing
curves on each boundary component consist of a family of parallel pairs of curves.

• If there are more than one pair of parallel curves on either boundary com-
ponent, then since ϕ is pseudo-Anosov, there exists an imbalance annulus.
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Σ

S

S

Figure 45. The first splitting surface S in M\Σ.

• Isotoping the fibre through the bypass guaranteed by the Imbalance Princi-
ple reduces the number of dividing curves. Continue until there is just a single
pair on each boundary component.

• By Freedom of Choice a new fibre can be chosen with a fixed pair of non-
separating dividing curves.

• Splitting the bundle along this fibre reduces an arbitrary bundle to one of
the four standard forms given in Theorem (5.3). Of the four possible straddlings,
two are ruled out because of the tightness of the gluing that recreates the original
surface bundle. The other two are related by another application of Freedom of
Choice.

Sketch of the proof Theorem (5.5). By Theorem (3.11) we may assume M is
a closed manifold. Let Σ ⊂ M be a Thurston norm minimizing surface corre-
sponding to a non-zero element of H2(M) and split M along Σ.

The sutured manifold M\Σ has no sutures, but it does have a sutured manifold
decomposition. Let the first splitting surface be S, and we shall assume that S
intersects each copy of Σ in a single closed curve as shown in Figure 45. Make
M\Σ a convex structure by adding a pair of parallel dividing curves dual to ∂S
on each boundary component. Make S a convex surface by adding boundary-
parallel dividing curves σ straddling a component of Γ, the dividing set on the
boundary of M\Σ, on each copy of Σ. If the right curves are straddled, splitting
the sutured manifold M\Σ along S corresponds to the convex splitting defined
by (S, σ). The remaining steps of the convex decomposition are directly inherited
from the sutured manifold decomposition.



A CUT-AND-PASTE APPROACH TO CONTACT TOPOLOGY 33

B1

B2

Figure 46. Possible location of bypasses before gluing.

This convex decomposition of (M\Σ, Γ) is by surfaces, all of whose dividing
curves are boundary-parallel. Thus by Theorem (3.13), there is a tight con-
tact structure on M\Σ. Moreover, by construction, one dividing curve on each
boundary component of M\Σ is straddled by a dividing curve on S.

By Theorem (5.3) there are four choices of tight contact structure on Σ × I
that could be used to attach to M\Σ and produce a tight contact structure on
M . It should seem very plausible, and it is true, that a curve straddled on both
sides gives rise to an overtwisted disk. Thus we insert the unique, non-product,
contact structure on Σ × I that gives (M\Σ) ∪ Σ × I a chance of being tight.

We are two gluing theorems away from a complete proof of tightness on M ;
we must glue along each of the boundary components of Σ× I . As we have seen,
the general form of these gluing proofs is:

1. Given an overtwisted disk in M , push Σ off it using bypasses while keeping
M\Σ tight.

2. Analyze which bypasses exist on one component of M\Σ and which can
be added to the other component while preserving tightness.

Rather than do this in generality, consider the local version of this that is
shown in Figure 46. On the left are two dividing curves, one of which is straddled.
On the right are the two dividing curves about to be identified with the curves
on the left. Also shown are two boundary-parallel dividing curves. The first,
B1, is known to exist by construction, thus if it is removed and added to the
other side, tightness must be shown to be preserved. The second, B2, if added
to the left would produce an overtwisted disk, thus, as part of a sufficient gluing
theorem, these must be shown not to exist. These local gluing results follow
from the next lemma.

Lemma (5.11). Let γu and γs be a pair of parallel dividing curves on ∂M , and
assume γs is straddled and the contact structure on M is tight. Then, adding a
bypass to M across γu produces a tight contact structure.

Since adding a bypass to M across γs produces an overtwisted structure, it
follows that γu is not straddled.
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α β

γu γs

M

Figure 47. Adding a bypass across β is the same as removing a

bypass across α.

Proof. Figure 47 shows a neighborhood A × I of an annular neighborhood A
of γs and γu in ∂M . It also shows the arc of attachment α which straddles γs

and the arc of attachment β to which a bypass is being added. The annulus
parallel to and below A shows the result of removing the bypass attached along
α. The annulus above A shows the result of adding a bypass along β. The figure
on the right shows the dividing curves on the boundary A × I .

At least on the boundary, the figure on the right looks like a product contact
structure on A × I , and indeed it is. Since the attaching curves, α and β, are
disjoint, the contact structure on A can be built by first attaching a bypass to
the bottom annulus along β and then attaching a bypass along α. From this
point of view, the isotopy class of the dividing curves remains unchanged after
adding each bypass (see also Example (3.17)), and thus the contact structure is
a product. It now follows that adding a bypass across β is the same as removing
a bypass in M attached along α, and this operation preserves tightness.

6. Open Questions

There are two fundamental classes of open questions:

1. Which M3 carry tight contact structures?
2. What are the topological implications of carrying a tight contact structure?

The central existence question, particularly from the point of view developed
in this paper, is the question of whether or not Haken homology spheres M
always carry tight contact structures.

In such a manifold, every surface Σ ⊂ M must separate. In particular if
there is a tight contact structure ξ on M , then e(ξ)(Σ) = 0. This means that
if Σ is convex, then χ(R+) = χ(R−). This is exactly opposite to the extremal
case when χ(R+) = χ(Σ) and χ(R−) = 0. Presumably constructing contact
structures will involve:

• Classification of such structures on Σ × I and
• new gluing theorems.
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M

Σ

Figure 48. Haken homology sphere.

+

−

Figure 49. A non-extremal boundary configuration.

Example (6.1). Perhaps the simplest example of this sort of classification ques-
tion on Σ × I is shown in Figure 49. Preliminary work of Cofer [6] shows there
is exactly one tight, non-product, contact structure with these dividing curves.
This example has the bizarre property that if you add any non-trivial bypass, it
becomes overtwisted. It follows that it does not occur as a subset of any tight
contact structure on Σ× I other than itself, and it may not show up in any tight
closed 3-manifold.

Very little is known about (2), implications of carrying a tight contact struc-
ture, so we will describe results that have been obtained in lamination theory
that perhaps have analogues in contact topology.

Definition (6.2). A lamination of M 3 is a disjoint union of surfaces which are
locally homeomorphic to the product of D2 and a closed subset of I .

A lamination is essential if the leaves are incompressible, the complementary
regions are irreducible, and there are no folded leaves. A lamination is genuine
if it is essential and some complementary region is not a product of a boundary
leaf and I .

Figure 50 shows, in order, a folded leaf, a complementary region that is a
product of a boundary leaf and I , and a complementary region that is not such
a product.
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Figure 50. Complementary regions of a general lamination.

A
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I

L

× S
1

Figure 51. Structure on the complementary region of a genuine lamination.

Definition (6.3). The Euler characteristic of a surface with cusped boundary
is defined to be the usual Euler characteristic of the underlying space minus half
of the number of cusps.

The cross-sections of the complementary regions shown in Figure 50 are a
disk with one cusp (χ = 1/2), a disk with two cusps (χ = 0), and a disk with
three cusps (χ = −1/2). The definition of essential consists of bans on various
types of positive Euler characteristic, while the notion of a genuine lamination
postulates the existence of some negative Euler characteristic in M . We shall
see that atoroidal manifolds are group negatively curved (Theorem (6.6)). It is
not clear what additional structure should be made for contact structures that
might make the this theorem apply in that setting as well.

By the JSJ decomposition theorem, there is a unique I−bundle structure I

on the ends of each complementary region. Thus each complementary region
decomposes as the union of a I and the guts G as shown in Figure 51.

The key features of this decomposition are:

• G is compact.

• By maximality of I, G has no product disks, that is, there are no non-trivial
rectangles in G with sides that alternately consist of I-bundle fibres of I and arcs
in leaves of the lamination.

• An essential lamination is genuine if and only if G 6= ∅.

• G ∩ I is a finite union of annuli A.
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Definition (6.4). M is group negatively curved if there exists a constant C
such that for every null-homotopic curve, f : S1 → M , there exists an extension
of f to a disk D such that

area(f(D)) < C · length(f(∂D)).

M is group negatively curved with respect to a link L in M if there exists a
constant C such that for every null-homotopic curve f : S1 → M , there exists
an extension of f to a disk D such that

area(f(D)) < C · (length(f(∂D)) + wr(f(∂D), L)).

The wrapping number wr(f(∂D), L) is a geometric linking number and is
defined to be the minimum, taken over all disks E with ∂E = f(∂D) of the
number of points of intersection of E with L.

The inequality in the definition of group negatively curved with respect to a
link L in M is equivalent to the existence of a constant such that at least one of
the two inequalities is satisfied:

area(f(D)) < 2C · length(f(∂D))

or

area(f(D)) < 2C · wr(f(∂D), L).

We need the following remarkable theorem.

Theorem (6.5) (Gabai’s Ubiquity Theorem [15]). If M is closed, irreducible,
and atoroidal, and if L 6⊂ B3, then M is group negatively curved with respect to
L.

Theorem (6.6). [17] If M is atoroidal and contains a genuine lamination λ,
then M is group negatively curved.

Before applying Gabai’s Ubiquity Theorem to the proof of Theorem (6.6), we
need the following lemma which says that to prove an isoperimetric inequality
for all null-homotopic curves, it is enough to prove the inequality on a “dense”
subset.

Lemma (6.7). Let A be the set of all null-homotopic curves g : S1 → M , and
let S be a subset of A. If

• all f ∈ S satisfy an isoperimetric inequality,
• each g ∈ A is approximated by an f ∈ S by a small area homotopy, and
• length(f) is not drastically bigger than length(g),

then all g ∈ A satisfy an isoperimetric inequality.

Proof. This follows by piecing together the homotopies shown in Figure 52.

Sketch of the proof of Theorem (6.6). To apply this lemma think of G as a big,
fat subset of M . Then to show M is group negatively curved, it is enough to
prove an isoperimetric inequality for the set of null-homotopic curves f : S1 → M
such that

1. f is transverse to λ.
2. Each component of f−1(G) has length greater than some constant ε.
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Figure 52. A small area homotopy that does not increase length much.

f g

G

× S1

Figure 53. Short portions of g−1(G) can be removed efficently.

In other words, short bits of f−1(G) can be efficiently removed as in Figure 53.
Since G∩I is a finite union of annuli A, we define L to be the union of the cores

of A. We now apply Theorem (6.5) to this choice of L. Given a null-homotopic
f : S1 → M satisfying (1) and (2), there exists a disk of null-homotopy, D, such
that at least one of these inequalities is satisfied:

area(f(D)) < 2C · length(f(∂D))

or

area(f(D)) < 2C · |f(D) ∩ L|.

In the first case, we have exactly the isoperimetric inequality we are looking for.
Thus it is enough to assume the second inequality is satisfied, and then show
there exists a constant C ′ such that

2C · |f(D) ∩ L| < C ′ · length(∂f(D)).

Figure 54 shows f−1(D). The figure shows f−1(G) as shaded, and f−1(I) as
white. Since we are only trying to give a sketch of the main ideas, we will think
of f as an embedding.

Figure 55 shows regions that might occur as subsets of f−1(D). The first
region, a null-homotopic circle, can be removed by choosing a new map of D →
M since leaves of λ are incompressible. The second region, a folded leaf, cannot
occur in an essential lamination. And finally the third region, a half disk mapped
into G does occur, and thus we arrive at

Conclusion 1. Regions of f−1(D) with positive Euler characteristic contribute
at least ε to the length f(∂D).
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f−1(L)

D

f−1(G)

f−1(I)

Figure 54. The pullback of λ, G, and I to D.

Figure 55. Possible regions of D with positive Euler characteristic.

Figure 56 shows typical regions of f−1(D) which contain points of f−1(L).
The first figure, a cusped triangle, has negative Euler characteristic. The second
region shown has Euler characteristic zero and is a product disk in G. This cannot
exist by the definition of G. The third region also has Euler characteristic zero,
but it contains an arc that is mapped into G, thus it contributes at least ε to
length(f(∂D)). After removing the middle regions that cannot exist we reach

Conclusion 2. Points of f−1(L) either show up in regions of negative Euler
chacateristic or they contribute at least ε to length(f(∂D)). smallskip We can
now complete the proof. We have a disk D such that

area(f(D)) < 2C · |f(D) ∩ L|,

thus a large area disk gives many points of f−1(L). By Conclusion 2, these points
either directly contribute to the length of f(∂D), or they show up in regions of
negative Euler characteristic. But χ(D) = 1, thus the existence of regions with
negative Euler characteristic implies the existence of regions with positive Euler
characteristic. By Conclusion 1, these in turn contribute even more to the length
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Figure 56. Regions of D which contain points of f−1(L).

of f(∂D). Thus we conclude

area(f(D)) < 2C · |f(D) ∩ L| < C ′ · length(f(∂D)).

A key feature of this proof that does not have an obvious analogue in contact
topology is the crude notion of length given by pulling back G to ∂D.

We would like to end up by pointing out that there are no clear connections
between tight contact structures on M and the fundamental group of M . For in-
stance, it is not known if a homotopy 3-sphere supports a tight contact structure
whether it must be S3.

By way of contrast, there are many π1(M) actions that can be constructed
from foliations and laminations. The leaf space is the quotient of the universal
cover by leaves and complementary regions. The quotient is an order tree, and
there is always an action of π1(M) on it.

Bestvina and Mess [2] show that if M is group negatively curved then there is
an action of π1(M) on S2. This can be applied to the manifolds of Theorem (6.6),
and indeed by Calegari’s work [3], there are far more manifolds in this collection
than originally realized.

Palmeira’s Theorem [27] is generalized to laminations in [16], and it follows

that the universal cover (M̃, λ̃) is always homeomorphic to a product (R2, κ)×R

where κ is a lamination of the plane. Calegari and Dunfield [5] point out that
(R2, κ) can be thought of as (H2, κ) and from this they can sometimes produce
an action on S1

∞. Calegari and Dunfield [5] have more general results. They
generalize Thurston’s work on the universal circle, and using Candel’s theorem
[4], they identify leaves of λ with H2, and they identify all S1

∞’s coming from the
H2’s to get a π1(M) action on S1

univ. This works for taut foliations and some
genuine laminations.
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ON THREE-MANIFOLDS WITH BOUNDED GEOMETRY

MICHEL BOILEAU AND DARYL COOPER

Abstract. In this note we combine some of Cheeger-Gromov’s results
[CG1,CG2,CG3] from the geometry of collapses of Riemannian 3-manifolds
together with some three-dimensional topology to prove results which say
that there are at most finitely many diffeomorphism classes of prime non-
geometrizable three-manifolds which admit a metric of bounded geometry
(i.e. with bounded sectional curvatures and bounded volume).

0. Introduction

Definition. A compact orientable 3-manifold is geometrizable if it has a split-
ting along a finite collection of disjoint essential spheres and tori into finitely
many compact 3-manifolds whose interiors each admit a complete homogeneous
riemannian metric (after capping off their boundary spheres by balls).

Thurston’s geometrization conjecture states that all 3-manifolds are geomet-
rizable.

There are eight homogeneous riemannian metric, which are locally modelled
on the following 3-dimensional geometries: S3, E3, H3, S2 ×E1, H2 ×E1, Nil,
˜SL2(R) and Sol.
A 3-manifold M is:
• prime if it is not the connect sum of two 3-manifolds neither of which is

S3.
• irreducible if every smoothly embedded sphere in M bounds a ball M.
• ∂-irreducible if for every smooth properly embedded disc D in M there is

a ball B ⊂ M and a disc D′ ⊂ ∂M such that ∂B = D ∪D′.
• atoroidal if every Z2 subgroup in π1M is conjugate into π1∂M and in

addition π1M does not contain the fundamental group of the klein bottle.

A prime orientable 3-manifold which is not irreducible is homeomorphic to
S2 × S1, and hence geometric. An irreducible orientable 3-manifold such that
every Z2 subgroup of π1M is conjugate into π1∂M is either atoroidal, or else the
orientable I-bundle over the Klein bottle which is geometric.

By Thurston’s hyperbolization theorem [Th2](cf. [Ka], [Ot1,2]) and the Torus
theorem ([CJ],[Ga]), a non-geometrisable prime 3-manifold is irreducible, ator-
oidal and does not contain any embedded, incompressible, orientable surface. In
particular it has an empty boundary.

2000 Mathematics Subject Classification: 57M50, 53C23.
Keywords and phrases: 3-manifold, geometric structure, graph manifold, F -structure, Dehn

filling.
Research partially supported by the NSF.
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Given a positive real number v > 0, let M(v) be the set of diffeomorphism
classes of closed orientable 3-manifolds which admit a Riemannian metric g with
bounded sectional curvature |Kg| ≤ 1 and bounded volume vol(M, g) ≤ v.

There are infinitely many geometrizable 3-manifold in M(v). In fact by the
work of Cheeger and Gromov [CG1,CG2] all closed graph 3-manifolds (to be
defined in §1) belong to M(v) for any v > 0, and this characterizes graph 3-
manifolds. More precisely, there is a constant v0 > 0 such that: ∀v ≤ v0,M(v) =
M(v0) is the set of closed graph 3-manifolds.

By the work of Jørgensen and Thurston, for v sufficiently large (eg. bigger or
equal to the hyperbolic volume of the figure eight knot complement), there are
infinitely many closed hyperbolic 3-manifolds in M(v).

The main result of this note is the following finiteness result concerning non-
geometrizable prime summands of 3-manifolds in M(v).

Theorem (0.1). Given v > 0 there is only a finite set NG(v) of orientable,
non-geometrizable 3-manifolds that may occur as a prime summand in the con-
nected sum decomposition of a 3-manifold in M(v). Moreover for every 3-
manifold in M(v) the number of such non-geometrizable prime summands is
bounded above by a number p(v) depending only on v.

As straightforward corollaries we obtain:

Corollary (0.2). There is a constant n(v) depending only on v such that
M(v) contains at most n(v) prime 3-manifolds which are not geometrizable.

Corollary (0.3). There is a constant s(v) depending only on v such that
M(v) contains at most s(v) homotopy spheres.

Definition. For a compact orientable 3-manifold M , let Minvol(M) =
inf{vol(M, g)}where g runs over all Riemannian metrics on int(M) with bounded
curvature |Kg| ≤ 1.

Let A denote the set of compact orientable irreducible and atoroidal 3-mani-
folds, with zero Euler characteristic, and which do not admit a spherical metric
(such a manifold is not a graph manifold). We denote by H ⊂ A the subset of
3-manifolds which admit a complete hyperbolic structure of finite volume. By
Thurston’s hyperbolization theorem for Haken 3-manifolds, a manifold with non
empty boundary in A belongs to H. Thurston’s geometrisation conjecture states
that H = A.

When M admits a complete hyperbolic structure of finite volume g0, a deep
result, due to Besson-Courtois-Gallot [BCG] in the closed case and to Boland-
Connel-Souto [BCS] in the cusp case, shows that the hyperbolic metric realizes
the Minvol i.e. Minvol(M) = V ol(M, g0).

Since there is no graph 3-manifold in A, it follows from Cheeger-Gromov’s
work [CG1,CG2] that a 3-manifold in A has a strictly positive Minvol. By
Corollary (0.2), for a given value v > 0, the set {Minvol ≤ v} ∩ A contains at
most finitely many prime, non-geometrizable 3-manifolds since they belong to
M(v + 1).
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Since the geometrizable 3-manifolds in A are exactly the subset H of hyper-
bolic 3-manifolds, the following result is a direct consequence of [BCG], [BCS],
[Th,chap.5] and of Corollary (0.2). It shows that the set of values of the Minvol
for manifolds in A behave like the set of volumes of hyperbolic manifolds.

Corollary (0.4). The map Minvol : A → (0,+∞) is finite to one and the
set of values Minvol(A\H) is discrete. In particular the set of values Minvol(A)
is a well-ordered subset of R+ whose limit points coincide with the limit points
of the subset Minvol(H).

There are two parts in the proof of Theorem (0.1). The first part (cf. §1)
follows from Cheeger-Gromov’s theory of collapses for riemannian manifolds with
bounded sectional curvature. The second part (cf. §2) is a generalization of
Thurston’s hyperbolic Dehn filling theorem to the case of graph-fillings

1. Thick parts of Riemannian manifolds with bounded volume

A phenomenon which has received much attention in all dimensions from
geometers is the notion of collapse : we say that a family of Riemannian metrics
on a manifold collapses with bounded geometry if all the sectional curvatures
remain bounded while the injectivity radius goes uniformly everywhere to zero.

For example any flat torus T n collapses to any small dimensional torus T k

with k < n by rescaling the metric on some of the S1 factors.

Cheeger and Gromov [CG1,CG2] have proved that a necessary and sufficient
condition for a manifold to have such a collapse with bounded geometry is the
existence of a “generalized torus action” which they call an F-structure. F
stands for “flat” in this terminology.

Intuitively an F -structure corresponds to different tori of varying dimension
acting locally on finite coverings of open subsets of the manifold. Certain com-
patibility conditions on these local actions on intersections of these open subsets
will insure that the manifold is partitioned into disjoint orbits of positive dimen-
sion. A precise definition of an F -structure can be given using the notion of
sheaf of local groups actions, but we will not need it here.

A compact orientable 3-manifold M with an F -structure admits a partition
into orbits which are circles and tori, such that each orbit has a saturated subset.
A 3-manifold M has a graph structure in the sense of Waldhausen [Wa] and is a
graph manifold if it can be obtained by glueing Seifert fiber spaces together along
torus boundary components. These tori are not required to be incompressible.
It follows from the definition of F -structure that such a partition corresponds to
a graph structure on M (see [Ro1,§3]).

Another description of the family of all graph manifolds is that they are
precisely those compact three manifolds which can be obtained, starting with the
family of compact geometric non-hyperbolic three-manifolds, by the operations
of connect sum and of glueing boundary tori together. Thus they arise naturally
in both the Geometrization conjecture and in Riemannian geometry.
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The aim of this section is to prove the following proposition which is true in
any dimension:

Proposition (1.1). Let M be a closed Riemannian n-manifold with |Kg| ≤ 1
and vol(M, g) ≤ v. Then M has a decomposition M = N ∪G into two compact
n-submanifolds such that:

• G admits an F -structure such that ∂N = ∂G is an union of orbits.
• N belongs, up to diffeomorphism, to a finite set N(n, v) of smooth, compact,

orientable n-manifolds.

Here is a straightforward corollary in dimension 3:

Corollary (1.2). Every manifold M ∈ M(v) has a decomposition M =
N ∪G into two compact (maybe not connected) 3-submanifolds such that:

• G is a (maybe empty) graph manifold.
• N belongs, up to homeomorphism, to a finite set N(v) of compact orientable

3-manifolds with zero Euler characteristic. 
�

Riemannian geometry takes an important part in the proof of Proposi-
tion (1.1). This proposition is the analogue in bounded variable curvature of
Jørgensen’s finiteness theorem [Thm 5.12], which states that all complete hy-
perbolic 3-manifolds of bounded volume can be obtained by surgery on a finite
number of cusped hyperbolic 3-manifolds. The finiteness of hyperbolic manifolds
with volume bounded above and injectivity radius bounded below is a precursor
to Gromov’s compactness theorem, while the Margulis lemma takes the place of
the Cheeger-gromov thick/thin decomposition [CG2, Thm.0.1].

The following theorem is a precise version of Cheeger-Gromov’s thick/thin
decomposition (see [CFG, Thm.1.3 and 1.7] for a proof). We recall that the
ε-thin part of a Riemannian n-manifold (M, g) is the set of points F(ε) = {x ∈
M , inj(x, g) < ε}

Theorem (1.3). For each n, there is a constant μn, depending only on the
dimension n, such that for any 0 < ε ≤ μn and any complete Riemannian n-
manifold (M, g) with |Kg| ≤ 1, there exists a Riemannian metric gε on M such
that:

(1) The ε-thin part F(ε) of (M, gε) admits an F -structure compatible with the
metric gε, whose orbits are all compact tori of dimension ≥ 1 and with diameter
< ε.

(2) The Riemannian metric gε is ε-quasi-isometric to g and has bounded co-
variant derivatives of curvature, i.e. it verifies the following properties:

• e−εgε ≤ g ≤ eεgε.
• ‖∇g −∇gε‖ ≤ ε, where ∇ and ∇gε are the Levi-Civita connections of g

and gε respectively.
• ‖(∇gε)kRgε‖ ≤ C(n, k, ε), where the constant C depends only on ε, the

dimension n and the order of derivative k.

Using Cheeger-Gromov’s chopping theorem [CG3, Thm.0.1] one can prove the
following:
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Proposition (1.4). For each integer n ≥ 2, there are constants μn > 0,
Λn > 0, δn > 0 and cn > 0, depending only on n, such that for any closed
Riemannian n-manifold (M, g) with |Kg| ≤ 1, there is a metric gn which is μn-
quasi-isometric to g, with |Kgn | ≤ Λn and a decomposition M = N ∪G where:

• G is a compact n-submanifold which admits an F -structure compatible with
gn and ∂N = ∂G is saturated.

• The injectivity radius for gn at every point x ∈ N verifies inj(x, gn) ≥ δn.
• The second fundamental form of ∂N for the metric induced by gn is bounded:

‖IIgn∂N‖ ≤ cn.
• The volume vol(∂N, gn) ≤ cn · vol(M, gn).

Proof. We apply theorem (1.3) with the constant ε = μn. So there is a metric
gn which is μn-quasi-isometric to g and such that M = B(μn) ∪ F(μn), where
B(μn) = {x ∈ M , inj(x, g) ≥ μn} and the μn-thin part F(μn) admits an F -
structure compatible with gn. Moreover, since the covariant derivatives of the
curvature of gn have bounded norm by theorem (1.3), it follows that there is a
constant Λn > 0 such that |Kgn | ≤ Λn. Therefore by the uniform decay of injec-
tivity radius [GLP, Prop.8.22], there is a universal function φn(−,−), depending
only on n, such that: ∀x, x′ ∈ M , inj(x′, gn) ≥ φn(inj(x, gn), dn(x, x

′)).
If B(μn) = ∅, we take N = ∅ and G = M .
We assume for the rest of the proof that B(μn) �= ∅. We denote by dn the

distance on M associated with the metric gn. Let X ⊂ F(μn) be the set of
points: X = {x ∈ F(μn) , dn(x, ∂(B(μn)) ≥ 1 + 2μn}.

If X = ∅, then every point of M is at distance less than 2(1 + μn) from
a point of B(μn). It follows from the uniform decay of injectivity radius that
inj(x, gn) ≥ φn(μn, 2(1 + μn)) = δn for every point x ∈ M . So we take N = M
and G = ∅.

If X �= ∅, let F(X) be the union of all the orbits of points in X for the
F -structure on F(μn), compatible with gn. It is a compact saturated subset
of F(μn). Since the diameter of the orbits of the F -structure is at most μn,
it follows that dn(y, ∂(B(μn)) > 1 for all point y ∈ F(X). In particular the
closed tubular neighborhood of radius 1 around F(X), T1(F(X)), is contained
in F(μn). Since the local torus groups act by isometries, the equivariant form of
Cheeger-Gromov’s chopping theorem [CG3, Thm.0.1] (see also [Ro2, Thm.2.1]),
shows that there is a compact n-submanifold U ⊂ M with smooth boundary ∂U
such that for some constant cn > 0 depending only on n:

• F(X) ⊂ U ⊂ T1(F(X)) ⊂ F(μn) and U is saturated for the F -structure;
• ‖IIgn∂U‖ ≤ cn;
• vol(∂U, gn) ≤ cn · vol(T1(F(X)), gn) ≤ cn · vol(M, gn).

We set G = U and N = M\int(U). Since X ⊂ U , for every point x ∈ N
we have dn(x, ∂(B(μn)) ≤ 2(1 + μn). By the uniform decay of injectivity radius
[GLP, Prop.8.22], we obtain as above that inj(x, gn) ≥ δn for every point x ∈
N .

Proof of Proposition (1.1). By proposition (1.4), for some constants μn > 0,
Λn > 0, δn > 0 and cn > 0, depending only on n there is a metric gn on M , which
is μn-quasi-isometric to g, with |Kgn | ≤ Λn and a decomposition M = N ∪ G
such that:
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• G is a compact n-submanifold which admits an F -structure compatible with
gn and ∂N = ∂G is saturated.

• The injectivity radius for gn at every point x ∈ N verifies inj(x, gn) ≥ δn.
• The second fundamental form of ∂N for the metric induced by gn is bounded:

‖IIgn∂N‖ ≤ cn.
• The volume vol(∂N, gn) ≤ cn · vol(M, gn).

In particular, the volume of (M, gn) verifies: vol(M, gn) ≤ V (n, v) for a con-
stant V (n, v) depending only on μn and v, and thus only on n and v. Since
|Kgn | ≤ Λn and inj(x, gn) ≥ δn for every point x ∈ N , the diameter of N
verifies: diam(N, gn) ≤ D(n, v), where the constant D(n, v) depends only on
v(n, v), δn and Λn, and hence only on n and v.

To show that N belongs , up to diffeomorphism, to a finite set N(n, v) of
smooth, compact, orientable n-manifolds, we use S. Kodani’s extension [Ko] of
Gromov’s convergence theorem to some classes of Riemannian manifolds with
boundary.

Let i∂ be the infimum of inward normal injectivity radii of the boundary
points of N . Then i∂ is the infimum of the focal radius of ∂N and of half the
length of a shortest geodesic which orthogonally intersects ∂N at the end points.
(cf. [Ko, Lemma 6.3]). Let iN be the minimum of i∂ and the infimum of the
injectivity radii of points at distance greater than i∂ from ∂N . If iN < i∂ , then
iN is the infimum of the conjugate radii and of half the lengths of geodesic loops
with base points at distance at least i∂ from ∂N . In order to apply Kodani’s
results we need to have a lower bound on iN , therefore we need to control the
inward normal injectivity radius to ∂N . To do so the idea is to add a collar to
∂N . The following construction has been pointed out by J. Porti.

Since ∂N is a hypersurface in M , the uniform bounds |Kgn | ≤ Λn and
‖IIgn∂N‖ ≤ cn imply that the focal radius of ∂N in M is bounded below by a con-

stant rn = 1√
Λn

arctan(
√
Λn

cn
). Therefore the exponential map exp : ν−rn

2
(∂N) →

M is a smooth immersion, where ν−rn
2
(∂N) is the subspace of the normal bundle

of ∂N which consists of normal vectors of length smaller or equal to rn
2 and

pointing ouside N . We use the exponential map to pull back the Riemannian
metric gn of M onto the collar ν−rn

2
(∂N) of ∂N . We glue this collar to N along

∂N to get a Riemannian manifold N ′ with the same topological type as N and
endowed with the metric g′n which coincides with gn on N and with the pull
back metric on the collar ν−rn

2
(∂N).

By [KO, Lemmas 3.1 and 3.2], see also [BZ, Chap. 6], the norm of the jacobian
of the exponential map is uniformly bounded on ν−rn

2
(∂N) above by a constant

bn and below by a constant an > 0, which depend only on Λn and cn. It follows
that the Riemannian metric (N ′, g′n) has the following properties:

• |Kg′
n
| ≤ Λ′

n where Λ′
n depends only on Λn, cn, an, bn, hence only on n.

• ‖IIg′
n

∂N ′‖ ≤ c′n, where the constant c′n depends only on Λn, cn, an, bn by [KO,
Lemma 3.1].

• vol(N ′, gn) ≤ (1 + (an)
−n)vol(M, gn) ≤ (1 + (an)

−n)V (n, v) = V ′(n, v).
• iN ′ ≥ δ′n, where δ′n depends only on n, Λ′

n, c
′
n, bn and rn, thus only on n .

This follows from the uniform decay of injectivity radius in M , the uniform upper
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bound on the jacobian of the exponential map and the uniform lower bounds on
the conjugate radius of N ′ and focal radius of ∂N ′.

• diam(N ′, g′n) ≤ D′(n, v), since the volume of N ′ is bounded above by a
constant V ′(n, v) and the injectivity radius of N ′ is bounded below by a constant
δ′n.

Therefore (N ′, g′n) belongs to the class of n-dimensional compact Riemann-
ian manifolds with bounded sectional curvature |Kg′

n
| ≤ Λ′

n and a lower bound

on the injectivity radius iN ′ ≥ δ′n. Moreover, if ∂N ′ �= ∅, ‖IIg′
n

∂N ′‖ ≤ c′n. It
follows from [GLP, Prop.7.5] and [Ko, Thm.A] in the case with boundary, that
the Gromov-Hausdorff and the Lipschitz topology coincide for this class of man-
ifolds. Furthermore vol(N ′, gn) ≤ V ′(n, v) and diam(N ′, gn) ≤ D′(n, v), so
the Riemannian manifold (N ′, g′n) belongs to a class of riemannian manifolds
which is precompact for the Gromov-Hausdorff topology by [GLP, Prop.5.2],
and thus for the bilipschitz topology. It follows from the definition of the bilips-
chitz topology that there are, up to diffeomorphism, only finitely many manifolds
in a precompact family with respect to this topology. Therefore there are, up to
diffeomorphism, only finitely many manifolds N ′ and hence only finitely many
manifolds N .

2. Graph-fillings

Definition. A graph-filling of a compact orientable 3-manifold N is the oper-
ation of gluing a compact orientable (maybe not connected) graph 3-manifold G
to N by identifying some toral components of ∂N with some toral components
of ∂G.

A graph-filling is a generalization of a Dehn filling where each connected
component of G is a solid torus.

Corollary (1.2) implies that every M ∈ M(v) either is a graph manifold,
or belongs to N(v), or is obtained from a manifold in N(v) by a graph filling.
Hence Theorem (0.1) is a straightforward consequence of Corollary (1.2) and the
following result:

Proposition (2.1). Let M be a compact orientable 3-manifold with non
empty boundary a collection of tori. There is only a finite set NG(M) of com-
pact, orientable, non-geometrizable 3-manifolds that may occur as prime factors
of the connected sum decompositions of all the compact, orientable 3-manifolds
obtained by graph fillings of M . Moreover the number of such prime factors
(counted with multiplicity) is also bounded above by a constant depending only
on M .

The purpose of this section is to prove Proposition (2.1). Before starting the
proof we give some definitions.

Definition. Let M be a compact orientable 3-manifold and let T ⊂ ∂M be a
boundary torus. A slope α ∈ H1(T,Z) is a homology class corresponding to an
essential simple closed curve on T . We denote by M(α) the compact orientable
3-manifold obtained by Dehn filling T with slope α i.e. by gluing a solid torus
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S1×D2 along T in such way that the boundary of a meridian disk {∗}×∂D2 has
slope α on T . By convention ∞ will denote the empty slope, so M(∞) means
that no Dehn filling occurred along T .

Definition. Let V be a soli torus, a cable space is the complement of an open
tubular neighborhood of a (r, s)-cable of the core of V , where r, s are coprime
integers with s ≥ 2. It has a Seifert fibration over an annulus with one single
cone point.

Definition. A compact orientable 3-manifold H is hyperbolicabled if there is
a finite (maybe empty) set of disjoint compact cable subspaces C1, . . . , Ck in
H such that Ci ∩ ∂H is a torus component of ∂Ci, for i = 1, . . . , k, and that
H0 = H\∪k

i=1Ci is not empty and admits a complete hyperbolic metric of finite
volume on its interior. When the family of cable subspaces {Ci}i=1,...,k is empty,
the manifold H is said to be hyperbolic. Observe that a hyperbolicabled manifold
is geometrizable.

The following lemma is a straightforward extension of Thurston’s hyperbolic
Dehn filling Theorem [Th1, Chap 5] :

Lemma (2.2). Let H be a compact, orientable, hyperbolicabled 3-manifold ,
with q toral boundary components T1, . . . , Tq. Then on each torus component
Ti ⊂ ∂H there is a finite exceptional set of slopes Si such that for any collection
of slopes (α1, . . . , αq) ∈ (H1(T1,Z)∪{∞}\S1)× . . . (H1(Tq,Z)∪{∞}\Sq), the 3-
manifold H(α1, . . . , αq) obtained by Dehn filling of H is irreducible, ∂−irreducible
and geometrizable.

Proof. Let H0 = H\ ∪k
i=1 Ci be the hyperbolic part of H , with k ≤ q. By

Thurston’s hyperbolic Dehn filling theorem [Th1, Chap. 5], on each torus com-
ponent T ′

i ⊂ ∂H0, i = 1, . . . , q, there is a finite exceptional set of slopes S′i
such that for any collection of slopes (β1, . . . , βq) ∈ (H1(T

′
1,Z) ∪ {∞}\S′1) ×

. . . (H1(T
′
q,Z) ∪ {∞}\S′q), the 3-manifold H0(β1, . . . , βq) obtained by Dehn fill-

ing of H0 admits a complete hyperbolic structure of finite volume on its interior.
Let Ti ⊂ ∂H be a boudary component. If Ti = T ′

i ⊂ ∂H0, then the exceptional
set of slopes Si = S′i. Otherwise Ti ⊂ ∂Ci, where Ci is a cable subspace of H
and T ′

i = ∂Ci\Ti ⊂ H0.
If intersection number of the slope α ⊂ Ti with the fibre f ⊂ Ti of the Seifert

fibration of Ci is |Δ(α, f)| ≥ 2, then the Dehn filled 3-manifold Ci(α) is a Seifert
manifold over a disk, with two exceptional fibres and incompressible boundary.
Hence gluing Ci(α) to a boundary component of an hyperbolic 3-manifold still
yields an irreducible, ∂−irreducible and geometrizable 3-manifold.

If |Δ(α, f)| = 1, then Ci(α) is a solid torus. A homological calculation shows
that the intersection numbers of two slopes β and β′ on T ′

i corresponding to
the boundaries of meridian disks of Ci(α) and Ci(α

′) verifies: |Δ(β, β′)| =
s2i |Δ(α, α′)|, where si ≥ 2 is the order of the exceptional fibre of Ci (cf. [Go,
Lemma 3.3]). Then the existence of a finite exceptional set of slopes S′i on
T ′
i ⊂ ∂H0 implies the existence of a finite exceptional set of slopes Si on Ti.

Let M be a compact irreducible and ∂-irreducible, orientable 3-manifold with
non-empty boundary a finite collection of tori. Using the JSJ-decomposition it is
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easy to show that M contains a finite (possibly empty) minimal collection T of
disjoint essential tori such that the closure of each component of M\T is either
a graph or a hyperbolicabled 3-manifold each of whose cable subspaces contains
a boundary component of M . It is a subcollection of the JSJ-family of tori of
M . One calls T the reduced JSJ-family of tori.

Let T ⊂ ∂M be a torus component and let WT be the closure of the connected
component of M\T containing T in its boundary.

Definition. A bad slope α ⊂ T is a slope such that either:
• WT is a graph manifold and WT (α) is either reducible, or ∂-compressible,

or
• WT is hyperbolicabled and α belongs to the exceptional set of slopes S ⊂ T

given by the lemma (2.2).

The following is a generalization of the previous lemma (2.2).

Lemma (2.3). Let M be a compact, connected, orientable, irreducible and ∂
irreducible 3-manifold with non-empty boundary a finite collection of tori. Sup-
pose also that M is not a cable space. Then on each torus component T ⊂ ∂M
there are only finitely many bad slopes.

Proof. Let T ⊂ M be the reduced JSJ-family of tori and let WT be the closure
of the connected component of M\T containing T .

We claim that WT is not a cable-space. To see this, suppose that WT is a
cable space. Then ∂WT = T ∪T ′. If T ′ ⊂ ∂M then since M is connected we have
M = WT , which contradicts our hypothesis. Otherwise T ′ is also a boundary
component of some other component, C, of the reduced JSJ decomposition. By
definition of reduced JSJ decomposition we see that C is not hyperbolic. Thus C
is a graph manifold. But then C∪WT is also a graph manifold which contradicts
the minimallity of the collection T of tori in the reduced JSJ decomposition. This
proves the claim. Thus if WT is a graph manifold it is not a cable space hence
by [CGLS,§2] there are only finitely many bad slopes on T .

Otherwise, when WT is hyperbolicabled the set of bad slopes on T is finite by
Lemma (2.2).

Proof of Proposition (2.1). Every graph filling of a graph manifold is a graph
manifold and hence has a geometric decomposition. Thus if M is a graph mani-
fold the set NG(M) is empty. Hence we may assume that M is not a graph man-
ifold. By considering the connected sum decomposition of M in prime factors,
one reduces the proof of Theorem (2.1) to the case where M is irreducible and
not a graph manifold. In particular M is not a solid torus and is ∂-irreducible.

Since any connected sum factor of a graph manifold is a graph manifold, we
have only to consider graph fillings by irreducible graph manifolds. Moreover M
is geometrizable because it is irreducible and ∂M �= ∅, hence graph fillings by
irreducible and ∂-irreducible, orientable graph manifolds always yield geometriz-
able 3-manifolds. Therefore we have only to deal with Dehn fillings by solid tori,
because an orientable, irreducible 3-manifold with a compressible torus in its
boundary is a solid torus.

Now we argue by induction on the number of boundary components of M .
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If there is only one boundary component since M is irreducible and ∂-irre-
ducible, Lemma (2.3) shows that except for finitely many bad slopes α ⊂ ∂M
the Dehn filled 3-manifold M(α) is irreducible and geometrizable. This proves
Theorem (2.1) in this case.

Let T1, . . . , Tq be the boundary components of ∂M . By Lemma (2.3), except
for a finite set of bad slopes Si ⊂ Ti on each boundary torus, any collection of
slopes (α1, . . . , αq) ∈ (H1(T1,Z)∪{∞}\S1)× . . . (H1(Tq,Z)∪{∞}\Sq), yields an
irreducible and ∂-irreducible 3-manifold M(α1, . . . , αq) which is geometrizable.

For any bad slope βi ∈ Si ⊂ Ti, the Dehn filled manifoldM(βi)=M(∞, . . . , αi,
. . . ,∞) is compact orientable with strictly less boundary tori than M . From the
discussion above, clearly NG(M) ⊂ ∪NG(M(βi)), where the union is taken over
the finite set of all bad slopes in ∪q

i=1Si. Then NG(M) is finite since by the in-
duction hypothesis the sets NG(M(βi)) are finite. In the same way the number
of non-geometrizable prime factors for any graph filling of M is bounded above
by the maximum of non-geometrizable prime factors for the graph fillings of the
manifolds M(βi) where βi runs over all bad slopes in ∪q

i=1Si.

We can now prove the main theorem (0.1). By (1.2) there is a finite set N(v)
of compact orientable 3-manifolds such that everyM ∈ M(v) can be decomposed
as M = N ∪ G with N ∈ N(v) and G a graph manifold. Then by (2.1) the set
NG(N) is finite for each N ∈ N(v). The union of these finite sets as N varies over
the finite set N(v) is NG(v) and is therefore finite. Furthermore the number of
non-geometrizable prime summands is bounded by the maximum of the number
of such summands that appear for any graph filling of any N ∈ N(v). Thus this
bound, p(v), depends only on the volume bound v.
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CONWAY POLYNOMIALS OF THE CLOSURES OF
ORIENTED 3-STRING TANGLES

HUGO CABRERA-IBARRA

Abstract. Given a certain type of oriented 3-string tangle, we consider
five different ways for closing it to obtain knots or links, and give formulas
for calculating the Conway polynomials of the closures of the composition
of two such 3-tangles. We also give a certain relation among these polyno-
mials.

1. Introduction

Tangles were introduced by Conway [2] as basic building blocks for the con-
struction of knots. In this article we analyze the relation between the Conway
polynomials associated to the closure of a skein element s of a 3-room (which
is a connected domain with three ingoing and three outgoing strands, a skein
element in a 3-room can be viewed as a 3-tangle with orientation on its strands)
and the ones associated to the composition s1 · s2 of two of such skein elements.

We assign to s the 2 × 2 matrix M∇(s) whose entries are the Conway poly-
nomials of certain closures of s; in each of those closures no other crossings are
added. It satisfies M∇(s1 · s2) =M∇(s1)M∇(s2).

In [6], Giller made analogous computations in the case of 2-rooms and for-
mulas to compute the Conway polynomial of the numerator and denominator of
the composition of two 2-string oriented tangles were obtained; Giller pointed
out that similar computations could be made in the case 3-rooms.

In [1], another matrix M associated to 3-string tangles without orientation
was obtained; certain relations between these two matrices suggest that an analy-
sis ofM∇(s) will give insight into the comprehension of 3-tangles. Some attempts
to classify the set of 3-string tangles have been made in [1], [3].

The study of 3-string tangles will be useful to analyze certain enzymes called
recombinases, as it was in the case of 2-string tangles [4], [5], [8]. In DNA
site-specific recombination, a recombination enzyme attaches to a pair of DNA
sites, breaks both sites, and recombines the sites to different ends. Electron
micrographs of recombinases bound to DNA show the enzyme as a blob with 2
or 3 loops of DNA sticking out of this blob. In the case of the Gin enzyme there
are three loops of DNA, thus the mathematics of 3-tangles can be useful in the
study of this enzyme.

2000 Mathematics Subject Classification: Primary 57M25; Secondary 57M27.

Keywords and phrases: knots, Tangles, Conway Polynomial.
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2. Preliminaries

Remember that the Conway polynomial of an oriented link is computed by
the following recursive formulas:

i) ∇Ll
(z) = ∇Lr(z) + z∇Ls(z)

ii) ∇©(z) = 1
where (Ll, Lr, Ls) is a skein triple of oriented knots or links that are the same,
except in a crossing neighborhood where they look as in Fig. (1).

Figure 1. Skein triple
An n-room is a connected domain (usually a rectangle) in R

2, with n ingoing
and n outgoing strings; the room may contain oriented simple closed curves. We
will only deal with 3-rooms. In Fig. (2) a) there is an example of a room.

The skein of a room R, S(R), is the set of all collections of strands in the
room which connect ingoing to outgoing strands; Fig. (2) b) shows an example
of a skein element of the room in Fig. (2) a); this element can also be seen as a
3-string tangle with orientations on its strands. In this discussion we will take R
to be the room in Fig. (2) c). Given s1, s2 ∈ S(R), we say that s1 = s2 if there
exists an ambient isotopy which carries s1 into s2.

a) b) c)

Figure 2. a) An example of a room, b) a skein element, c) the room R.

Let S3 denote the full symmetric group on 3 letters, given a skein element s,
we assign a permutation π(s) ∈ S3 by numbering the strands of R as in Fig. (3).

Figure 3. The action of π.

Now pick an ordering {πi}i=1,···,6 of S3 and fix a choice of skein elements
{sπi}i=1,···,6, as in Fig. (4), such that π(sπi) = πi, and such that sπi contains no
free components. Define on S = S(R) a binary operation by juxtaposition as in
Fig. (5); note that π(s1 · s2) = π(s1)π(s2) ∈ S3.

Figure 4. The selected skein elements.
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Figure 5. The operation of juxtaposition.

We will call (sl, sr, ss) a skein triple, where sl is a skein element in which a
left-handed crossing appears, sr (respectively ss) is the same element with the
same crossing changed to a right-handed (respectively smoothed) crossing.

Let F be the quotient field of Z[z], V (S) the vector space generated by S over
F , and N(S) the vector space generated by {sl−sr−zss |(sl,sr,ss) a skein triple}
over F . Define the vector space L(S) = V (S)/N(S); moreover, L(S) is an algebra
under the extension of · to L(S) given by s1 · (s2+αs3) = s1 ·s2+αs1 ·s3, α ∈ F ,
which preserves the relations in N(S).

In [6], the following two results have been proved.

Theorem (2.1). The set {sπj | j = 1, . . . , 6} is a basis for L(S).

Corollary (2.2). Any skein element s ∈ L(S) can be expressed uniquely as
a linear combination of the sπj , and therefore dimF L(S) = 6.

S

Figure 6. The closure N of s.

For s ∈ S, define N(s) as the knot (or link) obtained by closing s as in
Fig. (6). Denote by sN the Conway polynomial of N(s). Given elements s and
x in S we define s∗(x) = ∇(N(x · s)) = (x · s)N , as before, s∗ may be extended
linearly to all of L(S) obtaining the dual s∗ : L(S) → Z[z] ⊂ F . Note that s∗
preserves skein moves: s∗(sr + zss) = s∗(sr) + zs∗(ss) = s∗(sl).

Let M be the 6× 6 matrix defined by Mij = sπi
∗(sπj ); then we have that

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 z 1 1
0 0 1 1 + z2 z z
0 1 0 1 + z2 z z
z 1 + z2 1 + z2 3z2 + z4 2z + z3 2z + z3

1 z z 2z + z3 1 + z2 z2

1 z z 2z + z3 z2 1 + z2

⎞
⎟⎟⎟⎟⎟⎟⎠
.

It can be seen that detM = −(z2 + 4) �= 0, and therefore {sπi
∗} is a basis for

L∗(S).
Let us define a bilinear form ϕ :L(S)×L(S)→F by ϕ(s1, s2)=(s1·s2)N . Since

{sπi
∗} is a basis for L∗(S) there exist akl ∈ F such that ϕ =

∑
aklsπk

∗ ⊗ sπl
∗.
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Then

ϕ(sπi , sπj) =
∑

aklsπk

∗(sπi)sπl

∗(sπj ) =
∑

aklMkiMlj

=
∑
l

(∑
k

aklMki

)
Mlj =

(
(ATM)TM

)
ij
= (MTAM)ij ,

where Akl = akl. Since ϕ(sπi , sπj ) = Mji we have that MT = MTAM , and
therefore ϕ = A =M−1.

Given σ1, σ2 ∈ L(S), define uj =
(
sπ1

∗(σj) sπ2
∗(σj) ··· sπ6

∗(σj)
)
, j = 1, 2; then

we have

(2.3) ϕ(σ1, σ2)= u1M
−1uT2 ,

where

M−1 =
−1

z2 + 4

⎛
⎜⎜⎜⎜⎜⎜⎝

−z4 − 3z2 + 2 z3 + 3z z3 + 3z z −z2 − 2 −z2 − 2
z3 + 3z 2 −z2 − 2 −2 z z
z3 + 3z −z2 − 2 2 −2 z z

z −2 −2 2 −z −z
−z2 − 2 z z −z −2 z2 + 2
−z2 − 2 z z −z z2 + 2 −2

⎞
⎟⎟⎟⎟⎟⎟⎠
.

3. Computations for another room

Similar formulas can be derived for any room. For example, let us make
similar computations for the room in Fig. (7), which we will denote by R′. Let
s1 and s2 be elements of the skein of this room; as before we define · as in
Fig. (8) and a bilinear form ψ(s1, s2) = ∇(N(s1 · s2)). Now, for s1 and s2 define,
respectively, skein elements σ1 and σ2 of our previous room R as it is shown in
Fig. (9). It is easy to see that ψ(s1, s2) = ϕ(σ1, σ2).

Fig. 7. The room R′.

1S 2S

Fig. 8. The operation s1 · s2.

σ1 σ2

Fig. 9. The associated skein elements in R.

We define A(s), B(s), C(s), D(s), and E(s) to be the knots (or links) obtained
by closing s ∈ S(R′) as in Fig. (10). We will denote by sA, sB, sC , sD, and sE the
Conway polynomials associated to A(s), B(s), C(s), D(s), and E(s) respectively.

A(s) B(s) C(s) D(s) E(s)

Figure 10. The closures A, B, C, D, and E of s.
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By drawing links one can see that

s∗π1(σ1) = ∇
( )

= s1
N ;1S

in a similar way, the following formulas are obtained:

uj = vjVj , j = 1, 2 ,

where uj is as in Eq (2.3), vj =
(
sj
A sj

B sj
C sj

D sj
E sj

N
)
, and

V1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 z
0 0 0 2z 1 −z2
0 0 0 0 0 1
0 1 0 0 0 z
0 0 0 1 0 −z
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, V2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 z
0 0 0 2z+z3 1+z2 0
0 0 0 0 0 1
0 1 0 0 0 z
0 0 0 1
z2 z 0
1 z z 0 0 z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, by the formula obtained in Eq (2.3), we have that

ψ(s1, s2)=ϕ(σ1, σ2)= u1M
−1uT2 .

Since uj = vjVj then

ψ(s1, s2) = u1M
−1uT2 = v1 V1M

−1V T
2 vT2 .

This lead us to the following proposition.

Proposition (3.1). For any s1, s2 ∈ S(R′),

(3.2) (s1 · s2)N =v1
(
V1M

−1V T
2

)
vT2 ,

where vj , Vj, for j = 1, 2, are defined as above.

In order to compute (s1 · s2)A, (s1 · s2)B, (s1 · s2)C , and (s1 · s2)D we proceed
as follows. Since (s1 · s2)D can be expressed as (t1 · t2)N , for t1 and t2 as in
Fig. (11), then t1 = s1, tA2 = sB2 , tB2 = 0, tC2 = sD2 , tD2 = 0, tE2 = sB2 , and
tN2 = sS2 . Using Proposition (3.1) we obtain:

(s1 · s2)D=(t1 · t2)N =v1
(
V1M

−1V T
2

) (
s2
B 0 s2

D 0 s2
B s2

D
)T

= s1
Ds2

B + s1
Cs2

D.

1S 2S

Figure 11. Expressing (s1 · s2)D as (t1 · t2)N .

Similarly, we have that

(s1 ·s2)A=s1
Bs2

A+s1
As2

C , (s1 ·s2)B=s1
As2

D+s1
Bs2

B, (s1 ·s2)C=s1
Cs2

C+s1
Ds2

A.

Note that the equations obtained for (s1 ·s2)A, (s1 ·s2)B, (s1 ·s2)C , and (s1 ·s2)D
can also be obtained by using a formula of Giller in Proposition 15 of [6].
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Given an element s ∈ S(R′) we will assign to it the following matrix, which
is an invariant for s because of the properties of the Conway polynomial.

M∇(s) =
(
sC sD

sA sB

)
.

Then we obtain the following.

Proposition (3.3). If s1, s2 ∈ S(R′), then M∇(s1 · s2) =M∇(s1)M∇(s2).

Proof. Since

M∇(s1)M∇(s2)=
(
sC1 sD1
sA1 sB1

)(
sC2 sD2
sA2 sB2

)
=

(
s1
Cs2

C+s1
Ds2

A s1
Ds2

B+s1
Cs2

D

s1
Bs2

A+s1
As2

C s1
As2

D+s1
Bs2

B

)
,

we obtain M∇(s1)M∇(s2)=M∇(s1 · s2).
Remark. In [1], a matrix that is associated to a 3-string tangle without

orientation has been given. Let us sketch how to obtain it.

The Kauffman bracket can be seen as a function from 3-string tangle diagrams
without orientation on its strands to Laurent polynomials; it is characterized in
[7], where it is shown that the bracket polynomial is an invariant of links under
regular isotopy. Let T be a tangle diagram; we define the bracket of T as follows:

(3.4) 〈T 〉 = α(T )〈α̂〉+ β(T )〈β̂〉+ δ(T )〈δ̂〉+ χ(T )〈χ̂〉+ ψ(T )〈ψ̂〉 ,
where 〈T 〉 is obtained by applying to the diagram T the formulas which define
the bracket polynomial repeatedly, until only the five tangles given in Eq. (3.4)
are left. Here α̂, β̂, δ̂, χ̂, and ψ̂ denote the tangles shown in Fig. (12), the
coefficients α(T ), β(T ), δ(T ), χ(T ), and ψ(T ) are polynomials in a and a−1 that
are invariant under regular isotopy, and the brackets 〈α̂〉, 〈β̂〉, 〈δ̂〉, 〈χ̂〉, and 〈ψ̂〉
are place holders for the result of bracket’s computation restricted to the tangle
diagram T .

Figure 12. Special tangles

We assign to T the matrix

(3.5) M(T )(a, a−1)=

(
α(T ) + χ(T ) β(T )

δ(T ) α(T ) + ψ(T )

)
;

since the bracket polynomial is an invariant under regular isotopy, M(D)(a, a−1)
possesses the same property.

Given A and B two 2×2 matrices, we define the equivalence relation: A ∼ B
if and only if A = (−a−3)kB for some k ∈ Z. With this relation, the equivalence
class [M(T )(a, a−1)], which we will write as M(T ), is an invariant of the tangle
T .

For this matrix we have

Theorem (3.6). Given two tangle diagrams T1 and T2 we have that

M(T1 · T2) =M(T1)M(T2) + d

(
χ1 β1
δ1 ψ1

)(
δ2 ψ2

χ2 β2

)
,
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where d =−(a2+ a−2) and M(Tj) =

(
αj + χj βj
δj αj + ψj

)
for j =1, 2.

Evaluate M(T ) at a =
√
i and denote this matrix by M1(T ); then we obtain

that

(3.7) M1(T1 · T2) =M1(T1)M1(T2) .

Note that if, as before, we close our 3-string tangle T in four different ways then

〈TA〉 = δ, 〈TB〉 = α+ ψ, 〈TC〉 = α+ χ, 〈TD〉 = β .

Where 〈TA〉 (respectively 〈TB〉, 〈TC〉, and 〈TD〉) is the bracket polynomial
associated to the knot or link TA (respectively TB, TC , and TD).

We will assign to T a new matrixMK , which involves the bracket polynomials
of some closures of T ,

MK(T ) =

(〈TC〉 〈TD〉
〈TA〉 〈TB〉

)
.

By Eq. (3.7), MK(T1 ·T2) =MK(T1)MK(T2); compare this with the formula for
M∇(s1 · s2).

Note that, although we have this relation, if we define α(T ) = 〈TB〉+〈TC〉−〈TN 〉
2 ,

from the proof of Theorem 2.1 in [1], it follows that α(T1 · T2) = α(T1)α(T2).
However, we do not have an analogous relation for the Conway polynomial, i.e.,
if we define ω(s) = sB+sC−sN

2 we do not have that ω(s1 · s2) = ω(s1)ω(s2).
A generalization of this work could be to find similar relations in the case of

4-rooms, which could give us an approach of the case n-rooms and, as we point
out in our remark, an alternative way to obtain the classification of rational
3-tangles.

The author wishes to thank the anonymous reviewers for their contribution
to readability and clarity. This paper was partially supported by CONACYT
under grant 39579-F.

Received July 01, 2003

Final version received February 02, 2004

Departamento de Matemáticas Aplicadas y

Sistemas Computacionales

IPICYT

Apdo. Postal 3-74

Tangamanga

San Luis Potosí, S.L.P.

México

cabrera@ipicyt.edu.mx

References

[1] H. Cabrera-Ibarra, On the classification of rational 3-tangles, J. Knot Theory Ram-
ifications 12 (2003), 921–946.

[2] J. Conway, An enumeration of knots and links and some of their related properties,
in Computational Problems in Abstract Algebra, Proc. Conf., Oxford (1967), 329–358.
New York: Pergamon Press, (1970).

[3] J. Emert, C. Ernst, N-string tangles, J. Knot Theory Ramifications 9 (2000), 987–
1004.



62 HUGO CABRERA-IBARRA

[4] C. Ernst, D. Sumners, A calculus for rational tangles: applications to DNA recombi-
nation, Math. Proc. Cambridge Philos. Soc. 108 (1990), 489–515.

[5] C. Ernst, D. Sumners, Solving tangle equations arising in a DNA recombination
model, Math. Proc. Cambridge Philos. Soc. 126 (1999), 23–36.

[6] C. A. Giller, A family of links and the Conway calculus, Trans. Amer. Math. Soc. 270
(1982), 75–109.

[7] J. R. Goldman, L. H. Kauffman, Rational tangles, Adv. in Appl. Math. 18 (1997),
300–332.

[8] D. W. Sumners, C. Ernst, S. Spengler, N. Cozzarelli, Analysis of the mechanisms
of DNA recombination using tangles, Q. Rev. Biophys. 28 (1995), 253–313.



Bol. Soc. Mat. Mexicana (3) Vol. 10, Special issue, 2004

ARTIN PRESENTATIONS OF COMPLEX SURFACES

J. S. CALCUT AND H. E. WINKELNKEMPER

Abstract. We construct Artin Presentations of infinitely many complex
surfaces. Namely, for all elliptic surfaces E (n), in particular for the Kum-
mer surface K3. Thus, not only does AP Theory contain an analogue of
Donaldson’s Theorem, but also a purely group-theoretic theory of Donald-
son and Seiberg-Witten invariants.

Not surprisingly, our explicit Artin presentations for the Kummer sur-
face are approachable with a computer using, say, MAGMA and provide a
plethora of interesting examples pertaining to knot theory in Z−homology
3−spheres.

1. Introduction

In the purely group-theoretic theory of Artin Presentations, a smooth, com-
pact, connected, simply-connected 4-manifold W 4 (r) with a connected bound-
ary ∂W 4 (r) = M3 (r) is already determined, and can be reconstituted, from
a certain presentation (an Artin Presentation) of the fundamental group of its
boundary [W1]. If the boundary is S3 then of course the Artin Presentation
presents the trivial group. Even in this case the Artin Presentation already en-
codes all of the smooth structure of the 4-manifold. Thus, it makes sense to ask
whether an arbitrary, smooth, closed, connected, simply-connected 4-manifold is
given by an Artin Presentation.

We extend important work of Harer, Kas and Kirby [HKK] and show that
all elliptic surfaces E (n) admit Artin Presentations. This gives the first bridge
between AP theory and algebraic geometry. These Artin Presentations are of
special interest due to the fact that complex algebraic surfaces possess nontrivial
Donaldson invariants. In particular, this augments the remarkable fact (Theorem
1 of [W1], [R] p.621) that Donaldson’s Theorem, despite being proved with
gauge theory/connections (i.e. the smooth continuum), persists and survives
the radical, discrete, purely group theoretic holography of AP Theory.

The following illustrates the AP theory program concerning the computation
of Seiberg-Witten and Donaldson invariants and shows that the group theoretic
AP encoding goes much deeper than e.g. the mere encoding of a group through
its presentation:

Recall González-Acuña’s formula, [CS] p.66, for the Rohlin invariant of a Z-
homology 3-sphere Σ3 (r) given by an Artin Presentation r ∈ Rn (for clarity we
consider here only the case where A (r) is the identity matrix, see section 2.1 for

2000 Mathematics Subject Classification: Primary 14J27, 57M05, 57M07, 57R57; Sec-
ondary 57R60, 57M27.

Keywords and phrases: Artin presentation, elliptic surface, Donaldson invariants.
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notation):

μ
(
Σ3 (r)

)
=

d2 − 1

8
mod 2,

where d = � (−1), � being the Alexander polynomial of the associated presen-
tation:

〈x1, . . . , xn | x1r1 = r1x2, x2r2 = r2x3, . . . , xn−1rn−1 = rn−1xn〉 ,
where the group obviously abelianizes to Z.

This remarkable formula is entirely from the discrete theory of finitely pre-
sented groups: there is no need to mention cobordisms, spin structures, skein
methods, Heegaard decompositions, representations into SU (2), Riemannian
metrics, infinite dimensional or moduli spaces, or indeed even the smooth con-
tinuum, nor do any metric dependence, wall crossing, or word problems arise
here.

We remark that González-Acuña’s formula already shows that an analogue of
Floer theory should also appear in AP theory since the Rohlin invariant is the
Euler characteristic (mod 2) in Floer theory. In fact, we suspect that ‘the 8 of
González-Acuña is the 8 of Floer’.

Concerning the importance of relating Donaldson and Floer theory, both
mathematically and physically, see [D] p.63 and [Wi1] p.352.

Consider the more general problem concerning the relative Donaldson invari-
ants [TB],[Wi1] of W 4 (r) which, when A (r) is unimodular, take values in the
Floer homology of ∂W 4 (r) = Σ3 (r).

The computational program of AP theory can be stated as: these invariants
and others should be computed solely in function of the Artin Presentation r in
the discrete theory of finitely presented groups, just as, with González-Acuña’s
formula, this was done for the Rohlin invariant of Σ3 (r).

This is entirely in the purely group-theoretic spirit of the Princeton School
of Artin, Fox, Lyndon, Papakyriakopoulos, Stallings, et al. and extends their
approach, as far as 3D/4D manifold theory is concerned, to its natural meta-
mathematical boundary.

Immediate natural, important general questions arise (both mathematical and
physical):

1. Since AP theory dispenses not only with metrics but even topology, what
becomes of Witten’s celebrated Feynmanian formulation of Donaldson’s invari-
ants as correlation functions/expectation values [D] p.53, [Wi2], [Wi3], [AJ],
[Di] pp.36,39? What is the topologically independent (i.e. purely AP theoreti-
cal) analogue of Witten’s metric independent Lagrangian for the Casson theory
[AJ] p.121? What does González-Acuña’s formula for the Rohlin invariant sug-
gest? Is the mysterious question about the relationship between the Donaldson
invariants of oppositely oriented X4 related to the purely group-theoretic one of
finding the inverse in Rn of an Artin Presentation?

2. In the absence of moduli spaces, etc., is Witten’s “mass-gap” discussion
regarding Donaldson theory, [Wi3] pp.289-291, still relevant in AP theory?

3. Is the Denjoy-like inequivalence between Seiberg-Witten theory and Don-
aldson theory detectable in AP theory? Recall that Seiberg-Witten theory requires
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spinors and the Dirac operator, i.e. an underlying C1 structure, whereas Don-
aldson’s theory is valid on the wider class of Lipschitz manifolds [D] p.69, [S],
[DS].

4. In general, the word problem obstructs the study of arbitrary smooth 4-
manifolds. Although 4-manifolds in AP Theory are simply connected, we can still
ask whether the group-theoretical physical questions of Geroch-Hartle [GH] (see
also [F]) are still relevant when transferred to the group theory of 3-manifolds.
Theorem I of [W1] seems to illustrate a purely group-theoretic Bohm-Aharonov
phenomenon.

5. AP Theory does not just dispense with the smooth continuum, but also dis-
penses with integer (co)homology/intersection theory since all of this information
is already given simply by the symmetric integer matrix A (r). Hence, should e.g.
the Kronheimer-Mrowka canonical basic class of W 4 (r), when ∂W 4 (r) = S3,
[D] p.52, [K], [St], be already determined with Number Theory, à la Elkies [E], [D]
p.67 and Borcherds [B], thus explaining the persistence of invariants constructed
with the aid of a complex structure when this structure does not exist? For the
same reason, difficult ‘minimal genus’ and ‘simple type’ problems, [D] p.68, [St]
p.156, should be studied in this, their ultimate natural context, where artificial
complications caused by the use of the smooth continuum are absent.

It does not seem surprising, due to the basic nature of the K3 complex sur-
face (e.g. it is the only 4D, closed, simply connected Calabi-Yau manifold and
its quadratic form is the first even non-Donaldson form), that our Artin Pre-
sentations lead to several interesting and instructive examples (section 3 ahead)
which complement and extend to the ‘softer’ non-Donaldson case those exam-
ples obtained from such matrices as E8, φ4n, and the Coxeter-Todd extremal
duodenary matrix 2D2

12 [W1].

2. The Artin Presentations

The purpose of this section is to construct Artin Presentations for all elliptic
surfaces E (n). This is carried out completely for E (2), which is diffeomorphic to
the Kummer surface K3 [GS], p.74, and follows mutatis mutandis for the others.
The organization runs as follows: 2.1 is a brief discussion of Artin Presentations
and framed pure braids, in 2.2 we obtain a surgery diagram for E (n) that is
a framed pure braid, 2.3 provides an explicit algorithm (fixing all conventions)
for obtaining an Artin Presentation from a framed pure braid, and 2.4 combines
everything obtaining the desired Artin Presentation for K3.

(2.1) Artin Presentations and Pure Braids. We begin by reviewing some
of the fundamentals of AP theory. For a rigorous introduction to AP theory,
proofs of the statements made below and a thorough bibliography we refer the
reader to [W1].

Let Fn = 〈x1, . . . , xn〉 be the free group on n-generators. An Artin Presen-
tation r is a balanced presentation r = 〈x1, . . . , xn | r1, . . . , rn〉 satisfying the
equation:

(AC) x1x2 · · ·xn =
(
r−1
1 x1r1

) (
r−1
2 x2r2

) · · · (r−1
n xnrn

)
,

in Fn, which we will refer to as the Artin Condition. The set of all Artin Presen-
tations on n−generators is denoted Rn and forms a group. By Ωn we mean the
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compact 2−disk with n−holes and boundary ∂Ωn equal to the disjoint union
of ∂0, ∂1, . . . , ∂n (see [W1] p.225). An Artin Presentation r ∈ Rn determines,
among other things, the following:

π (r) : the group presented by r,

M3 (r) : a closed orientable 3-manifold,

W 4 (r) : a smooth compact connected

simply-connected 4-manifold,

A (r) : an n× n symmetric integer matrix,

h (r) : a self diffeomorphism of Ωn unique

up to isotopy fixing ∂Ωn with

h|∂Ωn
equal to the identity.

The relationships between these objects are canonical. The manifold M3 (r)
bounds W 4 (r), has fundamental group isomorphic to π (r), and is the open
book defined by h (r) . The symmetric matrix A (r) is the exponent sum matrix
of r and also represents the intersection form of W 4 (r). The manifold M3 (r) is
a Z−homology 3−sphere if and only if detA (r) = ±1, and in this case we write
Σ3 (r) instead of M3 (r).

An Artin Presentation r ∈ Rn also determines an automorphism of Fn by the
mapping xi �→ r−1

i xiri. Namely, this is the automorphism h# : π1 (Ωn, p0) →
π1 (Ωn, p0) where p0 is a distinguished point in ∂0 ⊂ ∂Ωn and x1, . . . , xn represent
the canonical generators (see Figure 9 ahead and [W1] p.225 and p.244). This
view will prove useful when composing Artin Presentations.

As pointed out in [W1], Rn is canonically isomorphic to Pn ×Z
n, the framed

pure braid group, where Pn is the pure braid group on n−strands. To see this,
notice that r ∈ Rn determines h = h (r) and h can be realized concretely in
R

3 by taking Ωn × I (I denotes the closed unit interval), suitably braiding the
inner boundary tubes with one another, and twisting the inner boundary tubes
by some integer numbers of complete revolutions (see [W1] p.245). Twisting the
inner tubes can be accomplished by elementary Dehn twists about the ∂i and
these Dehn twists commute with all others. This braiding/twisting of the inner
boundary tubes is easily seen to be equivalent to specifying both a pure braid
(pure as h|∂Ωn

= id) and an integer (the ‘framing coefficient’) for each strand.

Let r ∈ Rn. The manifold W 4 (r) is defined in [W1] p.250 as follows. Embed
Ωn in S2 and extend h to all of S2 by the identity. Then, extend this map to a
self diffeomorphism of all of D3, calling the result H = H (r) (which is unique
up to isotopy). Letting W (H) be the mapping torus of H, W 4 (r) is defined to
be W (H) union (n+ 1) 2−handles attached canonically. Notice that W (H) is
diffeomorphic to D3×S1 (= 0−handle ∪ 1−handle) as all orientation preserving
self diffeomorphisms of D3 are smoothly isotopic to the identity. We wish to
examine this construction more closely. The self diffeomorphism h of Ωn can
be realized, as described in the previous paragraph, in R

3 as Ωn × I with the
inner boundary tubes braided and twisted; the map h of Ωn is then obtained by
bending the twisted Ωn × I around and sticking the ends Ωn × 0 and Ωn × 1
together in the canonical way, exactly as one does to close a braid. To construct
H , one can first extend h to D2 by taking the twisted Ωn × I and filling in the
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n inner boundary tubes with n copies of D2 × I. One must take some care here.
For each boundary tube ∂i × I, i = 1, . . . , n, let pi be a distinguished point (see
Figure 9 ahead and [W1] p.225). Let ∗ be a distinguished point in ∂D2. Then,
when filling the ith boundary tube ∂i×I withD2×I one must attach ∗×I to pi×I
and fill with the identity at the ends ∂i×0 and ∂i×1. Now, h has been extended
to D2 and is concretely realized as D2× I by sticking the ends together as when
closing a braid; call this intermittent mapping torusM (h) which is diffeomorphic
to D2 × S1. Now, extending the map to D3 is trivial (again, h|∂Ωn

= id) and
one immediately sees that the 2−handle attached corresponding to ∂0 cancels the
1−handle from the open book construction. Moreover, this cancellation occurs
without disturbing the rest of the boundary of W (H). Thus, we are left with a
0−handle (i.e. D4) with boundary S3 containing a very nice copy of M (h). To
obtain W 4 (r) we now attach the remaining n 2−handles to D4 along the copies
of D2 × S1 in M (h) in the canonical way.

Summarizing the previous two paragraphs, an Artin Presentation r deter-
mines a framed pure braid β in R

3 (which is the same as in S3) and W 4 (r) is
obtained from D4 by attaching 2−handles according to β. In the language of
the Kirby calculus, all W 4 (r) s are ‘2−handlebodies’ ([GS], p.124). For more on
the manifolds W 4 (r) see section 4.

Remark (2.1.1). One subtle but important distinction that must be made here
between an r ∈ Rn and a framed pure braid in S3 = ∂D4 is that in an Artin
Presentation the framings are canonically included (they are not ‘put in by hand’
as in the Kirby calculus) thus, e.g. avoiding serious self-linking problems [Wi1],
p.363. In fact, a moment of reflection by the reader should reveal that without
this ‘canonicity’ one would not obtain the purely group theoretic analogue of
Donaldson’s theorem [W1], p.240 Theorem 1, and its important consequences.
See also [W1], p.241 and [W3].

Hence, one tack to obtain an Artin Presentation for a specific 4−manifold
is to obtain a surgery diagram for the manifold that is a framed pure braid in
S3 and then determine the corresponding Artin Presentation from this framed
pure braid. Of course, saying an Artin Presentation r gives a closed 4−manifold
X4 means that M3 (r) = S3 and W 4 (r) ∪ D4 = X4 (i.e. close up with a
4−handle). We pursue this tack in sections 2.2-2.4 below. We abuse notation
and say an Artin Presentation or a surgery diagram gives a closed 4−manifold
when it actually presents the closed manifold minus the interior of a 4−handle
(which can only be attached in one way, so there is no ambiguity).

We close this section by recalling useful knot theoretic structures in AP The-
ory. The simplicity of these structures allows us to avoid doing surgery ‘by hand’,
avoids self-linking problems, etc. by use of a computer algebra system such as
MAGMA and significantly adds to the power of AP Theory. We point out that,
as usual, everything is group theoretic.

Fix r ∈ Rn, r = 〈x1, . . . , xn | r1, . . . , rn〉 , with detA (r) = ±1, in particular
Σ3 (r) is a Z−homology 3−sphere. There are n+1 distinguished knots in Σ3 (r)
that are defined by the boundary circles ∂0, . . . , ∂n of Ωn and we denote these
knots by k0, . . . , kn. Let ci denote the complement of ki in Σ3 (r) and let Gi

denote the fundamental group of ci. Since A (r) is unimodular, A (r)−1 is also
a symmetric integer matrix and, in fact, is the linking matrix of the knots ki,
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i = 1, . . . , n. We let bij denote the ijth entry of A (r)−1 (abbreviating bii to just
bi) and let s =

∑
ij bij . In Σ3 (r), the self linking number of k0 is s and of ki,

i �= 0, is bi. We let mi, li denote the peripheral structure of the knot ki, which
consists of two special commuting elements in Gi, where mi is a meridian of ki
and li is homologically trivial in the complement of ki. Then, we have:

G0 = 〈x1, . . . , xn | r1 = r2 = · · · = rn〉 ,
m0 = any ri,

l0 = x1x2 · · ·xnm
−s
0 ,

and for i = 1, . . . , n we have:

Gi = 〈x1, . . . , xn | r1, r2, . . . , ri−1, ri+1, . . . , rn〉 ,
mi = ri,

li = xim
−bi
i .

Two remarks are in order. First of all, we get all knots and links in any
arbitrary closed, orientable 3−manifold this way (González-Acuña unpublished).
Second, the definition given here of Gi for i �= 0 appears to be slightly different
from that given in [W1], p.227, but in fact the two are equivalent (this was
pointed out to the second author by González-Acuña). This follows since the
Artin Condition (AC) implies that in Gi (definition given here) we have:

x1x2 · · ·xn = x1x2 · · ·xi−1

(
r−1
i xiri

)
xi+1 · · ·xn,

which immediately implies that xi = r−1
i xiri in Gi. That is, (xi, ri) = 1 in Gi

(where (a, b) is MAGMA notation for the commutator a−1b−1ab), showing the
two definitions are equivalent. In fact, for i �= 0, mi and li commuting in Gi is
equivalent to xi and ri commuting in Gi.

(2.2) Pure Braid for E (n). Our starting point is the framed link diagram in
[HKK], p.66 (see also [GS], p.305) that presents a 2−handlebody with boundary
S3 and gives E (n) upon closing up with a 4−handle. (As mentioned earlier, we
abuse notation and say this diagram presents E (n) where no confusion should
arise.) By straightforward isotopy of the outer strand (the trefoil) we obtain
Figure 1. The two large bands both represent 6n− 2 strands, each strand with
framing −2. A box containing ‘−1’ represents a twist of all strands (as when
twisting ribbon) in the direction corresponding to a negative crossing in our
orientation convention in Figure 8. We refer to the trefoil in Figure 1 as T and
to the small circle linking it as S, which have framings 0 and −n respectively.

All circles formed by closing a pure braid are individually not knotted, so
the first step is to unknot the trefoil T . To accomplish this, one performs a
2−handle slide on T ; in practice this corresponds to performing a band sum of
T with a parallel curve to another knot K representing the framing on K (see
[GS], pp.141-143). Here we slide T over the innermost circle in the left large
band using the trivial band as in Figure 2. One checks that the curve in Figure
2 that T is being band summed with is a parallel curve to the innermost strand
and has linking number −2 with it (don’t forget the ‘−1’ box!). Let T ′ denote
the result of 2-handle sliding T . Figure 3 is obtained from Figure 2 by isotopy, in
particular grab the part of T ′ in Figure 2 that hangs below the two large bands
and swing it back and then up (other minor changes by isotopy here should
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Figure 1. Surgery diagram for E (n) . The large bands represent
6n− 2 strands and all framings equal −2, except the trefoil T with
framing 0 and the small circle S linking it with framing −n.

Figure 2. A 2−handle slide of T over the innermost curve in the
left large band using the indicated parallel curve and dashed band.

be obvious). Straightforward isotopy of Figure 3 produces Figure 4 where it is
apparent that T ′ is not knotted.

It does not seem possible to isotop Figure 4 to a pure braid, so we perform
another 2−handle slide. This time, slide T ′ over the outermost strand in the right
large band (again using a trivial band to band sum with) as shown in Figure 5.
After a little isotopy one obtains Figure 6 (ignoring the hatched rectangle for the
moment). Let T ′′ denote the result in Figure 6 of sliding T ′ (S is unchanged).

Now, Figure 6 isotops nicely to a pure braid. To see this, take the hatched
rectangle in Figure 6, grab its upper left long boundary edge and pull it around,
making a rather large (ambient) expansion of the hatched rectangle into a large
backwards ‘C’ shape (the short dimension of the hatched rectangle extends and
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Figure 3. The result T ′ of 2-handle sliding T .

Figure 4. The result of isotoping T ′ (and S), which is not knotted.

bends around). Except for S, one now has a pure braid. A little more straight-
forward isotopy produces Figure 7, which is a pure braid for E (n). The hatched
rectangle does not appear in Figure 7, but one imagines it bending around on
the right-hand side to close the braid. Figure 7 contains a total of 12n − 2
strands: the two large bands each represent 6n− 2 strands (each strand therein
has framing −2), the (12n− 3)rd strand (second from the right) is T ′′, and the

(12n− 2)
nd

strand (right-most) is S with framing −n.
It remains to determine the framing on T ′′ (this is the only one that changed),

which is calculated using the formula in [GS] p.142. The first 2−handle slide
results in T ′ with framing −2 since the relevant (signed, according to handle
addition or subtraction) linking number is 0. The second 2−handle slide results
in T ′′ with framing still −2 since in this case the relevant signed linking number
(whose overall sign is independent of orientation choices) is equal to +1 implying
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Figure 5. A 2−handle slide of T ′ over the outermost curve in the
right large band using the indicated parallel curve and dashed band.

Figure 6. The result T ′′ of 2−handle sliding T . The hatched rec-
tangle will be used to isotop to a pure braid.

±2lk (·, ·) = +2. Thus, in the pure braid diagram for E (n) in Figure 7 all
framings equal −2 except for the right-most strand which has framing −n. In
particular, for the Kummer surface E (2) all framings equal −2.

Remark (2.2.1). In Figure 1, the two large bands together form the compacti-
fied Milnor fiber Mc (2, 3, 6n− 1) with boundary the Seifert fibered Z−homology
3−sphere Σ (2, 3, 6n− 1) and the trefoil union the small circle linking it form the
Gompf nucleus N (n) (see [GS], sec. 3.1, 6.3, 7.3 and 8.3). It is clear from the
above that all Milnor fibers Mc (2, 3, 6n− 1) admit Artin Presentations.

(2.3) An Algorithm. Given a framed pure braid in R
3, we wish to construct

the corresponding Artin presentation. To make this explicit, we must fix some
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Figure 7. Pure braid for E (n) . The large bands represent 6n− 2
strands and all framings equal −2, except for the rightmost strand
with framing −n.

conventions. We will use β to denote both a braid and a framed braid, where
no confusion should arise. As usual, braids will be drawn as generic diagrams
in the plane with the strands ordered 1, 2, . . . , n from left to right. We read our
braids upwards, especially when composing them. In particular, each strand is
oriented up. For a pure braid β, Ci will denote the oriented circle consisting
of the ith strand and the trivial segment that would close that strand upon
closing the braid (the orientation is inherited from that of the corresponding
braid strand). Crossings in any oriented generic link diagram in the plane are
assigned a sign as in Figure 8. If C1 and C2 are two oriented circles in a generic
link diagram in the plane, then their linking number lk (C1, C2) is defined to
be the number of positive undercrossings of C2 under C1 minus the number of
negative undercrossings of C2 under C1. The linking number is well defined and
symmetric (see [GS] sec. 4.5). For an n-strand framed pure braid β the linking
matrix L (β) of β is the n×n symmetric integer matrix L where Lij = lk (Ci, Cj)
for i �= j and equals the framing coefficient of Ci for i = j. Similarly, one can
define the linking matrix of any ordered oriented framed generic link diagram in
the plane.

Remark (2.3.1). If r ∈ Rn corresponds to β a framed pure braid then A (r) =
L (β). This follows from [W1], section 1 and [GS], p.125. We note that orienta-
tions/conventions fixed agree with both [W1] and [GS].
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(-) (+)

Figure 8. Crossing signs in an oriented link diagram.

Figure 9. Ω22 with basepoints p0, . . . , p22 on boundary components
∂0, . . . , ∂22. Also indicated is a generator x21 of π1 (Ω22, p0).

Any pure braid β ∈ Pn can be written as a product of Dehn twists about
simple closed curves in Ωn. Thus, we will need these three steps:

Step I. Given a pure braid β resulting from a single Dehn twist, determine
the corresponding Artin Presentation.

Step II. Compose two Artin Presentations.
Step III. Correct Framings.

Remark (2.3.2). Again, Step III is necessary since when going from a framed
pure braid (where framings are not canonically included) to an Artin Presen-
tation (where framings are canonically included) an ad hoc framing correction
must be made at some point.

We describe these in detail.
Step I. First, π1 (Ωn, p0) has canonical generators. Figure 9 shows Ω22 with

basepoint p0 and the generator x21 (the other generators are similar; see also
[W1] p.225 and p.244). Also depicted in Figure 9 are basepoints on the boundary
components ∂1, . . . , ∂22 (as referred to in section 2.1).

We use two examples to illustrate this step. For the first example, take the
Dehn twist depicted in Figure 10 about the oriented simple closed curve D1

(for the moment ignore the small segment laid across D1). Usually one would
take a cylinder neighborhood S1 × [−1, 1] of D1 in Ω22 and replace it with
a twisted version (often a cut along D1 takes place) according to some fixed
orientation convention (see, for example, [GS] p.295). Following the motivation
setforth in section 2.1, we prefer to realize the Dehn twist canonically as an
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Figure 10. Ω22 with an oriented simple closed curve D1 and a small
segment laid across it.

isotopy of Ω22 in R
3 as follows. Start with a copy of Ω22 (as in Figure 10)

laying flat on the (possibly imaginary) table in front of you and a small cylinder
neighborhood N = S1 × [−1, 1] of D1 in Ω22. The inner boundary curve of
N bounds a compact disk with 10 holes denoted Ω′

10. Slowly raise Ω22 up off
the table and while doing so grab Ω′

10 and slowly rotate it clockwise about a
central point (with the cylinder neighborhood N stretching like rubber) one
complete revolution. If one pictures the paths traced out by the center points
of the 22 punctures in Ω22 during this Dehn twist, one immediately sees the
pure braid obtained from Figure 7 with n = 2 by just taking the ‘−1’ box on
strands 11− 20 and taking the remaining strands to be trivial. This Dehn twist,
realized as an isotopy, gives a self diffeomorphism h of Ω22 that is fixed on ∂Ω22,
namely the time 1 map of the isotopy. As discussed above in section 2.1 and
[W1] pp.243-244, the automorphism h# of π1 (Ω22, p0) ∼= F22 induced by h is

of the form xi �→ r−1
i xiri for some words ri and r = 〈x1, . . . , x22 | r1, . . . , r22〉

is our desired Artin presentation. The word ri is nontrivial (�= 1) only for
i = 11, . . . , 20 and these are all equal to one another. To compute r11, say,
lay a straight segment across D1 in front of ∂11 as in Figure 10 and follow the
segment through the isotopy above. After the isotopy, add two oriented edges
to the isotoped segment: one from p0 to the upper endpoint and one from the
lower endpoint to p0 as in Figure 11; the word in π1 (Ω22, p0) represented by this
oriented loop is r11 = x−1

20 x
−1
19 · · ·x−1

11 .
We note two important points concerning the above example. First, it con-

veyed the orientation convention of Dehn twists used here, namely grab the inner
compact disk with holes and twist it in the direction of the arrow on the curve one
is twisting about. Second, the small segment laid across D1 formed the ‘meat’
of the relations and only crossed D1 once. When computing ri in general, one
must choose this segment to traverse all occurrences of the curve one is twisting
about between a nice path (usually a straight line segment or a small isotopy of
one) from p0 to pi. This is shown in the following example.

For this example, take the Dehn twist depicted in Figure 12. The automor-
phism of F22 is clearly the identity on x1, . . . , x10, x22. Figure 13 shows the loop
representing both words r11 = r21 = x−1

21 x
−1
11 (as the reader can verify using the
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Figure 11. Ω22 with a loop representing r11, . . . , r20.

Figure 12. Ω22 with an oriented simple closed curve D24 and three
small segments laid across it.

two small segments in Figure 12 that cross D24 once). The more interesting
relations are r12, . . . , r20, which are all equal to one another. To compute these
one must use a segment that crosses D24 twice, such as the middle segment in
Figure 12. The resulting loop is shown in Figure 14 and represents the word
x21x11x

−1
21 x

−1
11 . This completes Step I.

Step II. Our data is two Artin presentations r, r′ arising from Dehn twists
about D,D′ with corresponding h, h′ and h#, h

′
#. Then, the composite Artin

presentation r′′ = r′ ◦ r is obtained using the formula (see [W1], p.245):

r′′i = r′i · h′
# (ri) .

Step II is impractical by hand when the presentations are not small and use
of a computer algebra system, such as MAGMA, is invaluable.

Step III. Our data now is a framed pure braid β and an Artin presentation r′

resulting from repeated applications of Steps I and II. One also has the matrices
L (β) and A (r′) which differ only possibly on their diagonals. One corrects (see
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Figure 13. Ω22 with a loop representing r11 and r21.

Figure 14. Ω22 with a loop representing r12, . . . , r20.

Remark (2.3.2) and Section 2.1) using the simple rule:

let δi = L (β)ii −A (r′)ii , and

let ri = xδi
i · r′i.

The result is the Artin presentation r = 〈x1, . . . , xn | r1, . . . , rn〉 and A (r) =
L (β). We point out that when correcting framings one must multiply on the

left by the corresponding xδi
i , otherwise the resulting presentation is usually not

Artin. This completes Step III.

(2.4) Artin Presentation of K3. Begin with the framed pure braid in Fig-
ure 7 with n = 2. Call this braid β and recall that all framings equal −2. We
need a series of Dehn twists producing β (ignoring framings for the moment).
To take care of β (reading up from the bottom) up until the point where the
two large bands first cross each other, perform Dehn twists about D1, D2, D3,
and D4 (in that order!) as in Figure 10 and Figures 15-17. (It may seem that
the ‘−1’ on the left band has been left off, but the reader should check that
this is not the case.) Now we attack the brunt of β consisting of the ‘Mil-
nor fiber’ where the two large bands cross each other and then intertwine. For
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Figure 15. Ω22 with an oriented simple closed curve D2.

Figure 16. Ω22 with an oriented simple closed curve D3.

this part we will need Figures 18 and 19 repeated in an alternating fashion.
Figure 18 represents D5, D7, D9, . . . , D23 where D5+2j , j = 0, 1, 2, . . . , 9, corre-
sponds to Figure 18 with k = j + 1 and k′ = j + 11. Figure 19 represents
D6, D8, D10, . . . , D22 where D6+2j, j = 0, 1, 2, . . . , 8, corresponds to Figure 19
with k = j+1. Then, one performs Dehn twists about the following ordered and
oriented curves: D5, D6, . . . , D22, D23. The reader should check that this series
of Dehn twists performs as claimed. To finish up, one twists about D24 as in
Figure 12 and then about D25 as in Figure 20. This series of Dehn twists gives
β up to framings.

Now, using Step I from section 2.3, one writes down the Artin presentation
corresponding to each of the Dehn twists in this series. We organize this data
into a 25×22 array R of words in F22 where R [i, ·] corresponds to Di (i.e. R [i, j]
is the jth relation of the ith Artin presentation). Assume that R is initialized as
the 25× 22 array of identity elements in F22. The nontrivial elements in R are
as follows.

R [1, i]

i = 11, . . . , 20 x−1
20 x

−1
19 x

−1
18 x

−1
17 x

−1
16 x

−1
15 x

−1
14 x

−1
13 x

−1
12 x

−1
11
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Figure 17. Ω22 with an oriented simple closed curve D4.

Figure 18. Ω22 with an oriented simple closed curve D∗.

Figure 19. Ω22 with an oriented simple closed curve D∗.

R [2, i]

i = 1, . . . , 10

x11x12x13x14x15x16x17x18x19x20

x−1
21 x

−1
20 x

−1
19 x

−1
18 x

−1
17 x

−1
16 x

−1
15 x

−1
14 x

−1
13 x

−1
12 x

−1
11

x−1
10 x

−1
9 x−1

8 x−1
7 x−1

6 x−1
5 x−1

4 x−1
3 x−1

2 x−1
1

i = 21
x−1
21 x

−1
20 x

−1
19 x

−1
18 x

−1
17 x

−1
16 x

−1
15 x

−1
14 x

−1
13 x

−1
12 x

−1
11

x−1
10 x

−1
9 x−1

8 x−1
7 x−1

6 x−1
5 x−1

4 x−1
3 x−1

2 x−1
1

x11x12x13x14x15x16x17x18x19x20
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Figure 20. Ω22 with an oriented simple closed curve D25.

R [3, i]

i = 1, . . . , 9
x1x2x3x4x5x6x7x8x9

x11x12x13x14x15x16x17x18x19x20x21

x−1
20 x

−1
19 x

−1
18 x

−1
17 x

−1
16 x

−1
15 x

−1
14 x

−1
13 x

−1
12 x

−1
11

i = 10

x−1
9 x−1

8 x−1
7 x−1

6 x−1
5 x−1

4 x−1
3 x−1

2 x−1
1

x11x12x13x14x15x16x17x18x19x20

x−1
21 x

−1
20 x

−1
19 x

−1
18 x

−1
17 x

−1
16 x

−1
15 x

−1
14 x

−1
13 x

−1
12 x

−1
11

x1x2x3x4x5x6x7x8x9

x11x12x13x14x15x16x17x18x19x20x21

x−1
20 x

−1
19 x

−1
18 x

−1
17 x

−1
16 x

−1
15 x

−1
14 x

−1
13 x

−1
12 x

−1
11

i = 21
x−1
20 x

−1
19 x

−1
18 x

−1
17 x

−1
16 x

−1
15 x

−1
14 x

−1
13 x

−1
12 x

−1
11

x1x2x3x4x5x6x7x8x9

x11x12x13x14x15x16x17x18x19x20x21

R [4, i]

i = 1, . . . , 9 x−1
9 x−1

8 x−1
7 x−1

6 x−1
5 x−1

4 x−1
3 x−1

2 x−1
1

Now, the relations R [5− 23, i] lend themselves well to looping/shorthand
(which we utilize especially when using MAGMA). Let w = x−1

19 x
−1
18 · · ·x−1

11 and
let wj denote the first j letters of w read from the right for j = 0, . . . , 9. For

example, w0 = 1 (i.e. the identity in Fn) and w2 = x−1
12 x

−1
11 . Then, R [5, i] ,

R [7, i], , R [23, i] are defined by the following where j = 0, 1, . . . , 9 :

R [5 + 2j, i]
i = (j + 1) , . . . , 10 xj+1xj+2 · · ·x11+jwj

i = 11 + j wjxj+1xj+2 · · ·x11+j

Also, R [6, i] , R [8, i] , , R [22, i] are defined by the following where j = 0, 1, . . . ,
8 :

R [6 + 2j, i]

i = (j + 1) , . . . , 10 x−1
10 x

−1
9 · · ·x−1

j+1

And the last two Artin presentations:
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R [24, i]

i = 11, 21 x−1
21 x

−1
11

i = 12, . . . , 20 x21x11x
−1
21 x

−1
11

R [25, i]
i = 21, 22 x21x22

The list of Artin Presentations corresponding to the series of Dehn twists
given above is complete. Now, one simply composes these 25 presentations (with
MAGMA!) using a loop statement and the formula from Step II in section 2.3.
Call the result of this iterated composition r′. To correct the framings, one
computes the exponent sum matrix of r′ (again using MAGMA) and checks the
diagonal of this matrix which is (starting from the upper left):⎛

⎝−1, . . . ,−1︸ ︷︷ ︸
9 times

, 0,−1, 0, . . . , 0︸ ︷︷ ︸
10 times

, 1

⎞
⎠

To make these entries all equal −2, one corrects r′ using Step III calling the
result r. This is the desired Artin presentation for the Kummer surface K3.

After obtaining r with MAGMA, one immediately checks that the presenta-
tion is in fact Artin. To do so, simply prompt MAGMA to compute the right
hand side of the Artin condition (AC). The result should be (and for our r is)
the left hand side of (AC). This is an important test, but it is also a test that
MAGMA can always carry out as the word problem in Fn is solved and MAGMA
must only freely reduce.

By construction, M3 (r) is S3 and W 4 (r) is K3. Despite the length of the
presentation r (which is given below) MAGMA readily verifies that π (r) = 1.
To look at W 4 (r) one proceeds to A (r) which appears in Figure 21. This matrix
is even, unimodular, has 19 negative eigenvalues and 3 positive ones, hence is
Z−congruent to 2E8⊕ 3H as expected. One is now ready to reap the rewards of
this work. The Artin presentation r can be easily and orderly investigated with
MAGMA where nothing has to be done by hand and one doesn’t need to worry
about surgery diagrams, etc. Examples appear in the following section.

The inverse matrix of A (r), which appears in Figure 22, provides the periph-
eral structure of the knots ki, i = 0, . . . , 22, described at the beginning of this
section. Notice that the diagonal consists entirely of −2, 0, and 2, which as
a consequence immediately again gives Artin presentations for the appropriate

(1,±1) Dehn spheres. Further, notice that the total sum of A (r)
−1

, denoted s,
equals −6, another computational advantage.

The knots ki are nontrivial only for i = 0, 10, 11, 21, 22; k10 and k11 are 52s,
k22 is a trefoil, and k21, with Alexander polynomial Δ = t4 − t2+1, is a cable of
the trefoil. However, k0 has Alexander polynomial Δ = t8−2t7−5t5+13t4− . . .
and is off the usual knot tables; its 2, 3, 4, 5 torsion is given by (29) , (13, 13) ,
(15, 435) , (251, 251) .

It seems curious that here the only non-fibered knots are k10 and k11, precisely

where the pair of 3s appears off the diagonal in A (r)
−1

(Figure 22); see also the
end of section 2.1.

As R22 is a group, one may wish to compute r−1. To do so, one performs
the same series of Dehn twists as for r but in the reverse order and with reverse
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2 1 1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1 1 1
1 1 2 1 1 1 1 11 1 1 1 1 1
1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 1 1 1 2 1 1 1 1 1 1 1 1 1 1

 
         
         
         
         
 

1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 1        
         
 

1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 1         

         
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 11 1
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1


         
        11 1

1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1

1


         
         

11 1 1 1 1 1 1 1 1 2 1 1 1 1
1 1 1 1 1 1 1 1 1 1 2 1 1 1

1 1 1 1 1 1

         
         
         
         
         

1 1 1 1 2 1 1
1 1 1 1 1 1 1 1 1 1 2 1

1 1 1 1 1 1 1 1 1 1 2
  


1 1 2 1

1 2

Figure 21. A (r) for r representing the Kummer surface.

orientation. One must repeat Step I for all of these Dehn twists and the work
is equivalent to the work involved with getting r. After doing so, one compares
the lengths of the relations in r and r−1 which appear below. (We use #r to
denote the total length of all relations.) We note that shorter presentations are
not necessarily more useful computationally, especially with MAGMA, as one
quickly finds.

Relation r r−1

1 130 176
2 131 403
3 132 628
4 133 851
5 134 1072
6 135 1291
7 136 1508
8 137 1723
9 138 1936

10 644 2126
11 258 108

Relation r r−1

12 252 502
13 247 501
14 240 500
15 231 499
16 220 498
17 207 497
18 192 496
19 175 495
20 156 494
21 529 573
22 5 383
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2 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 1 1 1 1 1 1 1 1 
      

     
   

1 1
1 1 2 1 1 1 1 1 1 1 1 1 1 1

1 1 2 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 1 1 1 1 1 11 1 1 1
1 1 1 1 2 1 1 1 1 1 1 1 1 1

1 1 1 1 2 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 1


     

      
      

       
       



1 1 1 1 1 1
1 1 1 1 1 1 3 1 1 1 1 1 1 2 1
1 1 1 1 1 1 3 1 1 1 1 1 1 2 1

1 11 1 1 1 1 1 2 1 1 1 1 1
1 1 1 1 1 1 1 1 1 2 1 1 1 1

1 1 1 1 1 1 1 1 1 2 1 1 1

     
      

     
    
     

     

1
1 1 1 1 1 1 1 1 1 2 1 1 1
1 1 1 1 1 1 1 1 1 1 1 2 1 1

1 1 1 1 1 1 1 1 1 1 1 
      

      
  

2 1 1
1 1 1 1 1 1 1 1 1 1 1 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 1 1   
 
 

1 1 1 1 2
2 2 2 1
1 1 1

Figure 22. The inverse matrix A (r)
−1

providing the peripheral
structures of the knots k0, . . . , k22.

Total Relator Length
#r #r−1

4562 17260

In the following, we denote the just constructed r, r−1 by k3, k3−1. Let t1 be
the Torelli of [W1] p.228. If we multiply k3−1 “at 20 by t1” [W1] p.227, i.e. if
we take the Artin presentation r ∈ R22 where ri equals 1 for i < 20 and equals
t1 written in the variables x20, x21, x22 for i = 20, 21, 22 and multiply it by k3−1,
we obtain an Artin presentation, which we denote by k3−1t1.20, then π remains
trivial and all knot groups stay the same except G0 whose Alexander polynomial
changes from Δ = t8 − 2t7 − 5t5 + 13t4 − . . . to Δ = t10 − 8t9 + 14t8 − 2t7 −
13t6+15t5− . . . (both polynomials are irreducible and the new 2, 3, 4, 5 torsions
are given by (9) , (65, 65) , (3, 3, 9) , (899, 899)). Assuming the latter homotopy
3−sphere is actually S3, we have two a priori different smooth structures on the
same underlying topological 4−manifold. (Recall that the Torelli preserve A (r)
and Freedman’s theorem holds if the boundaries are the same).

Do these smooth structures differ due to, say, the arguments of Fintushel-
Stern [FS]?

To obtain another Artin presentation for the K3 surface, which we denote

by k3 and with inverse k3
−1

, we take the pure braid in Figure 7 with n = 2
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Figure 23. Modified pure braid for E (n).

and modify it by an isotopy (the same modification applies to E (n) in general).
Take the portion of C21 that crosses under the right large band and intertwines
with the left large band and simply slide it down to the bottom of the braid
and then, using the (not drawn) trivial segments that close the braid, slide it
around to the top of the braid. The result is shown in Figure 23. Of course, the
framings for this braid are the same as before. Following Steps I-III above we
obtain k3. The isotopy of the braid preserved the order of the strands and hence
the matrix A (r) for this new presentation is exactly the same as before (Figure

21). For these Artin presentations we have #k3 = 6994 and #k3
−1

= 4398. We

note that k3
−1

is the shortest of the four Artin presentations given here for the
Kummer surface.

3. Examples

Thanks to the computer friendly, simple presentations of knot groups and
their peripheral structures in AP theory, examples therein need not be labori-
ously constructed: they just need to be systematically discovered with MAGMA.
Due to the ‘conical’, universal structure of AP theory, at least in principle this
can at least be done in a systematic, orderly, complete way. Thus, from the
beginning AP theory, due to the fact, e.g. that framings need not be put in by
hand, automatically and easily yields many of the known interesting examples of
classical 3−manifold and knot theory: old and new. From the simplest definition
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of Poincaré’s homology 3−sphere to examples pertaining to the Cabling conjec-
ture [GAS]. Specifically, at the very beginning [W1] AP theory easily yields
cosmetic surgery examples, Luft-Sjerve spheres with fixed point free involutions,
failure of Property R in general for Z−homology 3−spheres, in particular giving
boundaries of Mazur manifolds, and nontrivial knots in homotopy 3−spheres
with trivial Alexander polynomial, a phenomenon first discovered by Seifert in
the early 1930s.

Using the just constructed Artin presentations of the K3 surface, we continue
illustrating this natural, canonical flow of instructive examples.

If G is a group, by ab (G,n) we denote the abelianizations of the subgroups of
index ≤ n (up to conjugation) and we use MAGMA notation, e.g., ab (G, 4) =
1 [0] , 2 [7, 0] , 4 [2, 2, 0] , 4 [0, 0] , means that G abelianizes to Z and has, up to
conjugation, one subgroup of index 2 which abelianizes to Z7 ×Z, no subgroups
of index 3, and two subgroups of index 4 abelianizing to Z2 ×Z2×Z and Z× Z,
respectively.

By, say, k3−1st24, we denote the Artin presentation in R24 obtained by not
changing ri of k3

−1 for i ≤ 22 and setting r23 = x23 and r24 = x24. It is clear
(see end of previous section) what, say, k3−1st24t3.22 ∈ R24 should be. By xm

i r
we denote the Artin presentation where ri is changed to xm

i ri. The Torellis
t1, t2, t3 ∈ R3 and T ′

4 ∈ R4 are as in [W1] pp.228,229,231. Furthermore, Δi

denotes the Alexander polynomial of ki.
I. Regarding the Cabling Conjecture [GAS] in general. Consider Σ3 (r) where

r = x−1
22 k3

−1st24t3.22 ∈ R24 (#r = 17301); π (r) has a balanced (non-Artin)
presentation with just three generators:

〈
a, b, c | c2 = bcb, (cbc)

−1
ab6 (cbc)

−1
a−1b−1cbc =

b−6ab6 = b−2 (cbc)−1 a−1cbcb−6a (ba)2 cbc
〉
,

and is therefore π−prime in the sense of [GAS], however, the (1,−1) Dehn sphere
of the knot k21 has fundamental group isomorphic to I (120) ∗ π1 (Σ (2, 3, 11)).

Question: is this Dehn sphere homeomorphic to Σ (2, 3, 5)#Σ (2, 3, 11)?
The knot k21 has the same Alexander polynomial as that of the granny knot

in S3, but their knot groups differ since they have different ab ( , 5)s.
The (1, 1) Dehn sphere of the knot k3, where Δ3 = t2 − t + 1, is simply

connected and so Σ3 (r) is a (1,±1) Dehn sphere of a knot k in a homotopy
3−sphere with Alexander polynomial Δ = t2 − t+ 1, but whose group G has a
different ab ( , 3) than that of the trefoil and is presented by:

G =
〈
a, b, c | bcb = cb2c, b

(
a,
(
b−1a

)
ˆ
(
b2 (bc)−1 c (cb)−1

))〉
.

Here, recall that in MAGMA notation (x, y) = x−1y−1xy and xˆy = y−1xy. The
homology sphere Σ3 (r) is the quotient space of a free regular action of I (120)
on an M3 with H1

(
M3,Z

)
= Z

12
3 and ab (π (r) , 15) = ab (I (120) , 15), however

their ab ( , 20)s differ. The Casson invariant, λ
(
Σ3 (r)

)
, of Σ3 (r) is ±1.

Question: is G a knot group of S3?
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II. Tinkering with our Artin presentations for K3 seems to give an abundance
of Z−homology 3−spheres with nontrivial knots where Property R fails, i.e.
G/ 〈l〉 = Z where l is the longitude.

i) k10,k11 of Σ3 (r) where r = x−1
1 x−1

22 k3
−1t2.1 ∈ R22 (#r = 17916).

ii) k20, k22 of Σ3 (r) where r = x−1
18 k3

−1T ′
4.19 ∈ R22 (#r = 37009) .

iii) k15, k22 of Σ3 (r) where r = x−1
20 k3

−1t3.20 ∈ R22 (#r = 44913) .
iv) k10, k11 of Σ3 (r) where r = x−1

18 k3
−1t1.9 ∈ R22 (#r = 48643) . Here,

ab (G10, 5) = 1 [0] , . . . , 5 [0] , 5 [0, 0] , 5 [0, 0, 0] , 5 [2, 0, 0] , 5 [28371, 0]. The funda-
mental group of its (1, 1) Dehn sphere has one single subgroup of index 5 and
it abelianizes to Z28371. Such large finite numbers have not appeared before in
computations in AP theory. What does their appearance mean?

v) The simplest example seems to be k22 of Σ
3 (r) where r = x−1

20 k3
−1st23t3.21

∈ R23 (#r = 27628) . Here π (r) and G22 are presented by:

π (r) =
〈
a, b | (aba)3 = (bab)2 , (ba)3 =

(
a−1bab

)2〉
,

G22 =
〈
a, b | (aba)3 = (ba)

2
(bab)

−1
(ab)

2
〉
.

As is well known, the falsity of Property R, i.e. G/ 〈l〉 = Z, implies that the
Alexander polynomial is trivial; we also obtain an abundance of nontrivial knots
with trivial Alexander polynomials in homotopy 3−spheres (such examples were
first discovered by Seifert in the early 1930s): let r = x−1

20 k3
−1st24t3.22 ∈ R24

(#r = 17301), then Σ3 (r) is simply connected and Δ20 ≡ 1 but ab (G20, 5) =

1 [0] , . . . , 5 [0] , and 5 [3, 15, 0] repeated 5 times; let r = x2k3t2.20 ∈ R22

(#r = 11101), then Σ3 (r) is simply connected and Δ1 ≡ Δ12 ≡ 1 but ab (G1, 5) =
ab (G12, 5) = 1 [0] , . . . , 5 [0], 5 [0, 0, 0] , 5 [3, 3, 0]. Here G12 is presented by:〈

a, b, c | (a−1, c
)
(c, b) (a, b) c = b =

(
c−1, a−1

) (
b, c−1

)
(a, b)

(
c−1, a−1

)〉
.

Question: is G12 a knot group of S3?

III. If r = k3−1t3.20 ∈ R22 (#r = 44550), then Δ1 ≡ 1 and Δ2 ≡ 1 but
G1 and G2 are not isomorphic since their ab ( , 5)s differ. However, both of
their (1, 1) Dehn spheres are simply connected. This illustrates in a different
way the phenomenon that ‘far away’ knots in homotopy 3−spheres can have
homeomorphic (1, 1) Dehn spheres [Br].

Unlike with the Donaldson matrices E8, ϕ4n, etc., with K3 we obtain a much
larger amount of knots with Δ ≡ 1. Is this related to the ‘softness’ of K3 as a
Calabi-Yau manifold?

4. The manifolds W 4 (r)

We have answered in the affirmative whether all elliptic surfaces E (n) appear
as W 4 (r)s. An open problem is whether every smooth, compact, connected,
simply-connected 4-manifold X4 with a connected, simply-connected boundary
∂X4 = M3 is a W 4 (r). (See [GS] p.344 for a related problem).

In dimension 3, AP theory obtains all closed, orientable, connected 3-man-
ifolds and there seem to be no great conceptual difficulties on the horizon in
obtaining all Seiberg-Witten invariants of 3−manifolds in AP theory [L], [T]
pp.viii,115. Unlike in the simplicial combinatorial case, in AP theory the same
purely group-theoretic data that determines the 3−manifold, namely r, also
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canonically and holographically determines the 4−manifold. Hence, developing
3−dimensional Seiberg-Witten theory in this, its correct, ultimate arena, holds
greater promise in further developing also the outstanding open 4−dimensional
theory in AP theory.

Similar arguments hold for studying the smoothings of a 4−manifold, à la
Fintushel-Stern [FS], using the action of the Torelli, thus generalizing their im-
portant work. We remark that, if the 3D Poincaré conjecture were true, then
by Freedman’s theorem the relation between the Torelli action and smoothings
would become even more direct, purely group-theoretic and pristine, perhaps too
much so.

Relevant to all of the above is that although finitely presented group theory
is considered a difficult subject, the undeniable metamathematical similarities
of AP theory with braid theory, holographic dessins ďenfant theory, as well as
numerous genuine analogies with Modern Physics, give hope for a definitive,
realistic, computer approachable, holographic, and universal approach to X4

theory [D] p.69, [W2], [W3].
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REPRESENTING AND RECOGNIZING TORUS BUNDLES

OVER S1

MARIA RITA CASALI

Abstract. As it is well-known, torus bundles over S1 are identified by
means of regular integer matrices of order two (see [S]). In the present paper
an algorithmic procedure is described which allows to construct, directly
from any matrix A ∈ GL(2;Z), an edge-coloured graph representing the
torus bundle TB(A) associated to A. As a consequence, five topologically
undetected elements of Lins’s catalogue of orientable 3-manifolds (see [L])
are finally recognized as torus bundles over S1.

1. Introduction

The present paper gives an approach to the study of fiber bundles with base
space S1 and fiber T (the bidimensional torus) via edge-coloured graphs as a
combinatorial PL-manifolds representation tool. In particular, an algorithmic
procedure is described which allows to construct, directly from any matrix A ∈
GL(2;Z), a pseudosimplicial triangulation (and, hence, the edge-coloured graph
Γ(A) visualizing it) of the torus bundle TB(A) associated toA, i.e. of the quotient

TB(A) =
T × [0, 1]

∼A
,

where the equivalence relation ∼A is given by

(x, 0) ∼A (φ̃A(x), 1), ∀x ∈ T,

φ̃A being the punctured homeomorphism (T, x0) → (T, x0) (x0 ∈ T ) having A
as an associated matrix.

As a consequence, since edge-coloured graphs give rise to an n-dimensional
combinatorial invariant for PL-manifolds - called regular genus (see [G] for its
definition and, for example, [CG] and [BCG] for subsequent related results) -,
coinciding with Heegaard genus in the 3-dimensional setting, torus bundles over
S1 are combinatorially proved to have Heegaard genus less than or equal to three
(as already obtained, via handle-decomposition, in [TO]).

On the other hand, the described construction is applied in order to topo-
logically recognize all torus bundles belonging to Lins’s catalogue (see [L]) of

2000 Mathematics Subject Classification: 55R10, 57N12, 57M15.
Keywords and phrases: 3-manifold, fiber-bundle, torus-bundle, monodromy, Heegaard

genus, edge-coloured graph .
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(project “Strutture finite e modelli discreti di strutture geometriche continue”).
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closed connected orientable 3-manifolds represented by edge-coloured graphs up
to 28 vertices (i.e. admitting a pseudosimplicial triangulation consisting of at
most 28 tetrahedra). In fact, Lins’s catalogue contains exactly five undetected
manifolds whose fundamental group coincides with the fundamental group of a
torus bundle, that is a semidirect product between Z and Z × Z, induced by a
matrix of GL(2;Z). Here, the 4-coloured graph Γ(A) associated to each one of
these matrices is constructed and simplified by suitable combinatorial moves not
affecting the homeomorphism class of the represented manifold, until obtaining
an element of Lins’s catalogue which encode exactly the undetected manifold
with fundamental group Z ·A.

We point out that the combinatorial nature of the representing tools, together
with the algorithmic feature of the described construction, allow to imagine a
suitable implementation of the whole process; actually, a Visual Basic program1

has been produced, automatically yielding the 4-coloured graph Γ(A), directly
from a matrix A ∈ GL(2;Z), in the case that A contains a null element (which
is the case occurring for each torus bundles in Lins’s catalogue).

Since torus bundles frequently appear in existing catalogues of 3-manifolds
(see, for example, [M] and [MP]), the author hopes that the construction ob-
tained in the present paper will be of use in order to perform interesting com-
parisons between different 3-manifold complexity notions.

2. Basic notions on torus bundles over S1

As it is well-known, the homeotopy group of bidimensional torus T , i.e. the
mapping class group of punctured homeomorphisms (T, x0) → (T, x0) (x0 ∈ T ),
is isomorphic to the group of automorphisms of π1(T ), i.e. to GL(2;Z) (see
[ZVC]; Theorem 5.15.5).

This implies that any matrix A =

(
a00 a01
a10 a11

)
∈ GL(2;Z) induces, up to isotopy,

a homeomorphism φ̃A : T → T ; if c0 and c1 denote, respectively, a meridian and
a longitude of torus T , oriented so that their intersection number is +1, then φ̃A

maps c0 (resp. c1) into the curve c′0 = a00c0 + a01c1 (resp. c′1 = a10c0 + a11c1),
fixing the (unique) intersection point c0 ∩ c1.

According to [S]; sections 3.2 and 18.1, the homeomorphism φ̃A uniquely de-
termines a fiber bundle (with base space S1 and fiber T ), defined as the quotient

TB(A) =
T × [0, 1]

∼A

where the equivalence relation ∼A is given by

(x, 0) ∼A (φ̃A(x), 1), ∀x ∈ T.

Note that A ∈ GL(2;Z) directly implies that det(A) ∈ {±1}; more pre-
cisely, the torus bundle TB(A) is orientable (resp. non-orientable) if and only if
det(A) = +1 (resp. det(A) = −1). Moreover, by the classification theorem of

1Even if it pursues an autonomous aim, this program has been thought of in order to become
a part of a wider C++ program, called DUKE III, which is devoted to automatic analysis,
manipulation and recognition of PL-manifolds via edge-coloured graphs. Both programs are
available by request to author’s address.
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fiber spaces (see [S]; Theorem 18.5 or [TO]; Proposition 2), two torus bundles
TB(A) and TB(A′) turn out to be equivalent if and only if A′ is conjugate to
either A or A−1 in GL(2;Z).

The following technical lemma will be useful for our purposes, in order to
restrict the class of matrices effectively inducing torus bundles.

Lemma (2.1). Let M be a torus bundle over S1. Then M is equivalent to

TB(A) for some matrix A =

(
a00 a01
a10 a11

)
∈ GL(2;Z) such that

ai0 · ai1 ≥ 0 ∀i ∈ {0, 1} and A0j ≥ A1j ∀j ∈ {0, 1},
where Aij = max{|aij |, 1}, ∀i, j ∈ {0, 1}.

Proof. First of all, note that det(A) ∈ {±1} excludes the possibility that a
row of A consists of concordant elements and the other one consists of discordant
elements. Thus, the existence, for any matrix in GL(2;Z), of a conjugate matrix

A =

(
a00 a01
a10 a11

)
satisfying ai0 · ai1 ≥ 0 ∀i ∈ {0, 1} directly follows from the

conjugation between

(
a b
c d

)
and

(
a −b
−c d

)
:

(
1 0
0 −1

)
·
(
a b
c d

)
·
(
1 0
0 −1

)
=

(
a b
−c −d

)
·
(
1 0
0 −1

)
=

(
a −b
−c d

)

On the other hand, it is easy to check that if a matrix A =

(
a b
c d

)
∈ GL(2;Z)

contains all non-null elements, the case |a| > |c| and |b| < |d| (resp. the case
|a| < |c| and |b| > |d|) is excluded by the condition det(A) ∈ {±1}. Thus, the

existence, for any matrix in GL(2;Z), of a conjugate matrix A =

(
a00 a01
a10 a11

)

satisfying A0j ≥ A1j ∀j ∈ {0, 1} (in addition to ai0 ·ai1 ≥ 0 ∀i ∈ {0, 1}) directly
follows from the conjugation between

(
a b
c d

)
and

(
d c
b a

)
:

(
0 1
1 0

)
·
(
a b
c d

)
·
(
0 1
1 0

)
=

(
c d
a b

)
·
(
0 1
1 0

)
=

(
d c
b a

)

Finally, note that the last conjugation allows us to assume that both conditions

of the statement hold also in the case of a matrix A =

(
a00 a01
a10 a11

)
∈ GL(2;Z)

containing null elements: in fact, if aij̄ = 0, det(A) ∈ {±1} surely yields

|aij′ | = |ai′j̄ | = 1, with {i, i′} = {j̄, j′} = {0, 1}, and so A0j̄ = A1j̄ .

Definition (2.2). A matrix A ∈ GL(2;Z) will be said to be in normalized shape
if it satisfies both conditions of Lemma (2.1). The subset of GL(2;Z) consisting
of regular integer matrices of order two in normalized shape will be denoted by
the symbol G̃L(2;Z).
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The following theorem collects results about the Heegaard genus H(M) of
a torus bundle M over S1, originally obtained in [TO]; Theorem 1 and [TO];
Proposition 3, respectively; in the present paper (section 4), they will be proved
as consequences of the algorithmic procedure to construct an edge-coloured graph
representing TB(A), for any matrix A ∈ G̃L(2;Z).

Proposition (2.3). a) H(M) ≤ 3 for any torus bundle M over S1.

b) If M is a torus bundle over S1 with associated monodromy A =

(
m ε
1 0

)

(ε ∈ {1,−1}), then H(M) ≤ 2.

3. Representation of PL-manifolds by means of edge-coloured graphs

The representation theory for PL-manifolds 2 of arbitrary dimension via edge-
coloured graphs has its origin within the italian school of Mario Pezzana (see
[FGG] or [BCG] for details), but quickly developed with contribution of re-
searchers from different countries (see, for example, [BM], [CV], [LM], [L], [V]).

If Mn is a compact PL n-manifold, a coloured triangulation of Mn may be
defined as a pair (K̄, ξ), where:

• K̄ is a pseudocomplex 3 triangulating Mn, with vertex set S0(K̄);
• ξ : S0(K̄) → Δn = {0, 1, . . . , n} is a map (vertex-labelling) which is injective

on the vertex-set of each n-simplex of K̄.4

An (n + 1)-coloured graph (Γ, γ) representing Mn is nothing but a combina-
torial tool used to visualize (K̄, ξ). In fact, the underlying multigraph Γ = Γ(K)
coincides with the dual graph of K, i.e. the 1-skeleton of the ball-complex dual
to K, while the edge-colouring γ : E(Γ) → Δn is induced by the vertex-labelling
of K: (Γ, γ) has a vertex v(σ) for each (labelled) n-simplex σ ∈ K, and an i-
coloured edge (i ∈ Δn) connecting v(σ) and v(τ) for every pair σ, τ of n-simplices
of K sharing the (n− 1)-face opposite to i-labelled vertex.

It is very easy to check that edge-coloured graphs are a universal tool to
represent PL-manifolds: in fact, for every PL n-manifold Mn, the existence of
a coloured triangulation (and, hence, an edge-coloured graph) representing Mn

may be directly proved by considering the first baricentric subdivision of any
simplicial triangulation of Mn, and by labelling every vertex by the dimension
of the simplex whose barycenter it is.

Of course, for any fixed n-manifold Mn, many edge-coloured graphs exist,
which represent Mn. In particular, edge-coloured graphs which coincide up to
permutations of the vertex set and/or of the colour set (i.e. the so called colour-
isomorphic graphs) do obviously represent the same manifold. In [L] and [CG],
an alphanumerical code c(Γ) is defined for any coloured graph Γ, which allows
to effectively recognize colour-isomorphic graphs.5

2For basic notions on piecewise-linear (PL) category, we refer to [RS]. Throughout the
present paper, all PL-manifolds are assumed to be closed and connected, unless otherwise
stated.

3Remember that - according to [HW] - a pseudocomplex is a ball-complex which differs
from a simplicial complex because its “h-simplices” may intersect in more than one face.

4In case ∂Mn �= ∅, it is also required every n-labelled vertex to be internal in K̄.
5Note that code computation may be easily implemented; for example, DUKE III program

contains a suitable “code computation” function.
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Within the representation theory for PL-manifolds by edge-coloured graphs,
a combinatorial invariant - called regular genus - has been introduced and deeply
investigated (see [G], [FG1], [CG] and their bibliography). It may be thought of
as a natural extension of the notion of genus for surfaces and of Heegaard genus
for 3-manifolds; in particular, for any 3-dimensional manifold M3, the equality
G(M3) = H(M3) holds, where G(M3) denotes the regular genus of M3 (and
H(M3) denotes - as already recalled - its Heegaard genus).

According to [G], it is known that, for every (n+1)-coloured graph (Γ, γ) rep-
resenting a closed orientable (resp. non-orientable) n-manifold Mn and for every
cyclic permutation ε = (ε0, ε1, . . . , εn = n) of Δn, there exists a regular embed-
ding of (Γ, γ) into an orientable (resp. non-orientable) surface Fε; furthermore,
the genus ρε(Γ) of Fε (resp. half the genus ρε(Γ) of Fε) may be easily computed by
the following formula, where gi,j denotes the number of {εi, εj}-coloured cycles
of (Γ, γ) and p is the number of vertices of (Γ, γ):∑

j∈Zn+1

gj,j+1 + (1− n) · p
2

= 2− 2ρε(Γ)

In particular, if n = 3, ρε(Γ) may be obtained through a simpler formula, too:

ρε(Γ) = g0,2 − g1̂ − g3̂ + 1

where gĵ (j ∈ Δ3) is the number of connected components of Γε̂j = (V (Γ), γ−1

(Δ3 − {j})).
The regular genus ρ(Γ) of an (n + 1)-coloured graph (Γ, γ) is, by definition,

the minimum value of ρε(Γ) over all cyclic permutations ε of Δn. Finally, the
regular genus of a PL-manifold Mn is defined as:

G(Mn) = min {ρ(Γ) /(Γ, γ) is an (n+1)-coloured graph representing Mn} .
4. From matrices to 4-coloured graphs representing torus bundles

The following paragraph will be entirely devoted to show how to construct
edge coloured graphs representing torus bundles, directly from integer matrices
inducing them.

Theorem (4.1). Let A ∈ G̃L(2;Z). An algorithmic procedure exists, which
allows to directly construct a 4-coloured graph Γ(A) representing the torus bundle
TB(A) with monodromy induced by A.

Proof. The statement is directly proved by construction, via the following
steps.

First step: We construct two cell-complexes K̄0 and K̄1 triangulating the
torus T , so that a bijective cell-map Φ̄A : K̄0 → K̄1 exists, with |Φ̄A| = φ̃A.

In order to obtain K̄1, it is sufficient to consider on I×I
∼ the geometrical

realization of c′i (i ∈ {0, 1}) consisting of the Ai0 + Ai1 − 1 edges, parallel to

v ≡ (ai0, ai1), having as end-points the Ai1 + 1 vertices on I × {0} = I × {1} of
first coordinate h

Ai1
, h ∈ {0, . . . , Ai1} and the Ai0+1 vertices on {0}×I = {1}×I

of second coordinate k
Ai0

, k ∈ {0, . . . , Ai0}.6

6Note that, in case aij = 0, the geometrical realization of c′i simply coincides with the

canonically identified edges I × {0} = I × {1} (if j = 1) or {0} × I = {1} × I (if j = 0).
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On the other hand, let K̄0 be the cellular subdivision of I×I
∼ constructed in

the following way:
• let us consider the A00+A01 vertices on I×{0} = I×{1} of first coordinate

r
A00+A01−1 , r ∈ {0, . . . , A00 +A01 − 1} and the A10 +A11 vertices on {0} × I =

{1} × I of second coordinate s
A10+A11−1 , s ∈ {0, . . . , A10 +A11 − 1}; 7

• let us consider, for every vertex on {0}×I = {1}×I, an edge internal to I×I
parallel to 
w≡(A10 +A11 − 1, μ(A)(A00 +A01 − 1)), where μ(A)=(−1)a0j ·a1j ; 8

• finally, in case ai,j 
= 0 ∀i, j ∈ N2, let us also consider the A00+A01−A10−
A11 edges internal to I × I, having both the end-points on I × {0} = I × {1},
parallel to 
w′ ≡ (A10 +A11, μ(A)(A00 +A01 − 1)).

Note that both K̄0 and K̄1 consist of
∑

i,j∈{0,1} |aij | − 1 cells, among which

4−2n0(A) are triangular cells and
∑

i,j∈{0,1} |aij |−5+2n0(A) are quadrangular

ones, n0(A) being the number of null elements in A; moreover, the required

bijective cell-map Φ̄A : K̄0 → K̄1, with |Φ̄A| = φ̃A, is easily induced by φ̃A(ci) =
c′i (with correct orientations).

Second step: We construct two coloured triangulations K0 and K1 of the
torus T , so that a bijective coloured simplicial map ΦA : K0 → K1 exists, with
|ΦA| = φ̃A.

K0 (resp. K1) is simply obtained from K̄0 (resp. K̄1) by performing a bari-
centric subdivision and by labelling every vertex of K0 (resp. K1) with the di-
mension of the corresponding cell of K̄0 (resp. K̄1). Hence, the bijective cell-
map Φ̄A : K̄0 → K̄1 canonically induces a bijective coloured simplicial map
ΦA : K0 → K1, with the property |ΦA| = φ̃A.

Third step: We construct a coloured triangulation K̄ of the product T × I, so
that K̄|T×{0} = K0 and K̄|T×{1} = K1.

Let H̄0 (resp. H̄1) denote the cellular subdivision of I×I inducing, via canon-
ical boundary identification, the cellular subdivision K̄0 (resp. K̄1) of T = I×I

∼ .

Then, let H̄ be the cellular subdivision of the cube I×I×I consisting of exactly
one 3-cell, coinciding with H̄0 (resp. H̄1) on I × I × {0} (resp. I × I × {1}) and
containing exactly one 2-cell for each other face of I × I × I. Then, let H be the
coloured simplicial triangulation of I × I × I obtained from K̄ by performing a
baricentric subdivision and by labelling every vertex with the dimension of the
cell of K̄ whose baricenter the given vertex is. It is now easy to check that K̄ is
simply obtained from H by canonical identification of opposite faces {0}× I × I
and {1} × I × I (resp. I × {0} × I and I × {1} × I).

Fourth step: A coloured triangulation KA of the torus bundle TB(A) is ob-
tained from K̄ by identifying faces K̄|T×{0} and K̄|T×{1} according to ΦA.

In order to complete the algorithmic construction, it is now sufficient to con-
sider the edge coloured graph Γ(A) such that Γ(A) = Γ(KA) (as described in
the previous paragraph).

7Note that the edge I×{0} = I×{1} (resp. {0}×I = {1}×I) of K̄0 results to be subdivided
into A00 + A01 − 1 (resp. A10 + A11 − 1) edges, as well as the geometrical realization of c′0
(resp. c′1) in K̄1.

8The assumption det(A) ∈ {+1,−1} ensures that either a0j · a1j ≥ 0 ∀j ∈ {0, 1} or

a0j · a1j ≤ 0 ∀j ∈ {0, 1} surely holds.
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Example (I). If A =

(
1 −2
0 1

)
∈ GL(2;Z), then TB(A) is equivalent to

TB(A′), with A′ =
(
1 2
0 1

)
∈ G̃L(2;Z) (see Lemma (2.1)). Then, the first step

of the described algorithm yields the cell-complexes K̄0 and K̄1 triangulating the
torus T depicted in Figure 1(a) (where the bijective cell-map Φ̄A′ : K̄0 → K̄1

with |Φ̄A′ | = φ̃A′ is visualized by labelling pairs of corresponding cells by equal
symbols (for example, (x, x′)). Furthermore, Figure 1(b) illustrates the coloured
triangulations K0 and K1 of the torus T obtained in the second step (where
equally labelled simplices are assumed to correspond each other in the bijective
coloured simplicial map ΦA′ : K0 → K1, with |ΦA′ | = φ̃A′). Finally, in Figure
1(c) the boundary of the coloured simplicial triangulationH of I×I×I obtained
in the third step is depicted, and equally labelled 2-simplices indicate boundary
identifications necessary to yield KA′ from H = v ∗ ∂H , v being the unique
inner 3-coloured vertex of H (forth step). The resulting edge-coloured graph
Γ(A′) = Γ(KA′) is shown in Figure 1(d), where 3-coloured edges are understood
through equal labelling of pairs of 3-adjacent vertices.

c0

c1 1

2
3

K0

c0’c1’

1’
2’

3’

K1

Figure 1(a) Figure 1(b)

Figure 1(c)
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Figure 1(d)

Example (II). If A =

(−2 1
−3 2

)
∈ GL(2;Z), then TB(A) is equivalent to

TB(A′), with A′ =
(

2 3
−1 −2

)
∈ G̃L(2;Z) (see Lemma (2.1)). Then, the first

step of the described algorithm yields the cell-complexes K̄0 and K̄1 triangulating
the torus T depicted in Figure 2(a) (where the bijective cell-map Φ̄A′ : K̄0 → K̄1

with |Φ̄A′ | = φ̃A′ is visualized by equally labelling of corresponding cells). Fur-
ther, Figure 2(b) illustrates the coloured triangulations K0 and K1 of the torus
T obtained in the second step (where equally labelled 2-simplices are assumed to
correspond each other in the bijective coloured simplicial map ΦA′ : K0 → K1,
with |ΦA′ | = φ̃A′). Subsequent steps of the described algorithm follow as in
Example (I).

Figure 2(a)
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Figure 2(b)

Remark (A). Note that, by virtue of Lemma (2.1), any torus bundle over S1 turns
out to admit a 4-coloured graph Γ(A) (obtained as an output of the algorithmic

procedure of Theorem (4.1), for a suitable A ∈ G̃L(2;Z)) representing it.

Remark (B). For every A ∈ G̃L(2;Z)), the 4-coloured graph Γ(A) represent-
ing TB(A) enjoys the following combinatorial features (which may be easily
checked by direct computation via the corresponding geometrical properties of
the coloured triangulation KA):

2p = #V (Γ(A)) = 8(3
∑

i,j∈{0,1} |aij | − 4 + 2n0(A));

g01 = 2
∑

i,j∈{0,1} |aij |+ 2;

g02 = g03 = g13 = 2(3
∑

i,j∈{0,1} |aij | − 4 + 2n0(A));

g12 = 4(
∑

i,j∈{0,1} |aij | − 2 + n0(A));

g23 = 2(2
∑

i,j∈{0,1} |aij | − 3 + n0(A));

g0̂ =
∑

i,j∈{0,1} |aij | − 3 + n0(A);

g1̂ = 2
∑

i,j∈{0,1} |aij | − 3 + n0(A);

g2̂ = 1 +
∑

i,j∈{0,1} |aij |;
g3̂ = 1.

Proposition (4.2). For every A ∈ G̃L(2;Z), the following relations hold:

a) ρ(Γ(A)) =
∑

i,j∈{0,1} |ai,j |+ 1;

b) G(TB(A)) ≤ 3.

Furthermore, if A ∈ G̃L(2;Z) is such that a11 = 0, then

c) G(TB(A)) ≤ 2.

Proof. If ε̄ = (0, 2, 1, 3), a direct computation yields:

ρε̄(Γ(A))= g01 − g2̂ − g3̂ + 1= 2
∑

i,j∈{0,1}
|aij |+ 2− (1 +

∑
i,j∈{0,1}

|aij |)− 1 + 1=

=
∑

i,j∈{0,1}
|aij |+ 1
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On the other hand, it is easy to check that, for any permutation ε′ of Δ3,
ρε′(Γ(A)) ≥ ρε̄(Γ(A)) holds; thus, statement (a) follows.

In order to prove statement (b), it is necessary to note that, if σ, σ′ are two
cells of the cellular triangulation H̄0 (resp. H̄1) of I × I, sharing a common
boundary edge e, with e /∈ ∂(I × I), then the {0, 1}-coloured cycle of Γ(A),
dual to the {2, 3}-labelled edge of KA having the baricenter of σ (resp. σ′) as
an end-point, has exactly one common vertex with any {2, 3}-coloured cycle of
Γ(A), dual to one of the ({0, 1}-labelled) edges of KA subdividing e: this means
that any such common vertex identifies a so called generalized dipole, which is
a combinatorial structure that may be easily eliminated by a finite sequence of
elementary moves on edge-coloured graphs, yielding a new graph, with one less
{0, 1}-coloured cycles, representing the same 3-manifold (see [FG2] for details).
It is not difficult to check that, since H̄0 (resp. H̄1) contains

∑
i,j∈{0,1} |aij | − 2

edges not belonging to ∂(I × I), the combinatorial structure of KA allows to

perform in Γ(A), for every A ∈ G̃L(2;Z), a finite sequence of
∑

i,j∈{0,1} |aij | − 2

“independent” generalized dipole eliminations, giving rise to a new 4-coloured
graph Γ′(A) representing TB(A), so that

ρε̄(Γ
′(A)) = ρε̄(Γ(A)) − (

∑
i,j∈{0,1}

|aij | − 2) = 3.

This completes the proof of statement (b).

Finally, let us consider the case of a matrix A ∈ G̃L(2;Z) with a11 = 0. A
direct check allows us to verify that, if τ is the cell of H̄ corresponding to the
face {0}× I × I and f is the {2, 3}-labelled edge of KA having the baricenter of
τ as an end-point, then the sequence of generalized dipoles transforming Γ(A)
into Γ′(A) does not involve the vertices of the {0, 1}-coloured cycle of Γ(A), dual
to f . Moreover, both in Γ(A) and in Γ′(A), f has exactly one common vertex
with any {2, 3}-coloured cycle, dual to one of the ({0, 1}-labelled) edges of KA

triangulating {0} × I × {0}. Hence, the additional hypothesis a11 = 0 allows us
to perform a further generalized dipole elimination, yielding a new graph Γ′′(A)
representing TB(A); statement (c) now directly follows:

a11 = 0 =⇒ ρε̄(Γ
′′(A)) = ρε̄(Γ

′(A)) − 1 = 2.

We are now able to easily prove the already quoted upper bound results on
Heegaard genus of torus bundles.

Proof of Proposition (2.3). Statement (a) directly follows from Proposition
(4.2)(b), via Lemma (2.1) and Remark (A).

On the other hand, statement (b) is a direct consequence of Proposition

(4.2)(c), applied either to A =

(
m ε
1 0

)
or to the conjugate matrix A′ =(

m −ε
−1 0

)
(see Lemma (2.1)).
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5. Recognition of torus bundles among elements of Lins’s catalogue

In [LS] and [L] (resp. [C]) a complete catalogue C(28) (resp. C̃(26)) of orientable
(resp. nonorientable) 3-manifolds admitting coloured triangulations up to 28
(resp. 26) tetrahedra is obtained, and its elements are deeply analyzed; as a
consequence, the following result is proved:

Proposition (5.1). a) [LS] - [L] Exactly 69 non-homeomorphic prime ori-
entable 3-manifolds exist, which admit a coloured triangulation consisting of at
most 28 tetrahedra;

b) [C] Exactly 7 non-homeomorphic prime non-orientable 3-manifolds exist,
which admit a coloured triangulation consisting of at most 26 tetrahedra. �

In particular, all elements of C̃(26) are topologically recognized 9, while some
elements of C(28) are simply proved to be non-homeomorphic manifolds by means
of the computation of their fundamental group.

The first result about recognition of torus bundles among catalogues C(28) and
C̃(26) concerns matrices A ∈ GL(2,Z) with two null elements:

Proposition (5.2). All orientable (resp. non-orientable) torus bundles hav-
ing monodromy A ∈ GL(2;Z) with n0(A) = 2 belong to catalogue C(28) (resp.

C̃(26)). In particular, they are the following euclidean manifolds (whose corre-
sponding crystallographic groups are indicated according to notations of interna-
tional table of crystallography [IT]):

TB(

(
1 0
0 1

)
) ∼= S

1 × S
1 × S

1 =
E

3

G1
, with G1 = P1 (corresponding to r241 ∈ C

(28))

TB(

(−1 0
0 −1

)
) ∼= E

3

G2
, with G2 = P21 (corresponding to r264 ∈ C

(28))

TB(

(
0 1
−1 0

)
) ∼= E

3

G4
, with G4 = P41 (corresponding to r2611 ∈ C

(28))

TB(

(
1 0
0 −1

)
) ∼= E

3

B1
, with B1 = Pb (corresponding to r̃24111 ∈ C̃

(26))

TB(

(
0 1
1 0

)
) ∼= E

3

B2
, with B2 = Bb (corresponding to r̃24112 ∈ C̃

(26))

Proof. A direct check allows us to prove that the only matrices A ∈ GL(2;Z)

with n0(A) = 2 are (up to conjugation): A1 =

(
1 0
0 1

)
, A2 =

(−1 0
0 −1

)
,

A3 =

(
0 1
−1 0

)
, A4 =

(
1 0
0 −1

)
, and A5 =

(
0 1
1 0

)
. Moreover, in case n0(A) =

2, the first step of the algorithmic procedure of Theorem (4.1) yields two cell-
complexes K̄0 and K̄1 consisting of just one 2-cell; so, for each i ∈ N5, the
whole procedure may be very easily applied, giving rise to a 48 order 4-coloured
graph Γ(Ai) representing the associated torus bundle TB(Ai). Now, a standard
sequence of dipole moves may be performed (for example, by making use of

9The manifolds involved are proved to be (see [C]; Theorem I): the four euclidean non-
orientable 3-manifolds, the non-trivial S2 bundle over S1, the topological product between the
real projective plane RP2 and S1, and the torus bundle over S1, with monodromy induced by

matrix

(
0 1
1 −1

)
.
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the corresponding function of DUKE III program), until we obtain a 4-coloured

graph belonging to catalogues C(28) (in case i ∈ {1, 2, 3}) or C̃(26) (in case i ∈
{4, 5}). Complete classification results about these catalogues allow us to directly
prove the statement.

Finally, we will apply the above described algorithmic construction of edge
coloured graphs representing torus bundles, in order to topologically recognize
five further manifolds belonging to Lins’s catalogue as torus bundles over S1.
Note that they are the only topologically undetected elements of Lins’s catalogue
whose fundamental groups coincide with fundamental groups of torus bundles
over S1.10

Proposition (5.3). (a) The orientable 3-manifold corresponding to r2614 ∈
C(28) (whose fundamental group is Z ·

(
1 0
1 1

)
) is the torus bundle TB(A), with

A =

(
1 0
1 1

)
;

(b) the orientable 3-manifold corresponding to r285 ∈ C(28) (whose fundamental

group is Z ·
(

0 1
−1 3

)
) is the torus bundle TB(A), with A =

(
0 1
−1 3

)
;

(c) the orientable 3-manifold corresponding to r2810 ∈ C(28) (whose fundamental

group is Z ·
(

0 1
−1 −3

)
) is the torus bundle TB(A), with A =

(
0 1
−1 −3

)
;

(d) the orientable 3-manifold corresponding to r2842 ∈ C(28) (whose fundamental

group is Z ·
(−1 0

2 −1

)
) is the torus bundle TB(A), with A =

(−1 0
2 −1

)
;

(e) the orientable 3-manifold corresponding to r28280 ∈ C(28) (whose fundamental

group is Z ·
(
1 −2
0 1

)
) is the torus bundle TB(A), with A =

(
1 −2
0 1

)
.

Proof. (a) Let A =

(
1 0
1 1

)
; even though A ∈ G̃L(2;Z), let us apply the algo-

rithmic procedure of the previous section to its conjugate matrix A′ =
(
1 1
0 1

)
∈

G̃L(2;Z). The coloured pseudocomplex KA′ turns out to be obtained by starring
from an inner 3-labelled vertex the coloured complex depicted in Figure 3, where
2-simplices labelled x, x′ have to be identified.

10Van Kampen’s Theorem allows us to directly check that the fundamental group of the
torus bundle TB(A) is the semidirect product between Z and Z× Z induced by the matrix A,
i.e. the group usually denoted by Z ·A.
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Figure 3

It is not difficult to check that the associated order 56 4-coloured graph Γ(A′)
may be transformed by a finite sequence of dipole moves (for example, by making
use of the corresponding function of DUKE III program) into an order 28 4-
coloured graph Γ′(A′) having code

c(Γ′(A′)) = dabchefgkijnlmknmedclihgajfbgfjnmkadlcbieh;

since this code identifies, up to permutation of vertices and colours, the element
r284478 ∈ C(28), and since Lins’s classification ensures the represented 3-manifold
to be the same as r2614 ∈ C(28), part (a) of the statement follows.

(b) Let A =

(
0 1
−1 3

)
; since A /∈ G̃L(2;Z), we apply the algorithmic proce-

dure of the previous section to its conjugate matrix A′ =
(

3 1
−1 0

)
∈ G̃L(2;Z)

(see Lemma (2.1) in order to prove the conjugation). The coloured pseudocom-
plex KA′ turns out to be obtained by starring from an inner 3-labelled vertex
the coloured complex depicted in Figure 4, where 2-simplices labelled x, x′ have
to be identified.
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Figure 4

It is not difficult to check that the associated order 104 4-coloured graph
Γ(A′) may be transformed by a finite sequence of dipole moves (for example, by
making use of the corresponding function of DUKE III program) into an order
32 4-coloured graph Γ′(A′) having code

c(Γ′(A′)) = fabcdejghimklpnomlonpgfebkjiadchojihkpalcbednmgf.

A direct computation allows us to prove Γ′(A′) admits a so called cluster,
which is a combinatorial structure that may be easily eliminated by a finite
sequence of elementary moves on edge-coloured graphs, yielding a new graph
Γ′′(A′) with two less vertices, representing the same 3-manifold (see Figure 5,
or [L]; Proposition 24] for details). On the other hand, Γ′′(A′) may be further
simplified via a generalized dipole elimination and two dipole eliminations (for
example, by making use of the corresponding functions of DUKE III program),
so as to obtain the order 28 4-coloured graph Γ′′′(A′) having code

c(Γ′′′(A′)) = dabchefgkijnlmknmedclihgajfbgfjlnkadmcbhie;

since this code identifies, up to permutation of vertices and colours, the element
r284538 ∈ C(28), and since Lins’s classification ensures the represented 3-manifold
to be the same as r285 ∈ C(28), part (b) of the statement follows.

Figure 5
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(c) Let A =

(
0 1
−1 −3

)
; since A /∈ G̃L(2;Z), we apply the algorithmic proce-

dure of the previous section to its conjugate matrix A′ =
(−3 −1

1 0

)
∈ G̃L(2;Z)

(see Lemma (2.1) in order to prove the conjugation). The coloured pseudocom-
plex KA′ turns out to be obtained by starring from an inner 3-labelled vertex
the coloured complex depicted in Figure 6, where 2-simplices labelled x, x′ have
to be identified.

Figure 6

It is not difficult to check that the associated order 104 4-coloured graph
Γ(A′) may be transformed by a finite sequence of dipole moves (for example, by
making use of the corresponding function of DUKE III program) into an order
30 4-coloured graph Γ′(A′) having code

c(Γ′(A′)) = eabcdifghljkomnlongfedcjimakhbnhkjomlbafcgdie.

A direct computation allows us to prove Γ′(A′) admits a cluster, whose elimi-
nation yields a new graph Γ′′(A′) with two less vertices (i.e. 28 vertices), rep-
resenting the same 3-manifold (see Figure 5, or [L]; Proposition 24 for details).
Since its code

c(Γ′′(A′)) = dabcgefjhilknmjlnedchgmaibkfnfihkbalcejmdg

identifies, up to permutation of vertices and colours, the element r28206 ∈ C(28),
and since Lins’s classification ensures the represented 3-manifold to be the same
as r2810 ∈ C(28), part (c) of the statement follows.
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(d) Let A =

(−1 0
−2 −1

)
; since A /∈ G̃L(2;Z), we apply the algorithmic

procedure of the previous section to its conjugate matrix A′ =
(−1 −2

0 −1

)
∈

G̃L(2;Z) (see Lemma (2.1) in order to prove the conjugation). The coloured
pseudocomplexKA′ turns out to be obtained by starring from an inner 3-labelled
vertex the coloured complex depicted in Figure 7, where 2-dimensional faces
labelled x, x′ have to be identified.

Figure 7

It is not difficult to check that the associated order 80 4-coloured graph Γ(A′)
may be transformed by a finite sequence of dipole moves (for example, by making
use of the corresponding function of DUKE III program) into an order 28 4-
coloured graph Γ′(A′) having code

c(Γ′(A′)) = dabchefgkijnlmknmedclihgajfbgfjnmkadlcbieh;

since this code identifies, up to permutation of vertices and colours, the element
r284540 ∈ C(28), and since Lins’s classification ensures the represented 3-manifold
to be the same as r2842 ∈ C(28), part (d) of the statement follows.

(e) Let A =

(
1 −2
0 1

)
. As already pointed out in Example (I), the al-

gorithmic procedure of the previous section, applied to its conjugate matrix

A′ =
(
1 2
0 −1

)
∈ G̃L(2;Z), yields the coloured pseudocomplex KA′ obtained

by starring from an inner 3-labelled vertex the coloured complex depicted in
Figure 1(c), where 2-simplices labelled x, x′ have to be identified. Now, it is not
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difficult to check that the associated order 80 4-coloured graph Γ(A′) may be
transformed by a finite sequence of dipole moves (for example, by making use of
the corresponding function of DUKE III program) into an order 28 4-coloured
graph Γ′(A′) having code

c(Γ′(A′)) = dabchefgkijnlmknmedclihgajfbgfjmnkalecbhdi;

since this code identifies, up to permutation of vertices and colours, the element
r284539 ∈ C(28), and since Lins’s classification ensures the represented 3-manifold
to be the same as r28280 ∈ C(28), part (e) of the statement follows, too.
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STUDYING THE MULTIVARIABLE ALEXANDER

POLYNOMIAL BY MEANS OF SEIFERT SURFACES

DAVID CIMASONI

Abstract. We show how Seifert surfaces, so useful for the understanding
of the Alexander polynomial ΔL(t), can be generalized in order to study
the multivariable Alexander polynomial ΔL(t1, . . . , tµ). In particular, we
give an elementary and geometric proof of the Torres formula.

1. Introduction

The technique of Seifert surfaces, discovered by Herbert Seifert [12] in
1935, enabled him to make great progress in the study of the Alexander polyno-
mial of a knot. In particular, he succeeded in characterizing among all Laurent
polynomials Δ(t) those that can be realized as the Alexander polynomial of a
knot. The introduction by Ralph Fox of the multivariable Alexander polyno-
mial ΔL(t1, . . . , tμ) of a μ-component oriented link L naturally gave rise to the
corresponding question for this new invariant (see Problem 2 [6]). Guillermo
Torres made use of the free differential calculus – developed at that time by
Fox – to give several conditions for a polynomial Δ in Z[t±1

1 , . . . , t±1
μ ] to be

the Alexander polynomial of a μ-component link [13, 5]. Since then, very little
progress has been made on this question: it is known that the Torres conditions
are not sufficient in general [7, 11], but a complete algebraic characterization
remains out of reach.

In this paper, we present an original approach to this problem. We show how
the technique of Seifert surfaces can be generalized to obtain a new geometric
interpretation of ΔL(t

m1 , . . . , tmμ) for any integers m1, . . . ,mμ (see Proposition
(2.1) and Corollary (3.4)). If an equality holds for ΔL(t

m1 , . . . , tmμ) for any inte-
gers m1, . . . ,mμ, then it also holds for ΔL(t1, . . . , tμ) (Lemma (2.2)); therefore,
it is possible to prove properties of ΔL with this method. As an example, we
give an elementary and geometric proof of the celebrated Torres formula, valid
for any link in a homology 3-sphere. We also present several properties of ΔL

which turn out to be equivalent to the Torres conditions (Proposition (4.4)).

2. Preliminaries

Let us consider an oriented ordered link L = L1 ∪ · · · ∪ Lμ in a homology

3-sphere Σ, and let X be the exterior of L. If X̂
p̂→ X denotes the universal

abelian covering of X and X̂0 the inverse image by p̂ of a base point X0 of X ,

the homology H1(X̂, X̂
0) is endowed with a natural structure of a module over

2000 Mathematics Subject Classification: 57M25.
Keywords and phrases: Alexander polynomial of a link, Seifert surface, Torres conditions.
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the ring Λμ = Z[t±1
1 , . . . , t±1

μ ]. Given an m×n presentation matrix of H1(X̂, X̂
0)

– that is, the matrix P corresponding to a presentation with n generators and m
relations – the (n−i)×(n−i) minor determinants of P span an ideal of Λμ denoted

by EiH1(X̂, X̂
0). The greatest common divisor of these minor determinants is

denoted by ΔiH1(X̂, X̂
0); this invariant is well defined up to multiplication by

units of Λμ, that is, by ±tν11 · · · tνμμ with νi ∈ Z. In the sequel, we will write
Δ =̇Δ′ if two elements Δ, Δ′ of a ring R satisfy Δ = εΔ′ for some unit ε of R.

The Laurent polynomial Δ1H1(X̂, X̂
0) is called the Alexander polynomial of the

link L [1, 4]. It is denoted by ΔL(t1, . . . , tμ).
Our method will be to prove statements on this polynomial in an indirect

way, by studying all the infinite cyclic coverings of X . Since these coverings are
classified by Hom(H1(X),Z) � H1(X ;Z) � H1(L) =

⊕μ
i=1 ZLi, this leads to the

following definition [3]. A multilink is an oriented link L = L1 ∪ · · · ∪ Lμ in a
homology sphere Σ together with an integer mi associated with each component
Li, with the convention that a component Li with multiplicity mi is the same
as −Li (Li with reversed orientation) with multiplicity −mi. Throughout this
paper, we will write m for the ordered set of integers m1, . . . ,mμ, d for their
greatest common divisor, and L(m) for the multilink. Finally, we will also denote

bym the morphism H1(X) → Z given bym(γ) =
∑μ

i=1mi�k(Li, γ). Let X̃
p̃→ X

be the regular Z-covering determined by m. If X̃0 = p̃−1(X0), the homology

H1(X̃, X̃
0) can be thought of as a module over the ring Z[t±1]. The Laurent

polynomial ΔL(m)(t) = Δ1H1(X̃, X̃
0) is called the Alexander polynomial of the

multilink L(m). Note that if m �= 0, the exact sequence of the pair (X̃, X̃0)

implies at once that E1H1(X̃, X̃
0) = E0H1(X̃). Therefore, ΔL(m)(t) is also equal

to Δ0H1(X̃).
Here is the dictionary between the polynomials ΔL and ΔL(m):

Proposition (2.1) (Eisenbud-Neumann [3]).

ΔL(m)(t) =̇

{
ΔL(t

m1) if μ = 1;

(td − 1)ΔL(t
m1 , . . . , tmμ) if μ ≥ 2.

Proof. To check this equality, we need the well-known fact that E1H1(X̂, X̂
0)=

(Δ∗) · I, where I is the augmentation ideal (t1 − 1, . . . , tμ − 1) and Δ∗ some
polynomial in Λμ. This can be proved by purely homological algebraic methods
using the fact that the group π1(X) has defect ≥ 1 (see Theorem 6.1 [3]). By

considering a finite presentation of H1(X̂, X̂
0) given by an equivariant cellular

decomposition of X̂ , it is easy to show that H1(X̂, X̂
0)⊗Λμ Z[t

±1] = H1(X̃, X̃
0),

where Z[t±1] is endowed with the structure of Λμ-algebra given by ti 	→ tmi for
i = 1, . . . , μ. Hence,

E1H1(X̃, X̃
0) = E1(H1(X̂, X̂

0)⊗Λμ Z[t±1])

= (Δ∗(tm1 , . . . , tmμ)) · (tm1 − 1, . . . , tmμ − 1)

= (Δ∗(tm1 , . . . , tmμ)) · (td − 1).

Since ΔL = (t1 − 1)Δ∗ if μ = 1 and ΔL = Δ∗ if μ ≥ 2, the proposition is
proved.
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In order to show that properties of ΔL(m) translate directly into properties of
ΔL, we also need the following lemma.

Lemma (2.2). Consider two polynomials Δ and Δ′ in Λμ such that

Δ(tm1 , . . . , tmμ) =̇Δ′(tm1 , . . . , tmμ) in Z[t±1]

for all (m1, . . . ,mμ) in Z
μ except possibly a finite number of them. Then, Δ=̇Δ′

in Λμ.

Proof. Without loss of generality, it may be assumed that Δ=
∑
ai1···iμt

i1
1 · · · tiμμ

and Δ′ =
∑
bj1···jμt

j1
1 · · · tjμμ with a0...0 > 0, b0...0 > 0, and only non-negative

indices ik, jk ≥ 0. By hypothesis, there are maps Zμ
ε→ {±1} and Z

μ ν→ Z such
that the equality∑

ai1···iμt
∑

k mkik = ε(m1, . . . ,mμ) t
ν(m1,...,mμ)

∑
bj1···jn t

∑
k mkjk

holds for all but a finite number of (m1, . . . ,mμ) in Z
μ. Let us choose an integer

N greater than maxk degtk Δ and maxk degtk Δ
′, and set m1 = 1, m2 = N ,

. . . ,mμ = Nμ−1. By choosing N sufficiently large, it may be assumed that
the equality above holds for this ordered set of integers. Since all these in-
tegers are positive as well as the coefficients a0...0 and b0...0, it follows that
ε(1, N, . . . , Nμ−1) = +1 and ν(1, N, . . . , Nμ−1) = 0. This gives∑

ai1···iμt
i1+Ni2+···+Nμ−1iμ =

∑
bj1···jμt

j1+Nj2+···+Nμ−1jμ .

But the equality i1 + Ni2 + · · · + Nμ−1iμ = j1 + Nj2 + · · · + Nμ−1jμ with
0 ≤ ik, jk < N for all k implies that (i1, . . . , iμ) = (j1, . . . , jμ). Hence, ai1,...,iμ =
bi1,...,iμ for all multi-indices (i1, . . . , iμ), which proves the result.

3. Generalized Seifert surfaces

One of the advantages of multilinks is that they can be studied via generalized
Seifert surfaces [3]. A Seifert surface for a multilink L(m) is an open embedded
oriented surface F ⊂ Σ\L such that, if F0 denotes F ∩(Σ\ intN(L)), the closure
c�(F ) of F intersects a closed tubular neighborhood N(Li) of Li as follows for
each i:

– If mi �= 0, c�(F ) ∩ N(Li) consists of |mi| sheets meeting along Li; F is
oriented such that ∂F0 = miLi in H1(N(Li)).

– If mi = 0, c�(F )∩N(Li) consists of discs transverse to Li; F is oriented such
that the intersection number of Li with each of these discs is the same (either
always +1 or always −1).

This is illustrated in Figure (1). Note that F ⊂ Σ \ L and F0 ⊂ Σ \ intN(L)
determine each other up to isotopy; to simplify the notation, we will consider
both of them as Seifert surfaces, and denote both by F . From now on, we will
write F for the union of F ⊂ Σ \ L and L.

Lemma (3.1) (Eisenbud-Neumann [3]). Let F be a Seifert surface for a mul-
tilink L(m). Then, for i = 1 . . . , μ, the intersection F ∩ ∂N(Li) gives a di com-
ponent link which is the (dipi, diqi)-cable about Li, where pi and qi are coprime,
dipi = mi and diqi = −∑

j �=imj�k(Li, Lj).
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Figure 1. A Seifert surface near the multilink.

Proof. Let us denote by (Pi,Mi) a basis of H1(∂N(Li)) given by a standard
parallel and meridian. Since F is a Seifert surface for L(m), F∩∂N(Li) = miPi+
niMi in H1(∂N(Li)) for some integer ni. Furthermore, ∂F =

∑
j �=imjLj +

miPi + niMi in H1(Σ \ intN(Li)). By Alexander duality, this module is isomor-
phic to H1(N(Li);Z) = Z, and the isomorphism is given by the linking number
with Li. It follows that 0 = �k(Li, ∂F ) =

∑
j �=imj�k(Li, Lj) + ni, which gives

the result.

In the usual case of an oriented link, a Seifert surface needs to be connected in
order to be useful. In the general case of a multilink, it has to be “as connected
as possible”. More precisely, a Seifert surface for L(m) is a good Seifert surface
if it has d = gcd(m) connected components.

Lemma (3.2). Given a multilink L(m), there exists a good Seifert surface for
L(m).

Proof. One easily shows that there exists a Seifert surface for L(m) (see
Lemma 3.1 [3]). If d > 1, a good Seifert surface for L(m) is given by d parallel
copies of a connected Seifert surface for L(md ). Therefore, it may be assumed
that d = 1. Let F be any Seifert surface for L(m) without closed component,
and let us denote by i+ (resp. i−) the epimorphism H0(F ) → H0(Σ \ F ) in-
duced by pushing in the positive (resp. negative) normal direction off F . If i+
and i− are not isomorphisms, it is possible to reduce the number of connected
components of F by handle attachment. So, let us assume that all the possible
handle attachment(s) have been performed, yielding F = F1 ∪ · · · ∪ Fn with
isomorphisms i+, i− : H0(F ) → H0(Σ \ F ). The automorphism of H0(F ) given
by h = (i−)−1 ◦ i+ cyclically permutes the connected components of F . (Indeed,
consider a component Fi of F ; since X = (Σ\F )∪F is path connected and i+, i−
are isomorphisms, there exists an integer m such that Fi = hm(F1).) It easily
follows that ∂Fi = ∂Fj in H1(N(L)) for i, j = 1, . . . , n. Therefore, the equality∑μ
i=1miLi = ∂F =

∑n
j=1 ∂Fj = n ∂F1 holds in H1(N(L)) =

⊕μ
i=1 ZLi. Hence,

n divides mi for i = 1, . . . , μ. Since gcd(m1, . . . ,mμ) = 1, F is connected.
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Let us now turn to the natural generalization to multilinks of the Seifert form.
Given F a good Seifert surface for L(m), the Seifert forms associated to F are
the bilinear forms

α+, α− : H1(F )×H1(F ) −→ Z

given by α+(x, y) = �k(i+x, y) and α−(x, y) = �k(i−x, y), where i+ (resp. i−)
is the morphism H1(F ) → H1(Σ \ F ) induced by pushing in the positive (resp.
negative) normal direction off F . (Note that we use the same notation for the
morphisms H0(i±) and H1(i±); it will always be clear from the context which
dimension is concerned.) Let us denote by A+ and A− the matrices associated
with these forms, called Seifert matrices. Here is the generalization of Seifert’s
famous theorem.

Theorem (3.3). Let F be a good Seifert surface for L(m), and let A+, A−
be associated Seifert matrices. Then, A+ − tA− is a presentation matrix of the

module H1(X̃).

Proof. Given F a good Seifert surface for L(m), let us denote Σ \ F by Y .
By the proof of Lemma (3.2) it is possible to number the connected components
F = F1 ∪ · · · ∪ Fd and Y = Y1 ∪ · · · ∪ Yd so that i+Fk = Yk and i−Fk = Yk−1

(with the indices modulo d ). Let us set N = F × (−1; 1) an open bicollar of F ,
N+ = F × (0; 1), N− = F × (−1; 0) and {Y i}i∈Z (resp. {N i}i∈Z) copies of Y
(resp. N). Define

E =
⊔
i∈Z

Y i �
⊔
i∈Z

N i
/

∼ ,

where Y i ⊃ N+ ∼ N+ ⊂ N i and Y i ⊃ N− ∼ N− ⊂ N i+1. The obvious

projection E
p→ X is the infinite cyclic covering X̃ → X determined by m.

Indeed, a loop γ in X lifts to a loop in E if and only if the intersection number
of γ with F is zero, that is, if 0 = γ · F = �k(L(m), γ) = m(γ).

Consider the Mayer-Vietoris exact sequence of Z[t±1]-modules associated to

the decomposition X̃ =
(⋃

i Y
i
) ∪ (⋃

iN
i
)
; it gives

(H1(F )⊕H1(F )) ⊗ Z[t±1]
φ1→ (H1(Y )⊕H1(F )) ⊗ Z[t±1]

ψ−→ H1(X̃) →
(H0(F )⊕H0(F )) ⊗ Z[t±1]

φ0→ (H0(Y )⊕H0(F )) ⊗ Z[t±1],

where the homomorphism φ0 is given by (α, β) 	→ (i+α+ t i−β, α+ β). Since F
is good, the homomorphisms i± : H0(F ) → H0(Σ \F ) are injective, and so is φ0.
Therefore, ψ is surjective and there is an exact sequence

(H1(F )⊕H1(F ))⊗ Z[t±1]
φ1→ (H1(Y )⊕H1(F )) ⊗ Z[t±1] → H1(X̃) → 0,

with φ1(α, β) = (i+α+ t i−β, α + β). This can be transformed into

H1(F )⊗ Z[t±1]
φ̃→ H1(Y )⊗ Z[t±1] → H1(X̃) → 0,

where φ̃(α) = i+α − t i−α. Let us fix bases B for H1(F ), B for H1(F ), and

consider the basis B∗
for H1(Y ) which is dual to B under Alexander duality.

The matrix of i+ (resp. i−) with respect to B and B∗
is given by AT+ (resp. AT−),

where A+ and A− are the Seifert matrices with respect to the bases B and B.
Therefore, a matrix of φ̃ is given by AT+ − tAT−. This concludes the proof.
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Figure 2. The proof of Lemma (4.1).

Corollary (3.4). Let L(m) be a multilink with m �= 0. If

mi =
∑
j �=i

mj�k(Li, Lj) = 0

for some index i, then ΔL(m)(t) = 0. If there is no such index then the matrices
A+ and A− are square, and ΔL(m)(t) =̇ det(A+ − tA−).

Proof. By the proof of Lemma (3.2), a Seifert surface F is good if and

only if rk H̃0(F ) = rk H̃0(Σ \ F ), which is equal to rkH2(F ) by Alexander

duality. It is easy to show that rk H̃0(F ) = r, the number of indices i with
mi =

∑
j �=imj�k(Li, Lj) = 0. Since χ(F ) = χ(F ), it follows that rkH1(F ) =

rkH1(F ) + r. So, if r = 0 then A+ − tA− is a square presentation matrix of

H1(X̃), and if r > 0 then there are more generators than relations. It follows

that Δ0H1(X̃) =̇ det(A+ − tA−) if r = 0, and Δ0H1(X̃) = 0 if r > 0.

4. The Torres conditions

Let us now illustrate how Corollary (3.4), along with Proposition (2.1) and
Lemma (2.2), can be used to study the multivariable Alexander polynomial. As
an example, we present an elementary proof of the Torres formula [13], quite
simpler than the original proof. (On the other hand, it should be mentioned
that more perspicuous proofs have since been given, for example in [9]).

Throughout this section, we will denote by �ij the linking number �k(Li, Lj).

Lemma (4.1). Let L(m)=L(m1, . . . ,mμ−1, 0) be a multilink, and let L′(m′)=
L′(m1, . . . ,mμ−1) be the multilink obtained from L(m) by removing the last com-
ponent Lμ. Then,

ΔL(m)(t) =̇ (t
∑

imi�iμ − 1)ΔL′(m′)(t).

Proof. If mi =
∑
j �=imj�ij = 0 for some index i then the lemma holds by

Corollary (3.4). It may therefore be assumed that there is no such index. Let
F be a good Seifert surface for L(m); then, a good Seifert surface for L′(m′)
is given by F ′ = F ∪ (F ∩ N(Lμ)). By Lemma (3.1), F ∩ N(Lμ) consists of
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dμ =
∑μ−1
i=1 mi�iμ discs (recall Figure (1)). Furthermore, F = F

′∪Lμ. Therefore,
we have the natural isomorphisms

H1(F ) = H1(F
′)⊕

dμ⊕
j=1

ZTj and H1(F ) = H1(F
′
)⊕

dμ⊕
j=1

Zγj ,

where the cycles Tj correspond to the boundaries of the discs, and the γj are
the transverse cycles depicted in Figure (2). The associated Seifert matrices A±
and A′

± are related by

A+ =

⎛⎜⎜⎜⎝
A′

+ 0

∗
1

. . .

1

⎞⎟⎟⎟⎠ and A− =

⎛⎜⎜⎜⎜⎜⎝
A′

− 0

∗
0 1
1 0

. . .
. . .

1 0

⎞⎟⎟⎟⎟⎟⎠ .

Corollary (3.4) then gives

ΔL(m) =̇ det(A+ − tA−) =

∣∣∣∣∣∣∣∣∣∣∣

A′
+ − tA′

− 0

∗
1 −t
−t 1

. . .
. . .

−t 1

∣∣∣∣∣∣∣∣∣∣∣
= (tdμ − 1) det(A′

+ − tA′
−) =̇ (tdμ − 1)ΔL′(m′)(t)

and the lemma is proved.

The demonstration of the Torres formula is now a mere translation of Lemma
(4.1) via Proposition (2.1).

Torres formula (4.2). [13] Let L = L1 ∪ · · · ∪ Lμ be an oriented link with
μ ≥ 2 components, and let L′ be the sublink L1 ∪ · · · ∪ Lμ−1. Then,

ΔL(t1, . . . , tμ−1, 1) =̇

{
t
�12
1 −1

t1−1 ΔL′(t1) if μ = 2;

(t
�1μ
1 · · · t�μ−1,μ

μ−1 − 1)ΔL′(t1, . . . , tμ−1) if μ > 2.

Proof. Let us denote by Δ′ the right-hand side of this formula, and let
m1, . . . ,mμ−1 be arbitrary integers with d = gcd(m1, . . . ,mμ−1) > 0. We have
the equalities

Δ′(tm1 , . . . , tmμ−1) =

{
tm1�12−1
tm1−1 ΔL′(tm1) if μ = 2;

(t
∑

imi�iμ − 1)ΔL′(tm1 , . . . , tmμ−1) if μ > 2,

(Proposition (2.1)) =̇
1

td − 1
(t

∑
imi�iμ − 1)ΔL′(m′)(t)

(Lemma (4.1)) =̇
1

td − 1
ΔL(m)(t)

(Proposition (2.1)) =̇ ΔL(t
m1 , . . . , tmμ−1 , 1)

and the proof is settled by Lemma (2.2).

Using the same method, it is not hard to show the following result.
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Fox-Torres relation (4.3). [13, 5] Let L = L1 ∪ · · · ∪ Lμ be an oriented
link with μ ≥ 2 components. Then,

ΔL(t
−1
1 , . . . , t−1

μ ) = (−1)μ tν1−1
1 · · · tνμ−1

n ΔL(t1, . . . , tμ)

with integers νi such that νi ≡
∑
j �ij(mod 2) if ΔL �= 0.

These results provide necessary conditions for a polynomial Δ in Λμ to be the
Alexander polynomial of a μ-component link with fixed �k(Li, Lj) = �ij . They
are known as the Torres conditions (see [10] for a precise statement). Since
these conditions are not sufficient [7], [11], the problem is now to find stronger
conditions. By means of a close study of the homology H1(F ) and H1(F ), it
is possible to find necessary conditions for a polynomial Δ in Z[t±1] to be the
Alexander polynomial of a multilink. Via Proposition (2.1), this translates into
the following result (see [2] for a proof).

Proposition (4.4). Let L be an oriented link with μ ≥ 2 components. Then,
its Alexander polynomial ΔL satisfies the following conditions. For all integers
m = (m1, . . . ,mμ) with d = gcd(m1, . . . ,mμ) and di = gcd(mi,

∑
jmj�ij), there

exists some polynomial ∇L(m)(t) in Z[t±d] such that:

–
∏μ
i=1(t

di − 1)∇L(m)(t) =̇ (td − 1)2 ΔL(t
m1 , . . . , tmμ);

– ∇L(m)(t
−1) = ∇L(m)(t);

– |∇L(m)(1)| = d2 D
d1···dμm1···mμ

, where D is any (μ− 1)× (μ − 1) minor deter-

minant of the matrix⎛⎜⎜⎜⎝
−∑

jm1mj�1j m1m2�12 . . . m1mμ�1μ
m1m2�12 −∑

jm2mj�2j . . . m2mμ�2μ
...

...
. . .

...
m1mμ�1μ m2mμ�2μ . . . −∑

jmμmj�μj

⎞⎟⎟⎟⎠ ;

– If mi = 0 for some index i, then ∇L(m) = ∇L′(m′), where L
′ denotes the

sublink L \ Li and m′ = (m1, . . . , m̂i, . . . ,mμ). ��
This result easily implies the Torres conditions. It can also be thought of

as a generalization of a theorem of Hosokawa [8], which corresponds to the case
m1 = · · · = mμ = 1. At first sight, it might therefore seem more general than the
Torres conditions. Unfortunately, this is not the case: it can be shown that every
polynomial Δ which satisfies the Torres conditions also satisfies the conditions
of Proposition (4.4) (see [2]).

By means of a somewhat closer study of the Seifert matrices A±, it should be
possible to find new properties of ΔL(m). They would translate into properties
of ΔL, and provide new conditions, stronger than the ones of Torres.
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Switzerland
David.Cimasoni@math.unige.ch

References

[1] J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc.
30 (1928), 275–306.

[2] D. Cimasoni, Alexander invariants of multilinks, PhD thesis, University of Geneva, 2002.
[3] D. Eisenbud and W. Neumann, Three-dimensional link theory and invariants of plane

curve singularities, Ann. of Math. Stud. 110, Princeton Univ. Press, Princeton, NJ, 1985.
[4] R. H. Fox, Free differential calculus. II. The isomorphism problem of groups, Ann. of

Math. 59 (1954), 196–210.
[5] R. H. Fox and G. Torres, Dual presentations of the group of a knot , Ann. of Math. 59

(1954), 211–218.
[6] R. H. Fox, Some problems in knot theory , In: Topology of 3-manifolds and related topics,

Proc. 1961 Top. Inst. Georgia, Prentice-Hall, Englewood Cliffs, 1962, pp. 168–176.

[7] J. Hillman, The Torres conditions are insufficient , Math. Proc. Cambridge Philos. Soc.
89 (1981), 19–22.

[8] F. Hosokawa, On ∇-polynomial of links, Osaka Math. J. 10 (1958), 273–282.
[9] A. Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel, 1996.

[10] J. Levine, A method for generating link polynomials, Amer. J. Math. 89 (1967), 69–84.
[11] M. L. Platt, Insufficiency of Torres’ conditions for two-component classical links, Trans.

Amer. Math. Soc. 296 (1986), 125–136.
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A NOTE ON TORSION IN K3 OF THE REAL NUMBERS

JOSÉ LUIS CISNEROS-MOLINA

Abstract. Following [9], we prove that every torsion element in K3(R)
and in its indecomposable part K ind

3 (R) can be constructed using Brieskorn
homology 3-spheres endowed with a representation of its fundamental group
in SL4(R). Also, using the generators of the Bloch group B(R) constructed
via the dilogarithm identities in [7], we give an explicit map K ind

3 (R)
tor

→
B(R)tor.

1. Introduction

The regulator map is a homomorphism e : K2n+1(C) → C/Z defined indepen-
dently by Beilinson [3] and Karoubi [10] as a secondary Chern character. In [9]
J. D. S. Jones and B. W. Westbury constructed elements in the algebraic K-
group Kn(R) using homology n-spheres endowed with a representation of their
fundamental group in the general linear group over the ring R. They also com-
puted the image of these elements in K3(C) under the regulator map. Using
these computations, they proved that every torsion element in K3(C) can be
constructed using Brieskorn homology 3-spheres. Finally, combining these com-
putations with results of Merkurjev and Suslin [17] and Levine [15], they gave an
explicit generator of the torsion subgroup of K3 of the ring of algebraic integers
in a non-trivial cyclotomic extension of the rationals of degree coprime to 6. The
first aim of the present paper is to give analogous results for K3(R) and its inde-
composable part K ind

3 (R), that is, every torsion element in K3(R) and K
ind
3 (R)

can be constructed using Brieskorn homology 3-spheres. Following [9], it would
be good to find explicit generators in terms of Brieskorn homology 3-spheres of
the torsion subgroup of K3 of the real part of a non-trivial cyclotomic extension
of the rationals. So far we have not been able to find such generators, but we
mention a possible way to do it.

The Bloch group B(F ) of a field F is a group closely related with K ind
3 (F ) by

an exact sequence due to Suslin [21]. In [7] Frenkel and Szenes, using Roger’s
dilogarithm, constructed a map L : B(R) → R/(π2Z). Using dilogarithm iden-
tities they constructed generators of the torsion subgroup of the Bloch group of
totally real fields. Using these generators, the representation of torsion elements
in K ind

3 (R) by Brieskorn homology 3-spheres, and combining the computations
of [9] and [7], we give an explicit homomorphism

K ind
3 (R)tor → B(R)tor

2000 Mathematics Subject Classification: 19D99, 11R70.
Keywords and phrases: K-theory of real numbers, homology spheres, bloch group, diloga-

rithm identities.
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which, composed with the homomorphismL, is related with the map i∗ : K3(R) →
K3(C) induced by the inclusion composed with the regulator e : K3(C) → C/Z.

2. Homology 3-spheres and torsion in K3(C)

Let Σ be a homology n-sphere; since

0 = H1(Σ,Z) = π1(Σ)/[π1(Σ), π1(Σ)],

π1(Σ) can have no abelian quotients and so it is perfect. Given a representation
α : π1(Σ) → GLN (R), let f : Σ → BGLN (R) be the map which induces α on
π1. Composing this map with the inclusion BGLN (R) → BGL(R) and applying
Quillen’s +-construction we get

Sn � Σ+ → BGL(R)
+
,

since the +-construction is functorial. Here � denotes homotopy equivalence.
The homotopy class of this map gives us the element in K-theory

[Σ, α] ∈ Kn(R) = πn(BGL(R)
+).

Beilinson [3] and Karoubi [10] defined independently the regulator map

(2.1) e : K2n+1(C) → C/Z

as a secondary Chern character. Alternative constructions of this map can be
found in [11] and [8]. The regulator map satisfies the following properties:

1. It is an isomorphism on K1(C) ∼= C∗ → C/Z.
2. The homomorphism e gives an isomorphism of the torsion subgroup of

K2n+1(C) with Q/Z,
3. It vanishes on products.
For a proof see [10] or [9].

In [9] Jones and Westbury give a formula to compute the real part of e[Σ, α]
when Σ is a Seifert homology sphere and α a representation in which the central
element of π1(Σ) acts as a scalar multiple of the identity; for instance, this is the
case when α is irreducible, and in general for any decomposable representation.
This formula was obtained using the fact that

(2.2) e([Σ, α]) = ξ̃(α,D) ∈ C/Z

given in [9, Thm. A], where ξ̃(α,D) is the reduced ξ-invariant of the Dirac
operator D on Σ twisted by the representation α defined in [1, (3.2)].

They also study in detail the elements [Σ(p, q, r), α] where Σ(p, q, r) is a
Brieskorn homology 3-sphere and α some representation α : π1(Σ(p, q, r)) →
SL2(C). Brieskorn homology 3-spheres Σ(p, q, r) with (p, q, r) pairwise coprime
integers, are given explicitly by

Σ(p, q, r) = { (z1, z2, z3) | zp1 + zq2 + zr3 = 0 } ∩ S5 ⊂ C3.

The fundamental group π1(Σ(p, q, r)) has a presentation of the form
(2.3)

〈h, x1, x2, x3| [xi, h] = 1, xp1 = h−b1 , xq2 = h−b2 , xr3 = h−b3 , x1x2x3 = h−b0〉,
where

−pqrb0 + qrb1 + prb2 + pqb3 = 1.
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It is always possible to choose b1, b2, b3 to be odd; for example, if p is even then
b1 must be odd and if p is odd then replacing x1 by hx1 changes the parity of
b1. From now on we assume that b1, b2, b3 are odd.

Consider a representation α : π1(Σ(p, q, r)) → SL2(C); since π1(Σ(p, q, r)) is
perfect, any non-trivial representation of this kind is irreducible and, therefore,
the central element h acts as an scalar multiple of the 2 × 2 identity matrix I.
Thus α(h) = (−I)f and, in view of the relations of the presentation (2.3) of
π1(Σ(p, q, r)), the representation α is given by the matrices A = α(x1), B =
α(x2) and C = α(x3) in SL2(C) satisfying the equations

Ap = (−I)f , Bq = (−I)f , Cr = (−I)f , ABC = (−I)fb0 .
Let ζd = e2πi/d ∈ C be the standard primitive d-th root of unity. Then the
respective eigenvalues of the matrices A, B and C are given by

ζk2p, ζ
−k
2p 0 < k < p,

ζl2q, ζ
−l
2q 0 < l < q,

ζm2r, ζ
−m
2r 0 < m < r,

such that k ≡ l ≡ m ≡ f mod 2. By [9, Lemma. 6.1] we have that if one of
A, B, C is ±I, then the representation α is trivial and by [9, Thm. 6.2] that
the function given by α 
→ (k, l,m) defines a one to one correspondence between
conjugacy classes of non-trivial representations of π1(Σ(p, q, r)) in SL2(C) and
triples (k, l,m) with

0 < k < p, 0 < l < q, 0 < m < r, k ≡ l ≡ m mod 2.

Using this characterisation of the non-trivial representations of π1(Σ(p, q, r)) in
SL2(C) and the aforementioned formula for the real part of e[Σ(p, q, r), α], Jones
and Westbury proved in [9, Thm. D] that every element in K3(C) of finite order
is of the form [Σ(p, q, r), α], for Σ(p, q, r) a Brieskorn homology 3-sphere and
some representation α : π1(Σ(p, q, r)) → SL2(C).

The value of e[Σ(p, q, r), α] with α corresponding to the triple (k, l,m) is given
by [9, Proof of Thm. D]

(2.4) e([Σ(p, q, r), α]) = −q
2r2k2 + p2r2l2 + p2q2m2

4pqr
.

Let Z[ζd] be the ring of integers in the cyclotomic field Q(ζd). Then combining
the results of Borel [4], Merkurjev and Suslin [17], and Levine [15], we have that

(2.5) K3(Z[ζd]) = K3(Q(ζd)) = Z/w2(d)⊕ Zr2 ,

where

w2(d) = lcm(24, 2d)

and r2 is the number of complex places of Q(ζd). In particular, note that if
(6, d) = 1 then the torsion subgroup of K3(Q(ζd)) is exactly Z/24d.

In [9, Thm. E] Jones and Westbury proved that if (6, d) = 1 then there ex-
ists a representation α(d) : π1(Σ(2, 3, d)) → SL2(Z[ζd]) such that the element
[Σ(2, 3, d), α(d)] ∈ SL2(Z[ζd]) ⊂ SL2(Q(ζd)) is a generator of the torsion sub-
group. They give explicitly the representation α(d) in [9, Proof of Thm. E].
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3. Torsion in K3(R)

By a result of Suslin [20, Thm. 4.9], we have that

K3(R) ∼= Q/Z ⊕ V,

K3(C) ∼= Q/Z ⊕W,

where V and W are uniquely divisible groups, i.e., Q-vector spaces. There are
natural representations

un : GLn(R) → GLn(C),

vn : GLn(C) → GL2n(R),

where un is the inclusion and, if A ∈ GLn(C), then

(3.1) vn(A) =

(�A −A
A �A

)
,

where A = �A+iA. Note that u2n◦vn(A) is conjugate to
(
A 0
0 A

)
by

( 1
2 I

i
2 I

iI I

)
in

GLn(C). These representations are compatible with stabilisation and therefore
induce homomorphisms

i∗ : K3(R) → K3(C),

i∗ : K3(C) → K3(R),

where the former homomorphism corresponds to the one induced by the inclusion
i : R → C and the later is called the transfer homomorphism. We have that

the homomorphism i∗ restricted to the torsion subgroup i∗ : Q/Z
×2−−→ Q/Z is

given by multiplication by 2 and i∗ restricted to the torsion subgroup i∗ : Q/Z
∼=−→

Q/Z is an isomorphism [19, (1.18)].
Using the transfer homomorphism we can give the first result of this paper

which is an analog of [9, Thm. D] for torsion elements of K3(R)

Theorem (3.2). Every element in K3(R) of finite order can be written as
[Σ(p, q, r), β] for some representation β : π1(Σ(p, q, r)) → SL4(R).

Proof. By [9, Thm. D] any torsion element inK3(C) is of the form[Σ(p, q, r), α]
with α : π1(Σ(p, q, r)) → SL2(C). Since i∗ is and isomorphism on torsion, any
torsion element in K3(R) is of the form i∗([Σ(p, q, r), α]). From the definitions of
[Σ(p, q, r), α] and i∗ we have that i∗([Σ(p, q, r), α])=[Σ(p, q, r), v2(α)]. Thus, the
theorem follows by taking β = v2(α). We just need to check that β has image
in SL4(R); but detβ = detu2n(β) = det

(
α 0
0 α

)
= 1 since α : π1(Σ(p, q, r)) →

SL2(C).

Using Theorem (3.2) we can check that the homomorphism i∗ on torsion
is given by multiplication by 2. Let a ∈ K3(R)tor; by Theorem (3.2) a =
[Σ(p, q, r), β] with β = v2(α) for some representation α : π1(Σ(p, q, r)) → SL2(C).
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We have that

i∗(a) = i∗([Σ(p, q, r), β]) = i∗ ◦ i∗([Σ(p, q, r), α])
= [Σ(p, q, r), u4(v2(α))]

= [Σ(p, q, r), α ⊕ α]

= [Σ(p, q, r), α] + [Σ(p, q, r), α]

= 2[Σ(p, q, r), α],

since α and α are isomorphic representations because both of them determine
the same triple (k, l,m).

Using formula (2.2) we can represent the unique element f of order 2 inK3(R)
which is the generator of the kernel of i∗ : K3(R) → K3(C). The Brieskorn
homology 3-sphere Σ(2, 3, 5) is also known as the Poincaré homology 3-sphere.

Its fundamental group is isomorphic to the binary icosahedral group Ĩ, which is
the lifting of the group of isometries of a regular icosahedron I ⊂ SO(3) to S3

under the projection S3 → SO(3). We have that Σ(2, 3, 5) ∼= S3/Ĩ, see [13]. The

group Ĩ has order 120 and it is the only finite group which is the fundamental
group of a homology 3-sphere [12]. It has nine irreducible representations αi,
i = 1, . . . , 9 and the character table can be found in [6, Table IV]. In [6, p. 226]

the author computed the invariants ξ̃(αi, D) for the Dirac operator of Σ(2, 3, 5)

twisted by the representations αi. In particular, we have that ξ̃(α6, D) = 5
6 and

ξ̃(α8, D) = 1
6 . Hence ξ̃(α6 ⊕ 4α8, D) = 1

2 mod Z and by (2.2) we have that the
element [Σ(2, 3, 5), α6⊕ 4α8] ∈ K3(C) has order 2; therefore the generator of the
kernel of i∗ is given by

f = i∗([Σ(2, 3, 5), α6 ⊕ 4α8]) ∈ K3(R).

4. Torsion in K ind
3 (R)

Let F be a field and let Kdec
3 (F ) be the subgroup ofK3(F ) generated by prod-

ucts from K1(F ). The indecomposable part K ind
3 (F ) of K3(F ) is the quotient

K ind
3 (F ) = K3(F )/K

dec
3 (F ).

In [18] Milnor defined a graded ring KM
∗ (F ), now known as the Milnor K-

ring, to be the quotient of the tensor algebra of the multiplicative group F× of
F by the ideal generated by the homogeneous elements x⊗ (1−x). The Milnor
K-group KM

n (F ) is defined to be the subgroup of elements of degree n. We
shall write {x1, . . . , xn} for the image of x1 ⊗ · · · ⊗ xn in KM

n (F ). There is a
natural map

φn : K
M
n (F ) → Kn(F ),

which is an isomorphism for 0 ≤ n ≤ 2. In the present paper we are interested in
this map for n = 3 and we have that the image of KM

3 (F ) in K3(F ) is precisely
Kdec

3 (F ). Therefore we have that

(4.1) K ind
3 (F ) = K3(F )/K

M
3 (F ).

From [2] we have that KM
3 (C) is a Q-vector space, and from [18] that KM

3 (R) ∼=
Z2 ⊕ H , where H is a Q-vector space. The summand Z2 is generated by the
nontrivial symbol {−1,−1,−1}. From [5] it is known that φ3 : K

M
3 (R) → K3(R)

is injective. The image of {−1,−1,−1} under φ3 is the unique element f of order
2 in K3(R) and generates the kernel of the homomorphism i∗ : K3(R) → K3(C).
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Recall that the torsion subgroup of K3(R) is isomorphic to Q/Z, thus the sub-
group of order 2 corresponding to the torsion subgroup of KM

3 (R) is isomorphic

to the subgroup 1
2Z/Z of Q/Z and therefore K ind

3 (R)tor
∼= Q/Z

1
2Z/Z

∼= Q/ 1
2Z. On

the other hand, since KM
3 (C) has no torsion, the projection K3(C) → K ind

3 (C)
is an isomorphism in the torsion subgroups. Hence we have the following com-
mutative diagram

(4.2) K3(R)tor
∼= Q/Z

i∗ ��

p

��

Q/Z ∼= K3(C)tor

∼=
��

K ind
3 (R)tor

∼= Q/ 1
2Z ∼=

�� Q/Z ∼= K ind
3 (C)tor.

Since i∗ is given by multiplication by 2, we have that the lower isomorphism is
given by

Q/ 1
2Z

×2 ��
��
× 1

2

Q/Z.

This agrees with the result proved independently and simultaneously by Levin
[15, Cor. 4.6] and Mercurjev–Suslin [17, Prop. 11.3] which says that if E is an
extension field of F then the natural homomorphism K ind

3 (F ) → K ind
3 (E) is

injective.
If [Σ(p, q, r), β] ∈ K3(R)tor we shall denote its image in K ind

3 (R)tor by
〈Σ(p, q, r), β〉, that is, 〈Σ(p, q, r), β〉 is the coset [Σ(p, q, r), β] + 〈f〉 with 〈f〉
the subgroup of order 2 generated by f . Thus we have a result analogous to
Theorem (3.2) for K ind

3 (R)tor.

Theorem (4.3). Every element in K ind
3 (R) of finite order can be written as

〈Σ(p, q, r), β〉 for some representation β : π1(Σ(p, q, r)) → SL4(R).

Let Q(ζd)
+ be the real part of the cyclotomic field Q(ζd). Again by the results

of Borel [4], Merkurjev and Suslin [17] and Levine [15] we have that

(4.4) K3(Q(ζd)
+) = Z/2w2(d) ⊕ (Z/2)r1−1 ⊕ Zr2

where as before

w2(d) = lcm(24, 2d)

and r1 and r2 are respectively the number of real and complex places of Q(ζd).
On the other hand, in [2] Bass and Tate proved that, for a number field F ,

KM
n (F ) ∼= (Z/2)r1 where r1 is the number of real places of F . Since Q(ζd) is

totally imaginary (r1 = 0), KM
3 (Q(ζd)) has no torsion. Then combining (4.1),

(2.5) and (4.4) we have that

K ind
3 (Q(ζd))tor

∼= K3(Q(ζd))tor
∼= Z/w2(d),

K ind
3 (Q(ζd)

+)tor
∼= K3(Q(ζd)

+)tor/(Z/2)
∼= Z/w2(d).
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Thus we have a commutative diagram analogous to (4.2):
(4.5)

K3(Q(ζd)
+)tor

∼= Z/2w2(d) ⊕ (Z/2)r1−1 i∗ ��

p

��

Z/w2(d) ∼= K3(Q(ζd))tor

∼=
��

K ind
3 (Q(ζd)

+)tor
∼= Z/w2(d) ∼=

�� Z/w2(d) ∼= K ind
3 (Q(ζd))tor.

Since i∗ is given by multiplication by 2, we have that an element of order 2w2(d)
of K3(Q(ζd)

+)tor is sent by i∗ to a generator of K3(Q(ζd))tor.

Problem (4.5). It would be good to prove a theorem analogous to Theo-
rem E of [9] for K3(Q(ζd)

+), that is, for some Brieskorn homology 3-sphere
Σ(p, q, r) find a representation β(d) : π1(Σ(p, q, r)) → SLn(Q(ζd)

+) such that
the element [Σ(p, q, r), β(d)] ∈ K3(Q(ζd)

+) is an element of order 2w2(d). Then
using diagram (4.5) we would also get generators for the torsion subgroups of
K ind

3 (Q(ζd)
+) and K3(Q(ζd)).

One possible way to do this is to find an element [Σ(p, q, r), γ] in K3(C) of
order 2w2(d), then the element i∗([Σ(p, q, r), γ]) = [Σ(p, q, r), v2(γ)] ∈ K3(R)
also has order 2w2(d). It would then be enough to show that v2(γ) is conjugate
in SL4(R) to a representation with image in SL4(Q(ζd)

+).

Remark (4.5). For the case (6, d) = 1 we have that K3(Q(ζd)
+) ∼= Z/48d ⊕

(Z/2)r1−1 and K ind
3 (Q(ζd)

+)tor
∼= K ind

3 (Q(ζd))tor
∼= K3(Q(ζd))tor

∼= Z/24d. Us-
ing the representation α(d) of the generator (of order 24d) [Σ(2, 3, d), α(d)] ∈
K3(Q(ζd)) given in [9, Proof of Thm. E], one could try to find the representa-
tion β(d) showing that the representation α(d) : π1(Σ(2, 3, d)) → SL2(Q(ζd)) is
conjugate in SL2(C) to a representation β(d) with image in SL2(Q(ζd)

+). Such
representation would give an element [Σ(p, q, r), β(d)] ∈ K3(Q(ζd)

+). Consider-
ing β(d) as a complex representation, that is, taking u2(β), it is conjugate to α(d)
and therefore i∗([Σ(2, 3, d), β(d)]) = [Σ(2, 3, d), α(d)]. Since [Σ(2, 3, d), α(d)] has
order 24d and i∗ is given by multiplication by 2, the element [Σ(2, 3, d), β(d)] ∈
K3(Q(ζd)

+) would have order 48d.

5. The Bloch group and dilogarithm identities

In this section we define the Bloch group B(F ) of a field F , which is a group
closely related to K ind

3 (F ). Next, we define the dilogarithm and state some of
its functional identities, and show how Frenkel and Szenes used the dilogarithm
identities in [7] to construct generators of the torsion subgroup of the Bloch
group of totally real fields.

Let F× the multiplicative group of F . Let D(F ) be the free abelian group
generated by formal symbols [x] with x ∈ F \ {0, 1}. Let C(F ) be the kernel of
the map

D(F )
λ−→ F× ∧ F×,

[x] 
→ (x ∧ (1− x)).
(5.1)



124 JOSÉ LUIS CISNEROS-MOLINA

One can check that the elements of the form

(5.2) [x]− [y] + [y/x]− [(1− x−1)/(1− y−1)] + [(1 − x)/(1− y)]

with x �= y ∈ F× \ {1} are contained in C(F ). The quotient B(F ) of C(F ) by
the subgroup generated by the elements of this form is called the Bloch group.

The following exact sequence due to Suslin [21, Thm. 5.2] gives the precise
relation between K ind

3 (F ) and the Bloch group

(5.3) 0 → Tor(F×, F×)̃ → K ind
3 (F )

τ−→ B(F ) → 0,

where Tor(F×, F×)̃ is the unique non-trivial extension of Z/2 by the group
Tor(F×, F×).

From now on let F be a totally real field of algebraic numbers. Then

Tor(F×, F×)̃ ∼= Z/4.

Therefore B(F ) ∼= K ind
3 (F )/Z4. In particular, B(Q(ζd)

+) is cyclic of order 6d
(12,d) .

In [7] Frenkel and Szenes, using the Rogers’ dilogarithm, defined a map
L : B(R) → R/(π2Z) and, using dilogarithm identities, they constructed a set
of generator for B(F ) with F a totally real field. We shall now sketch their
construction:

The Rogers’ dilogarithm is defined by

L(x) = −1

2

∫ x

0

( log(1− y)

y
+

log y

1− y

)
dy

and it satisfies the following functional identities (see for instance [16, 14, 7]):

L(x) + L(1 − x) = L(1) =
π2

6
,(5.4)

L(x) + L(y) = L(xy) + L(
x(1 − y)

1− xy
) + L(

y(1− x)

1− xy
),(5.5)

k∑
j=1

L(
sin2 π

k+2

sin2 (j+1)π
k+2

) =
3k

k + 2
· π

2

6
.(5.6)

Let L̄′ : D(R) → R be the map which sends [x] to L(x). We can restrict it to

C(R). Now consider the slightly modified map L̄ = L̄′ − π2

6 : D(R) → R. Then
for any element α of C(R) of the form (5.2), by relations (5.4) and (5.5), one has
L̄(α) = 0 mod π2. Hence this map gives rise to a well defined homomorphism

L : B(R) → R/(π2Z).

Let Q(ζd)
+ be the real part of the cyclotomic field Q(ζd). We now describe the

construction of torsion elements in B(Q(ζd)
+). Put

δj(d) =
sin2 π

d

sin2 π(j+1)
d

, j = 1, . . . , d− 3, d > 3.

Since ζkd = cos 2πk
d + i sin 2πk

d ∈ Q(ζd), and sin2 θ = 1
2 + 1

2 cos 2θ, we have that
δj(d) ∈ Q(ζd)

+. Define the symbols Δd ∈ D(Q(ζd)
+) by the formula

Δd = 2

d−3∑
j=1

[δj(d)].
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By [7, Lemma 5.3], for each d > 3, Δd ∈ C(Q(ζd)
+). Thus the symbol Δd

represents an element of B(Q(ζd)
+).

Using the symbols Δd and the map L : B(R) → R/(π2Z), Frenkel and Szenes
constructed generators of the Bloch group B(F ) for F a totally real field.

Proposition (5.7) (Frenkel–Szenes [7, Prop. 5.4]). Let F be a totally real
number field and mp the maximal number m ≥ 0 such that F contains Q(ζpm)+.
Then the symbols Δpmp and the symbol Δ6, ifm3 = 1, generate the group B(F ) =
K ind

3 (F )/Z4.

Sketch of proof: The proof uses the following facts:
• By results of Merkurjev and Suslin [17] and Levine [15], for a totally real

field F , the group K ind
3 (F ) is isomorphic to the cyclic group of order 2

∏
pmp ,

where the product is taken over all primes. Hence the group B(F ) is cyclic of
order b(F ) = 1

2

∏
pmp .

• The symbol Δ6 = 4[ 13 ] + 2[ 14 ] ∈ B(Q) belongs to B(F ).
• By the identity (5.6) we have

(5.8)
L(Δd) =

(2− d

3
π2 − 2

d
π2

)
mod π2,

L(Δ6) =
π2

3
mod π2,

and therefore

L(Δpmp )− (2 − pmp)L(Δ6) = − 2

pmp
π2 mod π2.

The order of Δd is at least the order of its image, therefore these elements of
B(F ) generate a cyclic group of order at least b(F ), hence they generate the whole
group B(F ). Note that m3 ≥ 1 for any number field. If m3 = 1, Δ6 generates
the 3-torsion subgroup of B(F ). If m3 > 1, then Δ6 = 3m3−1Δ3m3 .

The third fact shows that the images of the elements Δd under the homo-
morphism L have the same order as the orders of these elements. This implies
that for a totally real number field F the homomorphism L : B(F ) → R/(π2Z)
is injective [7, Cor. 5.5].

6. Relations with the regulator map

It is known that the torsion subgroup ofB(R) is generated by the images of the
groups B(Q(ζd)

+) of real parts of cyclotomic fields, and is therefore isomorphic
to Q/Z. Thus we see that it is generated by the symbols Δd, and that the map
L is injective on the torsion subgroup of B(R).

Now we discuss the connection between the map L and the regulator. Note
that since the regulator (2.1) vanishes on products it descends to a homomor-
phism

K ind
3 (C) → C/Z.

By results of Levin [15, Cor. 4.6] and Mercurjev–Suslin [17, Prop. 11.3] K ind
3 (R)

embeds into K ind
3 (C). Under this embedding, the torsion part of K ind

3 (R) is
mapped isomorphically onto the torsion subgroup of K ind

3 (C), which coincides
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with the subgroup Tor(C,C)̃ ∼= Q/Z of K ind
3 (C). Note that there is no torsion in

the Bloch group B(C), since Tor(C,C)̃ is the torsion subgroup of K ind
3 (C) and

by (5.3) B(C) ∼= K ind
3 (C)/Tor(C,C)̃. Because of that we cannot extend the map

L from B(R) to B(C) (the five-term relation for the Rogers’ dilogarithm does
not hold for complex arguments).

In order to compare the map L with the regulator we need to renormalise the
last one composing it with the homomorphism C/Z

∼−→ C/(2πi)2Z to get a map

r : K ind
3 (C) → C/(2πi)2Z.

Taking the composition

K ind
3 (R) → K ind

3 (C)
r→ C/(2πi)2Z

arg(·)→ R/(2πi)2Z

and then taking the projection R/(2πi)2Z → R/(π2Z) to kill the subgroup
Tor(R×,R×)̃ of K ind

3 (R), gives a map

(6.1) r̄ : K ind
3 (C) → R/π2Z

which descends to a map

r̃ : B(R) → R/π2Z.

In [7] Frenkel and Szenes conjectured that this map coincides with the map
L. This is equivalent to saying that the diagram

(6.2) K ind
3 (R) ��

τ

��

K ind
3 (C) �� C/(2πi)2Z

arg(·) �� R/(2πi)2Z

��
B(R)

L
�� R/π2Z

commutes, where τ is the map in Suslin’s exact sequence (5.3).
Instead of proving that r̄ = L ◦ τ , one could try to prove that the image of r̄

is contained in the image of L and using the fact that L is injective, one could
take the composition ψ = L−1 ◦ r̄ to get a homomorphism

ψ : K ind
3 (R) → B(R),

which by definition makes the diagram (6.2) commute after replacing τ by ψ.
Hence, to prove the conjecture it would be enough to prove that ψ is precisely
the homomorphism τ .

Combining Theorem (4.3) with Proposition (5.7) we can do this, but restricted
to the torsion subgroups, and define an explicit homomorphism

ψ : K ind
3 (R)tor → B(R)tor.

Theorem (6.3). There is a homomorphism ψ : K ind
3 (R)tor → B(R)tor given

by

〈Σ(p, q, r), β〉 
→ C
(
(2 − pqr)Δ6 −Δpqr

)
,

where β = v2(α) with α : π1(Σ(p, q, r)) → SL2(C), C = q2r2k2+p2r2l2+p2q2m2,
and (k, l,m) is the triple corresponding to the representation α.
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Proof. Recall that

i∗(〈Σ(p, q, r), β〉) = [Σ(p, q, r), u4 ◦ v2(α)]
= [Σ(p, q, r), α⊕ α]

= 2[Σ(p, q, r), α].

Combining (2.4) with the definition of the map r̄ : K ind
3 (R) → R/π2Z in page 126

we have that

r̄([Σ(p, q, r), β]) =
2C

pqr
π2,

but by (5.8) this is precisely the image of C
(
(2− pqr)Δ6−Δpqr

)
under the map

L. Finally, the injectivity of L makes the homomorphism well-defined.

Remark (6.3). As we mentioned above, it would be of interest to compare the
map ψ : K ind

3 (R)tor → B(R)tor of Theorem (6.3) with the map τ : K ind
3 (R) →

B(R) of Suslin’s exact sequence (5.3) restricted to the torsion subgroup. If they
turn out to be the same, this would prove the Frenkel–Szenes conjecture at the
torsion level.
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128 JOSÉ LUIS CISNEROS-MOLINA

[10] M. Karoubi, Homologie cyclique et K-théorie, Astérisque. Société Mathématique de
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VOLUMES FOR TWIST LINK CONE-MANIFOLDS

D. DEREVNIN, A. MEDNYKH AND M. MULAZZANI

Abstract. Recently, the explicit volume formulae for hyperbolic cone-
manifolds, whose underlying space is the 3-sphere and the singular set is the
knot 41 and the links 521 and 622, have been obtained by the second named
author and his collaborators. In this paper we explicitly find the hyperbolic
volume for cone-manifolds with the link 623 as singular set. Trigonometric
identities (Tangent, Sine and Cosine Rules) between complex lengths of
singular components and cone angles are obtained for an infinite family of
two-bridge links containing 521 and 623.

1. Introduction

Starting from Alexander’s works, polynomial invariants have become a very
convenient instrument for knot investigation. Several kinds of knots polynomi-
als have been discovered in the last twenty years. Among these, we recall the
Jones-, Kaufmann-, HOMFLY-, A-polynomials and others ([12], [3], [8]). These
polynomials relate knot theory to algebra and algebraic geometry. Algebraic
techniques are used to find the most important geometrical characteristics of
knots, such as volume, length of shortest geodesics and others.

The explicit volume formulae for hyperbolic cone-manifolds, whose underlying
space is the 3-sphere and the singular set is the knot 41 and the links 521 and 622,
have been obtained in [17], [19] and [15].

The aim of our paper is to explicitly find the hyperbolic volume for cone-
manifolds with the link 623 as singular set. In order to do this, we will introduce
a family of hyperbolic cone-manifolds Wp(α, β), with the two-bridge links Wp,
with slope (4p+ 4)/(2p+ 1) as singular set, and α, β as cone angles.

Trigonometric identities (Tangent, Sine and Cosine Rules) between complex
lengths of singular components and cone angles for Wp(α, β) are obtained. Then
the Schläfli formula applies in order to find explicit hyperbolic volumes for cone-
manifolds W2(α, β).

In the present paper links and knots are considered as singular subsets of the
three-sphere endowed by a Riemannian metric of negative constant curvature.
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Keywords and phrases: Hyperbolic orbifold, hyperbolic cone-manifold, complex length,

Tangent Rule, Sine Rule, Cosine Rule, hyperbolic volume.
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2. Trigonometric identities for knots and links

(2.1) Cone-manifolds, complex distances and lengths. We start with the
definition of cone-manifold modelled in a hyperbolic, spherical, or Euclidian
structure.

Definition (2.1.1). A 3-dimensional hyperbolic cone-manifold is a Riemannian
3-dimensional manifold of constant negative sectional curvature with cone-type
singularities along simple closed geodesics.

To each component of the singular set is associated a real number n ≥ 1
such that the cone-angle around the component is α = 2π/n. The concept of
hyperbolic cone-manifold generalizes that of hyperbolic manifold, which appears
in the partial case when all cone-angles are 2π. Hyperbolic cone-manifolds are
also a generalization of hyperbolic 3-orbifolds, which arises when all associated
numbers n are integers. Euclidean and spherical cone-manifolds are defined
similarly.

In the present paper hyperbolic, spherical or Euclidean cone-manifolds C
are considered whose underlying space is the three-dimensional sphere and the
singular set Σ = Σ1 ∪ Σ2 ∪ . . . ∪ Σk is a link consisting of the components
Σj = Σj(αj), j = 1, 2, . . . , k with cone-angles α1, . . . , αk respectively.

We recall a few well-known facts from hyperbolic geometry.

Let H3 = {(z, ξ) ∈ C × R : ξ > 0} be the upper half space model of the
3 -dimensional hyperbolic space endowed by the Riemannian metric

ds2 =
dzdz + dξ2

ξ2
.

We identify the group of orientation preserving isometries of H3 with the group
PSL(2,C), consisting of linear fractional transformations

A′ : z ∈ C → az + b

cz + d
.

By a canonical procedure, A′ can be uniquely extended to an isometry of H3.

We prefer to deal with the matrix A =

(
a b
c d

)
∈ SL(2,C) rather than the

element A′ ∈ PSL(2,C). The matrix A is uniquely determined by the element
A′, up to a sign. In the following we will use the same letter A for both A and
A′, as long as this does not create confusion.

Let C be a hyperbolic cone-manifold with the singular set Σ. Then C defines
a nonsingular but incomplete hyperbolic manifold M = C −Σ. Denote by Φ the
fundamental group of the manifold M.

The hyperbolic structure of M defines, up to conjugation in PSL(2,C), a
holonomy homomorphism

ĥ : Φ → PSL(2,C).

It is shown in [23] that the holonomy homomorphism of an orientable cone-
manifold can be lifted to SL(2,C) if all cone-angles are at most π. Denote by
h : Φ → SL(2,C) this lifting homomorphism. Choose an orientation on the
link Σ = Σ1 ∪ Σ2 ∪ . . . ∪ Σk and fix a meridian-longitude pair {mj, lj} for each



VOLUMES FOR TWIST LINK CONE-MANIFOLDS 131

component Σj = Σj(αj). Then the matrices Mj = h(mj) and Lj = h(lj) satisfy
the following properties:

tr (Mj) = 2 cos(αj/2), MjLj = LjMj , j = 1, 2, . . . , k .

Now we point out some definitions and results from the book [4]. A matrix
A ∈ SL(2,C) satisfying tr (A) = 0 is called a (normalized) line matrix. We
have by definition that A2 = −I, where I is the identity matrix. Hence any line
matrix determines a half-turn about a line in H3, and this line determines the
matrix up to sign. According to [4, p. 63], there exists a natural one-to-one
correspondence between line matrices and oriented lines in H3. Hereby, if a line
matrix A determines an oriented line λA = [e, e′] with end points e and e′, then
the line matrix −A determines the line [e′, e]. Moreover, if a matrix F ∈ SL(2,C)
is considered as a motion of H3, then the matrix FAF−1 determines the line
[F (e), F (e′)].

Definition (2.1.2). Let λA and λB be oriented lines determined by the line
matrices A and B. A complex number μ is called a complex distance from λA

to λB if its real part �μ is the distance from λA to λB, and its imaginary part
�μ is the angle from λA to λB chosen in [0, 2π) .

We have [4, p. 68]

(2.1.3) coshμ = −1

2
tr (AB).

From now on, all lines in this paper will be assumed to be oriented.
Any isometry A of H3 which is neither parabolic nor the identity has two

fixed points u and v in Ĉ. It acts as a translation of distance rA along the axis
λA = [u, v] and rotation of ϕA about λA.

Definition (2.1.4). We call displacement of A the complex number δ(A) =
rA + iϕA.

The isometry A, without an orientation of its axis, determines δ(A) up to
sign. By [4, p. 46], for the isometry given by a matrix A ∈ SL(2,C) we have

2 cosh δ(A) = tr (A2) = tr 2(A)− 2.

We remark that if δ(A) �= 0 then A has two different fixed points, so it admits

an axis determined by these points. The line matrix Ã of this axis is defined by

(2.1.5) Ã =
A−A−1

2i sinh δ(A)
2

Since δ(A−1) = −δ(A), the matrices A and A−1 define the same line matrix

Ã = Ã−1 (see [4]).

Definition (2.1.6). The complex length γj of a singular component Σj of the
cone-manifold C is the displacement δ(Lj) of the isometry Lj, where Lj = h(lj)
is represented by the longitude lj of Σj .

Immediately from the definition we get [4, p. 46]

(2.1.7) 2 cosh γj = tr (L2
j).
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We note [2, p. 38] that the meridian-longitude pair {mj, lj} of the oriented
link is uniquely determined up to a common conjugating element of the group
Φ. Hence, the complex length γj = rj + i ϕj is uniquely determined (mod 2πi),
up to a sign, by the above definition.

We need two conventions to correctly choose real and imaginary parts of γj .
The first convention is the following. By the assumptions on the singular set we
have rj �= 0. Hence, we can choose γj in such a way that rj > 0. The second
convention concerns the imaginary part ϕj . We want to choose ϕj so that the
following identity holds

(2.1.8) cosh
γj
2

= −1

2
tr (Lj)

By virtue of the identity tr 2(Lj)− 2 = tr (L2
j), the equality (2.1.7) is a conse-

quence of (2.1.8), but the converse, in general, is true only up to a sign. Under
the second convention (2.1.7) and (2.1.8) are equivalent. The two above conven-
tions lead to convenient analytic formulas in order to calculate γj and rj . More
precisely, there are simple relations between these numbers and the eigenvalues
of the matrix Lj. Recall that det(Lj) = 1. Since Lj is loxodromic, it has two
eigenvalues fj and 1/fj. We choose fj so that |fj | > 1. The case |fj | = 1 is
impossible because in this case the matrix Lj is elliptic and therefore rj = 0.
Hence

fj = −e
γj
2 , |fj| = e

rj
2 .

Figure 1. The cone-manifold Wp(α, β).

In this paper we consider a family of cone-manifolds whose singular sets are
links which are generalizations of the Whitehead link. The link Wp, p ≥ 0, is the
two-component link depicted in Figure 1, where p is the number of half twists
of one component. For this reason we will call them twist links. It is easy to
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see that W0 is the torus link of type (2, 4) and W1 is the Whitehead link. All
twist links are two-bridge links, in particularWp is the two-bridge link with slope
(4p+ 4)/(2p+ 1), for all p ≥ 0. They are all hyperbolic, except for W0.

Denote by Wp(α, β) the cone-manifold whose underlying space is the 3-sphere
and whose singular set consists of the twist link Wp with cone angles α = 2π/m
and β = 2π/n (see Figure 1). It follows from Thurston’s theorem that Wp(α, β),
with p �= 0, admits a hyperbolic structure for all sufficiently small α and β.

By Kojima’s rigidity theorem [13] the hyperbolic structure is unique, up to
isometry, if 0 ≤ α, β ≤ π.

In our paper we deal only with this range of angles.
Let us investigate the hyperbolic structure of the cone-manifold Wp(α, β). Its

singular set Σ = Σ1 ∪ Σ2 of consists of two components Σ1 = Σ1(α) and Σ2 =
Σ2(β) with cone-angles α and β respectively. Wp(α, β) defines a nonsingular but
incomplete hyperbolic manifold M = Wp(α, β) − Σ. The fundamental group of
the manifold M has the following presentation

Φp = 〈s, t | sls = lss〉 = 〈s, t | tlt = ltt〉 ,
where s and t (resp. ls and lt) are meridians (resp. longitudes) of the components
Σ1 and Σ2 respectively.

We use the following expression of ls in terms of s and t:

(2.1.9) ls = [s, t]
p+1
2 [s, t−1]

p+1
2 , if p is odd,

(2.1.10) ls = s−1[t, s]
p
2 tst[s−1, t−1]

p
2 , if p is even ,

where [s, t] = sts−1t−1.
The expressions for lt can be easily obtained by exchanging s and t in the

previous formulae.
Let

ĥ = ĥα,β : Φp → PSL(2,C)

and

h = hα,β : Φp → SL(2,C)

be holonomy homomorphisms and Γα,β = hα,β(Φp). The images ĥα,β(s) and

ĥα,β(t) of s and t are rotations in H
3 of angles α and β, respectively. The group

Γα,β is generated by the two matrices S = hα,β(s) and T = hα,β(t) with the
following properties:

tr (S) = 2 cos
α

2
, tr (T ) = 2 cos

β

2
, SLS = LSS,

where LS = hα,β(ls).

(2.2) Complex distance equation for two-bridge links. The fundamental
group of (the exterior of) a link K is generated by two meridians if and only if
K is a two-bridge link [1]. Moreover, a two-bridge link is hyperbolic if and only
if its slope is different from p/1 and p/(p− 1) (see [21]).

Proposition (2.2.1). Let Φ = 〈s, t〉 be the fundamental group of a hyperbolic
two-bridge link K generated by the two meridians s and t. Let Γα,β = hα,β(Φ)
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be the image of Φ under the holonomy homomorphism of the hyperbolic cone-
manifold K(α, β). Then, up to conjugation in SL(2,C), the generators S =
hα,β(s) and T = hα,β(t) of Γα,β can be chosen in such a way that

(2.2.2) S =

(
cos α

2 i e
ρ
2 sin α

2

i e−
ρ
2 sin α

2 cos α
2

)
, T =

(
cos β

2 i e−
ρ
2 sin β

2

i e
ρ
2 sin β

2 cos β
2

)
,

where ρ is the complex distance between the axis of S and T .

Proof. After a suitable conjugation in the group SL(2,C), one can assume

that the oriented axes of the elliptic elements S and T are λS = [−e
ρ
2 , e

ρ
2 ] and

λT = [−e−
ρ
2 , e−

ρ
2 ]. Since tr (S) = 2 cos α

2 and tr (T ) = 2 cos β
2 , the matrices

S and T are given by (2.2.2). Check that ρ coincides with the complex distance

ρ(S, T ) between λS and λT . The line matrices S̃ and T̃ , corresponding to these
axes, can be obtained by (2.1.5). Since δ(S) = i α and δ(T ) = i β, we have

S̃ =

(
0 −ie

ρ
2

−ie−
ρ
2 0

)
and T̃ =

(
0 −ie−

ρ
2

−ie
ρ
2 0

)
respectively. By [4, p.

68] we get coshρ(S, T ) = − 1
2 tr (S̃T̃ ) = cosh ρ.

The following two propositions can be obtained by direct calculation from the
above statement.

Proposition (2.2.3). Let

Φ2 = 〈s, t : sl = ls, l = s−1tst−1s−1tsts−1t−1st〉
be the fundamental group of the two-bridge link W2 with slope 12/5 and Γα,β =
hα,β(Φ2) = 〈S, T 〉 be the image of Φ2 under the holonomy homomorphism of the
hyperbolic cone-manifold W2(α, β). Denote by ρ = ρ(S, T ) the complex distance
between the axes of S = hα,β(s) and T = hα,β(t). Then u = cosh ρ is a non-real
root of the complex distance equation

(2.2.4) 4z3 − 4abz2 + (3a2b2 + 3a2 + 3b2 − 1)z − ab(a2b2 + a2 + b2 − 3) = 0,

where a = cot α
2 and b = cot β

2 .

Proof. Denote by L = S−1TST−1S−1TSTS−1T−1ST the image of the lon-
gitude l under the holonomy homomorphism h = hα,β : Φ2 → SL(2,C). Then
we have SL = LS.

Let N be a line matrix corresponding to the common normal to the axes of
S and T . If S and T are represented in the form (2.2.2) then one can take N =(

i 0
0 −i

)
. It is not difficult to verify thatNSN−1 = S−1 andNTN−1 = T−1.

To complete the proof, we need the following lemma, which gives simple cri-
teria for matrices S and L to be permutable.

Lemma (2.2.5). The following conditions are equivalent: (i) SL = LS; (ii)
NLN−1 = L−1; (iii) tr (NL) = 0.

Proof. First we show that (i) and (ii) are equivalent. Indeed, since L =
S−1TST−1S−1TSTS−1T−1ST we have

NLN−1 = ST−1S−1TST−1S−1T−1STS−1T−1 = SL−1S−1 .
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Hence (ii) holds if and only if S and L−1 commute. The last property is equiv-
alent to (i). Because of N2 = −I the condition (ii) can be rewritten in the form
NLNL = −I; this is equivalent to (iii).

By this lemma and direct calculation we have

tr (NL) =
−4i sinhρ

(1 + a2)3(1 + b2)3
· (4u2 + a2b2 + a2 + b2 − 3) ·

· (4u3 − 4abu2 + (3a2b2 + 3a2 + 3b2 − 1)u− ab(a2b2 + a2 + b2 − 3)) = 0,

where u = cosh ρ.
Now we have to show that u is a non-real root of (2.2.4). Since Γα,β is the

holonomy group of a hyperbolic cone-manifold, it is non-elementary1 and is not
conjugate to a subgroup of SL(2,R) [8].

If sinh ρ = 0 then the axes S and T coincide, and the group Γα,β is elementary.
If u is a root of equation

4u2 + a2b2 + a2 + b2 − 3 = 0

then by the equality

trL− 2 = −4(a2 + u2)(4u2 + a2b2 + a2 + b2 − 3)2

(a2 + 1)3(b2 + 1)3

we have trL = 2. From (2.1.8) we obtain

cosh
γS
2

= −1

2
tr (L) = −1.

Hence γS = rS + iϕS = 2πi and the real length rS of the link component Σ1 is
equal to zero, which is a contradiction.

Suppose that u = cosh ρ is a real root. Let

R(z1, z2, z3, z4) =
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)

be the cross ratio of the four points z1, z2, z3, z4 ∈ Ĉ. Then

R(−e
ρ
2 , e

ρ
2 ,−e−

ρ
2 , e−

ρ
2 ) = (cosh ρ− 1)/(cosh ρ+ 1) ∈ R ∪ {∞} .

We have that the axes [−e
ρ
2 , e

ρ
2 ] and [−e−

ρ
2 , e−

ρ
2 ] of S and T lie in a common

plane. If the axes intersect then the group Γα,β = 〈S, T 〉 has a fixed point and is
elementary. If they do not intersect, Γα,β is conjugate to a subgroup of SL(2,R).

Therefore, we have shown that u is a non-real root of (2.2.4) and the proof of
Proposition (2.2.3) is complete.

The next proposition can be proved by similar arguments.

Proposition (2.2.6). Let

Φ3 = 〈s, t : sl = ls, l = sts−1t−1sts−1t−1st−1s−1tst−1s−1t〉
be the fundamental group of the two-bridge link W3 with the slope 16/7 and
Γα,β = hα,β(Φ3) = 〈S, T 〉 the image of Φ3 under the holonomy homomorphism of
a hyperbolic cone-manifold W3(α, β) generated by S = hα,β(s) and T = hα,β(t).

1A subgroup G of SL(2,C) is called elementary if it has a finite orbit in H3 ∪ ̂C.
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Denote by ρ = ρ(S, T ) the complex distance between the axes of S and T. Then
u = cosh ρ is a non-real root of the complex distance equation

0 = 8u5 + 8abu4 + 8(a2b2 + a2 + b2 − 1)u3 + 4ab(a2b2 + a2 + b2 − 3)u2+

(a4b4+2a4b2+2a2b4−4a2b2+a4+ b4−6a2−6b2+1)u−4ab(a2b2+a2+ b2−1),

where a = cot α
2 and b = cot β

2 .

(2.3) Tangent, Sine and Cosine rules. If we set z = tr (S−1T ) then, from
the presentation in Proposition (2.2.1), we have

z = 2(cos
α

2
cos

β

2
+ u sin

α

2
sin

β

2
),

where u = cosh ρ.
The algebraic equation for z and its behaviour was considered in a number

of papers (see [3], [5], [8] and others) devoted to PSL(2,C)-representation of
two-generator groups.

In general, the equation for u (as well as for z) is very complicated, even for
twist links. In spite of this, since u = cosh ρ has a very clear geometric sense, we
are able to produce some general results for twist links without calculating u.

Proposition (2.3.1). Let Wp(α, β) be a hyperbolic twist link cone-manifold.
Denote by S = hα,β(s) and T = hα,β(t) the images of the generators of the group
Φp = 〈s, t | sls = lss〉 under the holonomy homomorphism hα,β : Φp → SL(2,C).
Set u = cosh ρ, where ρ is the complex distance between the axes of S and T ,
such that �u > 0. Moreover, denote by γα and γβ the complex lengths of the
singular components of Wp(α, β) with cone-angles α and β respectively. Then

u = i cot
α

2
coth

γβ
4

= i cot
β

2
coth

γα
4
.

Proof. To prove the statement we need to calculate the complex distance
between axes of elliptic elements S and T in two ways. By definition, LS =
hα,β(ls) and LT = hα,β(lt), where ls and lt are the longitudes of the singular
components of Wp(α, β) with cone angles α and β, respectively.

First of all, we fix an orientation on the axes of S and T by the following line
matrices

S̃ =
S − S−1

2 i sinh i α
2

, T̃ =
T − T−1

2 i sinh i β
2

.

Then the complex distance ρ(S, T ) between the oriented axes of S and T is
defined by (2.1.3):

cosh ρ(S, T ) = −1

2
tr (S̃T̃ ).

Using (2.1.5) we define the line matrices for LS and LT as

L̃S =
LS − L−1

S

2i sinh γα

2

, L̃T =
LT − L−1

T

2i sinh
γβ

2

.

To continue the proof, we need two lemmas:

Lemma (2.3.2). For every S, T we have S̃ = −L̃S and T̃ = −L̃T .
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Proof. Up to conjugation in SL(2,C), we can assume that S is given by

S =

(
e

iα
2 0

0 e−
iα
2

)
.

Note that LS is a loxodromic element, with displacement γα, and commutes with

S. Since L̃−1
S = L̃S , we can assume that

LS =

( ±e
γα
2 0

0 ±e−
γα
2

)
By convention (see formula (2.1.8)) we have

tr (LS) = −2 cosh
γα
2
.

Hence

LS =

( −e
γα
2 0

0 −e−
γα
2

)
and we obtain

L̃S =
LS − L−1

S

2i sinh γα

2

=

(
i 0
0 −i

)
and

S̃ =
S − S−1

2 i sinh i α
2

=

( −i 0
0 i

)
.

Lemma (2.3.3). For every S, T we have tr (S) = tr (S−1LT ) and tr (T ) =
tr (T−1LS).

Proof. To prove tr (T ) = tr (T−1LS) it is enough to show that T−1LS is
conjugate to either T or T−1 in the group Γα,β . If p is odd, we have from
(2.1.9):

T−1LS = T−1[S, T ]
p+1
2 [S, T−1]

p+1
2 = [T−1, S]

p+1
2 T−1[T−1, S]−

p+1
2 .

If p is even, we have from (2.1.10):

T−1LS = T−1S−1[T, S]
p
2 TST [S−1, T−1]

p
2 = T−1S−1[T, S]

p
2 T [T, S]−

p
2 ST.

The equality tr (S) = tr (S−1LT ) can be obtained in a similar way.

To complete the proof of Proposition (2.3.1), we note that tr (XY ) = tr (X)
tr (Y ) − tr (X−1Y ), tr (X−1) = tr (X) and tr (XY ) = tr (X−1Y −1) holds for
all X,Y ∈ SL(2,C). By Lemma (2.3.2), Lemma (2.3.3) and formulae tr (S) =
2 cos α

2 , tr (LS) = −2 cosh γα

2 , we have

cosh ρ(S, T ) = −1

2
tr (S̃T̃ ) =

1

2
tr (S̃L̃T ) =

=
1

2
tr

(
S − S−1

2 sin α
2

LT − L−1
T

2i sinh
γβ

2

)
=

tr (SLT − S−1LT − SL−1
T + S−1L−1

T )

8i sin α
2 sinh

γβ

2

=

=
2(tr (SLT )− tr (S−1LT ))

8i sin α
2 sinh

γβ

2

=
tr (S)tr (LT )− 2tr (S−1LT )

4i sin α
2 sinh

γβ

2

=
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=
tr (S)tr (LT )− 2tr (S)

4i sin α
2 sinh

γβ

2

=
tr (S)(2 − tr (LT ))

−4i sin α
2 sinh

γβ

2

=
2 cos α

2 (2 + 2 cosh
γβ

2 )

−4i sin α
2 sinh

γβ

2

= i cot
α

2
coth

γβ
4
.

Since cosh ρ(S, T ) = cosh ρ(T, S) = u the statement follows.

As an immediate consequence of the previous proposition, we have the follow-
ing result.

Theorem (2.3.4). (The Tangent Rule). Suppose that Wp(α, β) is a hyperbolic
cone-manifold. Denote by γα and γβ complex lengths of the singular geodesics
of Wp(α, β) with cone angles α and β respectively. Then

tanh γα

4

tanh
γβ

4

=
tan α

2

tan β
2

.

The following two theorems are consequences of the Tangent Rule.

Theorem (2.3.5). (The Sine Rule). Let γα = rα + i ϕα and γβ = rβ + i ϕβ

be the complex lengths of the singular geodesics of a hyperbolic cone-manifold
Wp(α, β) with cone angle α and β respectively. Then

sin ϕα

2

sinh rα
2

=
sin

ϕβ

2

sinh
rβ
2

.

Proof. By the Tangent Rule we have

tanh γα

4

a
=

tanh
γβ

4

b
,

where a = tan α
2 and B = tan β

2 are real numbers. Hence

�(tanh γα

4 )

a
=

�(tanh γβ

4 )

b
,

and
�(tanh γα

4 )

a
=

�(tanh γβ

4 )

b
.

Dividing one equation by the other we obtain

�(tanh γα

4 )

�(tanh γα

4 )
=

�(tanh γβ

4 )

�(tanh γβ

4 )
.

By direct calculations we have

�(tanh γα
4
) =

1

2
(tanh

γα
4

+ tanh
γ̄α
4
) =

sinh rα
2

cosh rα
2 + cos ϕα

2

and

�(tanh γα
4
) =

1

2i
(tanh

γα
4

− tanh
γ̄α
4
) =

sin ϕα

2

cosh rα
2 + cos ϕα

2

.

Since rα > 0, we have cosh
rα
2

> 1. Therefore cosh
rα
2

+ cos
ϕα

2
> 0 and the

result follows.
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Theorem (2.3.6). (The Cosine Rule). Let γα = rα+ i ϕα and γβ = rβ + i ϕβ

be the complex lengths of the singular geodesics of a hyperbolic cone-manifold
Wp(α, β) with cone angle α and β respectively. Then

cos ϕα

2 cosh
rβ
2 − cos

ϕβ

2 cosh rα
2

cosh rα
2 cosh

rβ
2 − cos ϕα

2 cos
ϕβ

2

=
cosα− cosβ

1− cosα cosβ
.

Proof. By the Tangent Rule

tanh γα

4 tanh γ̄α

4

a2
=

tanh
γβ

4 tanh
γ̄β

4

b2
,

where a = tan α
2 and b = tan β

2 . Hence

1 + cosα

1− cosα

cosh rα
2 − cos ϕα

2

cosh rα
2 + cos ϕα

2

=
1 + cosβ

1− cosβ

cosh
rβ
2 − cos

ϕβ

2

cosh
rβ
2 + cos

ϕβ

2

.

Set

p = cosα, q = cosβ, p′ =
cos ϕα

2

cosh rα
2

, q′ =
cos

ϕβ

2

cosh
rβ
2

and rewrite the above equation in the form

1 + p

1− p

1− p′

1 + p′
=

1 + q

1− q

1− q′

1 + q′
,

or, equivalently, as

log
1 + p

1− p
+ log

1− p′

1 + p′
= log

1 + q

1− q
+ log

1− q′

1 + q′
.

Since arctanh p =
1

2
log

1 + p

1− p
we have

arctanh p− arctanh p′ = arctanh q − arctanh q′.

and
arctanh p− arctanh q = arctanh p′ − arctanh q′.

Hence
p− q

1− pq
=

p′ − q′

1− p′q′

and, after substituting the expressions for p, q, p′, q′ in the last formula, we obtain
the desired identity.

We remark that, in the case of Whitehead link cone-manifolds, Tangent and
Sine rules were obtained in [14].

3. Explicit volume calculation for twist link cone-manifolds

(3.1) The Schläfli formula. In this section we will obtain explicit formulae
for the volume of some special cone-manifolds in the hyperbolic and spherical
geometries. In the case of complete hyperbolic structure on the simplest knot and
link complements such formulas, in terms of the Lobachevsky function, are well-
known and widely represented in [21]. In general, a hyperbolic cone-manifold can
be obtained by completion of a non-complete hyperbolic structure on a suitable
knot or link complement. If the cone-manifold is compact, explicit formulas are
only known in a few cases [9], [10], [11], [15], [16], [17], [18], [19]. In all these
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cases the starting point for the volume calculation is the Schläfli formula (see,
for example [11]).

Theorem (3.1.1). (The Schläfli volume formula). Suppose that Ct is a smooth
1-parameter family of (curvature K) cone-manifold structures on an n-manifold,
with singular locus Σ of a fixed topological type. Then the derivative of volume
of Ct satisfies

(n− 1)KdV (Ct) =
∑
σ

Vn−2(σ) dθ(σ)

where the sum is over all the components σ of the singular locus Σ, and θ(σ) is
the cone angle along σ.

In the present paper we will deal mostly with three-dimensional cone-manifold
structures of negative constant curvature K = −1. The Schläfli formula in this
case reduces to

dV = −1

2

∑
i

ridθi,

where the sum is taken over all the components of the singular set Σ with lengths
ri and cone angles θi.

Our aim is to obtain the volume formulas for twist link hyperbolic cone-
manifoldsW2(α, β). We note that the volume formula forW1(α, β) were obtained
earlier in [16] and [19].

Proposition (3.1.2). Let W2(α, β) be a hyperbolic cone-manifold and rα, rβ
the lengths of its singular components, with cone angles α and β respectively. If
a = cot α

2 and b = cot β
2 , then

(3.1.3) rα = 2i arctan
a

ζ
− 2i arctan

a

ζ
,

(3.1.4) rβ = 2i arctan
b

ζ
− 2i arctan

b

ζ
,

where ζ is a root of the equation

(3.1.5) 4(z2 + a2)(z2 + b2)− (1 + a2)(1 + b2)(z − z2)2 = 0,

with �(ζ) > 0.

Proof. By Proposition (2.3.1) we have

(3.1.6) i b coth
γα
4

= i a coth
γβ
4

= u,

where u = cosh ρ and ρ is a complex distance between the axes of S and T ,
chosen so that �u > 0. By Proposition (2.2.3), u is a root of the cubic equation

4z3 − 4abz2 + (3a2b2 + 3a2 + 3b2 − 1)z − ab(a2b2 + a2 + b2 − 3) = 0 .

From (3.1.6), for a suitable choice of analytical branches,

rα =
γα
2

+
γα

2
= 2i arctan

u

b
− 2i arctan

u

b
= 2i arctan

a

ζ
− 2i arctan

a

ζ
,

where ζ = ab/u, �(ζ) > 0, satisfies the equation

Q(z) = (a2b2 + a2 + b2 − 3)z3 − (3a2b2 +3a2 + 3b2 − 1)z2 +4a2b2z − 4a2b2 = 0 .
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To finish the proof we note that

(z + 1)Q(z) = −4(z2 + a2)(z2 + b2) + (1 + a2)(1 + b2)(z − z2)2.

In the next section we will apply this result to calculate the volume ofW2(α, β)
via the Schläfli formula.

We remark that formulae (3.1.3) and (3.1.4), as a consequence of the Tangent
Rule, also hold for all twist links Wp, with ζ = ab/ū, where u = cosh ρ.

For example, an analog for the algebraic equation (3.1.5), in the case of twist
link W3, can easily be obtained from Proposition (2.2.6). But in this case the
equation becomes too complicated, and we are not able to explicitly find the
integrand in the Schläfli formula.

(3.2) Volume of twist link cone-manifolds. The case of the Whitehead link
cone-manifolds W1(α, β) has already been solved (see [16] and [19]).

Theorem (3.2.1). [16, 19] Let W1(α, β) be a hyperbolic Whitehead link cone-
manifold with cone angles α and β. Then the volume of W1(α, β) is given by the
formula

VolW1(α, β) = i

∫ ζ

ζ

log

[
2(z2 + a2)(z2 + b2)

(1 + a2)(1 + b2)(z2 − z3)

]
dz

z2 − 1
.

where a = cot α
2 , b = cot β

2 and ζ is a non-real root, with �(ζ) > 0, of the
equation

2(z2 + a2)(z2 + b2)− (1 + a2)(1 + b2)(z2 − z3) = 0.

The main result of this section is the following.

Theorem (3.2.2). Let W2(α, β) be a hyperbolic twist link cone-manifold with
cone angles α and β. Then the volume of W2(α, β) is given by the formula

(3.2.3) VolW2(α, β) = i

∫ ζ

ζ

log

[
4(z2 + a2)(z2 + b2)

(1 + a2)(1 + b2)(z − z2)2

]
dz

z2 − 1
.

where a = cot α
2 , b = cot β

2 and ζ is a non-real root, with �(ζ) > 0, of the
equation

(3.2.4) 4(z2 + a2)(z2 + b2)− (1 + a2)(1 + b2)(z − z2)2 = 0.

Proof. Denote by V = VolW2(α, β) the hyperbolic volume of W2(α, β). Then
by virtue of the Schläfli formula we have

(3.2.5)
∂V

∂α
= −rα

2
,

∂V

∂β
= −rβ

2
,

where rα and rα are the lengths of the singular geodesics having cone angles α
and β respectively.

We note that for α = β and �(ζ) → 0 the geometrical limit of the cone-
manifoldW2(α, α) is a Euclidean cone-manifoldW2(α0, α0), where α0 = 2.7243...
< π. (See Example 1 in Section 3.3 below). Hence, by Theorem 7.1.2 of [13], we
have

(3.2.6) V → 0 as α = β and �(ζ) → 0.
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We set

W =

∫ ζ

ζ

F (z, a, b) dz,

where

F (z, a, b) =
i

z2 − 1
log

4(z2 + a2)(z2 + b2)

(1 + a2)(1 + b2)(z − z2)2
.

Now we show that W satisfies conditions (3.2.5) and (3.2.6). So W = V and the
theorem follows.

By the Leibniz formula we have

(3.2.7)
∂W

∂α
= F (ζ, a, b)

∂ζ

∂α
− F (ζ, a, b)

∂ζ

∂α
+

∫ ζ

ζ

∂F (z, a, b)

∂a

∂a

∂α
dz

We note that F (ζ, a, b) = F (ζ, a, b) = 0 if ζ, ζ, a and b are the same as in the

statement of the theorem. Moreover, since α = 2 arccota we have
∂a

∂α
= −1 + a2

2
and

∂F (z, a, b)

∂a

∂a

∂α
= − ia

z2 + a2
.

Hence, by Proposition (3.1.2), we obtain from (3.2.7)

∂W

∂α
= −ia

∫ ζ

ζ

dz

z2 + a2
= −i arctan

a

ζ
+ i arctan

a

ζ
= −rα

2
.

The equation
∂W

∂β
= −rβ

2
can be obtained in the same way. The boundary

condition (3.2.6) for the function W follows from the integral formula.

(3.3) Particular cases and examples.
1. Case α = β. In this case, Equation (3.2.4) splits into two quadratic

equations:

(1 + a2)(z − z2) + 2(z2 + a2) = 0

and

(1 + a2)(z − z2)− 2(z2 + a2) = 0.

The first has two real roots z = −1 and z = 2a2/(a2 − 1). The second has two
non-real roots

z1,2 =
1 + a2 ±√

1− 22a2 − 7a4

2(3 + a2)
.

By [10], Δ = 1− 22a2 − 7a4 is < 0 in the hyperbolic case, = 0 in the Euclidean
case and > 0 in the spherical case. In the Euclidean case we obtain a2 =
cot2(α0/2) = (

√
128 − 11)/7 = 0.0448... and a = a0 = cot (α0/2) = 0.2116... .

So the cone-manifold is hyperbolic for 0 ≤ α < α0 = 2.7243... and is Euclidean
for α = α0.

From (3.2.3) we have

VolW2(α, α) = i

∫ z2

z1

log

[
2(z2 + a2)

(z − z2)(1 + a2)

]2
dz

z2 − 1
.
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By differentiation with respect to a and then by integration with respect to z we
obtain

VolW2(α, α) = 4

∫ a

a0

arctanh

√
7t4 + 22t2 − 1

t(5 + t2)

dt

t2 + 1
.

Since the integrand is purely imaginary for 0 ≤ t < a0 we are able to compute
the volume in the more convenient way

VolW2(α, α) = 4�
∫ a

0

arctanh

√
7t4 + 22t2 − 1

t(5 + t2)

dt

t2 + 1
,

where a = cot α
2 .

2. Case α = β = π/2. In this case equation (3.2.4) becomes

(z + 1)(z2 − z + 2) = 0.

Hence, the non-real roots are

z1,2 =
1± i

√
7

2

and

VolW2(π/2, π/2) = 2i

∫ 1+i
√

7
4

1−i
√

7
4

log
z2 + 1

z − z2
dz

z2 − 1
= 2.6667...

3. Case α = β = 0. Recall that W2(0, 0) is the complete hyperbolic manifold
S3 �W2. By arguments similar to those of the previous case, we obtain

VolW2(0, 0) = 2i

∫ 1+i
√

7
2

1−i
√

7
2

log
2

z − z2
dz

z2 − 1
= 5.3334...

Note that VolW2(0, 0) = 2VolW2(π/2, π/2).
4. Case α = 0, β = π/3. In this case equation (3.2.4) reduces to

(1 + z)(3− 3z + 3z2 − z3) = 0.

Hence, the non-real roots are

z1,2 = 1− 1± i
√
3

3
√
4

and

VolW2(0, π/3) = i

∫ 1− 1−i
√

3
3√4

1− 1+i
√

3
3√4

log
z2 + 3

(z − z2)2
dz

z2 − 1
= 4.6165...

The results of the above numerical calculation coincide with the corresponding
results obtained by Weeks’s SnapPea program [22].
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ACYLINDRICAL SURFACES IN 3-MANIFOLDS AND KNOT

COMPLEMENTS

MARIO EUDAVE-MUÑOZ AND MAX NEUMANN-COTO

Dedicado a Fico en su 60 aniversario

Abstract. We consider closed acylindrical surfaces in 3-manifolds and in
knot and link complements, and show that the genus of these surfaces is
bounded linearly by the number of tetrahedra in a triangulation of the
manifold and by the number of rational (or alternating) tangles in a pro-
jection of a link (or knot). For each g we find knots with tunnel number 2
and manifolds of Heegaard genus 3 containing acylindrical surfaces of genus
g. Finally, we construct 3-bridge knots containing quasi-Fuchsian surfaces
of unbounded genus, and use them to find manifolds of Heegaard genus
2 and homology spheres of Heegaard genus 3 containing infinitely many
incompressible surfaces.

1. Introduction

A closed incompressible surface F embedded in a 3-manifold M is called
acylindrical if the manifold MF = M − intN(F ), obtained by cutting M along
F contains no essential annuli (a properly embedded annulus in a 3-manifold is
essential if it is incompressible and not boundary parallel). Acylindrical surfaces
are interesting in connection with geometry, as every totally geodesic surface
in a hyperbolic 3-manifold is acylindrical, and every acylindrical surface in a
hyperbolic link complement is quasi-Fuchsian. Moreover, if F is an acylindrical
surface in a closed, irreducible and atoroidal 3-manifold M then MF admits a
hyperbolic metric with totally geodesic boundary [21].

In [12] Hass proved that for the finite volume hyperbolic 3-manifolds there is
a constant C, independent of the manifold, so that each acylindrical surface in
a manifold M has genus at most C · vol(M). He used this result to show that in
any compact 3-manifold there is only a finite number of acylindrical surfaces. It
seems natural to ask if there are similar bounds which hold for all 3-manifolds
and depend not on volume, but on some topological measures of complexity.
Some candidates could be the number of tetrahedra in a triangulation or the
Heegaard genus of the manifold, and in the case of knots and links, the crossing
number, the bridge number or the tunnel number. Such bounds must exist in
the case of the number of tetrahedra in a triangulation or the crossing number
of a link, as there are only finitely many manifolds and links for each number
n. We find explicit bounds in these cases, and furthermore show that there is a

2000 Mathematics Subject Classification: 57N10, 57M25.
Keywords and phrases: acylindrical surface, quasi-Fuchsian surface, incompressible surface,

triangulations, Heegaard genus, tangles, tunnel number.
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linear bound in terms of the number of rational tangles in a link projection or
the number of alternating tangles in a prime knot projection.

The fact that 3-manifolds with Heegaard genus 2 and the complements of
knots with tunnel number 1 contain no separating acylindrical surfaces ([19], [4])
could suggest that -at least for small Heegaard genus or tunnel number- there
could be bounds for the genus of such surfaces. We show here that for each
g, there are tunnel number 2 knots which contain a closed acylindrical surface
of genus g. By performing suitable Dehn surgeries, we get closed manifolds of
Heegaard genus 3 which contain closed acylindrical surfaces of genus g. These
examples show that Heegaard genus 3 manifolds and tunnel number 2 knots are
already quite complicated.

We also consider what happens when the acylindrical assumption is weak-
ened to require that there are no essential annuli running from the surface to a
boundary torus (in the case of hyperbolic knots and links this means that the
surface is quasi-Fuchsian). We show that a knot that can be decomposed into
two alternating tangles cannot contain any quasi-Fuchsian surfaces in its comple-
ment. On the other hand, we find hyperbolic 3-bridge knots whose complements
contain infinitely many quasi-Fuchsian surfaces. These knots have an essential
branched surface which carries quasi-Fuchsian surfaces of arbitrarily high genus.
These examples show that there are no bounds for the genus of quasi-Fuchsian
surfaces based on volume, crossing number or the number of tetrahedra. Finally,
by means of suitable Dehn fillings and double covers, we produce manifolds of
Heegaard genus 2 and homology spheres of Heegaard genus 3 which contain infin-
itely many incompressible surfaces. These examples are interesting, for it seems
that all known examples of hyperbolic manifolds with infinitely many surfaces
have noncyclic homology, and in the case of knots with infinitely many surfaces,
it seems that the only known explicit examples are some satellite knots (see for
example [17]). The examples are also interesting for the study of surfaces in
the complement of 3-bridge knots, as they supplement results of Finkelstein and
Moriah [6], who showed that many 3-bridge knots contain an incompressible but
meridionally compressible surface, and of Ichihara and Ozawa [15], who proved
that any closed surface in the complement of a 3-bridge knot is meridionally
compressible or annular.

2. Bounds for the genus of acylindrical surfaces

Proposition (2.1). If a closed 3-manifold M admits a (pseudo)triangulation
with n tetrahedra then the genus of a 2-sided closed acylindrical surface in M is
at most n+1

2 .

Proof. Let T be a (pseudo)triangulation of M with n tetrahedra, and denote
by Ti the i-skeleton of T .

Let F be an incompressible surface in M in normal position with respect to
the triangulation, so F intersects the faces of the tetrahedra along arcs and the
interior of the tetrahedra along discs which are triangles or squares. Assume
further that F has been isotoped to minimize the number of intersections with
T1. Let F be the boundary of a regular neighborhood N of F . As F is two-
sided, F consists of two copies of F . By definition F is acylindrical iff M − intN
contains no essential annuli.
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fair bad good

Figure 1.

The edges of F in each face of a tetrahedron split the face into triangles, quad-
rangles, pentagons and/or hexagons, and each edge is adjacent to a quadrangle
(which lies in N). Call an edge good if the other adjacent region (which lies in
M − intN) is also a quadrangle. Notice that if an embedded curve c in F is
made of good edges, then the union of these adjacent quadrangles in M − intN
forms an annulus A that joins c with another curve c′ in F .

We claim that if c is essential in F then the annulus A is essential. Otherwise
A would be isotopic to an annulus A′ bounded by c and c′ in F (in particular, c
must be 2-sided in F ). As F is 2-sided in M , then A′ is parallel to an annulus
A′′ in F and the isotopy from A′ to A can be used to isotope A′′ (pushing it
even further across A) to reduce the number of intersections of F with T1.

So if F is acylindrical, then the good edges of F carry no embedded essential
curves, and so they carry no essential curves at all. But as the edges of F split
F into discs, they must carry all of H1(F ).

So there must be at least as many non-good edges in F as the rank of H1(F ).
As the number of non-good edges in a face of a tetrahedron is at most 6, the total
number of non-good edges in F is at most 12n, so 12n ≥ rank H1(F ) = 2 · genus
F , and so the genus of F is at most 3n.

In order to get the better estimate one needs to look more carefully at the
graphQ formed by the edges of F . Divide the non-good edges in each tetrahedron
in two classes: those lying in triangles of F that cut off outermost corners of the
tetrahedron will be called fair edges and the others (which may lie in squares or
triangles) will be called bad edges (see Figure 1).

Let Qg and Qf denote the subgraphs of Q made of good edges and fair edges
respectively.

Observe that Qg and Qf are disjoint, that is, have no vertices in common.
As the components of Qf lie in the links of the vertices of a triangulation of the

manifold M , all curves contained in Qf are contractible in M , and so as F is

incompressible then Qf contains only trivial curves of F . All curves contained in

Qg are also trivial because F is acylindrical. So as Qg ∪Qf contains only trivial
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curves of F , by attaching to Qg ∪Qf some of the complementary pieces of F we

obtain a (possibly empty or disconnected) simply connected subcomplex FS of
F .

Now the Euler characteristic of F is χ(F ) = χ(FS) + v − e + f where v,
e, and f count the vertices, edges and faces of F that do not lie in FS . So e
counts some bad edges -some others may lie in FS- and f counts the triangles
and squares adjacent to them. It can be shown directly that in each tetrahedron
Δ, every subcollection fΔ of the set of squares and triangles of F ∩Δ with bad
edges satisfies the inequality 1

2eΔ− fΔ ≤ 2. In particular, we may take fΔ to be

the set of squares and triangles with bad edges not contained in FS . As F has
two components and each of them contains a component of FS or a vertex, it
follows that

χ(F ) ≥ 2− e+ f = 2 +
∑

Δ∈T3
− 1

2eΔ + fΔ ≥ 2− 2n

and so genus(F ) = 1
4 rankH1(F ) = 1

4 (4− χ(F )) ≤ 1
4 (2 + 2n).

The genus of an acylindrical surface in a manifold is not bounded in terms
of its Heegaard genus, as we show in Section 3. However, there is a bound
depending on the complexity of a Heegaard splitting. Let M = H ∪ H ′ be a
Heegaard splitting of M of genus g, and let D1, D2, ..., Dg and D′

1, D
′
2, ..., D

′
g be

discs splitting H and H ′ into 3-balls B and B′. The complexity of the Heegaard
splitting with respect to these discs is just the minimal intersection number
between the boundaries of the discs. The complexity of a Heegaard splitting is
the minimum complexity among all such systems of discs.

Proposition (2.2). If a closed 3-manifold M admits an irreducible Heegaard
splitting of genus g and complexity n then the genus of a closed acylindrical
surface in M is at most (n− 3

2g).

Proof. Let M = H ∪ H ′ be a Heegaard splitting of M of genus g as above,
with ∪Di meeting ∪D′

j in n points. Let F be an acylindrical surface in M . As
F is incompressible, we may assume that F meets H ′ along g stacks of parallel
discs in N(D′

j) (some stacks may be empty). We may also assume that F meets
B along discs and that it meets each Di along stacks of parallel arcs connecting
different components of ∂Di ∩N(D′

j).

As before, consider the graph of intersection Q of F with ∂H ∪i Di. Call an
edge of Q on Di good if it is an interior arc of a stack, otherwise call it bad. Call
an edge of Q in ∂H good if it is part of the boundary of an interior disc of a
stack. Otherwise (i.e., if it is part of the boundary of an outermost disc of a
stack) call it fair. See Figure 2.

Observe that the subgraphs Qg and Qf made of good edges and fair edges
do not meet. As the components of Qf are contained in the boundaries of discs

in H ′ then Qf carries no essential curves of F , and as F is acylindrical we may
assume as in the proof of 2.1 that Qg carries no essential curves either.

So as Qg∪Qf carries no essential curves and Q splits F into discs, the rank of

H1(F ) is bounded above by the number of bad edges. If Di meets the D′
j in ni

points then ni > 1 (because the Heegaard splitting is irreducible) andDi contains
at most 4ni − 6 bad edges, so the rank of H1(F ) is at most

∑
Di

(4ni − 6) =

4n− 6g and so the genus of F is at most n− 3
2g.
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fair

bad

good

Figure 2.

Figure 3.

There are other ways of measuring the complexity of a Heegaard splitting, for
example, by means of the curve complex, as defined in [14]. Note however that
no such bound for the genus of acylindrical surfaces exists for this complexity,
for in fact, all the examples constructed in Section 3 have a Heegaard splitting of
genus 3 which comes from a certain bridge presentation of a knot, and then by
a similar proof to Theorem 1.4 of [14], the distance in the curve complex is ≤ 2.

We now consider bounds for the genus of acylindrical surfaces in the exterior
of knots and links in the 3-sphere.

Proposition (2.3). If k is a knot or link with n crossings then the genus of
a closed acylindrical surface in the exterior of k is at most 3

2n− 3.

Proof. Draw k on a projection sphere S, except for the crossings which lie on
the surface of n small spheres S1, S2,...,Sn. Let S0 be the part of the projection
sphere outside the Si’s. Then S0 ∪i Si cuts S3 into n + 2 polyhedral balls B−,
B+ and B1, B2, ..., Bn, with faces determined by the equators of the bubbles
and the arcs of k. If F is an incompressible surface in the exterior of k then F
can be isotoped to meet B+ and B− along discs, meet each Bi along parallel
saddle-shaped discs, and meet their faces along arcs. See Figure 3.

Let F be the boundary of a regular neighborhood of F , and let Q be the
graph of intersection of F with S0 ∪i Si. So Q splits F into discs. As before,
consider the edges of Q on each face of S0 ∪i Si, call those that have parallel
edges on both sides good, those which are closest to arcs of k and are parallel to
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bad

fair

good

Figure 4.

them fair, those lying on some Si and parallel to an arc of ∂S0 which contain a
point of k are also fair, and all the others are called bad edges (so the faces of
the Bi’s contain no bad edges). See Figure 4.

Again the subgraphs Qg and Qf of Q are disjoint, and if F is acylindrical

then Qg carries no essential curves of F . On the other hand, Qf can be regarded
as lying on the boundary tori of a regular neighborhood of the link k. But as
F is acylindrical, there can be no essential annuli running from F to k, so Qf

contains no essential curves of F . So, as the graph Q carries all of H1(F ), there
must be at least as many bad edges as the rank of H1(F ). As there are at most
3i − 6 bad edges on each i-gon determined by the projection of k into S, the
number of bad edges in F is at most∑

i−gons in P (3i− 6) = 3(2( arcs of k in S))− 6 (regions determined by k in S)

= 12n− 6(2 + n) = 6n− 12
So the rank of H1(F ) is at most 6n − 12 and the genus of F is at most

6
4n− 12

4 .

After we proved Proposition (2.3), we learned that Agol and D. Thurston,
following Lackenby [16], showed that the volume of a hyperbolic knot of link is
bounded above by 10v3(t(D) − 1) where v3 is the volume of a hyperbolic ideal
tetrahedra and t is the twist number of k (the minimum number of twists in a
diagram of k, where a twist is a string of 2-gons or a crossing in the diagram).
Agol has also shown [1] that if a hyperbolic manifold M has an acylindrical
surface of genus g, then V ol(M) ≥ 4v3(g − 1). It follows that the genus of an
acylindrical surface in the exterior of a hyperbolic link k is at most 5

2 t. These
results suggested the following.

Recall that a tangle is a 3-ball B together with two properly embedded arcs.
The tangle is rational if the arcs are isotopic (rel ∂) to arcs in ∂B. We will say
that a knot or link k in S3 is decomposed into tangles if there is a sphere S and
3-balls B1, B2, ..., Bn each intersecting S in a disc, so that k∩Bi is a tangle, and
the part of k outside these balls is a collection of arcs lying on S0 = S−int(∩Bi).
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Theorem (2.4). If a link is decomposed into n rational tangles, then the genus
of a closed acylindrical surface in its complement is at most 2n− 4.

Proof. Draw the projection of the link k as the union of n rational tangles
in the interior of n disjoint spheres S1, S2,...,Sn joined by 2n disjoint arcs in
the projection sphere. Let S0 be the part of the projection sphere outside these
spheres. Then S0 ∪i Si cuts S3 into polyhedral balls B+, B− and B1,B2,...,Bn

with faces determined by the equators of the spheres and the arcs of k in S0.
If F is an incompressible surface in the exterior of k we may isotope F so

that intersects B− and B+ along discs, and intersects S and the hemispheres of
each Si along arcs. Moreover, as k ∩ Bi is a rational tangle, we may isotope F
to intersect Bi − k along parallel discs that separate the strings of the tangle,
and we may assume that their boundaries meet each hemisphere of Si along 2 or
3 families of parallel arcs -2 if the tangle is a crossing and 3 otherwise (a single
family of parallel arcs implies that the discs are vertical and the tangle has no
crossings of k).

Let F be the boundary of a regular neighborhood N of F . The intersection
of F with S0 ∪i Si gives a cell decomposition of F and cuts the faces of S0 ∪i Si

into quadrangles that lie in N and other polygons that lie in S3 −N ; as before,
let Q be the graph of intersection. Call an edge of Q in a face of S0 ∪i Si good
if the adjacent polygon in S3 − N is a quadrangle with another edge on F (so
the two edges are parallel in that face). Otherwise, call an edge in Q fair if it is
adjacent to a quadrangle in S0 with a side in k ∩ S0 that is adjacent to another
quadrangle in S0 with a side in Q (so both edges of Q are parallel to this arc of
k) or if it is adjacent to a polygon in a hemisphere of Si with exactly 2 sides in
Q (so the other sides lie in the equator and are separated by points of k ∩ Si).
Call the other edges of Q bad. Note that edges lying on some Si and parallel to
an arc of ∂S0 which contain a point of k are bad. See Figure 5.

One can use the fair edges as well as the good edges to construct annuli for
F , by taking the quadrangles that lie between two fair edges in S0 ∪i Si (but
that may intersect k) and pushing them outside the corresponding Si, or if they
lie in S0, to the side of S0 that doesn’t contain an edge of Q connecting the
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two fair edges (there can’t be connecting edges on both sides because the union
of the four edges would be a meridian of k, and so F would be meridionally
compressible). This creates quadrangles in S3 − k connecting pairs of fair edges,
and one can see that the quadrangles corresponding to consecutive fair or good
edges match well.

As before, if a simple essential curve in F is made of good and fair edges then
the annulus formed by the union of the adjacent quadrangles is essential or else F
could be isotoped to reduce its intersection with S0∪iSi. So, if F is acylindrical,
the subgraph of Q consisting of the good and fair edges cannot contain any
essential curve of F , so it is contained in a simply connected subcomplex FS of
F . Again, as F has two components and Q divides them into discs,

χ(F ) = χ(FS) + v − e + f ≥ 2 − e + f where v, e, and f count the vertices,
edges and discs in F − FS , and so rankH1(F ) = (4− χ(F ) ≤ 2 + e− f .

As there are at most 4 bad edges and 8 fair edges on each Si, all contained in
the 2 outermost discs of F ∩Bi, the number of bad edges minus the number of
discs that contain them in ∪Si is at most 2n.

There are at most i−3 families of parallel edges on each face of S0 determined
by i > 1 arcs of k, not including the families of edges parallel to the arcs of k,
and they produce at most 2i − 6 bad edges on each face. If an arc of k has
parallel families edges of Q on both sides, then there are two bad edges in these
families, for the edges closest to k are fair. If an arc of k has only edges of Q on
one side, then there are two bad edges in this family, since in this case the edge
closest to k is not fair.

So, if no face of S0 is a monogon the number of bad edges in S0 is at most∑
edgesofk 2 +

∑
i−gons in P (2i− 6) = 4n+ 8n− 6(2 + n) = 6n− 12.

When i = 1, the previous formula undercounts the number of bad edges in
the monogon as −3 instead of 0 -there are no edges in the monogon as they
could be isotoped into Bi to eliminate two intersection curves of F with Si-. In
this case there cannot be bad edges around the endpoints of the monogon in Si

and so the discs of intersection of F with Si are vertical and the tangle is trivial
-unless F does not meet Si at all, so there is an overcount on the number of bad
edges in ∪Si by at least 2 and also on the number of bad edges in the face of S0

adjacent to the monogon. So the previous bound also holds when some faces of
S0 are monogons.

Finally observe that since F has 2 components and each of them must meet
B+ and B−, there must be at least 2 discs of F − FS inside each of these balls.

So, genus(F ) = 1
4 rankH1(F ) ≤ 1

4 (2 + e − f) ≤ 1
4 (2 + 2n+ (6n − 12)− 4) =

2n− 7
2

Consider a tangle as above, i.e., it is determined by the intersection of a 3-ball
B with a link k, so that B ∩ S is a disc, where S is a projection sphere, and
k ∩ ∂B consists of 4 points lying on S. We say that the tangle is alternating if
its arcs can be isotoped, keeping ∂B fixed, to have an alternating projection on
the sphere S. Note that each rational tangle is alternating.

The next result extends Theorem (2.4) to allow alternating tangles.
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Theorem (2.5). If a prime knot is decomposed into alternating tangles, n of
them rational, then the genus of a closed acylindrical surface in its complement
is at most 2n− 4.

The proof is based on the following:

Claim (2.6). Let k be a nonseparable link or a knot and S a sphere that meets
k in 4 points. Then each acylindrical surface F in S3 − k is isotopic to one that
either i) is disjoint from S or ii) intersects S in one curve or iii) meets one of the
components of S3 − k − S along parallel discs.

Proof. The sphere S separates k into two tangles. Isotope F to minimize its
intersection with the 4-punctured sphere S−k. The intersection then contains no
trivial curves, and as F is meridionally incompressible then it does not contain
curves surrounding only one puncture, so all the curves c1,c2,...cn in which F
intersects S must be parallel in S− k. As F is acylindrical, if there is more than
one ci then the annuli connecting two of them in S cannot be essential, so either
one annulus is isotopic (rel ∂) to an annulus in F (and the isotopy can be used
to remove two ci’s) or all the ci’s bound discs of F . So at least one of them, say
c1, bounds a disc D1 in F that lies completely on one side of S. But then, as all
ci’s are parallel to ∂D1, one can draw parallel discs Di in S3 − k on that side of
S that meet F at ci (and nowhere else). The union of the discs bounded by the
ci’s in F and the Di’s form spheres in S3−k, and if k is a knot or a nonseparable
link these spheres bound balls in S3−k, so the Di’s must be isotopic to the discs
in F , and the isotopy reduces the number of curves unless the discs in F were
already on one side of S.

Claim (2.7). If k is a prime knot and k ∩ Bi is an alternating tangle, then
every acylindrical surface in the complement of k can be isotoped to meet Bi−k
along parallel discs or be disjoint from it.

Proof of theorem. Assume for the moment that Claim (2.7) is true, and iso-
tope the surface F to meet only the Bi’s corresponding to separable tangles. To
estimate the genus of F we would like to count the number of bad edges and discs
of F that contain them by replacing each nonseparable tangle in the diagram
of k by a trivial tangle to get a knot k′ and counting the bad edges of F in its
diagram.

Now some bad edges in the diagram of k may become fair in the diagram
of k′ as in Figure 6, but in this case we may regard them as originally being
”almost fair” -there is a quadrangle joining them that lies above or below the
nonseparable tangles that were between them in the diagram of k. The quadran-
gles corresponding to almost fair edges match well with the other quadrangles
corresponding to good and fair pairs of edges, so they can be used as well to
construct annuli for F . So the same bound for the number of bad edges and
discs -and therefore the same bound for the genus of F - holds.

The proof of Claim (2.7) is based on the following extension of the Meridional
Lemma of Menasco [18].
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Figure 6.

Lemma (2.8). If a link k intersects a ball B in an alternating tangle, then
every meridionally incompressible surface in the complement of k can be isotoped
to intersect B along copies of a surface that separates the strings of the tangle.

Proof. Draw B as a round ball with k∩B lying in an equatorial disc except at
the crossings, that lie on the surface of small “bubbles” B1, B2,....as in Figure 3.
Let ∂Bi+ and ∂Bi− be the hemispheres of ∂Bi, and let D0 denote the part of the
equatorial disc outside the bubbles. Let D+ = D0∪i∂Bi+ and D− = D0∪i∂Bi−,
and let B+ and B− be the parts of B above and below D+ and D−.

If F is a meridionally incompressible surface in the complement of k then by
isotoping F to minimize its intersection with ∂B∪D0∪i ∂Bi we can assume that
F meets ∂B along parallel curves that separate 2 points of ∂B∩k from the other
2, that F meets D0 and each hemisphere of ∂B and ∂Bi along arcs and that
meets B+ and B− along discs and each Bi along parallel saddle-shaped discs.
So F intersects D+ and D− along curves and arcs with endpoints in ∂B.

Following Menasco, one can show that the curves and arcs of intersection of
F with D+ (and similarly with D−) have the following properties:

1. As F is incompressible, each curve (and each arc) crosses at least one
bubble.

2. As F is meridionally incompressible, each curve (or arc) crosses each bubble
at most once.

3. As the diagram of k ∩ B is alternating, if a curve (or arc) crosses two
bubbles Bi and Bj in succession, then the 2 arcs k ∩ ∂Bi+ and k ∩ ∂Bj+ lie on
opposite sides of the curve. See Figure 7.

So there can be no closed curves in D+, because by properties 1 and 3 an
innermost such curve would have to leave an arc of k ∩ ∂Bi+ inside (so there
would be another curve inside) unless the curve crossed the same bubble twice,
contradicting property 2.

Let k1 and k2, k1 and k2 be the 4 segments of k ∩ D0 that start on ∂D0,
and end in overcrossings or undercrossings of k respectively. Note that ∂D0
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Figure 7.

encounters them in the order k1, k1, k
2, k2, for otherwise there is an arc on

D0 separating the strings of the tangle, but then the knot will be composite.
Properties 1, 2 and 3 for arcs imply that each outermost arc in D+ goes around
k1 or k2 and so every arc in D+ must separate k1 from k2. See Figure 8a.

Now let F0 be a surface consisting of one or more components of F ∩ B. If
F0 does not separate the strings of the tangle then each path in B joining the
strings must meet F0 in an even number of points, so F0 intersects each bubble
in an even number of discs, and so the number of curves and arcs cross ∂Bi+ on
each side of k∩∂Bi+ is even. We claim that in these conditions F ∩D+ consists
of pairs of parallel arcs.

To show this, order the arcs according to its distance from k1, and assume
that the first 2n are paired and let a be the next one. Let Bi and Bj be two
consecutive bubbles crossed by a, so the segments of k ∩ ∂Bi+ and k ∩ ∂Bj+ are
on opposite sides of a as in Figure 8a. Since all the curves on one side of a are
paired and each side of the bubbles is crossed by an even number of arcs, there
must be other arcs a′ and a′′ crossing Bi+ and Bj+ next to a. If a′ and a′′ are
different, then one of them cannot separate k1 from k2 (see Figure 8b). If a

′ = a′′

then either a and a′ run parallel from Bi to Bj or else a′ crosses other bubbles
between Bi and Bj . If so, let Bl be the bubble crossed by a′ immediately after
Bj . See Figure 8c. Then k ∩ ∂Bl+ lies between a and a′, and so there must be
another arc between a and a′, and this arc would have to cross Bi or Bj between
a and a′, and this is impossible. Therefore a′ must run parallel to a from the first
bubble to the last bubble crossed by a. It remains to show that a′ runs parallel
to a from the first bubble to the boundary of D+ and from the last bubble to
the boundary of D+, i.e., that a

′ does not meet other bubbles in its way to the
boundary and that the region between a and a′ does not contain other bubbles.
As k1 and k2 lie outside the region between a and a′, this region does not contain
any other arc a′′. So k1 and k2 also lie outside this region, because if k1 were
between a and a′ the number of arcs between k1 and k1 would be odd, so F0

would separate these strings of k. Now if there were any segments of k ∩D+ in
that region, k would have to enter and leave the region at 2 bubbles crossed by a′
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on its way to the boundary. But we know that for any two consecutive bubbles
crossed by a′ the segments of k in their upper hemispheres lie on opposite sides
of a′, so one of them is in the region between a and a′ and so there must be an
arc in that region, a contradiction.

Now observe that each pair of parallel arcs of F0 in D+ must be adjacent
to a pair of parallel arcs of F0 in ∂B+: an arc of F0 in ∂B+ cannot go around
the endpoints of k1 or k2 because F would be meridionally compressible and
something analogous holds for the arcs of F0 in D−. So the intersection of F0

with ∂B+, ∂B− and with each ∂Bi consists of pairs of parallel curves, and as F0

is assembled by attaching discs to these parallel curves, F0 must consist of pairs
of parallel surfaces.

Finally, as F is meridionally incompressible, the intersection of F with the 4-
punctured sphere ∂B−k consists of curves surrounding 2 punctures, and if there
is more than one curve these are parallel. So if F ∩ B has several components,
and F0 consists of any two of them, then any path in B joining the strings of
the tangle must intersect F0 in an even number of points, and this is all that we
needed before to show that F0 consists of parallel surfaces.

Proof of Claim (2.7). Isotope F to minimize its intersection with ∂Bi. By
the previous lemma if F ∩ Bi is not empty then it consists of parallel copies of
a surface F0 that separates the strings of the tangle. As k is a knot F cannot
separate the strings of k ∩ B, so there must be an even number of copies of F0.
Now by the previous claim either F ∩Bi or F ∩S3 −Bi consists of discs, and in
the second case F would be the union of the components of F ∩ Bi with discs,
and since there are at least two such components F would not be connected.

In [2] Adams et al. extended the Meridional Lemma of Menasco to almost
alternating knots, i.e. knots that can be obtained by changing one crossing of
an alternating knot. The following corollary extends it to knots that can be
obtained from an alternating one by mirroring any (2-string) tangle.

Corollary (2.9). If a knot k can be decomposed into 2 alternating tangles,
then k admits no meridionally incompressible surfaces in its complement.
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Proof. By Lemma (2.8), a meridionally incompressible surface F in the com-
plement of k can be isotoped to meet each of the balls B1 and B2 that determine
the tangles along an even number of parallel copies of a surface Fi that separates
the strings of the tangle.

So F ∩Bi is the boundary of a regular neighborhood Ni of one or more copies
of Fi, and Ni is determined by painting the components of Bi−F in a chessboard
fashion and choosing those whose color is different from that of the regions that
contain the strings of the tangle. So N1 and N2 match on ∂B1 = ∂B2 to form
the regular neighborhood of a single surface in S3, and F is its boundary, so F
cannot be connected.

Corollary (2.10). The total genus of a disjoint family of closed, embedded,
totally geodesic surfaces in a hyperbolic 3-manifold or link complement is bounded
above by:

• 3
2 t where t is the number of tetrahedra in a triangulation.

• n− 3
2g for manifolds of Heegaard genus g and complexity n.

• 3
2c− 3 for a link with c crossings.

• 5
2r − 3 for a link that admits a projection made of r rational tangles.

• 5
2r − 3 for a prime knot decomposed into alternating tangles, r of them

rational.

Proof. If M is a hyperbolic 3-manifold and F1,F2,...,Fk are disjoint totally
geodesic surfaces in M , then each Fi is acylindrical and there are no essential
annuli in M connecting two Fi’s. For, the preimages of the Fi’s in the universal
covering of M are disjoint totally geodesic planes in H

3, and each preimage of
an essential annulus is an infinite strip of bounded height connecting two lines
in different planes. These lines lie at a bounded distance from geodesic lines
representing the preimages of the boundaries of the annulus, so they determine
2 different points at infinity were the two planes meet, but two disjoint totally
geodesic planes in H3 can only meet at 1 point.

So we may consider the family F1,F2,...,Fk as a single disconnected acylindrical
surface. The arguments above show the existence of essential annuli for a surface
F if the rank of H1(F ) is higher than the number of bad edges, independently of
the number of components of F . The bounds arise from a count of the number
of bad edges in each case.

3. Acylindrical surfaces in tunnel number two complements

Let S be a closed surface of genus g standarly embedded in S3, that is, it
bounds a handlebody on each of its sides. A knot K has a (b, g)-presentation
if can be isotoped to intersect S transversely in 2b points that divide K into
2b arcs, so that the b arcs in each side can be isotoped, keeping the endpoints
fixed, to disjoint arcs on S. We say that a knot K is a (b, g)-knot if it has a
(b, g)-presentation. Consider a product neighborhood S × I of S. To say that a
knot K has a (b, g)-presentation is equivalent to say that K can be isotoped to
lie in S × I, so that K ∩ (S × {0}) and K ∩ (S × {1}) consist each of b arcs (or
b tangent points), and the rest of the knot consist of 2b straight arcs in S × I,
that is, arcs which intersect each leaf S×{t} in the product exactly in one point.
It is not difficult to see that if K is a (b, g)-knot, then the tunnel number of K,
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Figure 9.

denoted tn(K), satisfies tn(K) ≤ b + g − 1. In this section we construct (2, 1)-
knots, which are in fact tunnel number 2 knots, which contain an acylindrical
surface of genus g.

Let T be a standard torus in S3, and let I = [0, 1]. Consider T × I ⊂ S3.
T ×{0} bounds a solid torus R0, and T ×{1} bounds a solid torus R1, such that
S3 = R0∪(T ×I)∪R1. Choose n+1 distinct points on I, e0 = 0, e1, . . . , en = 1,
so that ei < ei+1, for all 0 ≤ i ≤ n− 1. Consider the tori T ×{ei}. By a vertical
arc in a product T × [a, b] we mean an embedded arc which intersects every torus
T × {x} in the product in at most one point.

Let γi be a simple closed essential curve embedded in the product T×[ei−1, ei],
for i = 1, . . . , n, so that it has only one local maximum and one local minimum
with respect to the projection to [ei−1, ei]. Let αi, for i = 1, . . . , n − 1, be a
vertical arc in T × [0, 1], joining the maximum point of γi with the minimum of
γi+1. Let Γ be the 1-complex consisting of the union of all the curves γi and the
arcs αj . So Γ is a trivalent graph embedded in S3. Let R′

0 = R0 ∪ (T × [e0, e1])
and R′

1 = R1 ∪ (T × [en−1, en]).
Suppose each curve γi satisfies the following:

1. γi is not in a 3-ball contained in T × [ei−1, ei], or in R′
0 or R′

1, that is, it is
not a trivial knot in that region.

2. γi is not isotopic in T × [ei−1, ei], or in R′
0 or R′

1, to a knot lying on the
torus T × {ei}.

3. γi is not a cable of a knot lying in T × [ei−1, ei] or in R′
0 or R′

1 (it can be
proved that this is equivalent to say that γi is not isotopic to a cable of a knot
lying on the torus T × {ei}.)

4. There is no annulus B in T × {e0} so that B × [0, 1] contains Γ. If that
happens then each curve γi would be contained in a product B × [ei−1, ei].

5. There is no Möbius band in R′
0 (R′

1) disjoint from γ1 (γn).

It is not difficult to see that there exist plenty of knots satisfying the conditions
required for the curves γi, say by taking each γi to be a (1, 1)-knot which is not
a torus knot nor a satellite knot. For example, each γi could be a copy of the
figure eight knot, as shown in Figure 9(a) in the case of γ1, Figure 9(b) for
γ2, . . . , γn−1, and Figure 9(c) for γn. In the figures the knot is divided in two
arcs; the thin arc contains the minimum point of the knot, and the bold arc
contains the maximum. When assembled we get the graph Γ, shown for n = 2
in Figure 10.
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Figure 10.

Let N(Γ) be a regular neighborhood of Γ. This is a genus n handlebody.
We can assume that N(Γ) is the union of n solid tori N(γi), joined by (n − 1)
1-handles N(αj).

Theorem (3.1). Let Γ be a graph as above. Then S = ∂N(Γ) is incompress-
ible and acylindrical in S3 − intN(Γ). Furthermore, M − intN(Γ) is atoroidal.

Proof. Consider the tori T×{ei}, 1 ≤ i ≤ n−1. These tori divide S3 into n+1
regions, where n− 1 of them are product regions and two of them are solid tori,
namely R′

0 and R′
1. The torus T×{ei} intersects Γ in one point, that is, a middle

point of αi, so T × {ei} ∩N(Γ) consists of a disc. Let Ti = T × {ei} − intN(Γ),
for 1 ≤ i ≤ n− 1, this is a once punctured torus.

Suppose D is a compression disc for S, and suppose it intersects transversely
the tori Ti. Let β be a simple closed curve of intersection between D and the
collection of tori, which is innermost in D. So β bounds a disc D′ ⊂ D, which
is contained in a product T × [ei−1, ei], or in the solid torus R′

0 or in R′
1. If β is

trivial on Ti, then by cutting D with an innermost disc lying in the disc bounded
by β on Ti, we get a compression disc with fewer intersections with the T ′

is. If β
is essential on Ti, then it would be parallel to ∂Ti, or it would be a meridian of
T1 or a longitude of Tn−1, but then in any case, one of the curves γ1 or γn will
be contained in a 3-ball, which is a contradiction.

So suppose D intersects the T ′
is only in arcs. Let β such an arc which is

outermost on D, then it cobounds with an arc δ ⊂ ∂D a disc D′. We can
assume that β is an arc properly embedded in some Ti; if β is parallel to an
arc on ∂Ti, then by cutting D with an outermost such arc lying on Ti we get
another compression disc with fewer intersections with the T ′

is, so assume that
β is an essential arc on Ti. After isotoping D if necessary, we can assume that
the arc δ can be decomposed as δ = δ1 ∪ δ2 ∪ δ3, where δ1, δ3 lie on ∂N(αi) and
δ2 lie on ∂N(γi) (if δ were contained in ∂N(αi), then by isotoping D we would
get a compression disc intersecting Ti in a simple closed curve). Let E be a disc
contained in N(αi) so that ∂E = δ1 ∪ δ4 ∪ δ3 ∪ δ5, where δ4 lies on Ti and δ5
lies on ∂N(αi). So D′ ∪ E is an annulus, where one boundary component, i.e.,
β ∪ δ4 lies on T × {ei}, and the other, δ2 ∪ δ5, lies on ∂N(γi). If δ2 ∪ δ5 is a
meridian of γi, then necessarily D∪E is contained in R′

0 (or in R′
1) and β∪ δ4 is
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a meridian of that solid torus. Then γ1 (or γn) intersects a meridian disc of R′
0

(R′
1) in one point, which implies that it is parallel to a knot lying on the torus

T × {e0} (T × {e1}), which is a contradiction. If δ2 ∪ δ5 is a longitudinal curve
of γi, then this implies that γi is parallel to a curve on T ×{ei}, a contradiction.
If δ2 ∪ δ5 goes more than once longitudinally on γi, this would only be possible
for the curves γ1 or γn, but then one of these curves would be a core of the
solid torus R′

0 or R′
1, which is not possible. This completes the proof that S is

incompressible in S3 − intN(Γ).
Suppose now that there is an essential annulus A in S3 − intN(Γ). Look

at the intersection between A and the punctured tori Ti. Simple closed curves
of intersection which are trivial on A, and arcs on A which are parallel to a
component of ∂A are eliminated as above. So the intersection consists of a
collection of essential arcs on A, or a collection of essential simple closed curves
on A.

Suppose first that there are essential arcs of intersection. Let E ⊂ A be a
square determined by the arcs of intersection. So ∂E = ε1∪δ1∪ε2∪δ2, where ε1,
ε2 are contained in different components of ∂A and δ1, δ2 are arcs of intersection
of A with the T ′

is. Take the square at highest level. So δ1, δ2 lie on the same level
Ti, and possibly Ti = Tn−1. So we can assume that ε1, ε2 lie on ∂N(αi ∪ γi+1).

Case 1: The arcs δ1, δ2 are parallel on Ti, that is, they cobound a disc F in
Ti.

There are two subcases, depending of the orientation of the arcs δ1, δ2. Give
an orientation to ∂E. Suppose first that the arcs δ1, δ2 have the same orientation
on Ti (note that the interior of F may intersect the annulus A, but it is irrelevant
in this case). Then E ∪ F is a Möbius band, and by pushing it off Ti we get a
Möbius band contained in the product T × [ei, ei+1] or in R′

1, with its boundary
lying on N(γi). This implies that either γi is a trivial knot or that it is a 2-cable
of some knot, which is a contradiction.

Suppose the arcs δ1, δ2 have opposite orientations in Ti. If the interior of
the disc F intersects A, then take another square in A, which determines a disc
F ′ ⊂ F with interior disjoint from A. We can form two annuli, E ∪ F and
(A − E) ∪ F . We will show that at least one of them is an essential annulus.
Note that a core of A is homotopic to the product of a core of E ∪ F and a
core of (A − E) ∪ F . So if these two curves are homotopically trivial, so is the
core of A. So assume one of them is incompressible, say (A − E) ∪ F . If it is
∂-compressible then it is ∂-parallel, because S is incompressible. Then there is
a ∂-compression disc for this annulus intersecting it on (A−E), but this implies
that the original annulus A is also ∂-compressible, a contradiction. So we get a
new essential annulus with fewer intersection with the T ′

is.

Case 2: The arcs δ1, δ2 are not parallel on Ti, and the arcs ε1, ε2 are parallel
on ∂N(Γ).

The arcs ε1, ε2 must have the same orientation on N(αi ∪ γi), see Figure
11(a). They cobound a disc F on ∂N(αi∪γi) with ∂F = ε1 ∪ η1 ∪ ε2 ∪ η2, where
γ1, γ2 ⊂ ∂N(αi) ∩ Ti. (Note that the disc F may intersect the arc αi+1, or its
interior may intersect A, but this is irrelevant in this argument). It follows that
E ∪ F is a Möbius band whose boundary lies on Ti. This is impossible if the
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band lies in a product region. If it lies in R′
1, then note that the band is disjoint

from the curve γn, but this is not possible, by hypothesis.
Case 3: The arcs δ1, δ2 are not parallel on Ti, and the arcs ε1, ε2 are not

parallel on ∂N(Γ).
Note that this case is only possible in a product region, see Figure 11(b).

Forget about the arc αi+1, that is, consider the square E in the complement of
N(αi ∪ γi). Then, it is not difficult to see that one of the arcs, say ε2 can be slid
toward Ti. Then there is a disc, whose boundary consists of two arcs, one lying
on Ti and one on N(γi). By gluing to this disc a disc contained in N(αi), an
annulus between γi and T × ei is constructed. The only possibility in this case is
that the annulus goes once longitudinally on N(γi), i.e., the curve γi is parallel
to the torus T × ei, which is a contradiction.

This completes the proof in the case the annulus A is divided in squares.
Suppose now that the intersection of the annulus A with the tori T ′

is consists
of simple closed curves which are essential on A. Take an outermost curve, say
α. Then α and a component of ∂A cobound an annulus, and the component of
∂A must lie on some γi. This again implies that γi is parallel to Ti or that γ1 or
γn are the core of the solid torus R′

0 or R′
1, a contradiction.

It remains to prove that S3 − intN(Γ) is atoroidal. Suppose Q is an essential
torus, then we can assume that it intersects the tori Ti in a collection of simple
closed curves which are essential on Q, and divide Q in a collection of annuli.
Take one of this annuli, say A, at highest level. If A is in a product region
then it must be parallel to some Ti, and then by an isotopy we can remove two
curves of intersection. So A lies on R′

1. As it is an annulus in a solid torus, it
must be parallel to the boundary. If γn is not in this parallelism region, then an
isotopy removes the intersection. If γn is the parallelism region, then take the
annulus next to A. It must be an annulus between Tn−1 and Tn−2. Continuing
in this way, the only possibility is that the whole graph Γ lies inside a solid torus
bounded by Q, but this is isotopic to a solid torus of the form B × I, where B
is an annulus in T × {en}. This contradicts the choice of Γ.
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Figure 13.

Put now a knot K inside N(Γ) in such a way that K∩N(αi), for 2 ≤ i ≤ n−1,
consists of four vertical arcs with a pattern like in Figure 12(c), and k ∩ N(γi)
consists of 4 vertical arcs, going from N(αi) to N(αi+1), as in Figure 12(b). Also,
K ∩N(γ1) consists of two arcs, each having a single minimum, and K ∩N(γn)
consists of two arcs, each having a single maximum, as in the pattern shown in
Figure 12(a). For n = 3, a knot K inside N(Γ) looks like in Figure 13, where
the twist is added to get a knot.

Lemma (3.2). S = ∂N(Γ) is acylindrical in N(Γ)−K. Furthermore, N(Γ)−
K is atoroidal.

Proof. The proof is also an innermost disc/outermost arc argument. It is
practically the same as in Lemma 2.3 of [3].

Theorem (3.3). Let K and S as constructed above. K is a hyperbolic (2, 1)-
knot, tunnel number 2 knot, and S is an acylindrical surface of genus g in the
complement of K.

Proof. Note that by construction K is a (2, 1)-knot, for it lies in T × I, and it
has in there exactly two maxima and two minima with respect to the projection
to the factor I. It follows from Theorem (3.1) and Lemma (3.2) that S is an
acylindrical surface. K is a hyperbolic knot because the complement of the
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surface is atoroidal and acylindrical. Finally note that the knot K has tunnel
number 2; it cannot have tunnel number one, for it contains an acylindrical
separating surface [19].

Corollary (3.4). Given any integer g ≥ 2, there exist infinitely many hy-
perbolic 3-manifolds of Heegaard genus 3 which contain an acylindrical surface
of genus g.

Proof. For each g choose a knotK as above. Do Dehn surgery onK with slope
λ, such that Δ(μ, λ) ≥ 3, where μ is a meridian of K. It follows that S remains
incompressible [22], acylindrical [11], and that M(α) is irreducible and atoroidal
[9] [10]. Then by Thurston Geometrization Theorem, M(α) is hyperbolic, for it
is Haken and atoroidal. K has tunnel number two, which implies that M(α) has
Heegaard genus at most 3, but it cannot have Heegaard genus 2, for it contains
a separating acylindrical surface [19].

4. Quasi-Fuchsian surfaces of arbitrarily high genus

Let M be an irreducible orientable 3-manifold. Let K be a knot in M . Let
B be a branched surface in M disjoint from K. (see [7] [20] for definitions and
facts about branched surfaces). Denote by N a fibered regular neighborhood of
B, by ∂hN the horizontal boundary of N , and by ∂vN the vertical boundary of
N , as usual.

We say that a branched surface B is incompressible in M −K if it satisfies:

1. B has no discs of contact or half discs of contact.
2. ∂hN is incompressible and ∂-incompressible in (M −K)− intN .
3. There are no monogons in (M −K)− intN .

We further say that B is meridionally incompressible if:

4. ∂hN is meridionally incompressible, that is , there is no disc D in M , with
D ∩N = ∂D ⊂ ∂hN , so that D intersects K transversely in one point.

We further say that K is not parallel to B if:

5. K is not parallel to ∂hN , that is, there is no an annulus A in M , with
∂A = A0 ∪ A1, so that A0 = K, and A ∩N = A1 ⊂ ∂hN

Theorem (4.1). Let M , B, K as above, with B incompressible.

1. Suppose B is meridionally incompressible. Then a surface carried with
positive weights by B is meridionally incompressible.

2. If K is not parallel to B, then K is not parallel to any surface carried with
positive weights by B.

Then if B is meridionally incompressible and K is not parallel to it, any surface
carried by B with positive weights is quasi-Fuchsian.

Proof. It is essentially the same proof as in Theorem (2.5) in [7], with the
obvious modifications.

Consider the knot K and branched surface B shown in Figure 14(a). Note
that B has 4 singular curves, denoted C1, C2, C3, C4, as in Figure 14(b). Note
that K is a 3-bridge knot. The knot K is just one in a collection of knots, to
get more just make the knot to intersect several times the discs D1, D2, D3, D4

shown in Figure 14(b). But suppose that K intersects transversely the discs
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D1, D2, D3, D4 in at least 2 points, that is, the minimal intersection number of
the knots with the discs, when isotoping the knot in the complement of B is at
least 2. Note that K intersects the discs D5 and D6 in exactly 2 points, because
it is a 3-bridge knot. Suppose also that the arc of the knot lying in the solid
torus T (shown in Figure 14(b)), is not parallel to ∂T ; it is possible to do that,
an explicit example is in Figure 14(a).

The nonsingular part of B has six components, whose weights (a, b, c, d, e, f)
are shown in Figure 14(b). Note that if we give the weights (1, 2n− 1, 2n, 2n−
2, n, n − 2), for n ≥ 3, then this is a collection of positive weights, which is
consistent, and determines a connected surface of genus 3n.

If a knot K is not hyperbolic then it is either a torus knot or a satellite knot.
Remember that by the classical work of Schubert, a satellite 3-bridge knot must
be the connected sum of 2 two-bridge knots. It is known that two-bridge knots
do not contain any essential closed surface [13], and from this it follows that
the only essential surfaces in the connected sum of 2 two-bridge knots are the
swallow-follow tori. Also, torus knots do not contain closed essential surfaces.
This implies that a 3-bridge knot which contains an essential surface of genus
greater than 1 must be hyperbolic.
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Theorem (4.2). The surface B is meridionally incompressible and K is not
parallel to it. So K is a hyperbolic 3-bridge knot which contains quasi-Fuchsian
surfaces of arbitrarily high genus.

Sketch of proof. Let N be a fibered neighborhood of B. Note that S3−N has
3 components, denoted by N1, N2, N3, where say N3 is the region that contains
the knot, N1 is the upper region, and N2 the lower region.

Suppose that the part of ∂hN contained in N3 is compressible or meridionally
compressible, and let E be a compression or meridian compression disc. Look
at the intersections between E and the discs D1, D3, D5, D6. Let γ be a simple
closed curve of intersection which is innermost on E, so γ bounds a disc E′ ⊂ E;
suppose first that E′ is disjoint from K. The curve γ also bounds a disc D′ in
some Di. Suppose D′ intersects K. If D′ is part of D1 or D3, then K intersects
the sphere E′∪D′ several times always in the same direction, which is impossible.
If D′ is part of D5 or D6 then it must intersect K in two points, and then there
is an arc of K contained in the 3-ball bounded by E′ ∪D′. But this implies that
K can be made disjoint from D2 or D4, or from D3 or D1, which is impossible
by hypothesis. So D′ must be disjoint from K, and then an isotopy reduces the
number of intersections between E and the Di. If E

′ intersects K once, then by
a similar argument, D′ intersects K also in a point, and then by an isotopy, we
get a new compression disc with fewer intersections with the Di. Suppose then
that the intersection between E and the Di consists only of arcs. Let γ be an
arc of intersection which is outermost on E, and which bounds a disc E′ disjoint
from K. The arc γ also bounds a disc D′ on some Di. If K is disjoint from D′,
then by cutting E with an outermost disc lying on D′ we get a new compression
disc with fewer intersections with the Di. If K intersects D′ in one point, then
it is not difficult to see that K must intersect in one point one of D2, D4 or D1,
which is a contradiction. So if there is such a disc E, it must be disjoint from the
Di, and by inspection it is not difficult to check that such disc does not exist.
The part of ∂vN contained in N3 consists of one annulus, corresponding to the
curve C2. Again an innermost disc/outermost arc argument shows that there is
no monogon.

The part of ∂hN contained in N1 consists of a twice punctured genus two
surface; it is not difficult to check that it is incompressible. The part of ∂vN
contained in N1 consists of an annulus, corresponding to the curve C1; it is
also not difficult to check that there is no monogon. Similarly, the part of ∂hN
contained in N2 consists of a three punctured sphere and an once punctured
torus, and ∂vN consists of two annuli, corresponding to the curves C3 and C4;
again it is not difficult to check that these are incompressible and that there is
no monogon.

To see that K is not parallel to B, suppose there is an annulus A, with one
boundary being K and the other on B. Again look at the intersections between
A and the discs Di, and get that the arc of the knot that lies in the solid torus T
must be parallel to ∂T , but this is not possible by the choice of such an arc.

The explicit knot shown in Figure 14(a) has more interesting properties, it
is a ribbon knot and it has unknotting number one, where a crossing change is
located in the arc contained in the solid torus T .
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Corollary (4.3). There exist hyperbolic genus 3 closed 3-manifolds, in fact
homology spheres, which contain incompressible surfaces of arbitrarily high genus,
so contain infinitely many incompressible surfaces.

Proof. Let K be a knot as in Theorem (4.2). Let K(r) be the manifold
obtained by performing Dehn surgery on K with slope r. If Δ(r, μ) > 1, where
μ denotes a meridian of K, then K(r) is irreducible by [9], and B remains
incompressible in K(r) by [22], for K is not parallel to B. If Δ(r, μ) > 2,
then K(r) is atoroidal by [10]. So if Δ(r, μ) > 2, K(r) is an atoroidal Haken
manifold, hence it is hyperbolic. K is a tunnel number 2 knot, hence each K(r)
has Heegaard genus ≤ 3. Finally note that among the K(r) many are homology
spheres.

Corollary (4.4). There exist genus 2 closed 3-manifolds which contain in-
compressible surfaces of arbitrarily high genus, so they contain infinitely many
incompressible surfaces.

Proof. Let K be a knot as in Theorem (4.2). Let Σ(K) denote the double
cover of S3 branched alongK. AsK is a 3-bridge knot, Σ(K) has Heegaard genus
2. If S is a surface carried by B with positive weights, then as it is meridion-
ally incompressible, it lifts in Σ(K) to a (possible disconnected) incompressible
surface [8].

Remark (4.5). It should be possible to say that the manifolds obtained in this
corollary are hyperbolic; this will be the case if it is shown that the knots K do
not admit a tangle decomposing sphere.
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3-MANIFOLDS THAT ARE COVERED BY TWO OPEN

BUNDLES

J. C. GÓMEZ-LARRAÑAGA, WOLFGANG HEIL, AND F. GONZÁLEZ-ACUÑA

Abstract. We obtain a list of all closed 3-manifolds that are covered by
two open submanifolds, each homeomorphic to an open disk bundle over
S1, or an open I-bundle over the 2-sphere, the projective plane, the torus,
or the Klein bottle.

0. Introduction

The F -category F (M) of a closed 3-manifold M is the minimum number of
critical points of smooth functions M −→ R. A lower bound for F (M) is the
Lusternik-Schnirelmann category cat (M) of M, which is a homotopy invariant
and is defined to be the smallest number of sets, open and contractible in M,
needed to cover M. An invariant that turns out to be equivalent to F (M) is
the smallest number C (M) of open balls needed to cover M. Note that 2 ≤
C (M) , F (M) , cat(M) ≤ 4, and denote by B a connected sum of any number
of S2-bundles over S1. Then the results about these three invariants can be
summarized as follows (where � denotes homotopy equivalence): F (M) = 2 ⇔
M = S3, F (M) ≤ 3 ⇔M = B (proved in [12] ).
C (M) = 2 ⇔ M = S3, C (M) ≤ 3 ⇔M = B (proved in [8]).
cat (M) = 2 ⇔M � S3, cat (M) ≤ 3 ⇔M � B (proved in [3]).
Generalization of these invariants were introduced by Clapp and Puppe [1]

and Khimshiashvili and Siersma [9]: Let A be a closed k-manifold, 0 ≤ k ≤ 2.
A subset G in the 3-manifold M is A - categorical if the inclusion map i :
G −→ M factors homotopically through A. An A-function on M is a smooth
function M −→ R whose critical set is a finite disjoint union of components,
each diffeomorphic to A. The A-category catA (M) of M is the smallest number
of sets, open and A-categorical, needed to coverM. The A-complexity FA (M) of
M is the minimum number of components of the critical set over all A-functions
on M.

Then catpoint (M) = cat (M) , Fpoint (M) = F (M) , catS1 (M) is the round
category of M, and FS1 (M) is the round complexity of M, studied in [9].

It is now natural to ask about minimal covers of M by open sets, each homo-
topy equivalent to A. In particular when A is a point, S1, or a closed 2–manifold,

consider covers of M by open disk bundles over A, i.e. open 3-balls,
◦
D2-bundles

over S1, and
◦
I-bundles over surfaces. For such an open disk bundle B (A) over
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A let CB(A) (M) denote the minimal number of sets, each homeomorphic to
B (A), needed to cover M. In this paper we classify all closed 3-manifolds for
which CB(A) (M) = 2, where A is S1, S2, the projective plane P 2, the torus
T, or the Klein bottle K. (Note that CB(point) (M) = C (M)). The results are
summarized in a table at the end of the paper. Some results are unexpected;
for example the manifolds for which C

T×
◦
I
(M) = 2 include all lens spaces (in-

cluding S3), which can be seen as follows. Let L1 = l1 ∪ l2 be the Hopf link in
S3 and let l′i be parallel to li so that L2 = l′1 ∪ l′2 is a Hopf link disjoint to L1.

Then S3 =
(
S3 − L1

) ∪ (
S3 − L2

)
is a union of two open T ×

◦
I’s. A similar

construction can be made for any lens space.

1. Preliminaries

Throughout this paper we work in the PL-category. Our goal is to obtain
information about closed 3-manifolds that are covered by open sets each of which
is homeomorphic to the interior of a compact 3-manifold. Our main lemma shows
that we can reduce the problem of a covering by two open sets to a canonical
covering by two compact manifolds, each PL embedded.

(1.1) Main Lemma. Suppose M is a closed 3-manifold covered by two open
sets H1, H2, such that Hi is homeomorphic to the interior of a compact connected
3-manifold Vi (i = 1, 2). Then M admits a covering M = V1 ∪ V2 such that
∂V1 ∩ ∂V2 = ∅ and V1, V2 are PL embedded.

Proof. Using collars on ∂Vi (i = 1, 2), we can write Hi =
∞⋃
k=1

intV
(i)
k , where

V
(i)
k ≈ Vi, V

(i)
k ⊂ intV

(i)
k+1, k = 1, 2, . . . . The complement Hc

1 of H1 in M is

a compact subspace of H2, and it follows that Hc
1 ⊂ intV

(2)
n for some n. Now,(

intV
(2)
n

)c

is a compact subspace of H1 and hence
(
intV

(2)
n

)c

⊂ intV
(1)
m for

some m. Note that ∂V
(2)
n ⊂

(
intV

(2)
n

)c

⊂ V
(1)
m . Hence if we let V1 = V

(1)
m and

V2 = V
(2)
n in M we obtain M = V1 ∪ V2 as desired.

By a knot space we mean a 3-manifold N homeomorphic to the complement
of the interior of a regular neighborhood of a non-trivial knot in S3. Note that
∂N contains a meridian curve C such that attaching a 2-handle to N with core
along C yields B3. The next lemma is well-known.

Lemma (1.1.1). Suppose M is a compact irreducible 3-manifold.

(i) If M contains a 2-sided compressible torus T then either T bounds a solid
torus or a knot space N in M with an essential curve of ∂N bounding a disk in
M −N. If T is a compressible boundary component of M then M = D2 × S1.

(ii) If M contains a 2-sided compressible Klein bottle K then either K bounds
a solid Klein bottle in M or M contains a 2-sided projective plane P 2. If K is a
compressible boundary component then M is a solid Klein bottle.
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Proof. (i) LetD×[−1, 1] be a neighborhood of a compressing diskD = D×{0}
with D× [−1, 1]∩T = ∂D× [−1, 1]∩T. The sphere S = (T −D × [−1, 1] ∩ T )∪
D×{−1}∪D×{1} bounds a ball B in M. If D ∩B = ∅ then B ∪D× [−1, 1] is
a solid torus in M bounded by T. If D ⊂ B then T ⊂ B such that ∂B ∩ T is an

essential annulus of T. Hence B −D × [−1, 1] is a knot space (or a solid torus)
in M bounded by T.

(ii) If we surger K as above along a compressing disk D we obtain a 2-
sphere S if ∂D does not separate K. Then B ∪ D × [−1, 1] is a solid Klein
bottle bounded by K. (The case D ⊂ B can not happen since a Klein bottle
does not imbed in a ball). If ∂D separates K into two Moebius bands then
(K −D × [−1, 1] ∩K) ∪D × {−1} ∪D × {1} gives two 2-sided P 2’s in M.

Notation. By B×̃F we denote a twisted F -bundle over B, not homeomorphic
to B × F. In particular, S1×̃D2 is the solid Klein bottle, S1×̃S2 is the non-
orientable S2-bundle over S1, and P 2×̃I is the once-punctured projective space
P 3. The twisted I-bundles over a torus T and a Klein bottle K are described in
the next section.

The union of two 3-manifolds N1, N2 glued together along boundary compo-
nents is denoted by N1 ∪∂ N2.
L denotes any lens space (including S3 and S1 × S2).
S (2, 2, n) denotes a Seifert fiber space over the 2-sphere with three exceptional

fibers of orders 2, 2, n (n ≥ 0).
The symbol ∼ means homologous to.
The symbol ≈ means homeomorphic.

2. I-bundles and (semi)-bundles over the torus and Klein bottle

Recall that an I-bundle over a surface F is twisted if it is not the product
I-bundle F×I. The twisted I-bundle a2×̃I over the annulus a2 is homeomorphic
to the product I-bundle m2×I over the Moebius bandm2. The twisted I-bundle
m2×̃I over m2 is homeomorphic to the solid torus D2 × I (with m2 embedded
in D2 × I so that ∂m2 is a (1, 2)-curve on ∂D2 × S1).

(2.1) . There is only one twisted I-bundle T ×̃I = m2 × S1 over the torus T =
S1 × S1.

To see this, note that in such an I-bundle N there is a simple closed curve c
on T such that the restriction of the I-bundle over c is a Moebius band. Now c
cuts T into an annulus a2 and the restriction of the I-bundle over a2 is twisted.
Hence N is the quotient m2 × I/ (x, 0) ∼ (ϕ (x) , 1) for a homeomorphism ϕ of
m2. If ϕ is isotopic to the identity then N = m2 × S1. The case that ϕ is not
isotopic to the identity can not occur since then ϕ would reverse the orientation
of ∂m2, which would cause ∂N to be a Klein bottle; but ∂N is a torus since it
is a 2-sheeted cover of T.

(2.2) . There are exactly two twisted I-bundles over the Klein bottle K =
S1×̃S1.

These can be described as follows. The restriction of such an I-bundle N over
a separating simple closed curve on K splits N into two I-bundles over Moebius
bands m2

1, m
2
2, at least one of which is twisted. There are two possibilities.
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(i) N = m2
1×̃I ∪m2

2×̃I is a union of two solid tori along an annulus in their
boundary and N can be described as a Seifert fiber space with orbit a disk and
two exceptional fibers of order 2. In this case N is orientable and is denoted by(
K×̃I)

0
.

(ii) N = m2
1 × I ∪m2

2×̃I, where ∂m2
1 × I is identified with an annular neigh-

borhood of ∂m2
2 in ∂D2 × S1 = ∂

(
m2

2×̃I
)
. In this case ∂N is a Klein bottle,

and we denote this I-bundle over K by
(
K×̃I)

N0
.

Another description of
(
K×̃I)

N0
is obtained by cutting K into an annulus

along a 2-sided non-separating circle. As for T ×̃I we obtain
(
K×̃I)

N0
as the

quotient m2 × I/ (x, 0) ∼ (ψ (x) , 1) , where ψ is not isotopic to the identity.
Viewing m2 as a rectangle with a pair of opposite edges identified, ψ is induced
by a reflection about a line mid-way between the two edges (cf [10]). Thus(
K×̃I)

N0
≈ S1×̃m2, the twisted m2-bundle over S1.

Following Hatcher [4], we call a union of two twisted I-bundles over a torus T
(resp. Klein bottle K) glued together along their boundary component a torus
(resp. Klein bottle) semi-bundle. These semi-bundles are essentially classified
by the isotopy classes of their gluing maps (see e.g. [4, Thm 5.1]).

There are exactly four isotopy classes of homeomorphisms of the Klein bottle
([10]) that lead to exactly four Klein bottle-bundles over S1, described in [6].

3. Covers by intM1 and intM2

In this and the following sections we consider a closed 3-manifold M that
is covered by two open sets intM1, intM2, where M1, M2 are homeomorphic
compact connected 3-manifolds. In light of the Main Lemma, we may assume
throughout that

(*) M =M1 ∪M2, M1 ≈M2 compact, ∂M1 ∩ ∂M2 = ∅.
We let Q = M1 ∩M2 ⊂ M. Note that the boundary of each component of Q

contains a component of both ∂M1 and ∂M2. We observe

(i) If M1, M2 are irreducible then Mi −Q is irreducible (i = 1, 2).

For a 2-sphere in int
(
M1 −Q

)
bounds a ball B in int (M1) . If B does not lie

in M1 −Q then B contains a component of Q, hence a component of ∂M1, a
contradiction.

(ii) If M1, M2 are irreducible and M = S3 then Q is irreducible.

For a 2-sphere S in Q bounds balls B1 ⊂M1, B2 ⊂M2. Either B1 = B2 ⊂ Q,
or B1 ∩B2 = S and M = B1 ∪∂ B2 = S3.

(3.1) Covers by open balls and open disk bundles over S1.

(a) If Mi ≈ B3 then M = S3.

Proof. ∂M2 bounds a ball B in M1 and M =M2 ∪∂ B = S3.
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(b) If Mi = S1 ×D2 then M = L.

Proof. Since M1 does not contain a closed incompressible surface, there is a
compressing disk D for ∂M2 in M1. If D ⊂M1 −Q thenM1 −Q is a solid torus
(by Lemma (1.1.1) (i) and (3) (i)) and M =M1 −Q ∪∂ M2 is a lens space.

If D ⊂ Q then, viewing a regular neighborhood of D in Q as a 2-handle
U (D), we get thatM1 −Q∪U (D) ⊂M1 is bounded by a 2-sphere. HenceM =(
M1 −Q ∪ U (D)

) ∪∂

(
M2 − U (D)

)
is a union of two balls, i.e. M = S3.

(c) If Mi ≈ S1×̃D2 then M = S1×̃S2.

Proof. ∂M2 is compressible inM1 andM1 does not contain a projective plane.
By Lemma (1.1.1) (ii), ∂M2 bounds a solid Klein bottle M ′

1 ⊂ M1 and M =
M ′

1 ∪∂ M2 = S2×̃S1 (see e.g. [7, 2.14]).

(3.2) Covers by open I-bundles over S2 or P 2.

(a) If Mi ≈ S2 × I then M = S3, S1 × S2 or S1×̃S2.

Proof. Let ∂M2 = S0 ∪ S1 ⊂ intM1.
If S0 bounds a ball B0 in M1 then B0 ⊂ M1 −Q since M is closed. Now

M ′
2 = M2 ∪∂ B0 is a ball and M = M1 ∪M ′

2. The boundary S1 of M ′
2 is not

isotopic to a boundary sphere ofM1 (since M is closed) and hence bounds a ball
B1 in M1, different from M ′

2 and M =M ′
2 ∪∂ B1 = S3.

If both S0 and S1 are parallel to the boundary spheres of M1 then S0 and S1

bound a submanifold M ′
2 ≈ S2 × I in M1 and we obtain M =M1 −M ′

2 ∪∂ M
′
2,

hence M = S1 × S2 or S1×̃S2.

(b) If Mi = P 2 × I then M = P 2 × S1.

Proof. This follows from the fact that any projective plane in M1 is isotopic
to a boundary component, hence M ≈M1 ∪∂M2. (Note that there is no twisted
P 2-bundle over S1).

(c) If Mi = P 2×̃I then M = P 3 or P 3#P 3.

Proof. If ∂M2 bounds a ball B in M1 then M = M2 ∪∂ B = P 3. Otherwise
∂M2 is parallel in M1 to ∂M1 and M ≈M1 ∪∂ M2 = P 3#P 3.

(3.3) Covers by open I-bundles over S1 × S1 and S1×̃S1.

Let T = S1 × S1 and K = S1×̃S1.

(a) If Mi = T × I then M = L or a T -bundle over S1.

Proof. Let ∂M2 = T0 ∪ T1, ∂M1 = T ′
0 ∪ T ′

1.
If T0 is incompressible in M1 then it is isotopic to a component of ∂M1 and

splits M1 into two copies M ′
1, M

′′
1 . Assume T ′

0 ⊂M ′′
1 , T

′
1 ⊂M ′

1. Then T1 ⊂M ′
1,

say. Then (since T ′
0, T0 ⊂ ∂Q and T ′

0 ⊂ intM2) it follows thatM
′′
1 is a component

of Q ⊂M1. The other component(s) of Q lie in M ′
1 and are bounded by T ′

1 and
T1. Since T ′

1 � 0 in M ′
1 there is exactly one component P of Q in M ′

1 bounded
by T ′

1 and T1. Hence T1 � 0 in M ′
1 and Lemma (1.1.1) (i) implies that T1 is

incompressible in M ′
1. Hence T0, T1 are isotopic in M1 to T ′

0, T
′
1 and it follows

that M ≈M1 ∪∂ M2 is a T -bundle over S1.
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Figure 1

Now suppose that T0, T1 are both compressible in M1; hence, by Lemma
(1.1.1) (i), Ti bounds a solid torus or knot space Ni in M1 (i=0,1). Now T1 is
not contained in N0. Otherwise an arc in M2 from a point of T0 to a point
of T1 would be in N0 (since T0 separates in M1), and it would follow that
M2 ⊂ N0 ⊂ M1, a contradiction. Similarly T0 is not contained in N1; hence
N0 and N1 are disjoint. If N0 is a solid torus then M ′

2 = M2 ∪∂ N0 is a solid
torus and M =M ′

2 ∪∂ N1. Thus if N1 is also a solid torus, M is a lens space. If
N1 is a knot space then a meridian circle on ∂N1 bounds a compressing disk D
for M ′

2 in M1 −N1 (see Figure (1)).

For a regular neighborhood U (D) in M1 −N1 we obtain M = M ′
2 − U (D)

∪∂N1 ∪ U (D), a union of two balls, hence M = S3.
The case where both N0 and N1 are knot spaces in M1 can not occur. For

in this case a compressing disk D for T1 in M1 −N1 must intersect N0, since
otherwise D would be a compressing disk for T1 in M2. But then an essential
innermost circle component of T0 ∩D bounds a disk D′ on D which would be a
compressing disk for T0 in N0 or in M2, a contradiction.

(b) If Mi = K × I then M = S1×̃S2 or a K-bundle over S1.

Proof. Let ∂M2 = K0 ∪K1 ⊂ intM1.
If K0 is compressible in M1 then it bounds a solid Klein bottle V0 in M1 (by

Lemma (1.1.1) (ii), since M1 does not contain P 2’s). The same argument as in
case (a) shows that K1 is also compressible and bounds a solid Klein bottle V1
in M1 such that V0 and V1 are disjoint. Then M = (M2 ∪∂ V0) ∪∂ V1 is a union
of two solid Klein bottles, hence M = S1×̃S2.

If both K0,K1 are incompressible in M1 then they are boundary parallel and
M =M1 ∪M2 is a K–bundle over S1.

We next consider the cases of twisted I-bundles over T and K.

Lemma (3.3.1). Let Mi be a twisted I-bundle over T or K (i = 1, 2).
(i) If ∂M1 is incompressible in M2 then M ≈M1 ∪∂ M2 is a semi-bundle.
(ii) If ∂M1 is compressible in M2 then M =M2∪∂

(
S1 ×D2

)
(for Mi = T ×̃I

or
(
K×̃I)

0
), resp. M =M2 ∪∂

(
S1×̃D2

)
, (for Mi =

(
K×̃I)

N0
).

Proof. If ∂M1 is incompressible M2 then it is parallel to ∂M2 in M2 and
M ≈M1 ∪∂ M2.
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If ∂M1 compresses in M2 then it bounds a solid torus, a knot space, or a
solid Klein bottle in M2 (by Lemma (1.1.1)). It can not bound a knot space
N since otherwise a meridian of ∂N would bound a compressing disk D in
M2 −N ⊂ Q and hence D would be a compressing disk for ∂M1 in M1. It
follows that M =M2 ∪∂

(
S1 ×D2

)
or M2 ∪∂

(
S1×̃D2

)
.

(c) If Mi = T ×̃I then M is a torus semi-bundle or M = P 2 × S1 or M =
S1×̃S2.

Proof. By the previous lemma it suffices to consider the case where M =
M2 ∪∂

(
S1 ×D2

)
.

In the 2-sheeted orientable cover M̃ ofM,M2 = m2×S1 lifts to a2×S1 = T×I
and the attaching solid torus S1 × D2 lifts to two attaching solid tori. Hence

M̃ is a lens space; its fundamental group is infinite, since it covers the closed
non-orientable manifold M. By the classification of (orientation-reversing) fixed
point free involutions on S1 × S2 ([13], [14, Corollary]), M is as claimed.

(d) If Mi =
(
K×̃I)

0
then M is a Klein bottle semi-bundle or M = P 3#P 3

or M = S (2, 2, n) (for any n ≥ 0).

Proof. Again we need to consider only the case that M =M2 ∪∂

(
S1 ×D2

)
.

Representing M2 as a Seifert fiber space over a disk with two exceptional fibers
each of order 2 we obtain M = S (2, 2, n) if the meridian ∂D2 of the attaching
solid torus is not homotopic to a fiber on ∂M2, and M = P 3#P 3 otherwise (see
e.g. [5]).

(e) If Mi =
(
K×̃I)

N0
then M is a Klein bottle semi-bundle or M = P 2 ×S1.

Proof. Considering only the case M = M2 ∪∂

(
S1×̃D2

)
, we represent M2 =

S1×̃m2 (as in section 2) and note that ∂m2 cuts ∂M2 = S1×̃∂m2 into an annulus.
Up to isotopy, there is only one simple closed curve on K that cuts K into an
annulus ([10]). Thus there is only one way to attach S1×̃D2 toM2 : the meridian
∂D2 of S1×̃D2 must be glued to ∂m2, and it follows that M =

(
S1×̃m2

) ∪∂(
S1×̃D2

)
= S1×̃P 2 = S1 × P 2.

Figure (2) shows that P 2×S1 indeed admits a decomposition of type
(
K×̃I)

N0
∪∂(

S1×̃D2
)
.
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The following table summarizes the results.

M = intM1 ∪ intM2

Mi B3 S1 ×D2 S1×̃D2 S2 × I P 2 × I P 2×̃I

M S3 L S1×̃S2 S3 P 2 × S1 P 3

S1 × S2 P 3#P 3

S1×̃S2

Mi T × I T ×̃I K × I
(
K×̃I)

0

(
K×̃I)

N0

M L S1×̃S2 S1×̃S2 P 3#P 3 P 2 × S1

T -bundles
over S1 P 2 × S1 K-bundles

over S1 S (2, 2, n)
K-semi bun-
dles (non ori-
entable)

T -semi
bundles

K-semi
bundles
(orientable)

Conversely, it is easy to see that each manifold in the table is a union of two
open covers as indicated.
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SELF-COINCIDENCE OF MAPS

FROM Sq-BUNDLES OVER Sn TO Sn

DACIBERG L. GONÇALVES AND DUANE RANDALL

Abstract. Let E be the total space of a sphere bundle over a sphere Sn.
We investigate the problem of when a pair of maps (f1, f2) : E → Sn can
be deformed to a coincidence free pair. Special attention is given to the
case f1 = f2, called the self-coincidence case. We study this case from the
point of view of an arbitrary deformation of f and of a small deformation of
f . We show that if (f, f) : E → Sn can be deformed to a coincidence free
pair by a small deformation and f is a fibre map, then the Euler number
of the fibration is 2 and the fibration is fibre homotopy equivalent to the
Stiefel fibration p1 : V2n+1,2 → S2n. We study the coincidence problem
(i.e. an arbitrary pair (f1, f2)) in more detail when the total space is one
of the spaces, S3, S7, S15, V5,2,V9,2. For many other cases of the domain
we show that the problem can be reduced to a problem of maps either
between spheres or from a complex with two cells of positive dimension

into a sphere. For maps f : Sm → Sn and m < 2n− 1 we classify the pairs
(f1, f2) which can be deformed to a coincidence free pair. We construct
maps f2n : S4n−1 → S2n for all odd n > 1 for which (f2n, f2n) can be
deformed to a coincidence free pair, but not by a small deformation.

1. Introduction

Let M and N be closed manifolds of dimensions m and n, respectively. One
of the major problems in coincidence theory is to determine when a given pair
of maps f1, f2 : M → N can be deformed to a pair (g1, g2) which is coincidence
free. The more general question is to describe the minimal (in some sense) set
coin(g1, g2) obtained among all pairs (g1, g2) homotopic to f1, f2, respectively.
This problem is well understood for the cases where dim(M) = dim(N) ≥ 3.
See, for example, [14] and [7] for M,N orientable manifolds and nonorientable,
respectively. For some specific families of manifolds, see [4],[5], [18] and [8], and
for the cases where M is a CW -complex and dim(M) = dim(N), see [1], [6].
The case where m > n is more subtle. Several aspects of this problem have been
considered in [9], [2], [12], [3], [11], [19]. In [2] the coincidence problem for the
case f1 = f2 was analyzed via homotopy theory. Also U. Koschorke in [12] has
considered the same case under the hypothesis that m < 2n− 2 (which we call
the stable case).

This work uses the approach and some of the main results of [2]. For a given
map f , we investigate whether the pair (f, f) can be deformed to a coincidence
free map pair, and also if there exists a small deformation. This latter question

2000 Mathematics Subject Classification: Primary: 55M20; Secondary: 55R25, 55S35.
Keywords and phrases: Self-coincidence, obstruction, fibrations, Whitehead product,

Barratt-Puppe sequence.
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is interesting in its own right and often appears in analysis. Let us point out that
such phenomenon does not occur in self-coincidence of codimension zero, where
the two concepts are equivalent. In [2], a homotopy approach is developed to
study these two questions. For the benefit of the reader, we now state the main
results from [2] used here. From [2], we have the following notation: given any
two arbitrary maps, f1, f2 : E → B, we say that f1 can be separated from f2, or
(f1, f2) is homotopy disjoint, in symbols f1 |� f2, if there exist q1, q2 : E → B such
that q1, q2 are homotopic to f1 and f2, respectively, and q1(x) �= q2(x) for all x;
otherwise, we write f1 −|� f2. Given p : E → B, denote by Γp ⊂ E ×B the graph
of p. A pair of maps (f, f) : E → B is homotopy disjoint by small deformation
in [2] if NΓf , the normal bundle of Γf , admits a nowhere-zero cross section. It
follows from the above definitions that if a pair (f, f) is homotopy disjoint by a
small deformation, then it is homotopy disjoint. If the pair is homotopy disjoint
by small deformation, then we simply say that the pair can be deformed to be
coincidence free by a small deformation. Proposition (2.11) of [2] identifies the
primary obstruction to deforming a pair (f, f) to coincidence free and affirms:

Proposition (1.1). If B is a compact, connected n-dimensional manifold
and f : E → B, then the primary obstruction to lift (f, f) in

B ×B −Δ
↓

E
(f,f)−→ B ×B

by deformation, is the f∗-image of the primary obstruction to lift (id, id) in

B ×B −Δ
↓

B
(id,id)−→ B ×B

by deformation. The latter is the twisted Euler class of B, i.e. = χ(B) · μB,
where χ(B) is the Euler characteristic of B and μB = π1B-twisted fundamental
class.

For a pair of maps (f1, f2) into a sphere, Proposition (2.10) of [2] affirms:

Proposition (1.2). If B = Sn, then f1 |� f2 implies that A ◦ f2 is homotopic
to f1, where A is the antipodal map on Sn.

Let τB be the tangent bundle of the differentiable manifold B, S(τB) the
sphere bundle and q : S(τB) → B the projection map.

In order to have a small deformation, Proposition (2.13) and (2.16) of [2]
state, respectively:

Proposition (1.3). The map f : E → B admits a lift to S(τB) if and only
if (f, f) is homotopy disjoint by small deformation.

Proposition (1.4). If f : E → B is a map where B is a smooth manifold
then the map f : E → B admits a lift to S(τB) if and only if the horizontal
tangent bundle f∗(τB) over E has a nowhere-zero cross section. Therefore we
conclude that (f, f) is homotopy disjoint by small deformation if and only if the
horizontal tangent bundle f∗(τB) over E has a nowhere-zero cross section.
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In this work we consider the coincidence problem for maps f : E → Sn, where
E is a Sq-bundle over Sn, and for maps between spheres. Special attention is
given to the case of self-coincidence. This paper is divided into 3 additional
sections. In section 2 we prove some generalities and reduce the problem to
a problem of maps either between spheres or from a two cell complex into a
sphere. In section 3 we study the case where the total space E is an S2n−1-
sphere bundle over S2n. In section 4 we consider maps between spheres Sm to
S2n for m = 4n− 1.

2. Generalities and preliminary results

Let E be the total space of an Sq−bundle over Sn and f : E → Sn be a map.
In this section we first study the primary obstruction to make (f, f) coincidence
free in the case where f is a fibre map. Then for f an arbitrary map and q �= n−1,
we reduce our problem to a problem either of maps between spheres, or of maps
from a complex with two cells of positive dimension into a sphere.

The coincidence problem has a simple answer for n odd. Consider f1, f2 :
X → Sn a pair of maps where X is an arbitrary space.

Lemma (2.1). Let n be odd. Then the pair (f1, f2), for f1, f2 : X → Sn, is
homotopy disjoint if and only if [f1] = [f2]. In this case (f1, f1) is homotopy
disjoint by a small deformation.

Proof. From Proposition (1.2) we must have [f2] = [A ◦ f1], where A denotes
the antipodal map on Sn. Since A is homotopic to the identity for n odd, the first
part follows. For the last part it suffices to compose f1 with a small perturbation
of the identity of Sn which is fixed point free.

From now on, we restrict ourselves to the case where the target is a sphere of
even dimension. Let p : E → S2n be a fibre map.

Proposition (2.2). The trangression homomorphism Δ : H2n(S
2n) →

H2n−1(S
q) of the Serre Spectral sequence of the sphere bundle Sq → E → S2n is

the trivial homomorphism if q �= 2n − 1 and multiplication by an integer l ∈ Z
for a fixed choice of generators if q = 2n− 1.

Proof. Since the fibre has homology only in dimension 0, q, the result follows
immediately from the Serre spectral sequence for dimensional reasons.

Proposition (2.3). The group H2n(E;Z) is isomorphic to Z if q �= 2n− 1,
2n. It is isomorphic to Z+Z for q = 2n and to Z/l if q = 2n− 1. Furthermore,
p∗ : H2n(S2n;Z) → H2n(E;Z) is either the identity if H2n(E;Z) is isomorphic
to Z, the natural projection Z → Z/l if q = 2n− 1, or an inclusion Z → Z + Z
if q = 2n.

Proof. This is a consequence of the Gysin sequence, where l above is the Euler
number of the bundle.

The integer l in the proposition above is the Euler number of the bundle. Now
we will show that p −|� p in all cases where l �= ±1,±2.

Theorem (2.4). We have p −|� p if either q �= 2n − 1, or q = 2n − 1 and
l �= ±1,±2.
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Proof. By Proposition (2.2) we have that χ(S2n)·p∗(i2n) �= 0. By Proposition
(1.1), the result follows.

Let f : E → S2n be an arbitrary map and q �= 2n− 1. We will show that the
problem of whether f |� f either by a deformation or by a small deformation is
equivalent to the same separation problem about maps between spheres or maps
from a two cell complex into a sphere.

Theorem (2.5). Let f : E → S2n where E is the total space of an Sq-sphere
bundle over S2n and q �= 2n− 1. Then we have:

a) For q < 2n − 1, the map f factors through the cofibre L ≈ E/Sq of the
inclusion Sq ↪→ E by a map f ′ : L → S2n and L has the homotopy type of
a two cell complex with cells in dimension 2n and 2n + q. Then the primary
obstruction in dimension 2n to have f |� f can be identified with the primary
obstruction in dimension 2n to have f ′ |� f ′ either by a deformation or by a
small deformation, through the isomorphism induced by the projection E → L
in cohomology in dimension 2n. This primary obstruction is zero if and only
if f ′∗(ι2n) = 0. When the primary obstruction to deform (f ′, f ′) coincidence
free vanishes, f ′ factors through a map f ′′ : S2n+q → S2n where S2n+q is the
quotient of E by the 2n-skeleton. Similarly, the higher obstruction to have f ′′ |�
f ′′ (by small deformation) can be identified with the only obstruction to have f ′′

|� f ′′ (by small deformation), respectively.
b) For q > 2n−1, let s : S2n → E be any section to the sphere bundle fibration

p : E → S2n. Suppose f ◦ s is essential for a map f : E → S2n. Then f −|� f .
Proof. Part a). The existence of the factorization f ′ follows because πq(S

2n)
is zero for q < 2n. So let f ′ : L → S2n be a factorization. Since the projection
E → L induces an isomorphism in cohomology in dimensions 2n and 2n + q,
it follows that the primary obstruction to deforming (f, f) to be coincidence
free vanishes if and only if the primary obstruction to deforming (f ′, f ′) to be
coincidence free vanishes. For the case of a small deformation, a similar argument
applies using Proposition (1.3). If the primary obstruction vanishes, then we
must have f ′∗(ι2n) = 0. So, by the Barratt-Puppe sequence, there is a second
factorization, and the proof follows in the same fashion.

b) Let g : E → S2n be any map homotopic to f . The coincidence number
of the pair (f ◦ s, g ◦ s) on S2n equals the Lefschetz number L(f ◦ s, g ◦ s) =
2 degree (f ◦ s) �= 0. Thus f and g have a coincidence, so f cannot be separated
from itself.

From now on, we consider the cases where E is a S2n−1-bundle over S2n. The
cases where the total space is not a sphere will be treated in the next section,
and the remaining cases will be treated in the last section.

3. Self-coincidence of S2n−1-bundles over S2n

In this section we analyze the coincidence problem for maps defined on the
above bundles, for � �= ±1. The cases � = ±1 are considered in the next section.
First we consider the self-coincidence problem for fibre maps p : E → S2n. Then
we consider the coincidence problem for an arbitrary pair of maps f1, f2 : E →
S2n.
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Let p : E → S2n be an S2n−1−bundle.
For the fibration p1 : V2n+1,2 → S2n we have p1 |� p1 by a small deformation

(see Proposition (1.3)). We show that for � = ±2 this is the only such case, up
to fibre homotopy equivalence. More precisely:

Proposition (3.1). We have that p |� p by a small deformation if and only
if the fibration p : E → S2n is fibre homotopy equivalent to the fibration p1 :
V2n+1,2 → S2n.

Proof. From Proposition (1.3), we have that p |� p by a small deformation if

and only if there is a map f̃ : E → V2n+1,2 which makes the diagram below
homotopy commutative

V2n+1,2

↓
E

p−→ S2n

Since p1 is a fibration, we can replace f̃ by another map homotopic to f̃ which
makes the diagram commutative. Denote also by f̃ this new map. Thus f̃ is
a fibre-preserving map. This map, restricted to the fibre S2n−1, is homotopic
to either the identity or its negative, since the trangression of both fibrations is
multiplication by 2. By the homotopy long exact sequence of the two fibrations
and the induced homomorphism, it follows that f̃ is a fibre homotopy equiva-
lence.

Remark (3.2). The above result shows, in particular, the following: Given a
map f : V2n+1,2 → S2n such that (f, f) is homotopy disjoint by small deforma-
tion, then either f is not in the homotopy class of a fibre map or it is in the class
of the fibre map p1 : V2n+1,2 → S2n.

Now we consider arbitrary maps, but we restrict our domains to the manifolds
V2n+1,2. To describe the set of homotopy classes of maps [V2n+1,2, S

2n], the
following lemma is useful.

Lemma (3.3). Let L ≈ V2n+1,2/S
2n−1 be the cofibre of the inclusion i :

S2n−1 ↪→ E. Then L has the homotopy type of S2n ∨ S4n−1.

Proof. The manifold V2n+1,2 is the sphere bundle of the tangent bundle of
the sphere S2n. Since the tangent bundle is stably trivial, the Stiefel manifold
V2n+1,2 is stably reducible. That is, the gluing map g : S4n−2 → K is stably
trivial, where K denotes the 2n-skeleton of V2n+1,2. Thus the composite of g
with the projection K → K/S2n−1 is stably trivial. As the map g is already in
the stable range, the result follows.

In the next Proposition we will use the Barratt-Puppe sequence. A general
reference for the sequence is [15, Chapter II, Prop. (2.48)].

Proposition (3.4). We have a short exact sequence of sets

0 → π4n−1(S
2n) → [V2n+1, S

2n] → Z/2 → 0

.
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Proof. Let K denote the 2n-skeleton of V2n+1,2. This complex has a cell
structure of the form S2n−1 ∪2 e2n where the characteristic map 2 : S2n−1 →
S2n−1 is a map of degree 2. The Barratt-Puppe sequence is

· · · → S4n−2 → K → V2n+1,2 → S4n−1 → ΣK → ΣV2n+1,2 → . . .

and produces

. . .→ [ΣV2n+1,2, S
2n]→ [ΣK,S2n]→ [S4n−1, S2n]→ [V2n+1,2, S

2n]→ [K,S2n]→ . . .

The cell structure of K, S2n−1∪2 e
2n, yields [K,S2n] = H2n(K,Z) ≈ Z/2, where

the first equality follows from the Hopf Classification Theorem. In order to obtain
the desired result, it suffices to show that the map [V2n+1,2, S

2n] → [K,S2n] is
surjective and the map [ΣK,S2n] → π4n−1(S

2n) is trivial. Since V2n+1,2 is
the total space of a fibration p1 : V2n+1,2 → S2n, this map restricted to K
sends the generator of H2n(S2n, Z) to a generator of H2n(K,Z). So the map
[V2n+1,2, S

2n] → [K,S2n] is surjective.
In order to prove that the map [ΣK,S2n] → π4n−1(S

2n) is trivial , it suffices
to show that [ΣV2n+1,2, S

2n] → [ΣK,S2n] is surjective. First let us consider the
Barratt-Puppe sequence

· · · → S2n → S2n → ΣK → S2n+1 → S2n+1 → . . .

Then we obtain the long sequences when we take homotopy classes into S2n. By
a routine argument we deduce that [S2n+1, S2n] → [ΣK,S2n] is an isomorphism.

Call L the cofibre of the inclusion S2n−1 ↪→ V2n+1,2. So we have the map
from V2n+1,2 to L and a commutative diagram:

... → K→ V2n+1,2 → S4n−1→ ΣK → ΣV2n+1,2 → ...
↓ ↓ ↓ ↓ ↓ ↓

... → S2n→ L → S4n−1→ S2n+1 → ΣL → ...

and a commutative diagram of homomorphisms:

... → [ΣL, S2n] → [S2n+1, S2n] → ...
↓ ↓

... → [ΣE, S2n] → [ΣK,S2n] → ...

We have seen that the map [S2n+1, S2n] → [ΣK,S2n] is an isomorphism. But
[ΣL, S2n] → [ΣS2n+1, S2n] is surjective, since the complex L is a wedge of two
spheres by Lemma (3.3), and the result follows.

Now we state a Proposition which is similar to the Proposition (2.12) in [2].
For let us consider the Barratt-Puppe sequence of a cofibration

... → A → B → C(h)
j→ ΣA → ...

where h : A → B. Consider the action of the group [ΣA, ] on the set [C(h), ].
This action is provided from a pinching map pin : C(h) → C(h) ∨ ΣA which
arises in the study of the Barratt-Puppe sequence.

Proposition (3.5). Let α1, α2 ∈ [ΣA,X ] and [f1], [f2] ∈ [C(h), X ]. If, for
i = 1, 2, obstructions θi1 and θi2 are defined for making (α1, α2) and (f1, f2)
homotopy disjoint, respectively, then for α1#[f1], α2#[f2] and i = 1, 2, we also
have θi(α1#[f1], α2#[f2]) = ji(θi1(α1, α2)) + θi2([f1], [f2]).
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Proof. Consider the diagram:

X ×X −Δ
↓

C(h)
Δ→ C(h)× C(h)

pin×pin→ (ΣA ∨ C(h))× (ΣA ∨ C(h))
θ→ X ×X

where θ = (α1 ∨ f1)× (α2 ∨ f2), and also the diagram:

C(h)
Δ◦pin×pin→ (ΣA ∨C(h)) × (ΣA ∨ C(h))→ X ×X
↓ ↑ ↑

ΣA ∨C(h)
Δ∨Δ→ (ΣA× ΣA) ∨ (C(h)× C(h))→ (X ×X) ∨ (X ×X)

The obstruction to deforming the pair (α1#[f1], α2#[f2]) to be coincidence
free is given by the obstruction to lift the composite of the horizontal maps in
the first diagram. The commutativity of the second diagram gives us the desired
formula.

With respect to the action of π4n−1(S
2n) on [V2n+1,2, S

2n] we denote I([f ]) =
isotropy[f ] = {α ∈ π4n−1(S

2n)|α#[f ] = [f ]}. Consider the Z2-action on
[V2n+1,2, S

2n] given by composing a map f with the antipodal map on S2n. Call
i# : [V2n+1,2, S

2n] → [K,S2n] the induced map from the inclusion i : K ↪→ E.
Recall that [K,S2n] is a group which is isomorphic to Z/2. Now we have a
necessary condition to have (f, f) homotopy disjoint.

Proposition (3.6). Let f : V2n+1,2 → S2n. The primary obstruction to have
(f, f) homotopy disjoint is always zero. If i#([f ]) = 0 then f factors through a
map f ′ : S4n−1 → S2n, and the secondary obstruction to deforming (f, f) to be
coincidence free coincides with the secondary obstruction for f ′. If i#([f ]) �= 0
then [f ] = α#[p], and the secondary obstruction to make (f, f) coincidence free
is identified with the one for the class α ∈ π4n−1(S

2n).

Proof. This follows from Proposition (3.5) and the fact that (p, p) is homotopy
disjoint.

The behaviour of the antipodal map with respect to the action of π4n−1(S
2n)

is given as follows:

Proposition (3.7). [A◦(α#h)] = [(A◦α)]#[(A◦h)], where A is the antipodal
map. For h either the constant map or the fibre map p1 : V2n+1,2 → S2n we have
[A ◦ h] = [h].

Proof. The proof is straightforward.

Now we come to the main result. Let f1, f2 : V2n+1,2 → S2n, where f1 =
α1#[h1] and [f2] = α2#[h2] for αi ∈ π4n−1(S

2n) and hi either the constant map
or the fibre map p1 : V2n+1,2 → S2n. For n either 2 or 4 we write [αi] = (riH +
siv), where H is the Hopf map S4n−1 → S2n for n = 2, 4 and v is a generator of
the torsion part of π4n−1(S

2n). Otherwise we write [αi] = ri[ι2n, ι2n]+ vi, where
[ι2n, ι2n] denotes the Whitehead product and vi a torsion element (see [16] and
the next section for more details).
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Theorem (3.8). Let f1, f2 : V2n+1,2 → S2n be two maps as above.
a) If we have f1 |� f2, then [h1] = [h2]
b) For n �= 1, 2, 4, if f1 |� f2, then r1 = r2 and v1 = −v2. In particular, for f

|� f , v1 is an element of torsion 2.
c) Let n = 2. In the case where [h1] = [h2] = 0 the two maps can be made

coincidence free if and only if r1 = r2 and r1 + s1 + s2 is divisible by 12. In the
case where [h1] = [h2] = [p] the two maps can be made coincidence free if and
only if (r1 − r2)H + (r1 + s1 + s2)v ∈ I([p]).

d) Let n = 4. In the case where [h1] = [h2] = 0 the two maps can be made
coincidence free if and only if r1 = r2 and r1 + s1 + s2 is divisible by 120. In the
case where [h1] = [h2] = [p] the two maps can be made coincidence free if and
only if (r1 − r2)H + (r1 + s1 + s2)v ∈ I([p]).

Proof. Part a) follows from Proposition (3.4). Part b) follows from Proposi-
tion (4.1) and Proposition (3.5). Part c) and d) follows from Proposition (3.5)
and from Proposition (4.3) and Corollary (4.4) in the next section.

Remark (3.9). The obstruction to have the pair (α#p, α#p) coincidence free
is the pullback of the obstruction to have (α, α) coincidence free, by the induced
homomorphism of the projection V2n+1,2 → S4n−1, since the obstruction to have
(p, p) coincidence free is zero. This together with Proposition (4.3) implies that
for n = 2 the elements of the form rH + sv where r+2s are not divisible by 12,
do not belong to I([p]). Similarly, using Proposition (4.3), for n = 4 the elements
of the form rH+sv where r+2s are not divisible by 120, do not belong to I([p]).

4. Coincidence of maps between spheres

In this section we discuss the coincidence problem for maps f1, f2 : Sm → Sn

between spheres. For the particular case of self-coincidence, we consider the
question from the point of view of deformations and small deformations.

We present some results when m ≤ 2n− 1. More precisely we characterize in
terms of the Whitehead product and the torsion elements of the homotopy group
which pairs (f1, f2) are homotopy disjoint. In particular, (fn, fn) is homotopy
disjoint for all n, where fn = [ιn, ιn]. Then we consider the special cases S3 → S2,
S7 → S4 and S15 → S8. At the end we give examples showing maps (f, f)
homotopy disjoint but not by a small deformation. These examples show that
the bounds given in [2, Lemma (2.14)] or [12, Theorem (2.2)] are sharp and
confirm the comment in [2] immediately after the definition of homotopy disjoint
deformation.

From the discussion in section 2, we can consider the target an even sphere
S2n.

Proposition (4.1). The pair (f1, f2) for f1, f2 : Sm → S2n is homotopy
disjoint if and only if:

a) For m < 4n− 1 the class [f1] = −[f2] in πm(S2n); in the case [f1] = [f2],
[f1] has order 2.

b) For m = 4n − 1 and n �= 1, 2, 4, the classes [f1], [f2] are of the form
[f1] = k1[ι2n, ι2n] + α1, [f2] = k2[ι2n, ι2n] + α2, where [ι2n, ι2n] is the Whitehead
product, the αi’s are torsion elements, and k1 = k2 and α1 + α2 = 0. In
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particular, if [f ] = k[ι2n, ι2n] + rα then (f, f) is homotopy disjoint if and only if
α is an element of order ≤ 2 and k is arbitrary.

Proof. By Proposition (1.2) we must verify when f2 is homotopic to A ◦ f1.
For part a), since m < 4n− 1, we have that A ◦ f1 = −f1 and the result follows.

For part b), from the formula in [17] or [16] for the composition of a map with
the sum of two others, it follows that:

0 = [(I +A) ◦ f1] = [f1] + [A ◦ f1] + [ι2n,−ι2n]H([f1]) =

[f1] + [A ◦ f1]− 2k1[ι2n, ι2n],

since the Hopf invariant of the Whitehead product is 2 and the Hopf invariant of
a torsion element is zero. Therefore [A◦f1] = k1[ι2n, ι2n]−α1. From the equality
A ◦ f1 = f2 the result follows.

Remark (4.2). If f : Sm → S2n has order 2 and m < 4n−2, either [2, Lemma
(2.14)] or [12, Theorem (2.2)] implies that (f, f) is homotopy disjoint by a small
deformation. It is natural to ask what happens in the cases m = 4n− 2 where
[f ] has order 2. We will show at the end that these results are sharp.

Now we consider the cases where the domain is one of the spheres S3, S7,or
S15, and the target is S2, S4, or S8, respectively. These cases correspond to
l = ±1. The case of pairs of maps (f1, f2) where fi ∈ [S3, S2] is quite simple.
The pair (f1, f2) is homotopy disjoint if and only if [f1] = [f2]. Further, the pair
(f, f) is homotopy disjoint by a small deformation for an arbitrary map f . We
leave the details to the reader. In order to make the exposition more clear we
deal first with the case where the total space is the sphere S7 and then the case
where the total space is S15. From [16] we have that π7(S

4) = Z + Z/12, where
a generator of the summand Z can be taken as the class of the Hopf map and
a generator of the torsion part as v, where v is the suspension of v′, for v′ a
generator of π6(S

3).
Let f1 = r1H + s1v and f2 = r2H + s2v.

Proposition (4.3). For f = rH + sv ∈ π7(S
4) we have that [(A ◦ f)] =

rH− (r+s)v. Furthermore, the pair of maps (f1, f2) : S
7 → S4 has the property

that f1 |� f2 if and only if r1 = r2 = r and s1 + s2 + r is divisible by 12.

Proof. The proof is the same as the proof of Proposition (4.1) part b), where
we use the fact that the Hopf invariant of the Hopf map is 1. Namely,

0 = [(I +A) ◦ f1] = [f1] + [A ◦ f1] + [I, A] ◦H(f1) = [f1] + [A ◦ f1]− (2H − v)r1.

Since I +A is trivial, we get

[A ◦ f1] = −[f1] + 2r1H − r1v = −r1H − s1v+2r1H − r1v = r1H + (−r1 − s1)v.

From the equality A◦f1 = f2 = r2H+s2v, we have r1 = r2 and (s2+s1+r1)v = 0.
Therefore r1 = r2 = r and r+s1+s2 is divisible by 12, and the result follows.

Corollary (4.4). A map f : S7 → S4 has the property that f |� f by small
deformation if and only if r + 2s is divisible by 12, where f = rH + sv.

Proof. By the previous result we have that (f, f) is homotopy disjoint if and
only if 2s+ r is divisible by 12. By [2, Corollary (2.15)] the result follows.
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Corollary (4.5). The kernel of the transgression Δ7 of the fibration p :
V5,2 → S4 is generated by 2h− v and 6v.

Proof. By Corollary (4.4) the kernel of the transgression are the elements of
π7(S

4) of the form rH + sv where r+2s is divisible by 12. A simple divisibility
argument shows that these elements are generated by 2H − v and 6v, and the
result follows.

Remark (4.6). See [13] for results related with above Corollary.

Now we consider the case of S15. From [16] we have that π15(S
8) = Z+Z/120,

where a generator of the summand Z can be take as the class of the Hopf map
and a generator of the torsion part as v, where v is the suspension of v′, for v′

a generator of π14(S
7). Let f be of the form rH + sv.

Proposition (4.7). Let f = rH+sv ∈ π15(S
8). Then we have that [(A◦f)] =

rH − (r + s)v. Further, the pair of maps (f1, f2) : S
15 → S8 has the property

that f1 |� f2 if and only if r1 = r2 = r and s1 + s2 + r is divisible by 120.

Proof. The proof is the same as the proof of Proposition (4.1) part b) where
we use the fact that the Hopf invariant of the Hopf map is 1. Namely,

0 = [(I +A) ◦ f1] = [f1] + [A ◦ f1] + [I, A] ◦H(f1) = [f1] + [A ◦ f1]− (2H − v)r1.

Since I +A is trivial, we get

[A ◦ f1] = −[f1] + 2r1H − r1v = −r1H − s1v+2r1H − r1v = r1H +(−r1 − s1)v.

Form the equality A ◦ f1 = f2 = r2H + s2v it follows that r1 = r2 and (s2 +
s1 + r1)v = 0. Therefore r1 = r2 = r and r+ s1 + s2 is divisible by 120, and the
result follows.

Corollary (4.8). A map f : S15 → S8 has the property that f |� f by small
deformation if and only if r + 2s is divisible by 120, where f = rH + sv.

Proof. By the previous result we have that (f, f) is homotopy disjoint if and
only if 2s+ r is divisible by 120. By [2, Corollary (2.15)] the result follows.

Corollary (4.9). The kernel of the transgression Δ15 of the fibration p :
V9,2 → S8 is generated by 2h− v and 60v.

Proof. By Corollary (4.8) the kernel of the transgression are the elements of
π15(S

8) of the form rH+sv where r+2s is divisible by 120. A simple divisibility
argument shows that these elements are generated by 2H − v and 60v, and the
result follows.

Remark (4.10). See [13] for results related with above Corollary.

Now we consider the difference between deformation and small deformation.
We construct maps f2n : S4n−1 → S2n for all odd n > 1 for which (f2n, f2n) is
homotopy disjoint, but not homotopy disjoint by a small deformation.

Theorem (4.11). Let ξ2n denote the bundle over S4n−1 induced from the
tangent bundle τ(S2n) by the Whitehead square [ι2n, ι2n] ∈ π4n−1(S

2n) for n ≥ 2.
Then ξ2n admits a non-zero section for all even n, but does not admit a non-zero
section for all odd n > 1.
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Proof. The Whitehead product [ι2n−1, η2n−1] has order 2 for all odd n > 1
by [10, Lemma (3.5)], and is trivial for all even n. Moreover, James proved that
∂([ι2n, ι2n]) = [ι2n−1, η2n−1] in the homotopy exact sequence for V2n+1,2 → S2n

by (6.1) and (6.2) of [10]. Consequently, ∂ι4n−1 = [ι2n−1, η2n−1] in the homotopy
exact sequence for S(ξ2n) → S4n−1 by naturality.

Theorem (4.12). Let f2n : S4n−1 → S2n be any representative for [ι2n, ι2n]
with n > 1. Then (f2n, f2n) is homotopy disjoint for all n > 1. Moreover,
(f2n, f2n) is homotopy disjoint by a small deformation if and only if n is even.

Proof. By Proposition (4.1) above, (f2n, f2n) is homotopy disjoint for all n.
Moreover, (f2n, f2n) is homotopy disjoint by a small deformation if and only if
n is even by Theorem (4.11) and Proposition (1.4).

Our last result affirms that homotopy disjointness does not imply homotopy
disjoint by a small deformation even for m = 4n− 2.

Proposition (4.13). Let f : S30 → S16 represent σ2
16. Then (f, f) is homo-

topy disjoint, but not homotopy disjoint by a small deformation.

Proof. σ2
16 has order 2 in π30(S

16) by [16]. Moreover, ∂(σ2
16) = 2σ2

15, where σ
2
15

has order 4 in π29(S
15) by [16]. Here ∂ denotes the homotopy boundary operator

in the fibration S15 → V17,2 → S16, where ∂ι16 = 2ι15. By Proposition (4.1),
(f, f) is homotopy disjoint, but not homotopy disjoint by a small deformation
by Proposition (1.4).
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ARTIN GROUPS, 3-MANIFOLDS AND COHERENCE

C. MCA. GORDON

Dedicated to Fico on the occasion of his 60th birthday.

Abstract. Following work of Droms [D] and Hermiller and Meier [HM],
we show that the Artin group AΓ associated with a labeled graph Γ is a
3-manifold group if and only if each component of Γ is either a tree, or a
triangle with each edge labeled 2.

1. Introduction

By a labeled graph we shall mean a finite (non-empty) graph Γ, without loops
or multiple edges, each of whose edges is labeled by an integer greater than or
equal to 2. Let the vertices of Γ be s1, s2, . . . , sn, and let the label on an edge
with endpoints si and sj be mij ≥ 2. Define 〈ab〉m to be the word abab . . . of
length m. Then the Artin group AΓ associated with the labeled graph Γ is the
group with generators s1, s2, . . . , sn, and relations 〈sisj〉mij = 〈sjsi〉mij , one for
each edge of Γ. In particular, if mij = 2 then the generators si and sj commute.
Note also that if Γ is the disjoint union of graphs Γ1 and Γ2 then AΓ ∼= AΓ1∗AΓ2.

A 3-manifold group is a group that is isomorphic to π1(M) for some (con-
nected) 3-manifold M . Note that we do not assume that M is orientable, or
compact, or without boundary. Taking a connected sum shows that if G1 and
G2 are 3-manifold groups then so is G1 ∗ G2. If Γ is a tree, then AΓ is the
fundamental group of the complement of a link L in S3, where L is a connected
sum of (2,m) torus links; see [Bru], [HM]. Thus AΓ is a 3-manifold group. If
Γ is a triangle with each edge labeled 2, then AΓ ∼= Z3 ∼= π1(T

3) is also a 3-
manifold group. In this note we confirm the suspicion of Hermiller and Meier
[HM, p.143] that these are the only connected graphs whose Artin groups are
3-manifold groups.

Theorem (1.1). For an Artin group AΓ the following are equivalent.
(1) AΓ is a 3-manifold group.
(2) AΓ is virtually a 3-manifold group.
(3) Each component of Γ is either a tree, or a triangle with each edge labeled 2.

The equivalence of (1) and (3) was proved by Droms [D] in the case of right-
angled Artin groups, or graph groups , that is, when all labels are 2, and by
Hermiller and Meier [HM] in the case when all labels are even.

Theorem (1.1) is proved in Section 2. The main tool used is the fact that
3-manifold groups are coherent [Sc].
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In Section 3 we make some additional remarks about coherence. In particular
we show that Aut(F2) and the braid group B4 are incoherent, although neither
has a subgroup of the form F2×F2. The latter fact for B4 was originally proved
by Akimenkov [A], using different methods.

2. Artin groups and 3-manifolds

Recall that a group is coherent if every finitely generated subgroup is finitely
presented.

The following is proved in [HM, Proposition 5.7(ii)].

Lemma (2.1) (Hermiller and Meier). Let Γ be a cycle of length at least 4.
Then AΓ is incoherent.

If Γ is a labeled graph, we shall say that Γ is of infinite or finite type according
as the Coxeter group corresponding to the Artin group AΓ is infinite or finite.
We will use (p, q, r) to denote a triangle with edge labels p, q and r. The triangles
of finite type are then (2, 2,m), (2, 3, 3), (2, 3, 4) and (2, 3, 5).

If Γ is a triangle, the simplicial complexK0 defined in [CD2] is either a triangle
or a 2-simplex, according as Γ is of infinite or finite type. The Main Conjecture
of [CD1] and [CD2] therefore holds for AΓ, by [CD1]. The following lemma is
then a consequence of [CD2, Corollary 1.4.2 and Corollary 2.2.5].

Lemma (2.2) (Charney and Davis). Let Γ be a triangle.
(i) If Γ is of infinite type then AΓ has geometric dimension 2 and χ(AΓ) = 1.
(ii) If Γ is of finite type then AΓ has geometric dimension 3 and χ(AΓ) = 0.

For the three triangles (2, 3, 6), (2, 4, 4) and (3, 3, 3) of Euclidean type, (i) also
follows from the descriptions of AΓ given in [Sq1].

Lemma (2.3). Let Γ be a triangle of infinite type. Then AΓ is incoherent.

Proof. Let ϕ : AΓ → Z be the epimorphism that maps each generator si to
1. By [Me, Proposition 5.1 and Corollary 5.3] K = kerϕ is finitely generated.
Now AΓ has geometric dimension 2 (Lemma (2.2)), and hence K has geometric
dimension ≤ 2. Suppose K were finitely presented. Then K would be of type
FP [Bro, p.199], and so χ(K) would be defined. We would then have χ(AΓ) =
χ(K)χ(Z) = 0 [Bro, p.250], [St2], (compare [G]), contradicting Lemma (2.2).

In [W], Wall asked whether a group of the form F ∗C F ′, where F and F ′

are free and C has finite index in F and F ′, is coherent. This was answered
negatively by Gersten [G], who showed that the double of a free group of rank
≥ 2 along a subgroup of finite index ≥ 3 is always incoherent. We remark that
Lemma (2.3) also provides examples, which are not doubles, since Squier has
shown [Sq1] that A(2, 3, 6) and A(3, 3, 3) can each be expressed as a free product
with amalgamation F ∗C F ′, where rankF = 4, rankF ′ = 3, and C has index 2
in F and index 3 in F ′.

Lemma (2.4). A(2, 3, 3) and A(2, 3, 4) are incoherent.

Proof. Since A(2, 3, 4) embeds in A(2, 3, 3) (as a subgroup of finite index) [La],
it is enough to show that A(2, 3, 4) is incoherent. One way to do this is to use
the fact that A(3, 3, 3) embeds in A(2, 3, 4) [KP], together with Lemma (2.3).
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Another argument is that the commutator subgroup A′ of A(2, 3, 4) is finitely
generated but, since H2(A

′) ∼= Z∞, not finitely presented [Sq2].

Note that A(2, 2,m) ∼= A(m) × Z, where A(m) is the Artin group of a single
edge with label m. Since A(m) is a 3-manifold group, it is coherent by [Sc] (it
is also easy to show this directly), and hence A(2, 2,m) is coherent.

Lemma (2.5). A(2, 2,m), m > 2, and A(2, 3, 5) are not virtually 3-manifold
groups.

Proof. Let G be a finitely generated group, with an epimorphism ϕ : G → Z

such that kerϕ is finitely generated, and let H be a subgroup of G of finite index.
Then ϕ induces an epimorphism ψ : H → Z, where kerψ has finite index in kerϕ.
Now suppose that H is a 3-manifold group. Since H is finitely generated, it is
the fundamental group of a compact 3-manifold [Sc]. Therefore, since kerψ is
finitely generated, by [St1] kerψ is a 2-manifold group, i.e. it is either free or
the fundamental group of a closed surface. Hence kerϕ is virtually a 2-manifold
group.

Suppose A(2, 2,m) ∼= A(m)× Z is virtually a 3-manifold group. Then by the
above discussion A(m) has a subgroup B of finite index such that B is either
free or the fundamental group of a closed orientable surface. Since A(m) is the
fundamental group of a compact, orientable, irreducible 3-manifold M whose
boundary consists of tori, χ(A(m)) = χ(M) = 1

2χ(∂M) = 0. Hence χ(B) = 0,
implying that B is isomorphic to either Z or Z×Z. But ifm > 2, this contradicts
the fact that A(m) contains a non-abelian free group.

Now let A = A(2, 3, 5), and let ϕ : A→ Z be abelianization. Then A′ = kerϕ
is finitely generated by [Me]. Suppose A is virtually a 3-manifold group. Then
there is a 2-manifold subgroup B of A′ of finite index. By a standard transfer
argument, H2(B;Q) → H2(A

′;Q) is surjective. But dimH2(A
′;Q) = 7 [Sq2],

whereas dimH2(B;Q) ≤ 1.

Proof of Theorem (1.1). Clearly (1) implies (2) and (3) implies (1); we must
show that (2) implies (3).

A subgraph Γ0 of Γ is full if every edge of Γ whose vertices are in Γ0 is an edge
of Γ0. We recall the basic fact [Le] that if Γ0 is a full subgraph of a labeled graph
Γ then the homomorphism AΓ0 → AΓ induced by the inclusion map Γ0 ⊂ Γ is
injective.

Let Γ be a connected labeled graph, and suppose that AΓ is virtually a 3-
manifold group. By [Sc], 3-manifold groups, and hence virtual 3-manifold groups,
are coherent. Also, a subgroup of a virtual 3-manifold group is clearly a virtual
3-manifold group. It follows from Lemma (2.1) that Γ is chordal , i.e. has no full
subgraph that is a cycle of length ≥ 4. By Lemmas (2.4) and (2.5), any triangle
in Γ has all labels equal to 2. If Γ is not a tree or a (2, 2, 2) triangle, then Γ has
a full subgraph Γ0 of one of the forms shown in Figure 1 (where all unlabeled
edges are understood to have label 2); see [D].

In cases (i) and (ii), AΓ0
∼= A × Z, where in case (i) A ∼= Z3, and in case

(ii) A is the Artin group of a tree with two edges, each labeled 2. Since AΓ0 is
virtually a 3-manifold group by assumption, A has a subgroup B of finite index
that is either free or the fundamental group of a closed orientable surface. Since



196 C. MCA. GORDON
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c d

(i) (ii) (iii)

m

Figure 1 Figure 2

χ(A) = 0, we have χ(B) = 0, and hence B ∼= Z or Z × Z, which is clearly
impossible.

In case (iii), m odd, let ϕ : AΓ0 → Z be the epimorphism defined by ϕ(a) =
ϕ(b) = 1, ϕ(c) = ϕ(d) = 0. By [Me], kerϕ is finitely generated. Hence kerϕ
has a subgroup B of finite index that is either free or the fundamental group of
a closed orientable surface. Since kerϕ contains 〈c, d〉 ∼= Z × Z, we must have
B ∼= Z×Z. But this contradicts the fact that kerϕ also contains the commutator
subgroup of A(m), which is a non-abelian free group.

In case (iii),m even, define ϕ : AΓ0 → Z by ϕ(b) = 1, ϕ(a) = ϕ(c) = ϕ(d) = 0,
as in [HM]. Then kerϕ is finitely generated and contains both Z×Z and a non-
abelian free group, giving a contradiction as before.

3. Coherence

It is natural to ask which Artin groups AΓ are coherent. For graph groups,
i.e. when all edge labels are 2, this has been answered by Droms [D]: AΓ is
coherent if and only if Γ is chordal. For the general case, it is necessary to be
able to answer the following question.

Question (3.1). Is A(2, 3, 5) coherent?

If at most one of p, q, r is even, the homomorphism ϕ : A(p, q, r) → Z in the
proof of Lemma (2.3) is abelianization, so that proof shows that if (p, q, r) is of
infinite type then the commutator subgroup of A(p, q, r) is finitely generated but
not finitely presented. However, as pointed out in [Sq2], the commutator sub-
group of A(2, 3, 5) is finitely presented (the same argument applies to A(2, 3, 3)).

If A(2, 3, 5) is incoherent, one can show that an Artin group AΓ is coherent if
and only if Γ is chordal, every complete subgraph of Γ with 3 or 4 vertices has
at most one edge label > 2, and Γ has no full subgraph of the form shown in
Figure 2, where m > 2 and unlabeled edges are understood to have label 2. If
A(2, 3, 5) is coherent, the characterization would be more complicated.

Let Fn denote the free group of rank n. A popular way of showing that a
group is incoherent is to show that it has a subgroup isomorphic to F2 × F2,
which is well-known to be incoherent; see e.g. [G]. For example, Aut(F3) has
such a subgroup [FP], and hence Aut(Fn) is incoherent for n ≥ 3. For n = 2 we
have

Theorem (3.2). (1) Aut(F2) is incoherent.
(2) F2 × F2 does not embed in Aut(F2).
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Let Bn denote the n-strand braid group. Note that Bn is coherent for n ≤ 3.
Since A(2, 3, 3) ∼= B4, we see by Lemma (2.4) that Bn is incoherent for n ≥ 4.
Also, since the center of F2 ×F2 is trivial, by Part (2) of Theorem (3.2) and the
proof of Part (1) below we recover the result of Akimenkov [A] that F2×F2 does
not embed in B4. It follows (see the proof of Lemma (2.4)) that the incoherent
groups A(2, 3, 4) and A(3, 3, 3) also do not contain an F2 × F2. (It is shown in
[Ma] that F2 × F2 does embed in Bn for n ≥ 5.)

Proof of Theorem (3.2). (1)Let Z(B4) denote the center ofB4; then B4/Z(B4)
is isomorphic to an index 2 subgroup of Aut(F2) [DFG]. Now A(3, 3, 3) embeds in
B4 [KP], and since it is a free product with amalgamation of the form F4 ∗F7 F3

[Sq1], it has trivial center, and hence embeds in Aut(F2). Since A(3, 3, 3) is
incoherent by Lemma (2.3), Aut(F2) is also incoherent.

(2) There is a short exact sequence

1 → F2
i−→ Aut(F2)

π−→ GL(2,Z) → 1 ,

where i(g) is conjugation by g. Mapping GL(2,Z) onto PSL(2,Z) ∼= Z2 ∗ Z3

gives the related sequence

1 → kerρ→ Aut(F2)
ρ−→ Z2 ∗ Z3 → 1 ,

where kerπ has index 4 in ker ρ. In particular, kerρ is virtually free.
Suppose H < Aut(F2), where H = 〈α, β〉 × 〈γ, δ〉 = H1 ×H2

∼= F2 × F2. We
claim that either ρ(H1) = 1 or ρ(H2) = 1. For, if not, then writing ᾱ = ρ(α)
etc., we may assume that ᾱ 
= 1 
= γ̄. By the Kurosh Subgroup Theorem, any
abelian subgroup of Z2 ∗ Z3 is cyclic. Therefore 〈ᾱ, γ̄〉 = 〈x〉, 〈ᾱ, δ̄〉 = 〈y〉, say.
Then we have 1 
= ᾱ = xp = yq for some p, q ∈ Z. It follows that 〈x, y〉 has a non-
trivial center, and hence, again by the Kurosh Subgroup Theorem, 〈x, y〉 = 〈z〉,
say. Therefore 〈γ̄, δ̄〉 < 〈z〉 is cyclic, implying that (ker ρ) ∩ H2 
= 1. Similarly
(ker ρ) ∩ H1 
= 1. This gives Z × Z < ker ρ, contradicting the fact that ker ρ is
virtually free.

We may assume, then, without loss of generality, that ρ(H2) = 1. Then ρ|H1

is injective, otherwise we would have Z×H2 < ker ρ, again contradicting the fact
that kerρ is virtually free. It follows that π|H1 is injective. Also, H2 < kerρ,
and therefore (kerπ) ∩ H2 has finite index in H2. Hence (kerπ) ∩ H2 = i(G),
where G < F2 has rank ≥ 2.

Note that since F2 has trivial center, ϕ ∈ Aut(F2) commutes with i(g), g ∈ F2,
if and only if ϕ(g) = g. Hence if ϕ ∈ H1, then G < Fix(ϕ). Since rank G ≥ 2,
it follows from the Scott Conjecture [BH] that Fix(ϕ) has rank 2. Furthermore,
by [CT] there is a basis a, b of F2 such that ϕ(a) = a, ϕ(b) = ban. Hence
π(ϕ) ∈ GL(2,Z) has trace 2. But since π(H1) is a free group of rank 2, this is a
contradiction.
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POSITIVE HEEGAARD DIAGRAMS

JOHN HEMPEL

Abstract. Every (compact, orientable) 3-manifold, M , can be represented
by a positive Heegaard diagram: a closed, oriented surface S together with
a pair (X, Y ) of compact 1-manifolds in S whose components serve as at-
taching curves for the 2-handles of the two sides of a Heegaard splitting for
M and for which the oriented intersection number of X with Y is +1 at each
point. Such a diagram is completely determined by the two permutations
of the intersection points of X with Y given by flowing from one point
to the next in the positive direction along X and Y respectively. Mon-
tesinos observed that these permutations also describe the (monodromy)
representation of M as a branched cover of the 3-sphere branched over a
certain universal graph. In this paper we study 3-manifolds in terms of
the combinatorics related to the corresponding permutations. We derive
“moves” sufficient to connect any two permutational representations of the
same 3-manifold, give a procedure for generating all positive diagrams of a
given genus in terms of a finite number of “carrier” graphs, and analyze the
lattice of branched covers over the associated universal graph – including
an explanation of why “good” properties of 3-manifolds proliferate upwards
in this lattice.

0. Introduction

There are many examples known of universal branch sets — graphs Γ in the
3-sphere S

3 with the property that every closed, oriented 3-manifold, M , is a
finite sheeted branched covering p :M → S

3 branched over Γ [M], [HLM].
For such a branched covering of degree d we have a representation

ϕ : π1(S
3 − Γ) → Sd

to the symmetric group on d symbols given by the action of the fundamental
group (by path lifting) on the fiber over a regular point and called themonodromy
of the covering. We multiply permutations from left to right; so we write them
acting on the right as exponents:

i �→ iσ

Two such coverings are equivalent if and only if their monodromy representa-
tions are conjugate. The monodromy in turn determines an index d subgroup:

ϕ−1(Stab(1)) ⊂ π1(S
3 − Γ)

and is conjugate to the action (by right multiplication) on the cosets of this
subgroup.

2000 Mathematics Subject Classification: 57N10, 57M12.
Keywords and phrases: Heegaard diagram, positive diagram, universal branch set.
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Γ
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Figure 1. Universal branch set

The set of all coverings branched over a fixed Γ forms a lattice in which

{p1 :M1 → S
3} � {p2 :M2 → S

3}
if there is a factorization p1 = p ◦ p2 for a branched covering p :M1 →M2. This
lattice is isomorphic to the lattice of conjugacy classes of finite index subgroups
of π1(S

3−Γ). For Γ universal this lattice provides a description of all 3-manifolds
which I find to be challenging.

In this paper we will concentrate on the graph Γ shown in Figure 1. This graph
was introduced by Montesinos [M] who showed it to be universal and derived
some of its properties. There are two important advantages of this universal
graph:

First of all π1(S
3 − Γ) is a free group freely generated by the elements x, and

y indicated in Figure 1. Thus for any pair σ, τ ∈ Sd of permutations we have a
branched covering

M̂σ,τ with monodromy given by x �→ σ, y �→ τ.

Second there is, as noted in [M], a correspondence between the branched cov-
erings of 3-manifolds with this universal branch set and “positive” Heegaard
diagrams. This is the starting point of this paper. We will use this correspon-
dence in section 2 to give necessary and sufficient conditions that two pairs
(σ1, τ1), (σ2, τ2) determine the same 3-manifold. The answer will be in the
form of a set of combinatorially defined “moves” which generate the associated
equivalence on pairs of permutations. This provides a “calculus” (but not a so-
lution) for the enumeration and classification problems for 3-manifolds which is
easy to implement — I will provide a Macintosh program doing this on request.

Actually much of 3-manifold theory has a pleasant interpretation in the com-
binatorial setting of permutations and we will develop some of this here.

In section 3 we describe a way of generating all positive Heegaard diagrams:
for each genus g there is a finite number of families of genus g positive dia-
grams with each family being “carried” by a fixed configuration from which the
corresponding families of permutation pairs can be readily determined.
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In section 4 we show how the lattice structure is reflected in the combinatorial
setting. This is significant as many “good” properties proliferate upwards in this
lattice – see Proposition (4.3).

We stress that, since Γ is not a manifold, the branched covers M̂σ,τ will, in
general, only be pseudo 3-manifolds. The links of vertices lying over the singular
vertices of Γ will be surfaces (which cover S2 with three branch points). M̂σ,τ

will be a 3-manifold precisely when it has zero Euler characteristic. This can be
calculated in terms of σ and τ as follows. For α, β, · · · ∈ Sd let

c(α, β, . . . ) = number of orbits in Sd of gp(α, β, . . . ),

the group generated by α, β, . . . . In particular for a single element α, c(α) is the
number of cycles of α. The Euler characteristic is [M]

χ(M̂σ,τ ) = d+ c(σ, τστ−1) + c(τ, στσ−1)− c(σ) − c(τ)− c([σ, τ ])

Thus the condition is given by:

Proposition (0.1). [M] M̂σ,τ is a 3-manifold if and only if

c(σ) + c(τ) + c([σ, τ ]) = d+ c(σ, τστ−1) + c(τ, στσ−1).

We stress that we are not assuming that σ, τ is a transitive pair; thus M̂σ,τ

need not be connected; for M̂σ,τ will have c(σ, τ) components. They will all
inherit an orientation from a fixed orientation of S3, and so we get a well defined
compact 3-manifold, Mσ,τ , obtained by removing an open regular neighborhood
of the (finite) set of non-manifold points and then taking the connected sum of
the components of the result.

This generality is advantageous because the natural notion of equivalence
for permutation pairs passes through non transitive pairs and corresponds to
equivalence of the Mσ,τ ’s (not the M̂σ,τ) —and in particular provides a means
of detecting a connected sum decomposition or recognizing S

3 (see Example
(2.7). While it is true that every (compact, oriented, with no 2-sphere boundary
components) 3-manifold is represented as Mσ,τ for a transitive pair (σ, τ), this
may disguise the nature of the manifold— it may be better to represent it asMσ,τ

for some non transitive pair. Some of the material in section 1 is an extension
of the results of [M] to this more general setting. However what is called Mσ,τ

in [M] is what we have chosen to call M̂σ,τ .
We will primarily be interested in the case in which Mσ,τ is a closed 3-

manifold, i.e. when σ, τ satisfy the condition of Proposition (0.1) which we
will refer to as the closed condition. Some of this material is useful (with some
complications) for compact 3-manifolds with boundary and we will keep this gen-
erality when convenient, but will revert to the closed case when the complications
become distracting.

We will frequently use the construction of splitting a manifold M along a
codimension one, properly embedded, 2-sided submanifold N . M split along N
will denote a manifold M1 homeomorphic to M −N × (−1, 1) for an appropriate
product neighborhoodN×[−1, 1] ofN inM and is characterized by the property
that there are disjoint subsets N+ and N− in ∂M1 and a map f : M1 → M
which takes M1 − N+ ∪ N− homeomorphically onto M − N and takes each of
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N+ and N− homeomorphically onto N . Often we will suppress mention of this
homeomorphism and simply identify the appropriate subsets of M1 and M .

1. Diagrams

By a (Heegaard) diagram we mean an ordered triple (S;X,Y ) where S is a
closed, orientable, connected surface and X and Y are compact 1-manifolds in S
which are in relative general position and for which no component of S−X ∪ Y
is a “bigon” — a disk whose boundary is the union of an arc in X and an arc in
Y . This definition is more liberal than some. For example it allows X (or Y ) to
have “superfluous curves” — i.e. some subset of components of X could bound a
planar surface in S. The reason for this is the correspondence (Proposition (1.2)
below ) between diagrams and pairs of permutations under which the diagram
for Mσ,τ associated with (σ, τ) will most likely have superfluous curves. When
we are just interested in the topological structure ofMσ,τ , and not the particular
branched covering, we will eliminate superfluous curves.

An oriented diagram is one in which S, X , and Y are all given specific orien-
tations.

A diagram gives rise to a (Heegaard) splitting of a 3-manifold M obtained by
adding 2-handles to S × [−1, 1] along the curves of X × {−1} and Y × {1} and
then adding 3-handles along all resulting 2-sphere boundary components. If the
diagram is oriented, we take the corresponding orientation of M to be the one
for which S is oriented from the X-side. We use the term efficient diagram for
one such that no proper sub diagram determines the same 3-manifold. There
can be no superfluous curves in an efficient diagram. A diagram represents a
closed 3-manifold if and only if both S−X and S−Y are planar. We call such a
diagram closed. In an efficient diagram for a closed, connected 3-manifold S−X
and S− Y will be connected and X and Y will each have g = g(S) components.

A positive diagram is an oriented diagram in which the intersection number
〈X,Y 〉p of X with Y is +1 at each point p ∈ X ∩ Y .

Every compact, oriented 3-manifold with no 2-sphere boundary components
is represented by a positive diagram. One can start with an arbitrary diagram
for the manifold and eliminate negative crossings by adding trivial handles. The
new curves associated with the trivial handle can be oriented so as to introduce
only positive crossings. One would expect that the minimal genus of a positive
diagram for a given 3-manifold would be much greater than the minimal genus
among all diagrams. We have worked this out for Seifert fibered 3-manifolds [H].
Here the Heegaard genus and the positive Heegaard genus (somewhat surpris-
ingly) turn out to be generically the same with the difference never more than
two.

Given (positive) diagrams Di = (Si;Xi, Yi), i = 1,2, we can form a (oriented)
connected sum

D1#D2 = (S1#S2;X1 ∪X2, Y1 ∪ Y2)
of the two diagrams by choosing the “summing” disks Ei ⊂ Si − (Xi ∪ Yi).
This certainly involves some choices, but also leads to other complications when
dealing with manifolds with boundary. If Di determines the manifold Mi then
D1#D2 determines a manifoldM which is homeomorphic to a (possibly proper)
subset ofM1#M2 — the difference could be one or two 2-handles. The condition
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for equality is that at least one of A1, A2 and one of B1, B2 be planar where Ai
(Bi) is the component of Si − Xi (Si − Yi) containing Ei. If one of the Mi is
closed this is automatic. Consequently we will only allow taking the connected
sum of two diagrams when at least one of them represents a closed 3-manifold.
In this case a (any) connected sum of D1 and D2 represents M1#M2.

We use the term isomorphism to denote equivalence in the category appropri-
ate to the objects to which it is applied. In most cases this should be clear: for
oriented manifolds it will mean orientation preserving homeomorphism, etc. For
positive diagrams, we spell it out. Isomorphism will be the smallest equivalence
relation containing all homeomorphisms of ordered triples which preserves all
orientations and modulo which allowable oriented connected sum is well defined.

Given a pair (σ, τ) of permutations which is either transitive or satisfies the
closed condition we get a positive diagram

D(σ, τ) = (Sσ,τ ;Xσ,τ , Yσ,τ ) for Mσ,τ

as follows. Consider the branched covering p : M̂σ,τ → S
3. Observe the torus

T in Figure 1 which meets Γ in a single point, and note that (T ;x, y) is a
positive diagram for S

3. We pull this back via p to get S = p−1(T ), X =
p−1(x), Y = p−1(y). The positivity condition follows because x meets y at a
single point (which we choose as base point) with +1 intersection. Note that

M̂σ,τ can be constructed by adding 2-handles to S × [−1, 1] along the curves
of X × {−1} and Y × {1} and then adding cones over the resulting boundary
components.

If (σ, τ) is a transitive pair, we let D(σ, τ) = (S;X,Y ). If not then, by

hypothesis, M̂σ,τ is a closed 3-manifold each component of which contains a
single component of S which determines a positive diagram for that component.
Then we get D(σ, τ) by taking a (allowable) connected sum of these diagrams.

Observe that the components of X (respectively Y ) are in one to one corre-
spondence with the cycles of σ (respectively τ), the fiber over the base point is
p−1(x ∩ y) = X ∩ Y , and σ (τ) is given by flowing along X (Y ) in the positive
direction from one intersection point to the next. The components of S−(X∪Y )
are in one to one correspondence with the cycles of [σ, τ ]: each is an open disk
which is a cyclic branched cover, via p, of T − (x∪ y) of degree the length of the
cycle. If the pair is not transitive then the components of Sσ,τ −N(X ∪ Y ) will
be planar (and will depend on “where” the connected sum is done) and their
boundary curves will be in one to one correspondence with the cycles of [σ, τ ].
In any event we have:

Proposition (1.1). For σ, τ ∈ Sd either a transitive pair or one satisfying
the closed condition the surface Sσ,τ has genus

gσ,τ = c(σ, τ) + 1/2(d− c([σ, τ ])).

Proof. As in the above discussion S = p−1(T ) is a branched cover of T
branched over a single point whose inverse image has c([σ, τ ]) points. By the
Riemann-Hurwitz formula χ(S) = c([σ, τ ])− d. The conclusion follows from the
facts that S has c(σ, τ) components whose connected sum is Sσ,τ .

We use the above conditions to reconstruct σ and τ from the diagram. Given
any positive diagram D = (S;X,Y ) flow along X and Y respectively defines
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permutations

σ(D), τ(D) ∈ Sd; d = #(X ∩ Y )

which depend on labeling the points of X ∩ Y by the integers 1, 2, . . . , d, but
are well defined up to conjugacy. If, as in the genus one diagram for S2 × S1,
X ∩ Y = ∅, we make the convention that (σ(D), τ(D)) is the empty pair. We
also make the convention that the diagram corresponding to the empty pair is
the genus 0 diagram (S2; ∅, ∅) for S3.

These constructions are essentially inverse; the discrepancy is entirely due to
S2×S1 summands as we explain in the following two propositions. From now on
it will be simpler to restrict to closed manifolds. We say a diagramD = (S;X,Y )
is good if:

1. It is closed i.e. S −X and S − Y are planar,
2. Each simple closed curve in S − (X ∪ Y ) separates S, and
3. Neither X nor Y has isolated components — components of X which don’t

meet Y or vice versa.
Note that in a diagram satisfying 1. and 2. an isolated component would be

(separating and) superfluous.
A good diagram is called very good if X ∪ Y is connected — equivalently if

each component of S−X ∪Y is an open 2-cell. It is easy to see that every good
diagram is a connected sum of very good diagrams. The summands are unique
up to isomorphism. Each is a regular neighborhood of a component ofX∪Y with
its boundary components capped off with 2-cells. We regard two good diagrams
as equivalent if they have isomorphic very good summands. Clearly equivalent
diagrams represent the same manifold.

The above observations are summarized in

Proposition (1.2). The correspondence (σ, τ) �→ D(σ, τ) induces a one to
one correspondence between the set of conjugacy classes of pairs of permutations
satisfying the closed condition and the set of equivalence classes of good positive
diagrams. The inverse correspondence is D �→ (σ(D), τ(D)).

We could add copies of the genus 1 splitting of S2 × S1 to D(σ, τ) to get
a positive diagram for Mσ,τ#S

2 × S1# . . . which determines the same pair of
permutations. The converse is true:

Proposition (1.3). If D = (S;X,Y ) is a positive diagram of genus g for a
closed 3-manifold M then (σ(D), τ(D)) satisfies the closed condition and M is
isomorphic to Mσ(D),τ(D)#(g − gσ(D),τ(D))S

2 × S1.

Proof. First suppose that D is a good diagram. Then by the above we see
that D and D(σ(D), τ(D)) are equivalent and M is isomorphic to Mσ(D),τ(D).

If D is not good, there is a simple closed curve J ⊂ S − X ∪ Y which does
not separate S. Since M is closed, J must bound disks on both sides of S. The
union of these disks is a non- separating 2-sphere inM . Splitting the pair (M,S)
along this 2-sphere and capping off the boundary components gives a 3-manifold
M1 represented by a positive diagram D1 of genus g − 1 with M isomorphic to
M1#S

2×S1 and σ(D1), τ(D1) the same as σ(D), τ(D). So we can complete the
proof by induction on g − g(σ, τ).



POSITIVE HEEGAARD DIAGRAMS 205

For D(σ, τ) = (S;X,Y ) we have noted that the orbits of σ (respectively τ)
are in one to one correspondence with the components of X (respectively Y ). It
is convenient to identify the integers 1, 2, . . . , d with the points of X ∩ Y which
they index. So for a cycle (i1, i2, . . . , ik) of σ there is a corresponding component
of X which contains i1, i2, . . . , ik in the indicated order.

We can identify the components of S−X (and of S−Y ) in a similar manner.
For C a component of S − X we distinguish between the topological boundary

Bd(C) = C ∩ (X − C) and the combinatorial boundary ∂C = Bd(C). Each is
the union of components of X , but some components of X may have C on both
sides and so lie in Bd(C)− ∂C. If Z is a component of X then we say that Z is
positively oriented by C if either Z ⊂ Bd(C)−∂C or Z ⊂ ∂C and its orientation
agrees with that induced from C. We let

O(C) = {i ∈ X∩Y : the component of X containing i is positively oriented by C}.
Proposition (1.4). For a transitive pair (σ, τ) the function O gives a one

to one correspondence between the components of Sσ,τ − Xσ,τ and the orbits
of gp(σ, τστ−1). Similarly there is a one to one correspondence between the
components of Sσ,τ − Yσ,τ and the orbits of gp(τ, στσ−1).

Proof. Let S = Sσ,τ , etc. If D is a component of S−(X∪Y ) then D is a cyclic
branched cover of the “square” T − (x ∪ y). In particular Bd(D) is connected.
A component of S − X is obtained by (maximally) pasting together such D′s
along edges in Y . At a point i ∈ X ∩ Y the pair (X,Y ) gives a local coordinate
system for S, and i ∈ O(C) exactly when the first and second quadrants lie in C.
The sets O(C) partition {1, 2, . . . , d} and are in one to one correspondance with
the components C. If the first quadrant at i ∈ X ∩ Y lies in a component D of
S −X ∪ Y , then the first quadrant at iσ lies in a component D′ of S −X ∪ Y
sharing an edge in Y with D, and the second quadrant at iτστ

−1

lies in D. Thus
an orbit of gp{σ, τσ, τ−1} lies in a single O(C). By moving from one component
of S−X∪Y to an adjacent one shairing an edge in Y we see that any two points
of O(C) ∩D lie in the same orbit of gp(σ, τστ−1).

A Heegaard diagram for a closed 3-manifold always gives rise to a pair of
“dual” presentations for its fundamental group. When (σ, τ) is an efficient rep-
resentation of the closed 3-manifold Mσ,τ , these presentations can be written
down as follows. Order the cycles σ1, σ2, . . . , σg of σ and τ1, τ2, . . . , τg of τ . For
i = 1, 2, . . . , d let s(i) be the index of the cycle of σ containing i. The presenta-
tion PX has generators a1, a2, . . . , ag dual to the components of X and for each
cycle (i1, i2, . . . , ir) of τ a relation

as(i1)as(i2) . . . as(ir) = 1

The presentation PY is similarly obtained by interchanging the roles of σ and
τ .

From the above it should be clear that the incidence matrix

P = (#(σi ∩ τj))
is a presentation matrix for H1(Mσ,τ ).
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2. Equivalence of the Mσ,τ

The theorem of Reidemeister and Singer [R],[S] asserts that any two Heegaard
splittings of a given 3-manifold are stably equivalent — become equivalent after
adding some trivial handles to each. The purpose of this section is to understand
this theorem in the context of positive diagrams and to derive a set of moves
on pairs (σ, τ) of permutations which generate the relation of isomorphism of
the corresponding 3-manifolds Mσ,τ . The moves are of five types. Each involves
replacing (σ, τ) by a pair (σ1, τ1) as described below. Some of these moves are
described in terms of adding and/or deleting some elements in certain cycles of
σ and τ . We will always assume that the initial permutations are on the symbols
{1, 2, . . . , d} and, without saying so, that the new elements are renumbered to
be {1, 2, . . . , (new) d}. We assume throughout this section that (σ, τ) satisfies
the closed condition.

0. Superfluous cycle deletion. Let s be a cycle of σ and x the correspond-
ing component of X = Xσ,τ . We say that s (respectively x) is a superfluous cycle
(curve) if (S;X − x, Y ) is still a (positive) diagram for Mσ,τ . This will be the
case if and only if the components of S −X on opposite sides of x are distinct.
Proposition (1.4) then tells us how to recognize superfluous cycles. Move 0 is:

Delete all the elements in a cycle (i1, i2, . . . , ik) of σ for which i1 and i1
τ−1

(and

hence ij and ij
τ−1

) are in different orbits of gp(σ, τστ−1) to get (σ1, τ1) ∈ Sd−k.
Similarly one can delete a superfluous cycle of τ .
The result of deleting superfluous cycles changes the manifolds only to the

extent allowed by Proposition (1.3):

Proposition (2.1). If (σ1, τ1) is obtained from a pair (σ, τ) which satisfies
the closed condition by deleting some superfluous cycles, then (σ1, τ1) satisfies
the closed condition and Mσ,τ

∼=Mσ1,τ1#(gσ,τ − gσ1,τ1)(S
2 × S1)

The following example illustrates how this can happen.

Example (2.2).

σ = (1 2)(3 4)(5 6)(7 8 9 10), τ = (1 3 9 5 8)(2 7)(4 10 6)

represents S2 × S1. If we delete the superfluous cycle (7 8 9 10) from σ we get

σ1 = (1 2)(3 4)(5 6), τ1 = (1 3 5)(2)(4 6)

which represents S
3. Observe that after deleting the superfluous curve corre-

sponding to this cycle, the resulting diagram is no longer good.

We say that (σ, τ) is an efficient representation of a closed 3-manifold M if
M ∼=Mσ,τ and D(σ, τ) is an efficient diagram — equivalently

c(σ) = c(τ) = c(σ, τ) + 1/2(d− c([σ, τ ])).

and yet equivalently

c(σ, τ) = c(σ, τστ−1) = c(τ, στσ−1)

If we start with any representation (σ, τ) ofM and delete superfluous cycles in
some order, we will get to an efficient representation (σ1, τ1) which also represents
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Figure 2. Example 2.2

M unless gσ1,τ1 < gσ,τ . If we “add” in gσ,τ − gσ1,τ1 copies (on distinct symbols)
of the efficient representation

σ = (1 2 3)(4 5 6), τ = (1 3 6 4)(2 5)

of S2 ×S1 (because there is a trivial handle and the first homology is Z), we get
an efficient representation of M .

We will never have to consider the inverse move of inserting a superfluous
cycle: in what follows we will establish the equivalence between efficient repre-
sentations of a 3-manifold by moves which keep efficient representations at every
stage. This is the reason we have introduced it first — to keep it separate from
the other moves.

I. Elementary equivalence.

A. Conjugation:

(σ1, τ1) = (μσμ−1, μτμ−1);μ ∈ Sd.

B. Inversion:

(σ1, τ1) = (σ−1, τ−1).

C. Exchange:

(σ1, τ1) = (τ, σ).

It should be clear that each of these induces an isomorphism between the asso-
ciated manifolds. The exchange will reverse orientation of the splitting surfaces
while reversing the sides of the splittings.

It is interesting to note that exchange is not actually needed. This is im-
plicit in the use of the Reidemeister-Singer Theorem which allows one stably to
interchange the two sides of a Heegaard splitting by an orientation preserving
automorphism of the underlying manifold even though this is not in general pos-
sible to do without stabilization. However it seems better to keep it as a basic
move. In particular, it allows us to get by with stating only the “σ-side” version
of the moves.



208 JOHN HEMPEL

x 1

i1

d + l 1 + 2

i 2

d + l 1

i1
σ

i 2
σ

d + l 1 + 1

x2x  + x1 2

d + 2

d + 1 d + l  + l21

Figure 3. Sum of cycles

II. Trivial handle insertion/cancellation.

A. Insertion: Add a fixed point to both σ and τ :

(σ1, τ1) = (σ � (d+ 1), τ � (d+ 1))

B. Cancellation: Delete a common fixed point of σ and τ to get (σ1, τ1) ∈ Sd−1.

It should be clear that these moves correspond to adding or removing a can-
celing pair of handles to the associated positive diagrams.

The rationale for the next move is as follows. We consider the diagram
D(σ, τ) = (S;X,Y ) and look for two components of X which can be piped
together in an orientation preserving manner without creating any additional in-
tersections. Doing this and pushing the result off of X gives a new curve which
can be added to X as a superfluous curve (it doesn’t separate S as it has positive
intersection number with some component of Y ). Either of the original curves
is now superfluous and can be eliminated. The process gives a new diagram D1

for the same splitting. We then take (σ1, τ1) = (σ(D1), τ(D1)) which represents
the same manifold.

For a transitive representation, the two curves contain intervals in the bound-
ary of some component C of S − (X ∪ Y ). The new curve is obtained by taking
parallel copies of these curves and piping them together in C. This can be done
only if C lies on the positive side of both curves (case A) or on the negative
side of both curves (case B). For a non transitive representation we could also
choose to construct the splitting D(σ, τ) in such a way that two components of
X corresponding to cycles of σ in different orbits of gp(σ, τ) are adjacent. The
following describes the combinatorics for detecting these and in writing down
the resulting permutations. Refer to Figure 3 which illustrates case A.
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III. Adding two cycles of σ.

A. On the positive side. Choose distinct cycles s1, s2 (with lengths 
1, 
2) of
σ which either share elements with some cycle of [σ, τ ] or are in different orbits
of gp(σ, τ). Choose elements i1 in s1, i2 in s2 such that, in the first case i1 and
i2 are in the same cycle of [σ, τ ]. Then add the cycle

(d+ 1, d+ 2, . . . , d+ 
1 + 
2)

to σ to get σ′ ∈ Sd+�1+�2 . Insert d+ n between

i1
σn

and i1
σnτ for 1 ≤ n ≤ 
1

in the appropriate cycle of τ and insert d+ 
1 + n between

i2
σn

and i2
σnτ for 1 ≤ n ≤ 
2

to get τ ′ ∈ Sd+�1+�2 . Then delete the now superfluous cycle s1 from (σ′, τ ′) to
get σ1, τ1 ∈ Sd+�2 . We refer to this process as replacing s1 by s1 + s2 on the
positive side (at i1 ∈ s1, i2 ∈ s2 ).

B. On the negative side. Choose distinct cycles s1 and s2 of σ and elements
i1 in s1 and i2 in s2 such that either i1 and i2 are both in some cycle of [σ, τ−1]
or s1 and s2 are in different orbits of gp(σ, τ). Then add the cycle

(d+ 1, d+ 2, . . . , d+ 
1 + 
2)

to σ to get σ′ ∈ Sd+�1+�2 . Insert d+ n between

i1
σnτ−1

and i1
σn

for 1 ≤ n ≤ 
1

in the appropriate cycle of τ and insert d+ 
1 + n between

i2
σnτ−1

and i2
σn

for 1 ≤ n ≤ 
2

to get τ ′ ∈ Sd+�1+�2 . Then delete the now superfluous cycle s1 from (σ′, τ ′) to
get σ1, τ1 ∈ Sd+�2 . We say (σ1, τ1) is obtained by replacing s1 by s1 + s2 on the
negative side.

The next move involves finding a pair x1, x2 of components of X so that
the curves of Y which leave (or enter) x1 on a particular side form a parallel
family all leading to (coming from) x2. We tube together these curves along a
neighborhood of this parallel family to get a new curve which meets Y positively
and which we exchange with x2 to get a new diagram. This is described at the
level of permutations as follows. Refer to Figure 4.
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IV. Subtracting one cycle of σ from another.

A. On the positive side. Choose a cycle s1 of σ which contains exactly one
element i1 which is not fixed by [σ, τ ] and such that i1

τ lies in a cycle s2 of σ
different from s1 ( if s2 = s1 we would immediately see that Mσ,τ has a lens
space summand). It follows that iτ ∈ s2 for every i ∈ s1, and that 
2 = 
(s2) ≥

1 = 
(s1). In fact we must have 
2 > 
1; otherwise the curve we get from tubing
the components of X is a non separating curve lying in S −X ∪ Y . Delete the
image, under τ , of the elements of s1 from the cycles of σ and τ containing them
to get σ1, τ1 ∈ Sd−�1 . We say (σ1, τ1) is obtained by replacing s2 by s2 − s1 on
the positive side.

B. On the negative side. Choose a cycle s1 of σ which contains exactly one

element i1 which is not fixed by [σ, τ−1] and such that i1
τ−1

lies in a cycle s2
of σ different from s1. It follows that iτ

−1 ∈ s2 for every i ∈ s1, and that

2 = 
(s2) > 
1 = 
(s1). Delete the the image, under τ−1, of the elements of s1
from the cycles of σ and τ containing them to get to get σ1, τ1 ∈ Sd−�1 . We say
(σ1, τ1) is obtained by replacing s2 by s2 − s1 on the negative side.

Note that “positive/negative side” in cycle subtraction refers to the positive
side of (the curve corresponding to s1); so s1 − s2 on positive/negative side
will lie on the positive/negative side of s1 (and on the negative/positive side of
s2). With this (arbitrary) convention the inverse of s1 → s′1 = s2 + s1 on the
positive/negative side is s′1 → s′1 − s′2 on the positive/negative side. Also note
that the two move sequence of replacing s2 by s2 − s1 and then replacing s1 by
s1 + (s2 − s1) accomplishes the replacement of s1 by s2 − s1.

Since each of the moves II — IV is based on describing a new good, positive
diagram for the same splitting, we have

Theorem (2.3). Suppose (σ, τ) satisfies the closed condition and that (σ′, τ ′)
is obtained from (σ, τ) by a sequence of moves of types I through IV. Then (σ′, τ ′)
satisfies the closed condition and

Mσ,τ
∼=Mσ′,τ ′

Now we consider the converse. Suppose that D = (S;X,Y ) is a positive
diagram for a closed 3-manifold M , and z is an simple closed curve in S − X
which meets Y positively at each point and which separates the two copies of
some component x1 of X in S cut open along X . We say that the diagram

D∗ = (S;X − x1 ∪ z, Y )

is obtained from D by replacing x1 by z.

Lemma (2.4). If (σ, τ) is an efficient representation for a closed 3-manifoldM
and D∗ is obtained from D = D(σ, τ) by replacing a component x1 of X = Xσ,τ

by a curve z ⊂ S − X as above, then there is a sequence of moves of types III
and IV taking (σ, τ) to (σ(D∗), τ(D∗))

Proof. D is a good diagram and z does not separate S; so z ∩ Y �= ∅. S −X∗

is connected and planar. It follows that D∗ is a good positive diagram for
M =Mσ,τ . Let P,Q be the components of S split alongX∪z with χ(P ) ≥ χ(Q).
We show, by induction on −χ(P ) that there is a sequence of moves of type III
and IV taking (σ, τ) to (σ(D∗), τ(D∗).
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Figure 5

If χ(P ) = 0 then D and D∗ are isomorphic. If χ(P ) = −1, then ∂P consists of
z, x1 and some xi �= x1. By positivity not all pairs of components of ∂P can be
joined by arcs of Y ∩P nor can any such arc have ends in the same component of
∂P . If there are no arcs of Y ∩P joining x1 to xi, then z = x1+xi and replacing
x1 by z is a type III move. If there are no arcs of Y ∩ P joining xi to z, then
z = x1 − xi, and we have a type IV move. In the third case we can replace xi
by xi − x1 = z and then replace x1 by x1 + z = xi.

so assume χ(P ) ≤ −2. The components of P split along Y have vertices in
∂P and edges coming alternately from Y and X ∪ z. By positivity the number
of edges is a multiple of four. If any component of ∂P only had edges in squares,
P would be an annulus. Thus at least one such region R has at least eight edges
with one edge e in x1. Count around ∂R in a fixed direction to the fourth edge
from e to an edge f in ∂P such that the orientations on e and f induced from
X ∪ z are both the same or both opposite the orientation induced from R. We
pipe together the components of ∂P containing e and f along an arc in R then
push into R to get an oriented 1-manifold w ⊂ Int (R) which meets Y positively
at every point. If e and f are in different components of ∂P , then w has a single
component which splits P to two regions of larger (negative) Euler characteristic
and we can apply induction to replace x1 by w and then w by z by a sequence of
moves. If e and f lie in the same component of ∂P , then w has two components.
At least one is not parallel to a component of ∂P ; otherwise χ(P ) = 2, and can
be used as above to complete the proof by induction.

Lemma (2.5). Each of the following moves applied to a pair (σ, τ) satisfying
the closed condition can be accomplished by a sequence of moves of types I through
IV:

1. Easy handle cancellation. Delete all elements in a cycle of σ which
contains a fixed point p of τ .

2. Easy handle insertion. Add a cycle (d + 1, d + 2, . . . , d + 
) to σ and
define (d+1)τ = d+1. The elements d+2, . . . , d+ 
 will be inserted in existing
cycles of τ . The choice for the position of d+ 2 can be arbitrarily specified.

3. Meiosis. Choose a cycle (i1, i2, . . . , ir, . . . , is) of σ and replace it by the
two cycles (i1, . . . , ir, d+1)(d+2, ir+1, . . . , is). Then add the cycle (d+3, d+4)
to σ and add the two cycles (d+ 1, d+ 3)(d+ 2, d+ 4) to τ .

Proof. For the first move we replace the cycle t of τ which contains pσ by the
difference t− (p). This reduces the length of the cycle of σ containing p by one
(see Figure 5). We repeat this process until p is fixed by both σ and τ . Then we
remove the corresponding trivial handle.
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Figure 6. Meiosis

The second move is the inverse of the first. We introduce a fixed point, d+1,
to both σ and τ . This corresponds to adding a trivial handle which we may
suppose is done in a component of S − (X ∪ Y ) whose boundary contains the
interval in Y from q to qτ . Then replace the cycle of τ containing q by its sum
with (d+1). The effect is to insert d+2 between q and qτ in this cycle of τ and
to change (d+1) to (d+1, d+2) as a cycle of σ. We can continue to add (d+1)
to cycles of τ subject to the rules. We will have no need to be more specific than
this in the applications of this move.

The geometry behind the third move is as follows. The given cycle of σ
corresponds to a component x of X which bounds a disk E on the X side
of the splitting. Take a properly embedded arc a in E which separates the
two indicated subsets of ∂E. We get a new splitting for the same manifold by
removing a neighborhood of a from one side of the splitting and adding it to the
other. This neighborhood splits E into two new meridional disks for the X side
of this new splitting, but we need a new meridional disk for the Y side. This
introduces a negative intersection which we correct with a a trivial handle. This
is accomplished by two easy handle insertions (see Figure 6) corresponding to

adding two fixed points to τ followed by replacing x by a curve z ála Lemma (2.4).

Theorem (2.6). Let (σ, τ) and (σ′, τ ′) be efficient representations of isomor-
phic closed 3-manifolds. Then (σ, τ) can be transformed into (σ′, τ ′) by a finite
sequence of moves of types I through IV.

Proof. By assumption Mσ,τ and Mσ′,τ ′ are isomorphic. Take the correspond-
ing positive diagrams D(σ, τ) = (S;X,Y ), D(σ′, τ ′) = (S′;X ′, Y ′). The as-
sociated splittings are stably equivalent [R], [S]. Since adding trivial handles is
realized by type II moves, there is no loss in assuming that they are already equiv-
alent. Using this equivalence we identify S′ with S in a 3-manifold M = U ∪ V
where U and V are handlebodies with U ∩ V = ∂U = ∂V = S and with the
components of X and of X ′ (respectively Y and Y ′) bounding disks in U (re-
spectively V ). In particular (S;X,Y ) and (S;X ′, Y ′) are positive diagrams for
the same splitting of M .
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We may assume that all curves are in general position and thatX (respectively
X ′) meets Y ′ (respectively Y ) positively at each point. To see this we note that
a negative intersection between (say) X and Y ′ can be eliminated by a trivial
handle addition which is simultaneously a easy handle insertion for both systems.
This is depicted in Figure 7 which shows replacing X by X ∪ x, X ′ by X ′ ∪ x′,
Y by Y ∪ y, and Y ′ by Y ′ ∪ y′.

Now suppose thatX∩X ′ = Y ∩Y ′ = ∅. Note that in this case each component
of X ′ meets Y and so on; otherwise we get a non separating simple closed curve
of S lying in S −X ∪ Y . I claim that there are orderings x1, x2, . . . , xg of the
components of X and x1

′, x2′, . . . , xg ′ of the components of X ′ such that for each
i = 0, . . . , g

Di = (S;Xi, Y );Xi = x1
′ ∪ · · · ∪ xi′ ∪ xi+1 ∪ · · · ∪ xg

is a good positive diagram. Since we are dealing with efficient representations,
the curves of X (and those ofX ′) represent a maximal set of linearly independent
elements ofH1(S;Z). We merely need to preserve this property for eachXi. This
can be done by the (linear algebra) replacement theorem of Steinitz.

Now Di+1 is obtained from Di by replacing xi+1 by xi+1
′. By Lemma (2.4)

this can be done by type III and IV moves. Repeating this argument for the “Y
side” completes the proof in case X ∩X ′ = Y ∩ Y ′ = ∅.

In general we take sets E,E′ (respectively F, F ′) whose components are prop-
erly embedded disks in U (respectively V ) bounded by the components of X,X ′

(respectively Y, Y ′) and such that the components of E∩E′ (respectively F ∩F ′)
are properly embedded arcs and induct on the total number of these arcs.

We have already considered the initial case; so suppose (say) that E ∩E′ �= ∅.
Choose a component a of E ∩ E′. We get a new splitting which corresponds
to a Meiosis associated to a on each of the two systems. This corresponds to
eliminating a component of E ∩ E′. One must check that no new intersections
need to be introduced and that we preserve the condition that X (X ′) meets Y ′

(Y ) positively. Lemma (2.5) and induction then complete the proof.

Example (2.7). See Figure 8.

σ = (1 2 3 4 5 6)(7 8 9 10 11 12 13 14 15) τ = (1 3 13 9 6 7 4 14 10)(2 12 8 5 15 11)

is an efficient pair satisfying the closed condition whose degree cannot be reduced
by any elementary move. Replacing t1 by t1 + t2 (at 0 ∈ t1, 15 ∈ t2) gives

σ′ = (1 2 17 3 4 5 20 6)(7 8 19 9 10 11 16 12 18 13 14 15 21)

τ ′ = (1 16 17 18 19 20 21 3 13 9 6 7 4 14 10)(2 12 8 5 15 11)
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Replacing s′2 by s′2 − s′1 (positive side) gives

σ′′ = (1 2 11 3 4 5 13 6)(7 12 8 9 10) τ ′′ = (1 11 12 13 3 8 6 4 9)(2 7 5 10)

Replacing s′′2 by s′′2 − s′′1 (positive side) gives

σ′′′ = (1 8 2)(3 7 4 5 6) τ ′′′ = (1 7 8 4 2 5)(3 6)

Replacing s′′′2 by s′′′2 − s′′′1 (positive side) gives

σiv = (1 5 2)(3 4) τ iv = (1 5 2)(3 4)

This is a connected sum of diagrams representing L2,1#L3,1.

In general for σ a p-cycle and q prime to p

(σ, σq) represents the lens space Lp,q

We leave the following as an exercise.

Proposition (2.8). If the incidence matrix of an efficient pair (σ, τ) satis-
fying the closed condition has an entry p which is the only non zero entry of its
row or column, then Mσ,τ has a lens space summand Lp,q for some q.

3. Carriers for Positive Diagrams

In this section we show how to decompose the positive diagrams into families
which are generated by a single graph, called a carrier for the family, from which
the family and its associated permutation pairs can be readily computed. We
then show how to generate all the carriers. Some authors use the term Whitehead
graph, but this tends to have a more group theoretic interpretation which may
not stress the embedding of the graph in S

3; so we prefer to keep the concepts
separate.

To motivate this construction, we start with a positive diagram (S;X,Y ) of
genus g ≥ 2. We assume that the diagram is efficient; so X and Y each have g
components and that X ∪ Y is connected – otherwise we immediately recognize
a connected sum of lower genus diagrams. We cut open S along X and collapse
the resulting boundary curves to points. This changes S to a 2-sphere and Y
to a bipartite graph in S2 with g source vertices (corresponding to the positive
sides of the components of X , g sink vertices, and edges (corresponding to the
components of Y −X each directed from a source vertex to a sink vertex. The
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complementary regions will have an even number of edges whose orientations
alternate as one traverses the boundary of the region. The regions with two
edges (bigons) will occur in stacks: maximal sequences of bigons each sharing an
edge with the next one. We collapse each stack of bigons to a single directed edge
to which we assign a weight: the number of original edges which were identified
to this edge. The condition g ≥ 2 prevents us from collapsing S2 to a graph.
Thus we continue to get a bipartite graph in S2 with g source and g sink vertices.
The complementary regions will be 2i-gons, i ≥ 2. If some complementary region
is a 2i-gon with i ≥ 3, we can add an edge in this region directed from a source
vertex to a sink vertex three edges distant on the boundary of the region. This arc
splits the region into a square and a 2(i−1)-gon. We associate zero weight to the
added edge. By repeating this operation we may assume that all complementary
regions are squares. We say that the given positive diagram is carried by the
resulting graph.

We want to make one additional simplification which will be useful in enumer-
ating carriers. The complementary squares need not have distinct edges. This
can happen in just one way — see Figure 9a. There must be an edge with a
vertex of order one. Since we are assuming that X ∪ Y is connected and g ≥ 2
the weight on this edge and at least one other weight on an edge at the opposite
vertex must be positive. Now back the picture to the level of S cut open along
X (Figure 9b.) .

The curve, denoted xi, corresponding to the order one vertex cannot be paired
with the curve, xj , corresponding to the other end of this edge; as these vertices
have different weight sums. Thus we can replace xj by xj − xi. The degree
d = #(X ∩ Y ) is reduced to d−#(Y ∩ xi). Since the degree cannot be reduced
indefinitely, there must result after a finite repetition of the above operation a
positive diagram equivalent to the original one which is carried by a graph with
no vertices of order one.

We now formalize this by defining a genus g carrier to be a connected, bipartite
graph C ⊂ S2 with

• g source vertices and g sink vertices, with
• each component of S2−C a disk having boundary the union of four distinct

edges of C.
• A bijective pairing p : V+(C) → V−(C) between the source and sink vertices

of C, and
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• a weight w(e) ≥ 0 assigned to each edge e of C so that for each v ∈ V+(C)
we have ∑

{w(e) : v ∈ e} =
∑

{w(e) : p(v) ∈ e}.

Proposition (3.1). A genus g carrier has
4g − 4 edges, and
2g − 2 complementary regions.

Proof. Since the complementary regions are squares, E = 2F .
Also, F = β0(S

2−C) which by duality is the same as 1+β1(C) = 2−χ(C) =
2− 2g + E.

The preceding discussion has established

Proposition (3.2). Each efficient, positive diagram of genus g ≥ 2 is equiv-
alent, via type IV moves, to one which is either carried by a genus g carrier or
is a connected sum of lower genus diagrams.

To reconstruct a diagram from a carrier, we remove neighborhoods of the
vertices to obtain a 2g-punctured sphere S′. We replace each edge e of E(C)
by w(e) parallel arcs to obtain a properly embedded 1-manifold Y ′ ⊂ S′. We
identify paired components of ∂S′ to obtain an oriented surface S in such a way
that Y ′ maps to a closed 1-manifold Y ⊂ S and we denote the image of ∂S′ by
X . We have naturally induced orientations on S, X , and Y so that X meets Y
with +1 intersection at each point of X ∩ Y .

The ambiguity in this construction is the amount of twist used in gluing the
paired components of ∂S′. We find it convenient to “mark” one corner of some
complementary region of S2−C at each vertex to indicate the zero-twist gluing.

To determine the corresponding permutations we label the initial points of the
components of Y ′ in some convenient way. Then the cycle σi of σ correspond-
ing to the component xi of X is read from the associated “positive” boundary
component of S′. This way σ is determined independent of the twisting.

If τ0 is the permutation determined by Y for the zero-twist gluing, then the
permutation corresponding to Y with twist coordinates (t1, . . . , tg) will be:

τ0σ
t1
1 . . . σtgg .

It is not hard, for small genus, to determine the possible carrier graphs (see
remark below), and eliminate the pairings which do not admit non trivial weight
solutions. In this way we can prove:

Example (3.3). There is just one genus two carrier (Figure 10). The genus
two positive diagrams are determined by

σ = (1, 2, . . . , q + p)(q + p+ 1, q + p+ 2, . . . , q + 2p+ r) = σ1σ2

τ = (q + 1, q + p+ 1)(q + 2, q + p+ 2) . . . (q + p, q + 2p)σt11 σ
t2
2

for some p, q, r ∈ Z+, t1, t2 ∈ Z.
There are ten genus three carriers. They are based on all pairings of the two

graphs of Figure 11 (modulo the obvious symmetries).
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Figure 11. Genus three carriers

Remark. If C ⊂ S2 is a carrier graph, then there is a branched cover p :
S2 → S2 branched over three points – all the oriented edges of C are identified
and diametrically opposite points on each square are identified. So the source
vertices map to one branch point, the sink vertices to the second, and the centers
of squares to the third. This process is reversible:

Proposition (3.4). The genus g carrier graphs are determined by the fixed
point free, transitive pairs μ, ν ∈ S4g−4 with c(μ) = c(ν) = g and μν a product
of 2g − 2 2-cycles.

4. The lattice structure

Remember that we have a partial order M̂σ̃,τ̃ � M̂σ,τ if there is a factorization
p̃ = p ◦ q:

M̂σ̃,τ̃
q−→ M̂σ,τ

p−→ S
3

of branched coverings. At the level of permutations this is given by:

Proposition (4.1). Let σ̃, τ̃ ∈ Sd̃, σ, τ ∈ Sd. Then M̂σ̃,τ̃ � M̂σ,τ if and

only if d̃ = λd for some λ ∈ Z and there is a λ to one map ψ : {1, 2, . . . , d̃} →
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{1, 2, . . . , d} such that

(iσ̃)ψ = (iψ)σ and (iτ̃ )ψ = (iψ)τ

for all i.

Proof. We have identifications of the fibers p̃−1(x0) with {1, 2, . . . , d̃} and
p−1(x0) with {1, 2, . . . , d}. So ψ will be induced by q to give necessity.

Conversely, given ψ, we note that the corresponding unbranched coverings
(of S3 − Γ) are determined by the subgroups ϕ̃−1(Stab(1)) ⊂ ϕ−1(Stab(1)) of
π1(S

3 − Γ). So the existence of q follows.

Note that with the above proposition it is easy to construct lots of branched
covers of a given M̂σ,τ . However even if the given space is a closed 3-manifold

(M̂σ,τ =Mσ,τ ), the total space will most likely be a non-manifold. We are most
interested in determining the true (finite sheeted) covers of a manifold. This is
given by

Proposition (4.2). Let σ, τ and σ̃, τ̃ be transitive pairs with M̂σ,τ =Mσ,τ a

closed 3-manifold and M̂σ̃,τ̃ �Mσ,τ .
Suppose that c(σ̃) = λc(σ), c(τ̃ ) = λc(τ), and c([σ̃, τ̃ ]) = λc([σ, τ ]) for some λ ∈

Z. Then q : M̂σ̃,τ̃ →Mσ,τ is a true covering map, and M̂σ̃,τ̃ (=Mσ̃,τ̃ ) is a closed
3-manifold.

Proof. Note that the map ψ : {1, 2, . . . , d̃} → {1, 2, . . . , d} maps each cycle
of σ̃, τ̃ , or [σ̃, τ̃ ] onto a cycle of σ, τ, or [σ, τ ]. So we always have c(σ̃) ≤ λc(σ),
c(τ̃) ≤ λc(τ), and c([σ̃, τ̃ ]) ≤ λc([σ, τ ]), and the condition of the proposition is
equivalent to asserting that for each cycle of σ, τ, or [σ, τ ] there are λ cycles of
σ̃, τ̃ , or [σ̃, τ̃ ] projecting one-to-one to it.

We note that q will always be a covering on a neighborhood in Sσ̃,τ̃ of X̃ ∪
Ỹ . We get Sσ̃,τ̃ from this neighborhood by filling in disks whose boundaries
correspond to the cycles of [σ̃, τ̃ ]. The condition c([σ̃, τ̃ ]) = λc([σ, τ ]) makes q a
homeomorphism on the curves – hence on the disks they bound.

Similarly we see that q will be a homeomorphism on the 2-handles of Mσ̃,τ̃

to those of Mσ,τ . The links of the vertices of Mσ,τ are 2-spheres and we have
seen that q is a covering map on the inverse image of these 2-spheres. Hence the
components of their inverse images are 2-spheres mapping homeomorphically by
q and so q will take the 3-cells they bound homeomorphically as well.

The following illustrates that “good” properties for closed 3-manifolds tend
to proliferate upwards in the lattice of branched coverings over Γ.

Proposition (4.3). Let M̂σ̃,τ̃ =Mσ̃,τ̃ and M̂σ,τ =Mσ,τ be closed 3-manifolds
with Mσ̃,τ̃ �Mσ,τ . If Mσ,τ has a finite sheeted true cover which has positive first
betti number or which contains a closed, 2-sided incompressible surface then so
does Mσ̃,τ̃ .

Proof. By hypothesis there is a finite sheeted true covering r : Mσ∗,τ∗ →
Mσ,τ whose total space has one of the “good” properties mentioned. We have a
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pullback diagram:
Mσ̄,τ̄ −−−−→ Mσ∗,τ∗
⏐⏐�

⏐⏐�r

Mσ̃,τ̃ −−−−→
q

Mσ,τ

with monodromy determined by

σ̄, τ̄ ∈ Aut(S)

where S = {(i, j) ∈ {1, . . . , d̃} × {1, . . . , d∗}) : q(i) = r(j)}
(we are identifying points with their labels), and

σ̄ = σ̃ × σ∗|S, τ̄ = τ̃ × τ∗|S.
We wish to show that M̂σ̄,τ̄ → Mσ̃,τ̃ is a true covering and that (any com-

ponent of) the total space has the corresponding “good” property. Each cy-
cle σ̄i of σ̄ covers ( in the sense of proposition (4.1) cycles σ̃j of σ̃ and σ∗

k of
σ∗ which cover the same cycle σm of σ. The lengths of these cycles satisfy

(σ̄i) = lcm(
(σ̃j , 
(σ

∗
k)). But 
(σ∗k) = 
(σm); since r is a true covering, and


(σm)|
(σ̃j) by (4.1); so 
(σ̄i) = 
(σ̃j). The same argument applies to cycles of τ̄
and of [σ̄, τ̄ ] to give the conditions of proposition (4.2).

Now π1(Mσ̄,τ̄ ) maps to a subgroup of finite index in π1(Mσ∗,τ∗). So if
β1(Mσ∗,τ∗) > 0 then β1(Mσ̄,τ̄ ) > 0.

If Mσ∗,τ∗ contains a closed, 2-sided incompressible surface F , we pull it back
to a closed 2-sided surface F̄ ⊂ Mσ̄,τ̄ . If F̄ does not compress completely we
are done. If it does, then using the fact that π1(F ) → π1(Mσ∗,τ∗) is monic, we
see that π1(F̄ ) → π1(F ) factors through a free group. So F̄ → F factors, up to
homotopy, through a 1-complex. This is impossible since H2(F̄ ) → H2(F ) is not
zero.

In the next proposition we use the presentation PX of π1(Mσ,τ ) described at
the end of section 1. In particular we have an indexing σ1, . . . , σg of the cycles of
σ, corresponding generators a1, . . . , ag for π1(Mσ,τ ), and s(i) denotes the index
of the cycle of σ containing i.

Proposition (4.4). Let σ, τ ∈ Sd be an efficient presentation of a closed 3-

manifold and let ρ : M̃ → Mσ,τ be a λ-sheeted covering map with monodromy
μ : π1(Mσ,τ ) → Sλ.

Then M̃ ∼= Mσ̃,τ̃ where σ̃, τ̃ ∈ Sλd ∼= Aut({1, . . . , d} × {1, . . . , λ}) are given
by:

σ̃ : (i, j) �→ (iσ, j)

τ̃ : (i, j) �→ (iτ , jμ(as(i)))

Proof. We have branched covers p : Mσ,τ → S
3 and p̃ = p ◦ ρ : M̃ → S

3

branched over Γ and the associated diagrams D(σ, τ) = (S;X,Y ) and D(σ̃, τ̃ ) =

(S̃; X̃, Ỹ ) = (ρ−1(S); ρ−1(X), ρ−1(Y )). The components of X and Y lift home-

omorphically to components of X̃ and Ỹ respectively. S −X is connected and
each component of ρ−1(S −X) projects homeomorphically via ρ. Thus we can
regard μ as permuting these components – in terms of some labeling. Since ai
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is represented by a curve dual to xi, a lift of this curve which begins in the
component of S̃ − X̃ labeled j ends in the component labeled jμ(ai).

We have a labeling of the points of X ∩ Y consistent with σ, τ . We label the
points of X̃ ∩ Ỹ as follows. A point z ∈ X̃ ∩ Ỹ is labeled (i, j) provided that

ρ(z) is labeled i and the component of S̃ − X̃ lying on the negative side of the

component of X̃ containing z is labeled j. It should be clear that in terms of
this labeling the permutation given by flowing along X̃ (Ỹ ) is σ̃ (τ̃ ).

Remarks. 1. The above propositions give an alternate way of thinking about
the finite representations of π1(Mσ,τ ). A finite representation is determined by
a transitive pair σ̃, τ̃ ∈ Sλd, for some λ, satisfying the conditions of (4.1) and
(4.2). The representation (to Sλ) is recovered by reversing the proof of (4.4).
We note that the corresponding cover Mσ̃,τ̃ → Mσ,τ will be regular if and only
if the group generated by σ̃ and τ̃ has order λ.

2. It is straightforward, using Proposition (4.4), to determine the maximal
abelian cover of Mσ,τ (if finite). Successive applications determine the coverings
corresponding to the derived series of π1(Mσ,τ ). I have found this quite effective
in determining whether a given fundamental group is finite or not. The possible
finite fundamental groups of 3-manifolds are known [Mi], [L], and from a com-
parison of the quotients of the derived series of the given example with those
of the known examples one can either guarantee that the group is infinite (no
comparison) or determine its order if finite. Of course one would need an effec-
tive procedure for settling the triviality problem for these group presentations
to make this algorithmic.
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THE VARIETY OF CHARACTERS IN PSL2(C)

MICHAEL HEUSENER AND JOAN PORTI

Abstract. We study some basic properties of the variety of characters in
PSL2(C) of a finitely generated group. In particular we give an interpreta-
tion of its points as characters of representations. We construct 3-manifolds
whose variety of characters has arbitrarily many components that do not
lift to SL2(C). We also study the singular locus of the variety of characters
of a free group.

1. Introduction

The varieties of representations and characters have many applications in 3-
dimensional topology and geometry. The variety of SL2(C)-characters has been
intensively studied since the seminal paper of Culler and Shalen [CS], but for
many applications it is more convenient to work with PSL2(C) instead of SL2(C)
(see [BZ] and [BMP] for instance). The purpose of this note is to study some
basic properties of the variety of characters in PSL2(C). Most of the results of
invariant theory that we use can be found in any standard reference (e.g. [KSS],
[Kra], [PV]).

Throughout this paper, Γ will denote a finitely generated group.

Definition (1.1). The set of all representations of Γ in PSL2(C) is denoted by
R(Γ) and it is called the variety of representations of Γ in PSL2(C).

The variety of representations R(Γ) has a natural structure as an affine al-
gebraic set over the complex numbers given as follows: the group PSL2(C) is
algebraic (see Section 2). Given a presentation Γ = 〈γ1, . . . , γs | (ri)i∈I〉 we have
a natural embedding:

R(Γ) → PSL2(C)× · · · × PSL2(C)
ρ �→ (ρ(γ1), . . . , ρ(γs))

and the defining equations are induced by the relations. This structure can be
easily seen to be independent of the presentation. In fact using the isomorphism
PSL2(C) ∼= SO3(C), R(Γ) has a structure of an affine set (see Lemma (2.2.1)).

The action of PSL2(C) on R(Γ) by conjugation is algebraic. The quotient
R(Γ)/PSL2(C) may be not Hausdorff and it is more convenient to consider the
algebraic quotient of invariant theory, because PSL2(C) is reductive.

Definition (1.2). The variety of PSL2(C)-characters X(Γ) is the quotient
R(Γ)//PSL2(C) of invariant theory.

2000 Mathematics Subject Classification: 57M50, 57M05, 20C15.
Keywords and phrases: representation spaces; variety of characters; PSL2(C).
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This definition means that X(Γ) is an affine algebraic set together with a
regular map t : R(Γ) → X(Γ) which induces an isomorphism

t∗ : C[X(Γ)] → C[R(Γ)]PSL2(C)

(i.e. the regular functions on X(Γ) are precisely the regular functions on R(Γ)
invariant by conjugation). We will use the notation R(M) = R(π1M) and
X(M) = X(π1M) if M is a path-connected topological space.

In this paper we study the basic properties of X(Γ).
First we explain the name “variety of characters”: given a representation

ρ : Γ → PSL2(C), its character is the map

χρ : Γ → C

γ �→ tr2(ρ(γ))

Theorem (1.3). There is a natural bijection between X(Γ) and the set of
characters of representations ρ ∈ R(Γ). This bijection maps every t(ρ) ∈ X(Γ)
to the character χρ.

In many cases the representations of R(Γ) lift to SL2(C), for instance if Γ
is a free group. In such a case, X(Γ) is just a quotient of the usual variety of
characters in SL2(C) (See Proposition (4.2.2)). This quotient is the definition
already used in [Bur90], [HLM1],[HLM2] and [Ril84] for 2-bridge knot exteriors.
The explicit computation for the figure eight knot exterior is found in [GM].

There are cases where representations do not lift to SL2(C), for instance the
holonomy representation of an orientable hyperbolic 3-orbifold with 2 torsion.
The next result proves that there are manifolds with arbitrarily many compo-
nents of characters that do not lift.

Theorem (1.4). For every n, there exist a compact irreducible 3-manifold M
with ∂M a 2-torus such that X(M) has at least n irreducible one dimensional
components whose characters do not lift to SL2(C).

In Section 2 we prove Theorem (1.3). In Section 3 we study the fiber of the
projection t : R(Γ) → X(Γ), introducing the different notions of irreducibility.
Section 4 is devoted to the study of lifts of representations and the proof of
Theorem (1.4). In the last section we determine the singular set of X(Γ) when
Γ ∼= Fn is the free group of rank n ≥ 3.

2. Invariants of PSL2(C)

Before proving Theorem (1.3) we quickly review some basic notions of alge-
braic geometry and invariant theory (that the reader may prefer to skip and go
directly to the proof in Subsection 2.3). For details see [KSS], [Kra] or [PV].

(2.1) Basic notions of invariant theory. A closed algebraic subset Z ⊂
CN is called affine. We denote by C[Z] the ring of regular functions on Z.
An algebraic group G that acts algebraically on Z acts naturally on C[Z] via
gf(z) := f(g−1z). We denote by C[Z]G the ring of invariant functions, i.e.
functions f ∈ C[Z] for which gf = f for all g ∈ G.

The group G is called reductive if it has the following property: for each
finite dimensional rational representation ρ : G→ GL(V ) and every G-invariant
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subspace W ⊂ V there exist a complementary G-invariant subspace W ′ ⊂ V ,
i.e. V =W ′ ⊕W .

If Z is affine and G is reductive, then the ring C[Z]G is finitely generated.
The affine set Y such that C[Y ] ∼= C[Z]G is called the algebraic quotient and it
is denoted by Z//G.

We shall use the following properties of reductive groups:

– By Maschke’s theorem, finite groups are reductive.
– More generally, let G ⊂ GLn(C) be a linear algebraic group. The group G
is reductive if there is a Zariski-dense subgroup K ⊂ G which is compact
in the classical topology. It follows that GLn(C), SLn(C), On(C), SOn(C)
and Spn(C) are reductive.

– Let G be a reductive linear algebraic group. Let Y and Z be varieties
on which G acts and let f : X → Y be a G-invariant regular map. If
f∗ : C[Y ] → C[X ] is surjective then f∗(C[Y ]G) = C[X ]G holds.

(2.2) Algebraic structure of PSL2(C). The group PSL2(C) is algebraic, it
is the quotient of SL2(C) by the finite group {±Id}.

It is useful to recall the isomorphism with SO3(C), that we construct next.
We denote by

Ad: PSL2(C) → Aut(sl2(C))

the adjoint action of PSL2(C) on its Lie algebra sl2(C). The Killing form
on sl2(C) is a non degenerate symmetric bilinear form over C. For each
A ∈ PSL2(C), Ad(A) preserves the Killing form and det(Ad(A)) = 1, hence
Ad(PSL2(C)) ⊆ SO3(C). The following lemma is well known from representation
theory (see for instance [FH]):

Lemma (2.2.1). The action of PSL2(C) on the Lie algebra induces an iso-
morphism Ad: PSL2(C) → SO3(C).

In this paper the trace will be abbreviated by tr, and tr2(A) stands for
(tr(A))2. By direct computation we obtain the equality

(2.2.2) tr(Ad(A)) = tr2(A) − 1 = tr(A2) + 1 for all A ∈ PSL2(C)

that will be used later.
Given γ ∈ Γ, we have a well defined function

τγ : R(Γ) → C

ρ �→ tr2(ρ(γ))

Since it is invariant by conjugation, it induces a function

Jγ : X(Γ) → C.

(2.3) Proof of Theorem (1.3). Theorem (1.3) is a consequence of:

Proposition (2.3.1). The ring of invariant functions C[R(Γ)]PSL2(C) is gen-
erated by the functions τγ , with γ ∈ Γ.

Proof. There is a surjection ψ : Fn → Γ where Fn is a free group of rank n ∈ N.
We obtain an inclusion ψ∗ : R(Γ) ⊂ R(Fn). This inclusion induces a surjection
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ψ∗ : C[R(Fn)] → C[R(Γ)]. Now, PSL2(C) is reductive and acts regularly by
conjugation on the representation varieties. Hence we obtain a surjection

ψ∗ : C[R(Fn)]
PSL2(C) → C[R(Γ)]PSL2(C)

and it is sufficient to prove the proposition for Γ = Fn since ψ∗(τγ) = τψ(γ).

Using Lemma (2.2.1) and (2.2.2), we have to prove that C[R(Fn)]
SO3(C) is

generated by the trace functions on elements of Fn. Equivalently, we claim that

C[SO3(C)× · · · × SO3(C)]
SO3(C)

is generated by traces of products of matrices and their transposes.
Let M3(C) denote the algebra of 3×3 matrices with complex coefficients. The

group PSL2(C) ∼= SO3(C) acts on the product M3(C) × · · · ×M3(C) diagonally
by conjugation. A theorem of Aslaksen, Tan and Zhu (see [ATZ]) states that
the algebra of invariant functions

C[M3(C)× · · · ×M3(C)]
SO3(C)

is generated by the traces of products of matrices and their transposes. Thus
the proof of the proposition reduces to show that we have a natural surjection

C[M3(C)× · · · ×M3(C)]
SO3(C) → C[SO3(C)× · · · × SO3(C)]

SO3(C) .

Since SO3(C) × · · · × SO3(C) ⊂ M3(C) × · · · ×M3(C) is a closed subvariety we
obtain a natural surjection

C[M3(C)× · · · ×M3(C)] → C[SO3(C)× · · · × SO3(C)]

which is of course SO3(C)-invariant. Using the fact that SO3(C) is reductive gives
the surjection C[M3(C)×· · ·×M3(C)]

SO3(C) → C[SO3(C)×· · ·×SO3(C)]
SO3(C).

Since C[X(Γ)] = C[R(Γ)]SO3(C) is finitely generated, we also obtain:

Corollary (2.3.2). There are finitely many elements γ1, . . . , γN in Γ such
that Jγ1 × · · · × JγN : X(M) → CN is an embedding and its image is a closed
algebraic set.

(2.4) Other invariant functions. There are other natural functions to con-
sider. Let Γ2 be the subgroup of Γ generated by the squares γ2 of all elements
γ of Γ. It is well known that we have an exact sequence:

1 → Γ2 → Γ → H1(Γ, C2) → 1,

where C2 = {±1} is the group with 2 elements. For instance, if Γ is a finite
group of odd order, then Γ2 = Γ. In general, if γ, μ ∈ Γ the commutator
[γ, μ] = γμγ−1μ−1 = (γμ)2(μ−1γ−1μ)2μ−2 is in Γ2 and hence Γ2 contains the
commutator group Γ′ = [Γ,Γ]. Notice that

Γ2 =
⋂

ε∈H1(Γ,C2)

Ker(ε)

where H1(Γ, C2) = Hom(Γ, C2). Let R(Γ, SL2(C)) denote the variety of repre-
sentations of Γ in SL2(C). The cohomology group H1(Γ, C2) acts on this variety
of representations as follows: an homomorphism ε : Γ → C2 = {±1} maps the
representation ρ ∈ R(Γ, SL2(C)) to the product of representations ε · ρ (which
maps γ ∈ Γ to ε(γ) · ρ(γ)).
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Invariant functions for the free group. Let F be a finitely generated free group.
For γ ∈ F 2 and ρ ∈ R(F ), tr(ρ(γ)) is well defined since the representation
ρ : F → PSL2(C) lifts to ρ̃ : F → SL2(C) and for γ ∈ F 2 the trace tr(ρ̃(γ))
depends only on γ. Note that two lifts ρ̃1 and ρ̃2 of ρ differ by a homomorphism
ε ∈ H1(F,C2) and that F 2 ⊂ Ker(ε) for each ε ∈ H1(F,C2).

Proposition (2.4.1). Let F be a free group. For every k-tuple γ1, . . . , γk ∈ F
such that the product γ1 · · · γk ∈ F 2, the function

σγ1,...,γk : R(F ) → C

ρ �→ tr(ρ̃(γ1)) · · · tr(ρ̃(γk))
is regular (i.e. σγ1,...,γk ∈ C[R(F )]). Here, ρ̃ : F → SL2(C) denotes a lift of ρ.

In order to prove this proposition we shall use the following:

Lemma (2.4.2). Let Fn be the free group of rank n. We have a natural iso-
morphism

R(Fn, SL2(C))//H
1(Fn, C2) ∼= R(Fn) .

Proof. Since R(Fn, SL2(C)) ∼= SL2(C)
n, R(Fn)∼= PSL2(C)

n and SL2(C)/C2
∼=

PSL2(C), we have the lemma.

Proof of Proposition (2.4.1). For a free group F and γ1, . . . , γk ∈ F , the func-
tion σ̃ : R(F, SL2(C)) → C given by σ̃(ρ) = tr(ρ(γ1)) · · · tr(ρ(γk)) is regular.
Moreover, we have σ̃(ε · ρ) = ε(γ1 · · · γk)σ̃(ρ). Since the product γ1 · · · γk ∈ F 2

we get that σ̃ ∈ C[R(Fn, SL2(C))]
H1(Fn,C2) is an invariant regular function on the

SL2(C) representation variety. By Lemma (2.4.2), this function factors through
R(F ) and gives the regular function σγ1,...,γk ∈ C[R(F )].

Example (2.4.3). Given γ, η ∈ F , by Proposition (2.4.1), σγ,η,γη ∈ C[R(F )],
thus by Proposition (2.3.1), σγ,η,γη is a polynomial on the functions τ .

To compute explicitly the polynomial of Example (2.4.3), we recall some iden-
tities of traces in SL2(C):

tr(AB) = tr(BA) and tr(A) = tr(A−1) ∀A,B ∈ SL2(C) .

In addition, we have the fundamental identity:

(2.4.4) tr(AB) + tr(A−1B) = tr(A) tr(B) ∀A,B ∈ SL2(C) .

This identity can be deduced from A2 − (trA)A+ Id = 0 multiplying by A−1B
and taking traces. Taking the square of tr(AB−1) = tr(A) tr(B) − tr(AB) we
deduce:

2 tr(A) tr(B) tr(AB) = tr2(A) tr2(B) + tr2(AB) − tr2(AB−1) .

Thus

(2.4.5) σγ,η,γη =
1

2
(τγτη + τγη − τγη−1).

Example (2.4.6). For every γ, μ ∈ F , the commutator [γ, μ] = γμγ−1μ−1

belongs to F 2 and therefore σ[γ,μ] ∈ C[R(F )]. Using the the same method as for
Equation (2.4.5) one can find:

(2.4.7) σ[γ,η] = τγ + τη +
1

2
τγη +

1

2
τγη−1 − 1

2
τγτη − 2 .
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Invariant functions for other groups. Let Γ be a finitely generated group,
F a free group and ψ : F → Γ a surjection. It induces another surjection
ψ∗ : C[R(F )] → C[R(Γ)], ψ∗f(ρ) = f(ρ◦ψ). Hence we obtain for all η1, . . . , ηk ∈
F such that the product η1 · · · ηk ∈ F 2 a regular function ψ∗ση1,...,ηk ∈ C[R(Γ)].
Note that the functions ψ∗ση1 and ψ∗ση2 might be different even if ψ(η1) = ψ(η2)
in Γ. This reflects the fact that in general not every representation ρ : Γ →
PSL2(C) lifts to SL2(C).

Example (2.4.8). Let ψ : F → Γ be the canonical projection where F = 〈x, y |
−〉 and Γ = 〈x, y | [x, y] = 1〉. We consider the representation ρ : Γ → PSL2(C)
given by ρ(x) = ±Ax and ρ(y) = ±Ay where

Ax =

(
i 0
0 −i

)
and Ay =

(
0 1
−1 0

)
.

We obtain tr([Ax, Ay]) = −2 and hence ψ∗σ[x,y](ρ) = −2. On the other hand we
have [x, y] = 1 in Γ and ψ∗σ1 = 2 is a constant function.

If the representation ρ ∈ R(Γ) admits a lift ρ̃ : Γ → SL2(C) then

(2.4.9) ψ∗ση1,...,ηk(ρ) = tr(ρ̃(ψ(η1))) · · · tr(ρ̃(ψ(ηk)))
only depends on the elements ψ(η1), . . . , ψ(ηk) ∈ Γ.

3. Irreducibility

To study the fiber of the map t : R(Γ) → X(Γ) we shall consider two differ-
ent notions of irreducibility for ρ ∈ R(Γ), the usual one as a representation in
PSL2(C) and the so called Ad-irreducibility, for the three dimensional represen-
tation Ad ◦ρ : Γ → SO3(C).

(3.1) Irreducible representations.

Definition (3.1.1). A representation ρ ∈ R(Γ) is called reducible if ρ(Γ) pre-
serves a point of P 1(C). Otherwise it is called irreducible. A character χ : Γ → C

is called reducible if it is the character of a reducible representation.

Remark (3.1.2). Up to conjugation, the image of a reducible representation is
contained in the set of upper-triangular matrices ( ∗ ∗

0 ∗ ).

We shall require the following well known lemma (see [Bea, § 4.3]).

Lemma (3.1.3). Two non-trivial elements g, h ∈ PSL2(C) have a common
fixed point in P 1(C) if and only if tr([g, h]) = 2. In addition, this fixed point is
unique if [g, h] is not the identity.

Irreducibility is a property that can be detected from characters:

Lemma (3.1.4). A representation ρ ∈ R(Γ) is reducible iff tr([ρ(γ), ρ(η)]) = 2
for all elements γ, η in Γ.

Proof. If ρ is reducible then all the ρ(γ) have a common fixed point and
Lemma (3.1.3) gives the result.

Assume now that tr([ρ(γ), ρ(η)]) = 2 for all elements γ, η in Γ.

Case 1: There are two elements γ and η in Γ such that [ρ(γ), ρ(η)] is not the
identity. Then A = [ρ(γ), ρ(η)] is a non-trivial parabolic element in the image of
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Γ. For any μ ∈ Γ, either ρ(μ) commutes with A or [ρ(μ), A] is non-trivial. The
former possibility implies that ρ(μ) fixes the unique fixed point of A, the latter
too by Lemma (3.1.3).

Case 2: The image of ρ is an abelian group. Abelian subgroups of PSL2(C)
are well-known: either they have a global fixed point in P 1(C) or they are
conjugated to the group with four elements generated by ± (

0 1−1 0

)
and ± (

i 0
0 −i

)
.

Since the commutator of these two generators is
(−1 0

0 −1

)
, this possibility does

not occur.

Definition (3.1.5). A non-cyclic abelian subgroup of PSL2(C) with four ele-
ments is called Klein’s 4-group. Such a group is realized by rotations about three
orthogonal geodesics and it is conjugated to the one generated by ± (

0 1−1 0

)
and

± (
i 0
0 −i

)
.

Let Rred(Γ) denote the set of reducible representations and Xred(Γ) =
t(Rred(Γ)). Let F be a free group and let ψ : F → Γ be surjective. Lemma (3.1.4)
implies that

Rred(Γ) = {ρ ∈ R(Γ) | ψ∗σ[γ,η](ρ) = 2 ∀ γ, η ∈ F}
is a Zariski closed subset invariant by conjugation. Thus, by invariant theory we
have:

Corollary (3.1.6). The set Xred(Γ) is Zariski closed and Rred(Γ) =
t−1(Xred(Γ)).

Remark (3.1.7). Every reducible character χ is the character of a diagonal

representation, because if ρ(γ) = ±
(
aγ bγ
0 cγ

)
is a representation, then ρ′(γ) =

±
(
aγ 0
0 cγ

)
is also a representation with χρ = χρ′ .

(3.2) Ad-irreducibility.

Definition (3.2.1). A representation ρ ∈ R(Γ) is Ad-reducible if sl2(C) has a
proper invariant subspace by the action of Ad ◦ρ. Otherwise it is Ad-irreducible.

Let H3 denote the three-dimensional hyperbolic space and ∂∞H3 its ideal
boundary. We use the isomorphism Isom+(H3) ∼= PSL2(C) and the natural
identification ∂∞H

3 ∼= P 1(C).

Lemma (3.2.2). A representation ρ : Γ → PSL2(C) is Ad-reducible if and
only if ρ(Γ) preserves either a point in ∂∞H3 or a geodesic in H3.

Proof. Let V be a proper subspace of sl2(C) invariant by Ad ◦ρ(Γ). Up to tak-
ing V ⊥, we may assume dimV = 1, because the Killing form is not degenerate.
We have then two possibilities: either the Killing form restricted to V vanishes
or not. In the first case V consists of parabolic Killing fields, in particular the
1-parameter group {exp(v) | v ∈ V } ∼= C is parabolic and fixes a unique point at
infinity, that has to be fixed also by ρ. In the second case, when the Killing form
restricted to V does not vanish, the 1-parameter group {exp(v) | v ∈ V } ∼= C∗

is a subgroup of index two in the group of isometries which preserve a geodesic
in H3. This geodesic has to be preserved by the representation. Conversely, if a
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representation preserves a point in ∂∞H3 or a geodesic, the previous argument
shows how to construct an invariant subspace of sl2(C).

Corollary (3.2.3). Reducible representations are also Ad-reducible.

Remark (3.2.4). A representation Ad-reducible but not reducible is a C2-
extension of an abelian one that fixes an oriented geodesic. Thus it preserves an
unoriented geodesic.

We call a representation ρ ∈ R(Γ) abelian respectively metabelian if its image
is an abelian respectively metabelian subgroup of PSL2(C)

Lemma (3.2.5). A representation ρ ∈ R(Γ) is Ad-reducible iff it is metabelian.

Proof. If ρ is Ad-reducible then its image is contained in the stabilizer of either
a point in P 1(C) or a geodesic in H3. Those stabilizers are metabelian, since
they are respectively the group of affine transformations of C and the semidirect
product C∗

� C2.
Now assume that ρ(Γ) ⊂ PSL2(C) is a metabelian subgroup. We use the fact

that an abelian subgroup of PSL2(C) preserves a unique point of P
1(C), a unique

geodesic or it is Klein’s 4-group (Definition (3.1.5)). If ρ([Γ,Γ]) is trivial then ρ is
Ad-reducible by this fact. If ρ([Γ,Γ])is not trivial, then we look at those unique
invariant objects: the unique point in P 1(C), the unique geodesic, or the unique
three geodesics if it is Klein’s 4-group. Since [Γ,Γ] is normal in Γ, uniqueness
implies that ρ(Γ) preserves the same objects, hence ρ is Ad-reducible.

Lemma (3.2.6). The set of characters of Ad-reducible representations is Zariski
closed.

Proof. Lemma (3.2.5) gives that the set of Ad-reducible representations is

RAd−red = {ρ ∈ R(Γ) | ρ(c) = ±Id ∀ c ∈ Γ′′}
where Γ′′ denotes the second commutator group of Γ. This is a closed subset of
R(Γ) invariant under conjugation. Hence we have XAd−red(Γ) = t(RAd−red) is
a closed subset of X(Γ).

Remark (3.2.7). The image of an Ad-reducible representation is elementary,
but elementary groups also include groups that fix a point in H3.

(3.3) The fibers of t : R(Γ) → X(Γ).

Lemma (3.3.1). The fiber of an irreducible character consists of a single closed
orbit (i.e. two irreducible representations have the same character iff they are
conjugate).

Proof. Let ρ1, ρ2 ∈ R(Γ) be two irreducible representations with χρ1 = χρ2 .
We assume first that each ρi is irreducible but Ad-reducible. Thus each ρi

preserves a geodesic l, that we may assume to be the same after conjugation.
The action of ρi(γ) on l is determined by the value of χρi(γ), except in the case
χρi(γ) = 0, which means that ρi(γ) is a rotation through angle π, but it can
be either about γ or about an axis perpendicular to γ. Thus if there exists an
element γ0 ∈ Γ with χρi(γ0) �= 4, 0 (i.e. ρi(γ0) is either a loxodromic element or
a rotation of angle �= π) then ∀ γ ∈ Γ the action of ρi(γ) on the geodesic l is
determined by χρi(γ) and χρi(γγ0). In particular ρi is unique up to conjugation.
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The exceptional case occurs when χρi(γ) = 0 or 4 for every γ ∈ Γ. In this special
case, ρi is necessarily a representation into Klein’s 4-group. The lemma is also
clear in this case.

When ρi are Ad-irreducible, we can assume that Γ is a free group. Thus we
can lift ρi to ρ̃i : Γ → SL2(C). By Example (2.4.3), for every pair γ, γ′ ∈ Γ we
obtain a regular function σγ,γ′,γγ′ : X(Γ) → C, given by

σγ,γ′,γγ′(χρ) = tr ρ̃(γγ′) tr ρ̃(γ) tr ρ̃(γ′)

where ρ̃ : Γ → SL2(C) is any lift of ρ. Thus:

(3.3.2) tr ρ̃1(γγ
′) tr ρ̃1(γ) tr ρ̃1(γ′) = tr ρ̃2(γγ

′) tr ρ̃2(γ) tr ρ̃2(γ′) .

We define ε : Γ → C2 = {±1} by the formula:

tr ρ̃1(γ) = ε(γ) tr ρ̃2(γ), ∀ γ ∈ Γ such that χρ1(γ) �= 0.

When χρ1(γ) = 0, since we assume that ρi is Ad-irreducible, we can find γ0 ∈ Γ
with χρi(γ0) �= 0 and χρi(γγ0) �= 0. In this case we define ε(γ) = ε(γ0) · ε(γγ0).

By (3.3.2), ε is a morphism. Hence ρ̃1 and ε · ρ̃2 are irreducible representations
in SL2(C) with the same character. By [CS] they are conjugate.

Proposition (3.3.3). (i) A character χ is irreducible iff PSL2(C) acts tran-
sitively on the fiber and with finite stabilizer.

(ii) A character is Ad-irreducible iff PSL2(C) acts faithfully on the fiber.

Proof. (i) By Lemma (3.3.1), if χ is irreducible then PSL2(C) acts transitively
on t−1(χ). Assume now that the stabilizer is infinite: i.e. there exists nontrivial
A ∈ PSL2(C) of order ≥ 3 (possibly infinite) and ρ in the fiber such that A
commutes with ρ. If A is parabolic, then it has a fixed point in P 1(C) and
therefore ρ fixes this point. Otherwise A has an invariant geodesic; since A has
order ≥ 3, ρ preserves the oriented geodesic, and therefore ρ is also reducible.

Assume the character is reducible, then it has a diagonal representation ρ on
the fiber (Remark (3.1.7)), and therefore the group of diagonal matrices stabilizes
it. Thus the stabilizer is infinite.

(ii) Assume PSL2(C) does not act faithfully on the fiber, i.e. there exists
nontrivial A ∈ PSL2(C) and ρ in the fiber such that A commutes with ρ. If A is
parabolic, then ρ fixes a point in P 1(C) by the previous argument. Otherwise A
has an invariant geodesic, and by commutativity, ρ must preserve this geodesic.
In both cases, ρ is Ad-reducible.

If the character is irreducible but Ad-reducible, then it preserves a geodesic,
and the rotation through angle π about this geodesic commutes with ρ. Hence
the stabilizer is nontrivial.

Remark (3.3.4). The projection t : R(Γ) → X(Γ) induces a bijection between
irreducible components.

A priori R(Γ) could have more components than X(Γ), but the number of
components is the same, because PSL2(C) is irreducible.

From Corollary (3.1.6) and Proposition (3.3.3) we deduce:
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Corollary (3.3.5). Let ρ ∈ R(Γ) be an irreducible representation. Let R0

denote an irreducible component of R(Γ) that contains ρ and let X0 denote the
corresponding irreducible component of X(Γ). Then

dimR0 = dimX0 + 3.

4. Lifts of representations to SL2(C)

Let R(Γ) ⊂ R(Γ) denote the set of representations ρ ∈ R(Γ) that lift to
SL2(C). According to [Cul, Thm. 4.1] R(Γ) is a union of connected components
of R(Γ). In particular R(Γ) is a Zariski-closed algebraic subset of R(Γ), since
irreducible complex varieties are connected in the C-topology [Sha, VII, §2].
Moreover, R(Γ) is invariant under conjugation and hence the algebraic quotient

X(Γ) = R(Γ)//PSL2(C)

is a well defined closed subset of X(Γ).
In many cases, X(Γ) = X(Γ). For instance this is clear when Γ is a free group.

It is also true if H2(Γ, C2) = 0 by the following remark (see [GM] or [Cul]).

Remark (4.1). Let ρ : Γ → PSL2(C) be a representation. There is a second
Stiefel-Whitney class w2(ρ) ∈ H2(Γ, C2) which is exactly the obstruction for the
existence of a lift ρ : Γ → SL2(C).

(4.2) Properties of X(Γ). Let R(Γ, SL2(C)) and X(Γ, SL2(C)) denote the va-
riety of representations and characters in SL2(C). The ring C[R(Γ, SL2(C))]

SL2(C)

is generated by the trace functions τ̃γ : R(Γ, SL2(C)) → C, τ̃γ(ρ) = tr(ρ(γ)). The
function induced by τ̃γ is denoted by Iγ : X(Γ) → C, therefore C[X(Γ)] is finitely
generated by the functions Iγ , γ ∈ Γ [CS].

Elements of the cohomology group H1(Γ, C2) are homomorphisms θ : Γ →
C2 = {±1} that act on representations by multiplication. The action of ε ∈
H1(Γ, C2) on Iγ is given by: ε · Iγ = ε(γ)Iγ . Since H1(Γ, C2) is finite, it is
reductive and we may take the quotient of invariant theory.

Let F be a finitely generated free group and ψ : F → Γ be a surjection. We
fix a k-tuple γ1, . . . , γk ∈ Γ such that the product γ1 · · · γk ∈ Γ2. Moreover, we
choose ηi ∈ F such that ψ(ηi) = γi and such that the product η1 · · · ηk ∈ F 2.
The function ψ∗ση1,...,ηk ∈ C[R(Γ)] is invariant under conjugation and gives us

a function ψ∗ση1,...,ηk ∈ C[X(Γ)]. By Equation (2.4.9) we have ψ∗ση1,...,ηk(χ) =
χ̃(γ1) · · · χ̃(γk) where χ̃ ∈ X(Γ, SL2(C)) is a character such that π(χ̃) = χ. Note
that π : X(Γ, SL2(C)) → X(Γ) is surjective. The function

(4.2.1) Σγ1,...,γk := φ∗ση1,...,ηk ∈ C[X(Γ)]

depends only on the elements γi ∈ Γ.

Proposition (4.2.2). There is a natural isomorphism:

X(Γ, SL2(C))//H
1(Γ, C2) ∼= X(Γ).

Proof. Composition with the projection SL2(C) → PSL2(C) induces a surjec-
tion

π : X(Γ, SL2(C)) → X(Γ),
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which is easily seen to be algebraic and is given by π(χ) = χ2. At the level of
function rings it induces an injection

π∗ : C[X(Γ)] ↪→ C[X(Γ, SL2(C))].

We have π∗f(χ) = f(χ2) for f ∈ C[X(Γ)] and χ ∈ X(Γ, SL2(C)). The image of
π∗ is contained in the set of invariant functions:

Imπ∗ ⊆ C[X(Γ, SL2(C))]
H1(Γ,C2).

More precisely, we have π∗f(εχ) = f(ε2χ2) = π∗f(χ) for all ε ∈ H1(Γ, C2). It
remains to prove that this inclusion is an equality.

Since C[X(Γ, SL2(C))] is generated as C-algebra by the functions Iγ with
γ ∈ Γ, the monomials

Iγ1Iγ2 · · · Iγk
generate C[X(Γ, SL2(C))] as a C-vector space. Taking the average of the action of
H1(Γ, C2), we deduce that the subspace of invariant functions

C[X(Γ, SL2(C))]
H1(Γ,C2) is generated by

1

2r

∑
ε∈H1(Γ,C2)

ε · Iγ1 · · · Iγk =
( 1

2r

∑
ε∈H1(Γ,C2)

ε(γ1 · · · γk)
)
Iγ1 · · · Iγk

where r is the rank of H1(Γ, C2) (see [Kra, II.3.6] for instance). Using the fact
that

1

2r

∑
ε∈H1(Γ,C2)

ε(γ) =

{
1 if γ ∈ Γ2

0 otherwise

we deduce that C[X(Γ, SL2(C))]
H1(Γ,C2) is generated by the monomials Iγ1 · · · Iγk

such that the product γ1 . . . γk ∈ Γ2.
On the other hand we have for χ ∈ X(Γ, SL2(C)):

π∗Σγ1,...,γk(χ) = Σγ1,...,γk(χ
2) = χ(γ1) · · ·χ(γk) = Iγ1 · · · Iγk(χ) ,

where Σγ1,...,γk is the function defined in (4.2.1). This gives that the monomials
Iγ1 · · · Iγk such that the product γ1 . . . γk ∈ Γ2 is in the image of π∗ and therefore

C[X(Γ, SL2(C))]
H1(Γ,C2) = Imπ∗.

Remark (4.2.3). Let p : X(Γ, SL2(C)) → X(Γ) denote the projection. If
χ ∈ X(Γ) is Ad-irreducible, then p−1(χ) has 2r points where r is the rank of
H1(Γ, C2). If χ is Ad-reducible then the cardinality of p−1(χ) is strictly less than
2r. Thus p is a branched covering with branching locus the set of Ad-reducible
characters.

Example (4.2.4). Let F2 be the free group of rank 2, with generators α and
β. There is an isomorphism:

(Iα, Iβ , Iαβ) : X(F2, SL2(C)) → C
3

where Iγ denotes the regular function induced by τ̃γ . In particularX(F2, SL2(C))
is smooth.

Since every representation in R(F2) lifts to SL2(C), we deduce

X(F2) = X(F2, SL2(C))//H
1(F2, C2).
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The groupH1(F2, C2) ∼= (C2)
2 has four elements, and its action onX(F2, SL2(C))

is generated by the involutions

(Iα, Iβ , Iαβ) �→ (−Iα, Iβ ,−Iαβ)
(Iα, Iβ , Iαβ) �→ (Iα,−Iβ,−Iαβ).

Thus C[X(F2), SL2(C)]
H1(F2,C2) is generated by X = I2α, Y = I2β , Z = I2αβ and

W = IαIβIαβ . Hence

(4.2.5) X(F2) ∼= {(X,Y, Z,W ) ∈ C
4 |W 2 = XY Z}

The relationship with Corollary (2.3.2) is given by the change of coordinates (cf.
Equality (2.4.5)) ⎧⎪⎪⎨

⎪⎪⎩
Jα = X
Jα = Y
Jαβ = Z
Jαβ−1 = XY + Z − 2W.

Remark (4.2.6). From Equality (4.2.5) we remark that the singular set of
X(F2) consists of those points such that two of {X,Y, Z} vanish. This is the
same as the set of characters of representations generated by two rotations of
angle π. This is also the set of Ad-reducible but non-reducible representations.

Example (4.2.7). If M is a knot exterior in S3, then H2(π1M) ∼= H2(M) ∼= 0
and therefore X(M) = X(M). When in addition M is a 2-bridge knot exterior,
explicit methods of how to compute X(M) are given in [HLM1] and [HLM2],
where X(M) for this particular case was already defined as X(M, SL2(C))//C2.
The explicit computation for the figure eight knot exterior is found in [GM], for
instance.

(4.3) Representations that do not lift.

Proof of Theorem (1.4). The manifold M is a bundle over S1 with fiber Ṫ 2 a
torus minus a disk. Up to homeomorphism, M is described by the action of the
monodromy on H1(Ṫ

2,Z), which is given by the matrix(
1 m2

m1 1 +m1m2

)

with mi ∈ 2Z, mi > 0. We shall show that X(M)−X(M) has arbitrarily many
components by choosing mi sufficiently large.

To have a presentation of π1M , we use an automorphism f of π1Ṫ
2 induced

by the monodromy. Since π1Ṫ
2 is the free group of rank 2 generated by α and

β,

π1M = 〈α, β, μ | μαμ−1 = f(α), μβμ−1 = f(β)〉
We choose f such that: {

μαμ−1 = αβm2

μβμ−1 = β(αβm2 )m1

We choose odd numbers p1, p2 ∈ 2Z + 1, with 1 ≤ pi ≤ mi/2 and an arbitrary
complex number z ∈ C. By Example (4.2.4), there exist matrices Az , Bz ∈
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SL2(C) with

tr(Az) = 2 cos
πp1
m1

, tr(Bz) = 2 cos
πp2
m2

and tr(AzBz) = z .

Those trace equalities imply that Am1
z = Bm2

z = −Id. In particular

AzB
m2
z = −Az,

Bz(AzB
m2
z )m1 = −Bz.

Let ρz ∈ R(Γ) be the representation that ρz(α) = ±Az, ρz(β) = ±Bz and
ρz(μ) = ±Id. Since m1 and m2 are even, this representation does not lift to
SL2(C). In addition, for each value of p1 and p2 we have defined a one pa-
rameter family of characters, with parameter z = tr(AzBz) ∈ C. By [CCGLS,
Proposition 2.4] the dimension of each component of X(M) is at most one, hence
different values of p1 and p2 give different components.

5. The singular set of X(Fn)

In this section we compute the singular set of X(Fn), but before we need two
preliminary subsections: in Subsection (5.1) we recall some basic facts about
the Zariski tangent space and Luna’s slice theorem, and in Subsection (5.2) we
compute the cohomology of free groups with twisted coefficients.

(5.1) The Zariski tangent space. Given a representation ρ ∈ R(Γ), we define
the space of cocycles

Z1(Γ,Ad ◦ρ) =
{
θ : Γ → sl2(C)

∣∣∣∣ θ(γ1γ2) = θ(γ1) + Adρ(γ1)(θ(γ2)),
∀ γ1, γ2 ∈ Γ

}
.

Given a smooth path of representations ρt, with t in a neighborhood of the origin,
one can construct a cocycle as follows:

Γ → sl2(C)
γ �→ d

dtρt(γ)ρ0(γ)
−1|t=0

.

This construction defines an isomorphism, due to Weil [Weil]:

Theorem (5.1.1) ([Weil]). The previous construction defines an isomorphism

T Zar
ρ (R(Γ)) ∼= Z1(Γ,Ad ◦ρ).

Here T Zar
ρ (R(Γ)) denotes the Zariski tangent space in the scheme sense (i.e.

the defining ideals are not necessary reduced).
We also consider the space of coboundaries

B1(Γ,Ad ◦ρ) =
{
θ : Γ → R

2

∣∣∣∣ there exists a ∈ sl2(C) such that
θ(γ) = Adρ(γ)(a)− a, ∀ γ ∈ Γ

}
.

The isomorphism of Theorem (5.1.1) identifies the subspace of the Zariski
tangent space corresponding to the orbits by conjugation with B1(Γ,Ad ◦ρ). So
it seems natural that in some cases T Zar

χ (X(Γ)) is isomorphic to the cohomology
group

H1(Γ,Ad ◦ρ) = Z1(Γ,Ad ◦ρ)/B1(Γ,Ad ◦ρ)
as we will show next.

The stabilizer of a representation ρ ∈ R(Γ) is denoted by

Stabρ = {A ∈ PSL2(C) | AρA−1 = ρ} .
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In particular, for and Ad-irreducible representation Stabρ is trivial.

Proposition (5.1.2). If ρ is a smooth point of R(Γ) with closed orbit, then

T Zar
χρ

(X(Γ)) ∼= T Zar
0 (H1(Γ,Ad ◦ρ)//Stabρ) .

Proof. We use the slice theorem of Luna: there exists an algebraic subvariety
S ⊂ R(Γ) that contains ρ and that is Stabρ-invariant, such that

(5.1.3) Z1(Γ,Ad ◦ρ) = B1(Γ,Ad ◦ρ)⊕ T Zar
ρ (S)

and the map induced by the projection

S//Stabρ → X(Γ)

is an étale isomorphism (in particular their tangent spaces are isomorphic). Since
we assume that ρ is a smooth point, Luna’s theorem shows that S//Stabρ and
T Zar
ρ (S)//Stabρ are étale equivalent (see [KSS, p. 97 ]). Since T Zar

ρ (S) and

H1(Γ,Ad ◦ρ) are isomorphic as Stabρ-modules (by Equation (5.1.3)), the propo-
sition follows.

(5.2) Cohomology of Free groups. We start with irreducible characters:

Lemma (5.2.1). Let χρ ∈ X(Fn) be an irreducible character. Then

dimH1(Fn,Ad ◦ρ) = 3n− 3.

Proof. Notice first that Z1(Fn,Ad ◦ρ) ∼= sl2(C)
n ∼= C3n. Irreducibility implies

that dimB1(Fn,Ad ◦ρ) = 3, which is maximal (even if Ad-reducible represen-
tations have invariant subspaces, irreducibility implies that the eigenvalues are
different from 1).

We are interested in computing H1(Fn,Ad ◦ρ) as a Stabρ-module. If ρ is
Ad-irreducible, then Stabρ is trivial, and therefore H1(Fn,Ad ◦ρ) is the trivial
module C3n−3. In the reducible and Ad-reducible cases we need further compu-
tations.

Reducible characters. Let χ ∈ X(Fn) be a non trivial reducible character.
There exists a representation ρ ∈ R(Fn) with character χ such that ρ consists of
diagonal matrices, constructed in Remark (3.1.7).

We decompose the Lie algebra sl2(C) = h0 ⊕ h− ⊕ h+, where h0, h+ and h−
are the one dimensional C-vector spaces generated respectively by

(
1 0
0 −1

)
, (0 1

0 0)
and (0 0

1 0).

Lemma (5.2.2). If ρ is diagonal then Ad ◦ρ preserves the splitting sl2(C) =
h0 ⊕ h− ⊕ h+. If in addition ρ is non-trivial, then Stabρ preserves the splitting
sl2(C) = h0 ⊕ (h− ⊕ h+) (some elements may permute h+ and h−).

Proof. The first assertion is clear, because diagonal matrices preserve each
factor h0 and h±.

When the image of ρ has order ≥ 3, the group Stabρ is precisely the set of
diagonal matrices. When the image has order precisely 2, then Stabρ is the group
of diagonal and anti-diagonal ones (0 ∗∗ 0). Antidiagonal matrices preserve h0 and
permute h− with h+, hence the second assertion is proved.

Lemma (5.2.3). Let ρ ∈ R(Fn) be a non-trivial diagonal representation, then
H1(Fn,Ad ◦ρ) ∼= hn0 ⊕ (h+ ⊕ h−)n−1 as Stabρ-modules.
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Proof. By construction, Z1(Fn,Ad ◦ρ) ∼= sl2(C)
n. We have the splitting

H1(Fn,Ad ◦ρ) ∼= H1(Fn, h0)⊕H1(Fn, h+)⊕H1(Fn, h−).

A diagonal matrix ± (
a 0
0 a−1

)
acts trivially on h0 and by multiplication by a factor

a±2 on h±. Therefore B1(Fn, h0) ∼= 0 and B1(Fn, h±) ∼= h±, and the lemma
follows.

Ad-reducible but irreducible characters. Let ρ ∈ R(Γ) be irreducible but Ad-
reducible. Up to conjugation the image of ρ is contained in the group of diagonal
and anti-diagonal matrices. There are two possibilities for the stabilizer Stabρ.
If the image of ρ has more than four elements, then Stabρ has two elements: the
identity and ± (

i 0
0 −i

)
. Otherwise the image of ρ is Klein’s 4-group (i.e. the group

generated by ± (
i 0
0 −i

)
and ± (

0 1−1 0

)
). In this case Stabρ equals the image of ρ.

With the same argument as in Lemma (5.2.2), one can prove:

Lemma (5.2.4). Let ρ be as above. Then both Ad ◦ρ and Stabρ preserve the
splitting sl2(C) = h0 ⊕ (h+ ⊕ h−).

Lemma (5.2.5). Let ρ ∈ R(Fn) be an irreducible but Ad-reducible representa-
tion, then H1(Fn,Ad ◦ρ) ∼= sl2(C)

n−1 as Stabρ-modules.

Proof. Again Z1(Fn,Ad ◦ρ) ∼= sl2(C)
n, and we have the decomposition

H1(Fn,Ad ◦ρ) ∼= H1(Fn, h0)⊕H1(Fn, h+ ⊕ h−).

The group B1(Fn, h0) has dimension one, because the antidiagonal matrices act
on h0 by change of sign. In addition, dim(B1(Fn, h+⊕h−)) = 2 is also maximal,
because this is the case when we restrict it to diagonal representations (see the
proof of Lemma (5.2.3)).

(5.3) Singular locus for free groups. We saw above that X(F2, SL2(C)) ∼=
C3 is smooth. We also showed that the singular points of X(F2) are Ad-reducible
but irreducible characters.

Proposition (5.3.1). For n ≥ 3 the singular set of X(Fn) is precisely the
set of Ad-reducible characters.

Proof. Since R(Fn) ∼= PSL2(C)
n, X(Fn) is irreducible and of dimension 3n−3.

Thus χ ∈ X(Fn) is singular if and only if

dim TZarχ X(Fn) > 3n− 3.

This dimension is computed by means of Proposition (5.1.2): if the orbit of
ρ ∈ t−1(χ) is closed then

dimTZarχ X(Fn) = dim TZar0 (H1(Fn,Ad ◦ρ)//Stabρ).
If ρ ∈ R(Fn) is irreducible, by Lemma (5.2.1) dimH1(Fn,Ad ◦ρ) = 3n− 3. If in
addition ρ is Ad-irreducible, then Stabρ is trivial and therefore χρ is smooth.

If ρ is irreducible but Ad-reducible, then H1(Fn,Ad ◦ρ) ∼= sl2(C)
n−1 as Stabρ

modules, by Lemma (5.2.5). We may assume that the image of ρ has more
than 4 elements, because the adherence set of such characters is the whole set
of irreducible but Ad-reducible characters, and the singular set is closed. Hence
Stabρ is the group generated by the involution ± (

i 0
0 −i

)
, that acts trivially on h0

but as a change of sign on h+⊕h−. Thus the action of Stabρ on H
1(Fn,Ad ◦ρ) is
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equivalent to the involution on C3n−3 that fixes (n− 1) coordinates and changes
the sign of the remaining (2n − 2) coordinates. The quotient of C3n−3 by this
involution is not smooth, hence dim TZar0 (H1(Fn,Ad ◦ρ)//Stabρ) > 3n− 3.

When χρ is reducible but non trivial, we may assume that ρ is diagonal and its
image has more that three elements (again the adherence set of those characters
is the whole set of reducible ones). Thus Stabρ is the group of diagonal matrices,
and by Lemma (5.2.3), H1(Fn,Ad ◦ρ) ∼= hn0⊕(h+⊕h−)n−1 as Stabρ-module. We
have an isomorphism Stabρ ∼= C∗ and t ∈ C∗ acts on h0 trivially and on h± by
multiplication by t±1. An elementary computation shows that (h+⊕h−)n−1//C∗

has dimension 2n− 3 and it is not smooth for n > 2.

A similar argument yields that for n ≥ 3 the singular part of X(Fn, SL2(C))
is precisely the set of reducible characters.
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Abstract. A knot is said to be 2-universal if every closed orientable 3-
manifold occurs as a branched covering of S3 with branch set the knot and
all branching of order one or two. In this paper we show that 2-universal
knots exist and we comment on the possible significance of this results.

1. Introduction

In several papers ([17], [2], [3], [4], [5], [6], [16]) universal knots and links have
been studied. In these papers it was shown that certain knots and links, such as
for example the figure eight knot and the Borromean rings, are universal, and
others, such as the trefoil knot, are not.

A knot or link K is said to be universal if every closed orientable 3-manifold
occurs as a finite branched covering of S3 with branch set equal to K.

There are good reasons for refining the definition of universal knot or link to
the concept of universal orbifold (see [8], [10], [13]).

In this paper we refine the definitions of universal knot and link, and in
particular we define the concept of 2-universal knot and link (corresponding to
a π-orbifold), and we show that 2-universal knots exist.

The organisation of the paper is as follows: In section two we give definitions
and examples and we introduce the notation that we use throughout the paper.

Our main result, Theorem (3.4), is proved in section three. Our basic idea
is to begin with a certain branched covering p : S3 −→ S3, which is called a
special branched covering, and to perform a series of modifications so as to obtain
another branched covering p : S3 −→ S3 branched over a knot K. The natura
of the modifications is such that a 2-universal link appears as a sublink of the
preimage of the branch set. The knot K is then 2-universal. Thus 2-universal
knots exist.

In the final section we comment on the importance of 2-universal knots and
their possible geometric applications. In particular we raise the question as to
whether 2-universal knots occur as the singular sets of hyperbolic orbifolds or
cone-manifolds with cone angle 180 degrees. We speculate as to whether a 2-
universal knot occurs in Rolfsen’s Table ([15]) and, if so, which one it might
be.
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Keywords and phrases: universal knot, 3-manifold.
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2. Definitions and examples

In this section “manifold” will always mean closed orientable 3-dimensional
piecewise linear manifold. Maps between manifolds will always be piecewise
linear. A map between manifolds p : M −→ N is a branched covering space
map if there is a piecewise linearly embedded link L in N such that the map
p : M \ p−1(L) −→ N \ L is a finite covering space map in the usual sense, and
the following additional condition is fulfilled:

Let D be a meridian disc for L; that is to say a disc in N that intersects
L in exactly one interior point. Then the preimage of D is a finite collection
D1, ..., Dm of disjoint discs in M . Each disc Dj is mapped by p onto D in a
manner equivalent to the map z → zn, for some n, of the unit disc in the complex
plane to itself. In this situation the integer n is independent of the choice of D
and depends only on the component of the link p−1(L) that intersects Dj. The
link L is called the branch set.

Thus given a branched covering space map p : M −→ N , with branch set
L, each component of the link p−1(L) in M is labelled with an integer which is
called its ramification index. We also label each component of L in N with the
set of ramification indices of its preimages. Thus we can speak of a branched
covering p : M −→ N , branched over the knot K of type {1, 2, 3} for example.

A knotK is said to be universal of type {a, b, c, ...} if for every closed orientable
3-manifold M , there is a branch covering space map p : M −→ S3 branched over
K of type {a, b, c, ...}.

A knot K is said to be 2-universal if it is universal of type {1, 2}. Later we
will show that 2-universal knots exists.

The definition of universal link of a particular type is similar, but a little more
complicated, in that there can be different sets of integers attached to different
components. As an example we refer to [10, Theorem 1.1] where it is shown
that the Borromean rings are universal of such a type that two components are
labelled with {1, 2, 4} and one of the components is labelled with {2, 4}. We can
compose with the three fold symmetry of the Borromean rings to find that the
link 622 (Rolfsen’s notation) is universal with one component labelled {1, 2, 4}
and the other labelled {3}.

There is another way to refine the definition of universal knot or link. A
branched covering space map p : M −→ S3 branched over, say, the knot K is
completely determined by the unbranched covering space map p : M\p−1(K) −→
S3 \K. This map induces an injective homomorphism

p∗ : π1(M \ p−1(K)) −→ π1(S
3 \K)

in which the image is a subgroup of π1(S
3 \K) of finite index; say index equal

n. Labelling the left cosets of p∗(π1(M \ p−1(K))) as

{H1 = p∗(π1(M \ p−1(K))), g2H1, ..., gnH1},

a natural transitive representation of π1(S
3 \ K) in Σn is induced (left multi-

plication induces a permutation of left cosets). In this way there is a one to
one correspondence between n fold branched covering space maps p : M −→ S3

branched over K, and transitive representations ω : π1(S
3 \K) −→ Σn. Given
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a transitive representation, ω, the subgroup of the covering is

{g ∈ π1(S
3 \K)|ω(g)(1) = 1}.

However a transitive representation ω : π1(S
3 \K) −→ Σn need not be sur-

jective. We say the branched covering space map p : M −→ S3 is associated to
the group G ⊂ Σn if ω(π1(S

3 \K))is contained in G.
Given a class of groups C, for example C might be the class of dihedral groups,

or C might be the class of groups {SL(2, f inite ring)}, we say the knot K is
universal for the class of groups C if given any closed orientable 3-manifold M ,
there is a branched covering space map p : M −→ S3, branched over K such
that the group G ⊂ Σn associated to the branched covering space map belongs
to the class C.

At this point we can ask several questions (to which we do not know the
answers).

Question (2.1). The character variety of representations in SL(2,C) for the
figure eight knot, (41 in Rolfsen’s notation), has been computed in various places
(see [18], [7], [9]) and contains the character of many representation of the form

ρ : π1(S
3 \ 41) −→ SL(2, R)

where R is the ring of integers of an algebraic number field k. Let C be the class
of finite groups G = SL(2, R/I) where I is an ideal in R. Is the figure eight
knot universal of type C? How about the Borromean rings? In fact we can ask
a weaker question.

Question (2.2). Given a 3-manifold M is there a knot K and branched cover-
ing map p : M −→ S3, branched over K such that the group G associated to the
covering space map is derived from a representation ρ : π1(S

3 \ 41) −→ SL(2, R)
by factoring out by some ideal I contained in R?

A positive answer to questions (2.1) and (2.2) would lead to an interesting
connection between character varieties and the classifications of 3-manifolds. In
the next section we show, among others things, that 2-universal knots exist.

3. 2-Universal knots exist

In this section p : M3 −→ S3 will be a special branched covering space map
branched over a knot K, unless otherwise indicated.

The word special, which we will use only in this section, will mean that
ω : π1(S

3 \ K) −→ Σn sends meridians to transpositions, whereas branched
covering of type {1, 2} implies that meridians are sent to disjoint products of
transpositions.

Lemma (3.1). The map ω : π1(S
3 \K) −→ Σn is surjective.

Proof. We know that ω is transitive by definition. Let X = {n1, ..., nl} be
a subset of {1, ..., n} such that ω : ω−1(Σ(X)) −→ Σ(X) is surjective and X is
maximal with respect to this property. Here Σ(X) is the full group of permuta-
tions of X and it is understood that the elements of Σ(X) fix the points not in
X .

Suppose X �= {1, ..., n}. Since ω is transitive and π1(S
3 \K) is generated by

meridians, there must be a meridian m such that ω(m) = (a, b) where a belong
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to X but b does not. Let Y = X∪{b}, then Σ(Y ) is generated by (a, b) and Σ(X)
so that ω : ω−1(Σ(Y )) −→ Σ(Y ) is surjective, contradicting the maximality of
X .

In the branched covering p : M3 −→ S3 the preimage of K is a link consisting
of various components {K1, ...,Kl} of branching index one, and a single com-
ponent B of branching index two. The component B is called the branch cover
and the link K1 ∪ ... ∪Kl is called the pseudo-branch cover.

Lemma (3.2). Let S be any non empty subset of the set of components of the
pseudo-branch cover. Let H be the subgroup of π1(M

3 \ p−1(K)) generated by
meridians in the components of S. Then the map

ω|p∗(H) : p∗(H) −→ Σn−1 = {σ ∈ Σn|σ(1) = 1}
is surjective.

Proof. The group H is a normal subgroup of π1(M
3 \ p−1(K)) because the

conjugate of a meridian of S is again a meridian of S. Thus since p∗ is injective,
p∗(H) is normal in p∗(π1(M

3\p−1(K))) and as ω is surjective, p∗(H) is a normal
subgroup of Σn−1. However, p∗ sends meridians of S to meridians of K, not
powers of meridians ofK, the image of a meridian ofK under ω is a transposition.
And no proper normal subgroup of Σn−1 contains a transposition. Therefore the
image of p∗(H) under ω must be Σn−1 itself and ω|p∗(H) : p∗(H) −→ Σn−1 is
surjective.

Now we would like to describe certain moves that change a special branch
covering space map p : M3 −→ S3 branched over a link L to a different special

branch covering space map p : M̂3 −→ Ŝ3 branched over a link L̂. The nature

of the moves is such that M3 � M̂3 and S3 � Ŝ3 but the link L̂, and therefore
its preimages, will be different from the link L and its preimages.

LL

D

m
21m

*

Figure 1. The disc D.

Consider a disc D that cuts the link L transversely in two points as in Figure
1. The branched covering space map when restricted to p−1(D) is a branched
covering of D by a disconnected bounded surface. The meridians m1 and m2

are sent to transpositions (a, b) and (c, d) respectively by the representation
ω : π1(S

3\L) −→ Σn. There are three possibilities; {a, b} and {c, d} are disjoint,
{a, b} and {c, d} have one common point, and {a, b} = {c, d} . We shall arrange
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that the case {a, b} = {c, d} never occurs so we don’t need to consider it. The
other two cases give rise to moves.

In each of the other two cases the preimage of a disc is a disjoint union of
discs. To see this we compute the preimage of D by splitting D along arcs A
and B as in Figure 2, following [14].

DDD

mm
2211

mm

*

DDSplitSplit

A
+

B
-A-

B+A B

Figure 2. Splitting the disc D along A and B.

We take n copies of D; D1, ... , Dn and if ω(m1) = (j, k) we glue A+
j to A−

k

and A−
j to A+

k and similarly for B.

In the case where {a, b} and {c, d} are disjoint, the preimage of D consists of
n − 4 discs that are mapped homeomorphically by p to D, and two discs that
are mapped by p as double branched covers. In this case our move consists of
splitting S3 below along D and splitting along all the preimages of D above. We
then do a double Dehn twist below and reglue. We do the same double Dehn disc
twist above on all the homeomorphic preimages. In the preimage discs for which
p is a double branch cover we do a single Dehn disc twist above and then reglue,
as the double Dehn disc twist below lifts to a single Dehn disc twist above. The
effect of this move, called a type I move is illustrated in Figures 3 and 4. We
note that a type I move does not change L, except in a small neighbourhood
of D and its preimages, and does not change the number of components of L
below.

Before After

Figure 3. Effect on the disc below and on the n−4 homeomorphic
preimages above.
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Before

After

branch cover

pseudo-branch cover

Figure 4. Effect on the disc above that is mapped by p as a double
branched cover of D.

In the case where {a, b} and {c, d} intersect in one common point, the preimage
of D consists of n− 3 discs that are mapped homeomorphically by p to D, and
one disc that is mapped as a three-to-one irregular branched cover of D. In this
case again our move consists of first splitting S3 along D below and splitting
M3 along all the disc preimages of D above. This time we do a triple Dehn
disc twist below before regluing (the single and double Dehn disc twists do not
lift). Above we do a triple Dehn disc twist on all the homeomorphic preimages
and a single Dehn disc twist on the preimage that is mapped as a three-to-one
irregular cover. Then we reglue, the effects of this move, called a type II move,
are illustrated in Figures 5 and 6. Again we note that a type II move changes
nothing outside a small neighbourhood of D and the preimages of this small
neighbourhood of D.

Before After

Figure 5. Effect on the disc below and on the n−3 homeomorphic
preimages above.

We note that moves of type I and II have appeared before (see [10], [4]).
Our next task will be to produce a specific special branched covering space

map p : S3 −→ S3 branched over a knot. We start with the trivial link of n− 1
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Before

After

branch cover

pseudo-branch cover

Figure 6. Effect on the disc above that is mapped by p as a 3 to
1 irregular cover of D.

components, and assign to the meridian generators of its fundamental group,
which is a free group, the transpositions indicated in Figure 7.

(1,2) (1,3) (1,4) (1,n-1) (1,n)

Figure 7. The trivial n− 1 component link and assigned transpositions.

This gives a special n to 1 branched covering of S3 to S3. We then do type
II moves between adjacent circles in the discs indicated by the dotted lines to
obtain the connected sum of trefoils where we twist in opposite directions in
adjacent discs, such that the last one is in the right handed direction. In this
way we obtain the branched covering p : S3 −→ S3 branched over a knot K with
images of meridians as indicated in Figure 8.

(1,n)(1,2) (1,3) (1,4) (1,5)

(1,3) (1,4) (1,5)

(2,3)
(3,4) (4,5)

(5,6)

*

Figure 8. The knot K.
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The knot K is the connected sum of n − 2 trefoils, some of which are right
handed and some of which are left handed. The dotted line is just the knot
pushed off to its right.

This curve, together with a meridian, forms a basis for the fundamental group
of the torus boundary of a regular neighbourhood of the knot K. The knot K is
obtained by pasting together several segments of the type pictured in the right
hand side of Figure 9, plus two trivial arcs in the case of an even connected sum
of trefoils, or plus a trivial arc and the segment in the left hand side of Figure 9
in the case of an odd connected sum.

(1,2)

(1,3)

(1,3)

(2,3)

*

E

F

A

C

B

D

(1,j) (1,j+2)

(j+1.j+2)

(1,j)

(1,j+1)

(1,j+1)

(j,j+1)

(1,j+2)

Figure 9. Computing the image of the dotted curve.

Next we compute the image of the dotted curve under ω : π1(S
3 \K) −→ Σn.

As we move from A to B we obtain (j, j+1)(j+1, j+2) = (j, j+2, j+1). As we
move from C to D we obtain (1, j + 1)(1, j)(1, j + 2)(1, j + 1) = (j, j + 2, j + 1),
which is the same permutation.

Starting at the extreme right of the knot in Figure 8 and working toward the
left, an inductive argument shows that in the case where we have the connected
sum of an even number of trefoils, that the image of the dotted curve under ω
is the identity. And in the case where we have the connected sum of an odd
number of trefoils, multiplying transpositions assigned to over crossings as we
move to the right from E in Figure 9 though the rest of the knot returning to
F from the right also gives the identity. The rest of the computation, the part
pictured in Figure 9, shows that, the element of Σn assigned to the dotted curve
is (1, 3)(1, 2)(1, 3) which is equal to (1, 2) using � as a basepoint.

In both the odd and the even cases we see that the image by ω of the funda-
mental group of a torus boundary T of a regular neighbourhood of K in Σn is a
two element group. If follows that the preimage of this torus neighbourhood con-
sists of n− 2 tori that are mapped homeomorphically to T and one torus that is
mapped to T as a double cover. And from this it follows that the pseudo-branch
cover of K has n− 2 components and the branch cover one. For convenience we
summarise the above in a lemma.

Lemma (3.3). For n ≥ 3, there exists a knot K, and a special branched
covering p : S3 −→ S3 branched over K, such that the pseudo-branch cover
has n− 2 components and the branch cover has only one. �
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We now state and prove our main theorem. We remark that our proof is
constructive.

Theorem (3.4). Let L be any m component link with m ≥ 1. There is a
special (2m+ 3) to 1 branched covering space map p : S3 −→ S3 branched over
a knot K such that L is a sublink of the pseudo-branch cover.

An immediate corollary of this theorem, the case m = 1, is the following

Corollary (3.5). Let K̂ be any knot. There is a special five to one branched

covering p : S3 −→ S3 branched over a knot K such that K̂ is contained in the
pseudo-branch cover.

The above corollary also makes sense for special three to one covers, but is it
true? Or, stated differently, which knots occur as the pseudo-branch covers of
special three to one branched coverings p : S3 −→ S3 branched over knots?

Proof of Theorem (3.4). Let p : S3 −→ S3 be an n = 2m + 3 to 1 special
branched covering space map branched over the knot K0, such as is described
in Lemma (3.3), so that the pseudo-branch cover has 2m + 1 components. Let
L0 be an m component sublink of the pseudo-branch cover, let M0 be the link
consisting of the other m+ 1 components and let B0 be the branch cover.

Consider a regular projection of any link. This can be changed to a regular
projection of the trivial link simply by changing some of the crossings. It follows
that any link can be changed to any other link of the same number of components
by a finite number of operations that we shall describe and that are analogous
to crossing changes.

Let A be an arc connecting two points P and Q of the link in the same or
different components. Let D be a disc intersecting the link in points P and Q
as in Figure 10.

Before After

AP Q P
Q

L L

Figure 10.

Replace the link L by the link L̂ where L̂ differs from L only in a small
neighbourhood of the disc D as indicated in Figure 10.

Thus there is a sequence of links L0, L1, ... , Lt, all with m components, such
that Lj+1 is obtained from Lj by this operation and Lt is the desired link L.

In order to prove Theorem (3.4) it suffices to show there are sequences of links
B0, B1, ... , Bt and M0, M1, ... , Mt and a sequence of special branched covering
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space maps
{
pj : S

3 −→ S3 ; 0 ≤ j ≤ t
}
branched over knots Kj, 0 ≤ j ≤ t, such

that the pseudo-branch cover for pj is Lj ∪Mj and the branch cover is Bj .
We shall prove this theorem by induction. The initial step of the induction is

done as p0, B0, L0, M0 and K0 have already been defined.
Suppose, as inductive hypothesis, that pj : S3 −→ S3 is a special branched

covering space map branched over the knotKj with pseudo-branch cover Lj∪Mj

where Lj has m components.
Also suppose that Dj is the disc whereby Lj+1 is obtained from Lj via the

operation illustrated in Figure 10. The operation illustrated in Figure 10 is
analogous to what happens in Figure 3 in the “above”discs when we do a type
I move. The problem is that we must also do the type I move on all the other
“above”discs and on the disc below in order to get another branched covering
pj+1 : S3 −→ S3 branched over a new knot Kj+1. We next show how to deal
with this problem.

Suppose that the following set of conditions, which we call Hypotheses set A,
are satisfied.

Hypotheses set A.

A.1 The disc Dj is mapped by pj homeomorphically onto its image.

A.2 The preimage of the image of the disc Dj consists of n−4 discs, Dj = Dj
1

and Dj
2, ... , Dj

n−4, each of which is mapped homeomorphically onto its image,

together with two other discs Ej
1 and Ej

2, each of which is mapped as a double
branched covering onto the disc pj(D

j).

A.3 The disc Dj intersects Lj exactly in the two points P and Q.

A.4 Each disc Dj
i ; 2 ≤ i ≤ n − 4; intersects Lj in one point and Mj in one

point.

A.5 The discs Ej
1 and Ej

2 each intersects Bj in one point and Mj in two
points.

Under these hypotheses the type I moves on the discs Dj
i ; 2 ≤ i ≤ n− 4 and

the discs Ej
1 and Ej

2 have no effect on the link Lj although they radically alter

the pseudo-branch cover Lj ∪Mj as a whole. The move in the disc Dj
1changes

Lj to Lj+1 and the type I move below changes the knot Kj to a new knot Kj+1.
Thus to complete the proof it suffices to show that Hypotheses set A can be
satisfied.

By general position we can isotope the arc Aj so that it is embedded by pj
and we can shrink the disc Dj so that it too is embedded thus satisfying A.1.
We choose a point x1 on the arc Aj to serve as base point for the group π1(S

3 \
p−1
j (Kj)). Let x0 = pj(x1) so that x0 is the base point for π1(S

3 \Kj) below and

label the other preimages of x0 as x2, ... , xn. Then ω : π1(S
3 \Kj , x0) −→ Σn

is defined by the condition ω(g) : i → k if the lift of a closed curve representing
g that begins at xi ends at xk.

The subgroup of the covering space is then
{
g ∈ π1(S

3 \Kj , x0)|ω(1) = 1
}
.

We denote the points in which arc Aj
1 = Aj intersects Lj by P j

1 and Qj
1,

and we choose meridian discs for these points which we denote Oj
P1 and Oj

Q1,
respectively. We denote the homeomorphic images of the points, arc, and discs
below by using the subscript 0 instead of 1. All this is illustrated in Figure 11.
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Above Lj

P1
O

j
Q1

O
j

Aj
1

P
j

1 Q
j

1

U1

V1

1x

Below Kj

P0
O

j
Q0

O
j

Aj
0

P
j

0 Q
j

0

U0

V0

0x

Figure 11. Notation on the discs Dj
1 and p(Dj

1).

We label the point Aj
1 ∩ ∂Oj

P1 by U1, A
j
0 ∩ ∂Oj

P0 by U0, A
j
1 ∩ ∂Oj

Q1 by V1,

Aj
0 ∩ ∂Oj

Q0 by V0, where ∂O is the boundary of the disc O.

The preimage ofOj
P0 consists of n−2 discs that are mapped homeomorphically

onto Oj
P0 by pj , including Oj

P1, and one that is mapped onto Oj
P0 as a double

branched covering. Since n = 2m + 3 and each component of Lj is mapped
homeomorphically onto Kj by pj, we see that exactly m of the discs in the

preimage of Oj
P0 that are mapped homeomorphically onto Oj

P0 intersect Lj, and

m + 1 intersect Mj . We label the discs intersecting Lj as Oj
P1, ... , Oj

Pm and

those intersecting Mj as Ôj
Pm+1, ... , Ôj

P2m+1. We label the disc that double

covers Oj
P0 as Õj

P2m+2.

The above remarks apply also to the discs Oj
Q1 and Oj

Q0 as well and we label

the preimages of Oj
Q0 by Oj

Q1, ... , Oj
Qm, Ôj

Qm+1, ... , Ôj
Q2m+1 and Õj

Q2m+2 in
corresponding fashion.

The arc that goes from U0 to V0 lifts to n = 2m + 3 arcs, one of which goes
from U1 on Oj

P1 to V1 on Oj
Q1.

Suppose we could arrange that the other 2m + 2 lifts satisfy the following
conditions which we call Hypotheses set B.

Hypotheses set B.

B.1 Those lifts that begin at a point on Oj
P i end at a point on Ôj

Qm+i for
2 ≤ i ≤ m.

B.2 Those lifts that begin at a point on Ôj
Pm+i end at a point on Oj

Qi for
2 ≤ i ≤ m.

B.3 Those lifts that begin at a point on Ôj
Pm+1 and Ôj

P2m+1 end at points on

Õj
Q2m+2.

B.4 The two lifts that begin at points on Õj
P2m+2 end at the points Ôj

Qm+1

and Ôj
Q2m+1.

If we could do this then the intersection properties A.2 through A.5 would be
satisfied and we would be done. The rest of the proof consists of showing that
we can in fact do this.
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We can arrange that B.1 though B.4 are satisfied in the following way: Let σ
be a fixed permutation of the numbers {2, ..., n} to be chosen shortly. By Lemma
(3.2), withMj playing the role of S, there is an element [α] in π1(S

3\p−1(Kj);x1)
that is a product of meridians of S such that ω(p∗([α])) = σ ∈ Σn−1.

Consider the lifts of the curve γ that we now define. The curve γ consists of
the arc [U0, x0] of Figure 11, followed by α, a curve representing [α], followed by
the arc [x0, V0].

The lift of the arc [U0, x0] that begins at U
j
k ends at xi for some i. The lift of

α that begins at xi ends at xσ(i). The lift of the arc [x0, V0] that begins at xσ(i)

ends at V j
l for some l. Since we are free to choose any σ ∈ Σn−1 we can always

arrange that the lifts of γ satisfy conditions B.1 though B.4.
Next we show that there is an isotopy of S3 above that fixes the branch cover

and Lj but moves M j, and such that, after performing the isotopy, the arc
[U0, V0] satisfies all the conditions of Hypotheses set B.

First let α =
∏r

i=1 βi where βi is a meridian of M j . We homotope α slightly
so that the meridian discs are all disjoint, and the arcs leading from x1 to the
meridian discs are all disjoint, and then we modify the new α in the manner
indicated in Figure 12 defining discs G1, ... , Gr, one for each meridian curve, in
the manner indicated in Figure 12 where we illustrate the case of three meridian
curves.

Before After

G1

B 2

V
0U0U0

V
0

3
B

B1

G
2 G

3

x
1

x
1

Figure 12. The discs Gi.

The boundary of the discs Gi consists of a small arc on [U0, V0], two curves
close to and parallel to the arc leading to the meridian disc and most of the
boundary of the meridian disc.

We can assume that γ̂ is an embedded curve in S3 above and that the set of
discs {Gj} are pairwise disjoint.

Now we simply perform ambient isotopies in a small neighbourhood of eachGj

so that the arc of the boundary of the disc Gj consisting of the two arcs from the
arc [U0, V0] to the meridian disc and an arc from the boundary of the meridian
disc is pushed onto the arc of the boundary of each Gj that is the intersection
of Gj with [U0, V0]. During the course of this ambient isotopy properties B.1
though B.4 are preserved.
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This concludes the proof of the theorem.

For examples of 2-universal links we refer the reader to [13] where some sev-
enteen different 2-universal links are exhibited. One of them, with only three
components, is reproduced below in Figure 13.

Figure 13. A 2-universal link.

Corollary (3.6). Knots that are 2-universal exist.

Proof. Let L be a 2-universal link and apply Theorem (3.4) to find a special
branched covering space p : S3 −→ S3 branched over a knot K such that L
occurs as a sublink of the pseudo-branch cover.

Given any closed orientable 3-manifold M3 there is a branched covering q :
M3 −→ S3 of type {1, 2} branched over L. Then p◦q : M3 −→ S3 is a branched
covering branched over the knot K of type {1, 2}. Therefore K is a 2-universal
knot.

In the final section we discuss the significance of Corollary (3.6)

4. Discussion of the significance of 2-universal knots

Suppose that K is a 2-universal hyperbolic knot. Then there is a one parame-
ter family of hyperbolic cone-manifolds, topologically equal to S3, with singular
set the knot K. The parameter can be chosen to be the cone angle, in which case
the parameter varies from zero, corresponding to the complete hyperbolic struc-
ture on the knot complement, to the angle θh called the limit of hyperbolicity.
For values θ, with 0 < θ < θh, S

3 has the structure of hyperbolic cone-manifold
with singular set the knot K and cone angle θ, but no such structure exists for
θ = θh. (As background for the above, see [1]).

Suppose, for a knot K, that (S3,K) has spherical cone-manifold structure at
180o. Let p : M3 −→ S3 be a branched covering of type {1, 2}. The spherical
cone manifold structure of S3 lifts, via p, to a spherical cone manifold structure
on M3. The induced cone manifold structure on M3 can be altered slightly
in a neighbourhood of the singular set to an actual Riemannian structure, (no
singularities), that has non negative curvature at all points. Thus M3 cannot
be hyperbolic, (compare [11], [12]), and therefore K cannot be 2-universal as no
hyperbolic 3-manifolds occur as branched covering of K of type {1, 2}.

Since two bridge knots have such spherical cone-manifold structure at 180o,
they cannot be 2-universal.
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We have computed the character variety for almost all knots of nine cross-
ings and many ten crossing knots in Rolfsen’s table. A short list of some of
the (necessarily three bridge) hyperbolic knots for which θh exceeds 1800 is
{818, 940, 941, 947, 949, 10123, 10161}. We do not have enough nerve to con-
jecture that one of these is 2-universal but we do point out that it is possible
and here is why that would be interesting.

A hyperbolic 2-universal knot would give rise to a hyperbolic orbifold structure
on S3 with angle 180o. This would, in turn, give rise to a discrete universal group
of hyperbolic isometries, call it G0.

A discrete group G of hyperbolic isometries is said to be universal if, given any
closed orientable 3-manifold M3, there is a finite index subgroup H of G such
that M is homeomorphic to the orbit space H3/G. Universal groups necessarily
contain rotations as not every 3-manifold is hyperbolic. The universal group U ,
defined in [10] is generated by three 90o rotations and contains only rotations of
90o and 180o. The group G0, if it exists, would contain only 180o rotations and
this would make it an interesting group, indeed.
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SOME RESULTS ON ONE-RELATOR SURFACE GROUPS

JAMES HOWIE

To Fico González Acuña on his 60’th birthday

Abstract. A one-relator surface group is the quotient of the fundamental
group of an orientable surface by the normal closure of a single element.
Inspired by a question from González Acuña and by a paper of Hempel,
we extend a number of the classical theorems of one-relator group theory
to one-relator surface groups.

1. Introduction

This short note was inspired by a question from Fico González Acuña:

Question (1.1). If α and β are two closed curves (nonsimple, in general) on an
orientable surface S, such that the normal closures of α and β in π1(S) coincide,
is β freely homotopic to α±1?

If S is noncompact, or has nonempty boundary, then π1(S) is free, and the
answer to Question (1.1) is yes, by an old result of Magnus [7] on one-relator
groups. (Essentially, the defining relator in a one-relator group on a given gen-
erating set is unique up to conjugacy and inversion.)

We will show (see Theorem (3.4) below) that Question (1.1) also has an affir-
mative answer in the case of a closed surface S. In this case Question (1.1) can be
interpreted in terms of one-relator surface groups, as introduced by Hempel [3].
Among other results, Hempel proved analogues for one-relator surface groups of
two theorems from one-relator group theory: (i) a one-relator surface group is
locally indicable if and only if the relator is not a proper power in π1(S); (ii) a
closed curve α in S lifts (up to homotopy) to a simple closed curve in the covering
space corresponding to the normal closure of α in π1(S). These are analogues
of results of Brodskĭı[1] and Weinbaum [15] respectively. (In the latter case,
the original form states that proper subwords of the defining relator represent
nontrivial elements in a one-relator group.) Hempel [3] also proved (iii) that a
power βn of a simple closed curve β can belong to the normal closure in π1(S)
of a curve α only in the obvious cases: either α is isotopic in S to βm with m|n;
or α is a nonseparating curve in a punctured torus in S bounded by β.

The purpose of this note is to show that many other results from one-relator
group theory have natural analogues for one-relator surface groups. In most (but
not all) cases, the proofs can be obtained by using a trick from [3] to reduce us
to the classical one-relator case.

2000 Mathematics Subject Classification: Primary 20F06; Secondary 20F10, 20F32, 57M05,
57M07.

Keywords and phrases: surface group, one-relator.
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Interest in one-relator surface groups first appeared in the work of Papakyr-
iakopoulos [12], who reduced the Poincaré conjecture to two conjectures which
can be expressed in terms of certain one-relator surface groups. (See [10, 13, 14]
for more on these conjectures).

2. One-relator surface groups

By a one-relator surface group we will mean, following Hempel [3], the quotient
of the fundamental group π1(S) of a connected, orientable surface S by the
normal closure of a single element α. We will denote this group by π1(S)/α. In
particular, any (countable) one-relator group can be regarded as a one-relator
surface group by choosing S to be noncompact (or ∂S to be nonempty). We will
consistently abuse notation to regard α as an immersed closed curve in S.

Since one-relator quotients of the torus group are well understood, we may
in practice restrict attention to the case where S is a closed orientable surface
of genus at least 2. The following basic trick is employed by Hempel in [3] to
reduce his analogue of Brodskĭı’s Theorem to the classical case. We follow [3] in
using 〈−,−〉 to denote the integer-valued algebraic intersection pairing on H1(S)
or π1(S) as appropriate.

Proposition (2.1). Let S be a closed, connected, oriented surface of genus
at least 2, and let α be a closed curve in S. Then

1. There is a non-separating simple closed curve β in S such that 〈α, β〉 = 0.
2. For any such β, there are connected surfaces F, F0, F1 and a closed curve

α′ in F , such that
(a) F0

∼= F1, F0 ⊂ F and F1 ⊂ F ;
(b) π1(F0) → π1(F )/α′ and π1(F1) → π1(F )/α′ are injective;
(c) π1(S) (resp. π1(S)/α) is an HNN-extension of π1(F ) (resp. π1(F )/α′)

with associated subgroups π1(F0) and π1(F1);
(d) Each of ∂F , ∂F0 and ∂F1 consists of two circles, each of which represents

(a conjugate of) β ∈ π1(S).

Proof. The first part is Lemma 2.1 of [3]. The second is implicit in the proof
of Theorem 2.2 of [3]. For completeness we repeat the argument here. Let S0

denote the surface obtained from S by cutting along β, let Sn be an isomorphic
copy of S0 for each integer n, and form a covering S̃ of S from

⋃
n∈Z

Sn by joining
one of the two boundary components of Sn to the other boundary component of
Sn+1, for all n. Note that S̃ is the infinite cyclic covering of S corresponding to
the kernel of 〈−, β〉 : π1(S) → Z.

There is a minimum n ≥ 0 such that S0∪S1∪· · ·∪Sn contains a closed curve
α′ homotopic to a lift of α. Define F = S0 ∪ S1 ∪ · · · ∪ Sn, F0 = S0 ∪ · · · ∪ Sn−1

and F1 = S1 ∪ · · · ∪ Sn (provided n > 0). Then property (b) follows from the
classical Freiheitssatz of Magnus for one-relator groups [6], using the fact that
α′ cannot be homotoped into F0 or F1. The remaining properties are clear from
the construction.

For the case n = 0 we adapt the construction slightly as follows: F0 and F1 are
annuli which are regular neighbourhoods in S̃ of the two boundary components
of S0 (with F0

∼= F1 via a covering transformation), and F = F0 ∪ S0 ∪ F1.
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3. Results using Hempel’s trick

In this section we list some results which follow easily from Hempel’s trick.
The first two were proved by Hempel in [3].

Theorem (3.1). [3, Theorem 2.2] Let S be an oriented surface and α an
essential closed curve in S. Then the following are equivalent:

1. α is not homotopic to βm for any curve β and any integer m > 1;
2. π1(S)/α is locally indicable;
3. π1(S)/α is torsion-free.

Theorem (3.2). [3, Theorem 2.3] Let S be an oriented surface and α a closed
curve in S. Then each lift of α to the regular covering corresponding to the
normal closure of α in π1(S) is (homotopic to) a simple closed curve.

Corollary (3.3). If α is homotopic to βm in π1(S) for some curve β and
integer m ≥ 1, then β has order m in π1(S)/α.

Proof. Clearly βm = 1 in π1(S)/α. On the other hand, βm lifts to a simple
closed curve (up to homotopy) in the covering corresponding to the normal
closure N of α in π1(S), so for 0 < k < m, βk does not lift to a closed curve. In
other words, βk 
∈ N .

The next result answers Question (1.1), and generalises the result of Magnus
that was mentioned in the introduction.

Theorem (3.4). Let S be an oriented surface and α, β two closed curves in
S whose normal closures in π1(S) coincide. Then α is freely homotopic to β±1.

Proof. For this we use the proof, as well as the statement, of Proposition (2.1).
If either of α, β is nullhomotopic, then clearly so is the other, so we may assume
that both α and β are essential. Let γ be a simple closed curve in S such that
〈α, γ〉 = 0 (and hence also 〈β, γ〉 = 0, since the normal closures of α and β in
π1(S) coincide, and so α and β are homologous). In the notation of Proposition
(2.1), suppose that F = S0 ∪ · · · ∪ Sn contains a closed curve α′ homotopic to a
lift of α, and that n is minimal with this property.

Similarly, suppose that F ′ = S0∪· · ·Sn′ contains a closed curve β′ homotopic
to a lift of β, and that n′ is minimal with respect to this property. Suppose that
n′ < n. Then F ′ ⊂ F0, and π1(F0) embeds into π1(S)/α. Hence β′, and hence
also β, must be nullhomotopic, contrary to assumption. Hence n′ ≥ n. By a
symmetric argument n ≥ n′, so n = n′ and F ′ = F .

Moreover, α′ = 1 in π1(F )/β′, since α = 1 in π1(S)/β which is an HNN
extension of π1(F )/β′. Similarly, β′ = 1 in π1(F )/α′. Using Magnus’ original
theorem for one-relator groups [7], we see that α′ is conjugate in the free group
π1(F ) to β′ or its inverse. Hence α is conjugate in π1(S) to β or its inverse, as
claimed.

The next generalises a result of Dyer and Vasquez [2] for ordinary one-relator
groups, and of Papakyriakopoulos [13] for certain one-relator surface groups.
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Theorem (3.5). Let S be an oriented surface and α an essential closed curve
in S. Suppose that α = βm in π1(S), with m maximal. Then the space formed
by attaching a K(Zm, 1)-space Xm to S by identifying β with a curve in Xm that
generates π1(Xm) is a K(π1(S)/α, 1)-space.

(Note that, in the case m = 1 of the theorem, we may take Xm to be a disc,
whose boundary is the curve to be identified with β = α. In other words, the
theorem says that the space formed by attaching a 2-cell to S along a non-power
essential curve α is aspherical.)

Proof. By Proposition (2.1), there is a surface F with homeomorphic sub-
surfaces F0 and F1, such that S is homotopy equivalent to the double mapping
cylinder Y formed from F and F0×[0, 1] by identifying F0×{0} with F0 ⊂ F and
F0×{1} with F1 ⊂ F . By the theorem of Dyer and Vasquez [2], Z := F ∪βXm is
aspherical. Since F0, F1 and F0× [0, 1] are aspherical, and the inclusion-induced
maps F0 → Z, F1 → Z are π1-injective, it follows from a theorem of Whitehead
[16] that Y ∪β Xm is aspherical, as claimed.

Arguing as in [2], we deduce from this an analogue of Lyndon’s Identity The-
orem [5], and the resulting structure of the (co-) homology of π1(S)/α.

Corollary (3.6). Let S, α, β and m be as in Theorem (3.5). Let G =
π1(S)/α, let N be the normal closure of α in π1(S), and C the cyclic subgroup
of G generated by β (which has order precisely m, by Corollary (3.3)). Then
N/[N,N ] ∼= ZG⊗ZC Z ∼= Z(G/C) as a (left) ZG-module.

Proof. Let K denote the K(G, 1)-space constructed in Theorem (3.5). Then

its universal cover K̃ is constructed from the regular cover SN of S corresponding
to N by attaching copies of the universal cover of Xm, one for each left coset of
C in G. There is a long exact sequence

· · · → Hk(SN ) → Hk(K̃) → Hk(K̃, SN ) → Hk−1(SN ) → · · ·
in which Hk(K̃) = 0 for k ≥ 1 by Theorem (3.5), and

Hk(K̃, SN ) ∼= Z (G/C) ⊗Z Hk(X̃m, S1) ∼= Z (G/C) ⊗Z Hk−1(S
1)

for k ≥ 2 since Xm is aspherical. Hence

N/[N,N ] ∼= H1(SN ) ∼= H2(K̃, SN ) ∼= Z (G/C)⊗H1(S
1) ∼= Z (G/C)

as claimed.

Corollary (3.7). Let G and C be as in Corollary (3.6), and M a left ZG-
module. Then for each q > 2 there are isomorphisms Hq(G,M) ∼= Hq(C,M)
and Hq(G,M) ∼= Hq(C,M).

Combining the above corollary with a theorem of Serre [4] yields further con-
sequences:

Corollary (3.8). Let G and C be as in Corollary (3.6), and let H be a finite
subgroup of G. Then there is a unique double coset HgC such that H ⊆ gCg−1.

Corollary (3.9). Let G and C be as in Corollary (3.6). Then every element
of finite order in G belongs to a conjugate of C.
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This last result generalises a theorem of Magnus, Karrass and Solitar [9] for
one-relator groups.

We have not yet addressed the oldest results of one-relator group theory, Mag-
nus’ Freiheitssatz [6] and his solution of the word problem [8]. The Freiheitssatz
for a one-relator group says that any proper subset of the generators, omitting
a letter which essentially occurs in the relator, freely generates a free subgroup.
Such subgroups are now known as Magnus subgroups.

The word problem is the algorithmic problem of deciding whether any given
word in the generators represents the identity element of the group. For one-
relator groups a stronger property is true: one can algorithmically decide whether
any given word represents an element of the Magnus subgroup generated by any
given recursive subset of the generators. This is called the generalized word
problem for Magnus subgroups. (In the case of a finite presentation, all subsets
of the generators are recursive.)

We will prove the analogues of both these results for one-relator surface
groups. In general, this will require some more effort than just applying Propo-
sition (2.1). However, there are special cases of both results which can be im-
mediately deduced from Proposition (2.1).

Proposition (3.10). Let S be a closed oriented surface, α a closed curve in
S, and β a simple closed curve in S such that α is not homotopic to a curve
disjoint from β, and that 〈α, β〉 = 0. Then π1(S \ β) → π1(S)/α is injective.

Proof. This is immediate from the proof of Proposition (2.1), since S \ β ∼=
Int(S0) ⊆ F (in the notation of (2.1)), and the natural maps π1(S0) → π1(F0) →
π1(S)/α are injective.

Proposition (3.11). Let G = 〈u1, . . . , u2g | [u1, u2] · · · [u2g−1, u2g]〉, let W
be a word in the generators of G such that u1 appears in W with exponent-sum
zero, let N be the normal closure of W in G and let H be the subgroup of G
generated by {u2, . . . , u2g}. Then there exists an algorithm which, given a word
U in the generators of G, will determine whether or not U ∈ NH; and if so will
find the (unique) word V in {u2, . . . , u2g} such that UV −1 ∈ N .

Again this follows more or less immediately from Proposition (2.1), where β
is the closed curve representing u2. We omit the details, since a stronger result
will be proved in the next section.

4. Further results

In this section we complete the proofs of the Freiheitssatz and the solution of
the generalized word problem for one-relator surface groups. First we prove the
Freiheitssatz.

Theorem (4.1). Let S be a closed oriented surface, α a closed curve in S,
and β a simple closed curve in S such that α is not homotopic to a curve disjoint
from β. Then π1(S \ β) → π1(S)/α is injective.

Proof. The result is trivial if S is a torus, so we may assume that S has genus
g ≥ 2. We may also assume that α is not a proper power in π1(S), since if
π1(S \ β) → π1(S)/α is injective then so is π1(S \ β) → π1(S)/α

m for all m ≥ 1.
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We first strengthen the first part of Proposition (2.1) to obtain a simple closed
curve γ, disjoint from β, with 〈α, γ〉 = 0. Choose a simple closed curve β′ that
meets β transversely in a single point. Then a regular neighbourhood N of β∪β′

is a punctured torus, so S \N is a punctured surface of genus g− 1 ≥ 1. Take γ
to be a simple closed curve in the kernel of the restriction of 〈α,−〉 to π1(S \N).

Now consider the cover SK of S corresponding to the kernel K of 〈−, γ〉 :
π1(S) → Z. Let A be a small regular neighbourhood of β in S, such that each
component of A ∩ α is an embedded arc joining the two components of ∂A.
Then A is an annulus. Moreover, 〈β, γ〉 = 0, so the preimage of A in SK is
the (disjoint) union of an infinite collection of annuli An (n ∈ Z), such that
An+1 = τ(An), where τ is a generator of the covering transformation group. Let
T denote the preimage in SK of S \A, so that T = SK \ (⋃n∈Z An).

Since 〈α, γ〉 = 0, the preimage of α in SK is the union of an infinite collection
{αn, n ∈ Z} of closed curves, where αn+1 = τ(αn). Now α0 intersects a nonzero
finite number of the An. Let λ, μ denote the least and greatest indices n such
that α0 ∩ An 
= ∅, and assume that α has been isotoped to minimise μ− λ.

Define S0 = T ∪ Aλ ∪ · · · ∪ Aμ, S1 = T ∪ Aλ ∪ · · · ∪ Aμ−1, and S2 = T ∪
Aλ+1 ∪ · · · ∪ Aμ. Then S1

∼= S2 via τ , the inclusion-induced maps π1(Si) →
π1(S0)/α0 (i = 1, 2) are injective (by Magnus’ Freiheitssatz [6]), and π1(S)/α is
an HNN-extension of π1(S0)/α0 with associated subgroups π1(S1), π1(S2) and
isomorphism τ∗ : π1(S1) → π1(S2).

It follows that π1(T ) → π1(S)/α is injective. Since π1(T ) is the kernel of
〈−, γ〉 : π1(S \ β) → Z and since 〈α, γ〉 = 0, it also follows that the inclusion-
induced map π1(S \ β) → π1(S)/α is injective.

In a similar manner, we can obtain the solution of the generalized word prob-
lem for Magnus subgroups in one-relator surface groups.

Theorem (4.2). Let G = 〈u1, . . . , u2g | [u1, u2] · · · [u2g−1, u2g]〉, let W be a
word in the generators of G, let N be the normal closure of W in G and let H
be the subgroup of G generated by {u2, . . . , u2g}. Then there exists an algorithm
which, given a word U in the generators of G, will determine whether or not
U ∈ NH; and if so will find the (unique) word V in {u2, . . . , u2g} such that
UV −1 ∈ N .

Proof. We follow the proof of Theorem (4.1), letting α be the closed curve
represented by W (up to isotopy), and β the simple closed curve represented by
u2.

In order to find γ we replace the pair of generators {u3, u4} by another basis
{u′

3, u
′
4} of 〈u3, u4〉, such that, on rewriting W in terms of the new generators

{u1, u2, u
′
3, u

′
4, u5, . . . , u2g},

the generator u′
3 appears with exponent-sum zero. Then we take γ to be the

simple closed curve representing u′
4. Note that this process can be carried out

algorithmically as follows. The exponent sums of u3 and u4 in W give a vector
(a, b) in Z

2 that can be transformed to one of the form (0, k) by a matrix in
SL(2,Z), where k = lcm(a, b). The Euclidean algorithm expresses this matrix as
a product of elementary matrices. Realising each elementary matrix by a Nielsen
transformation produces an automorphism σ of 〈u3, u4〉 such that W , written as
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a word in u1, u2, σ(u3), σ(u4), u5, . . . , u2g, has exponent sum 0 in σ(u3). Note also
that [σ(u3), σ(u4)] is conjugate to [u3, u4]

±1 [11]. Indeed, using the solution of the
conjugacy problem in the free group 〈u3, u4〉, we can find a word w ∈ 〈u3, u4〉 and
ε = ±1 such that [σ(u3), σ(u4)] = w[u3, u

ε
4]w

−1. This gives an (algorithmically
obtained) automorphism φ : u3 �→ u′

3 := w−1σ(u3)w, u4 �→ u′
4 := w−1σ(u4)

εw of
〈u3, u4〉 such that φ([u3, u4]) = [u3, u4]. Finally, we extend φ to an automorphism
of G by setting φ(ui) = ui for i 
= 3, 4.

Let us assume that the above algorithmic automorphism has been carried
out, so that u3 appears in W with exponent-sum zero, and we can choose γ
to be a curve representing u4. The homomorphism 〈−, γ〉 : G → Z can then
be interpreted as the exponent-sum of u3, and its kernel K is generated by
conjugates of ui (i 
= 3) by powers of u3. Since W ∈ K, we may rewrite W

as a word W̃ in these generators. Let λ, μ be the least and greatest indices n
respectively such that u−n

3 u1u
n
3 occurs in W̃ .

Let G0 be the one-relator group with generators

{u−n
3 u1u

n
3 ;λ ≤ n ≤ μ} ∪ {u−n

3 uju
n
3 ;n ∈ Z, j = 2, 4, 5, . . . , 2g}

and relator W̃ . The proof of Theorem (4.1) then expresses G/N as an HNN-
extension of G0, in which the associated subgroups are the Magnus subgroups
obtained by omitting u−μ

3 u1u
μ
3 and u−λ

3 u1u
λ
3 respectively from the generating

set. By the solutions of the generalized word problems for one-relator groups
and for HNN-extensions, it is decidable whether or not the generator u1 may be
eliminated from U in G/N , as required.

[Note that, while the proof of Theorem (4.1) makes use of the assumption that
W is not a proper power in G, the HNN-construction of G/N described there
does not depend on that assumption. We may therefore use it in full generality
for the purposes of the present proof.]

The statement of Theorem (4.2) asserts the solubility of the generalized word
problem only for one particular Magnus subgroup - that obtained by omitting u1

from the generating set. A similar argument applies to the Magnus subgroup ob-
tained by omitting any other generator. For an arbitrary Magnus subgroup, one
can combine the algorithm of Theorem (4.2) with the solution to the generalized
word problem for a free factor of a finitely generated free group. One particular
case is the absolute word problem, which is the generalized word problem for the
trivial group.

Corollary (4.3). Let G = 〈u1, . . . , u2g | [u1, u2] · · · [u2g−1, u2g]〉, let W be a
word in the generators of G, and let N be the normal closure of W in G. Then
the word problem for G/N is soluble. That is, there exists an algorithm which,
given a word U in the generators of G, will determine whether or not U ∈ N .
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conjectures, Ann. Math. (2) 77 (1963), 250–305.

[13] C. D. Papakyriakopoulos, Attaching 2-dimensional cells to a complex, Ann. Math. (2)
78 (1963), 205–222.

[14] E. S. Rapaport, Proof of a conjecture of Papakyriakopoulos, Ann. Math. (2) 79 (1964),
506–513.

[15] C. M. Weinbaum, On relators and diagrams for groups with one defining relation, Illinois
J. Math. 16 (1972), 308–322.

[16] J. H. C. Whitehead, On asphericity of regions in a 3-sphere, Fund. Math. 32 (1939),
149–166.



Bol. Soc. Mat. Mexicana (3) Vol. 10, Special issue, 2004

Cn-MOVES AND THE HOMFLY POLYNOMIALS OF LINKS

TAIZO KANENOBU

Abstract. We consider the difference between the HOMFLY polynomi-
als of two links that are related by a Cn-move. This gives the difference
between the first HOMFLY coefficient polynomials of such two knots, and
further implies the differences of some finite type invariants between such
two knots.

1. Introduction

It is known ([6], [7]) that two knots have the same finite type invariants of
order less than n ([28]) if and only if they are related by a finite sequence of
Cn-moves. Here a Cn-move is a local move for oriented links involving n+1 arcs
as shown in Figure 1, n ≥ 2, with a C1-move a crossing change; in particular, a
C2-move is equivalent to a delta move ([16], [19]).

TheHOMFLY polynomial P (L; t, z) ∈ Z[t±1, z±1] is an invariant of the isotopy
type of an oriented link L, which is defined, as in [9], by the following formulas:

P (U ; t, z) = 1; (1.1)

t−1P (L+; t, z)− tP (L−; t, z) = zP (L0; t, z), (1.2)

where U is the unknot and L+, L−, L0 are three links that are identical ex-
cept inside the depicted regions as shown in Figure 2; see [5], [24]. We call
(L+, L−, L0) a skein triple; also, we say that L− (resp. L+) is obtained from L+

(resp. L−) by changing the crossing, and that L0 is obtained from L+ (or L−)
by smoothing the crossing.

A delta skein quadruple consists of four links (L,M,L0,M0) which are identical
except inside the depicted regions as shown in Figure 3; two links L and M are
related by a delta move. Nikkuni and the author ([11, Theorem 3.1]) have shown
that it holds that:

P (L; t, z)− P (M ; t, z) = t2z2 (P (L0; t, z)− P (M0; t, z)) . (1.3)

In this paper, we prove a formula giving the difference of the HOMFLY poly-
nomials of two links that are related by a Cn-move (Theorem (2.7)), which
generalizes (1.3) above.

If K is a knot, then its HOMFLY polynomial is of the form:

P (K; t, z) =
∑
i≥0

P2i(K; t)z2i, (1.4)

2000 Mathematics Subject Classification: 57M25.
Keywords and phrases: knot, link, Cn-move, delta move, HOMFLY polynomial, coefficient

polynomial, Jones polynomial, Conway polynomial, finite type invariant, Q polynomial.
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263



264 TAIZO KANENOBU

L

L′

c1

c22 c21

c32 c31

cn−1,2 cn−1,1

cn2 cn1

αn+1 αn αn−1 · · · · · · α3 α2 α1

c1

c22 c21

c32 c31

cn−1,2 cn−1,1

αn+1 αn αn−1 · · · · · · α3 α2 α1

Figure 1



Cn-MOVES AND THE HOMFLY POLYNOMIALS OF LINKS 265

L+ L− L0

Figure 2

L M L0 M0

Figure 3

where each P2i(K; t) ∈ Z[t±1] is called a coefficient polynomial; see [14, Proposi-
tion 22]. For a skein triple (L+, L−, L0) with L+ and L− knots, and for a delta
skein quadruple (L,M,L0,M0) with L, M knots, each of (1.2) and (1.3) yields
a formula for the first HOMFLY coefficient polynomials (the P0 polynomials);
see (3.3), (3.4). Similarly, for two knots which are related by a Cn-move, from
Theorem (2.7), we may obtain a formula for their P0 polynomials ((3.9), (3.10)).
These formulas are much simpler than that in Theorem (2.7). As mentioned
above, two knots that are related by a Cn-move have the same finite type in-
variants of order less than n. On the other hand, there are several results on
the difference of the finite type invariants of order n between such two knots
(also, such links) ([15], [17], [20], [21], [22], [23], [27]). From (3.9) and (3.10), we
obtain that if two knots are related by a Cn-move, then the difference of the nth
derivatives of their P0 polynomials at t = 1, which is a finite type invariant of
order n, is either 0 or ±n! · 2n (Theorem (3.11)). Also, we obtain some results
on the Conway polynomials and the constant terms of the Q polynomials (Sect.
4).

2. Cn-moves and the HOMFLY polynomials

In this section, we will prove Theorem (2.7), which gives a formula for the
HOMFLY polynomials involving two links that are related by a Cn-move. The
proof is essentially analogous to that of [22, Theorem 1.2].

We shall use the following notation: Let L be a link and C = {c1, . . . , ck}
a subset of the crossings of L. If a link L′ is obtained from L by changing
the crossings in C1 and smoothing the crossings in C2, where C1, C2 ⊂ C and
C1 ∩ C2 = ∅, then we denote L by Lc1,...,ck and L′ by Lc′1,...,c

′
k
, where

c′i =

⎧⎪⎨
⎪⎩
c̄i if ci ∈ C1;

ċi if ci ∈ C2;

ci if ci �∈ C1 ∪C2.

(2.1)

We will use the following lemma; cf. [22, Proposition 3.1].
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Lemma (2.2). Let Lc1,c2 be a link having two crossings c1, c2 with ε(c1)ε(c2) =
−1. Then

P (Lc1,c2)− P (Lc̄1,c̄2) = ε(c1)t
ε(c1)z (P (Lċ1,c2)− P (Lc̄1,ċ2)) . (2.3)

Proof. Suppose ε(c1) = 1 and ε(c2) = −1. By (1.2), we have

t−1P (Lc1,c2)− tP (Lc̄1,c2) = zP (Lċ1,c2); (2.4)

t−1P (Lc̄1,c̄2)− tP (Lc̄1,c2) = zP (Lc̄1,ċ2), (2.5)

which imply

P (Lc1,c2)− P (Lc̄1,c̄2) = tz (P (Lċ1,c2)− P (Lc̄1,ċ2)) . (2.6)

The case ε(c1) = −1 and ε(c2) = 1 is similar, and the proof is complete.

Theorem (2.7). Suppose n ≥ 2. Let L and L′ be links such that L′ is obtained
from L by a Cn-move as shown in Figure 1. Then

P (L)− P (L′) = ε1ε2 · · · εntε1+ε2+···+εnzn
∑

δ2,...,δn=±1

δ2 · · · δnP (L[δ2, . . . , δn]),

(2.8)
where:

• ε1 = ε(c1) and εj = ε(cj1), j = 2, . . . , n;
• L[δ2, . . . , δn] is the link obtained from L = Lc1,c21,c22,...,cn1,cn2 by replacing

c1 to ċ1 and (cj1, cj2) to either (ċj1, cj2) or (c̄j1, ċj2) according as δj = 1 or −1,
j = 2, . . . , n.

Proof. First notice that L′ = Lc1,c21,c22,...,cn−1,1,cn−1,2,c̄n1,c̄n2 . We proceed by
induction on n. Let us consider the case n = 2. Suppose ε1 = 1. Then by (1.2),
we have

t−1P (Lc1)− tP (Lc̄1) = zP (Lċ1); (2.9)

t−1P (L′
c1)− tP (L′

c̄1) = zP (L′
ċ1), (2.10)

Since Lc̄1 and L′̄
c1 are isotopic, we have

P (Lc1)− P (L′
c1) = tz

(
P (Lċ1)− P (L′

ċ1)
)
. (2.11)

Similarly, if ε1 = −1, we have

P (Lc1)− P (L′
c1) = −t−1z

(
P (Lċ1)− P (L′

ċ1)
)
, (2.12)

and so we obtain

P (Lc1)− P (L′
c1) = ε1t

ε1z
(
P (Lċ1)− P (L′

ċ1)
)
. (2.13)

As noticed above, Lċ1 = Lċ1,c21,c22 and L′
ċ1

= Lċ1,c̄21,c̄22 , and thus by
Lemma (2.2), we have

P (Lċ1)− P (L′
ċ1) = ε2t

ε2z (P (Lċ1,ċ21,c22)− P (Lċ1,c̄21,ċ22)) (2.14)

= ε2t
ε2z (P (L[1])− P (L[−1])) .

Substituting (2.14) into (2.13), we obtain

P (Lc1)− P (L′
c1) = ε1ε2t

ε1+ε2z2 (P (L[1])− P (L[−1])) , (2.15)

which gives (2.8) with n = 2.
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Assume that the result holds for n− 1. By the inductive hypothesis, we have

P (L) = P (Lc1,c21,c22,...,cn−1,1,cn−1,2,cn1,cn2) (2.16)

= P (Lc1,c21,c22,...,c̄n−1,1,c̄n−1,2,cn1,cn2)

+ atbzn−1
∑

δ2,...,δn−1=±1

δ2 · · · δn−1P (L[δ2, . . . , δn−1]cn1,cn2);

P (L′) = P (Lc1,c21,c22,...,cn−1,1,cn−1,2,c̄n1,c̄n2) (2.17)

= P (Lc1,c21,c22,...,c̄n−1,1,c̄n−1,2,c̄n1,c̄n2)

+ atbzn−1
∑

δ2,...,δn−1=±1

δ2 · · · δn−1P (L[δ2, . . . , δn−1]c̄n1,c̄n2),

where a = ε1ε2 · · · εn−1, b = ε1 + ε2 + · · · + εn−1, and L[δ2, . . . , δn−1]cn1,cn2,
L[δ2, . . . , δn−1]c̄n1,c̄n2 are the links obtained from L(= Lc1,c21,c22,...,cn1,cn2), L

′(=
Lc1,c21,c22,...,c̄n1,c̄n2), respectively, by replacing c1 to ċ1 and (cj1, cj2) to either
(ċj1, cj2) or (c̄j1, ċj2) according as δj = 1 or −1, j = 2, . . . , n − 1. Since
Lc1,c21,c22,...,c̄n−1,1,c̄n−1,2,cn1,cn2 and Lc1,c21,c22,...,c̄n−1,1,c̄n−1,2,c̄n1,c̄n2 are isotopic, we
have

P (L)− P (L′) = atbzn−1
∑

δ2,...,δn−1=±1

δ2 · · · δn−1

(P (L[δ2, . . . , δn−1]cn1,cn2)− P (L[δ2, . . . , δn−1]c̄n1,c̄n2)) (2.18)

By Lemma (2.2), we have

P (L[δ2, . . . , δn−1]cn1,cn2)− P (L[δ2, . . . , δn−1]c̄n1,c̄n2) (2.19)

= εnt
εnz (P (L[δ2, . . . , δn−1]ċn1,cn2)− P (L[δ2, . . . , δn−1]c̄n1,ċn2))

= εnt
εnz (P (L[δ2, . . . , δn−1, 1])− P (L[δ2, . . . , δn−1,−1])) .

Substituting (2.19) into (2.18), we obtain (2.8), completing the proof.

Example (2.20). Let us consider the knot Jn as shown in Figure (4), n ≥ 2,
with J1 the trivial knot. In particular, J2 is the right-hand trefoil, J3 is the
mirror image of the 76 knot, and J4 is the mirror image of the 1073 knot; see
Rolfsen’s table ([25]). Performing a Cn-move on Jn, we obtain Jn−1.

We calculate P (J3) − P (J2) using (2.8). We shall use a similar notation to
that in Theorem (2.7). Since ε1 = ε2 = ε3 = 1, and J3[1, 1] is the positive Hopf
link, J3[1,−1] and J3[−1, 1] are both the trivial links of two components, and
J3[−1,−1] is the trivial link of four components, we have:

P (J3)− P (J2) =

= t3z3 (P (J3[1, 1])− P (J3[1,−1])− P (J3[−1, 1]) + P (J3[−1,−1])) (2.21)

= t3z3
((−t−1 + t−2)z−1 − t−1z

)− 2
(
(t−1 − t)z−1

)
+ (t−1 − t)3z−3

)
= (1− t2)3 + (1 − 3t2 + 2t4)z2 − t2z4.

We may obtain this from the table of [13, p. 282].
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c32 c31

cn−1,2 cn−1,1

cn2 cn1

Figure 4

3. Cn-moves and the P0 polynomials

In this section, we will give a formula for the P0 polynomials of two knots which
are related by a Cn-move. Before this, we give some properties of the coefficient
polynomials of the HOMFLY polynomial of a link. Let L = K1 ∪K2 ∪ · · · ∪Kr

be an oriented r-component link and Lk(L) be the total linking number of L;
Lk(L) =

∑
i<j lk(Ki,Kj) with lk(Ki,Kj) the linking number of Ki and Kj. By

[14, Proposition 22], the HOMFLY polynomial of L is of the form:

P (L; t, z) =
∑
n≥0

P2n−r+1(L; t)z
2n−r+1, (3.1)

where each P2n−r+1(L; t) ∈ Z[t±1] is called the coefficient polynomial; the powers
of t which appear in it are all even or odd, depending on whether 2n− r + 1 is
even or odd. In particular, the first coefficient polynomial satisfies the following
relation:

P1−r(L; t) = t2 Lk(L)(t−1 − t)r−1
r∏

i=1

P0(Ki; t). (3.2)

For C1- and C2-moves, the following are known: Let (L+, L−, L0) be a skein
triple with L+ and L− knots and L0 a 2-component link K1 ∪K2. Then from
(1.2), we obtain:

t−1P0(L+; t)− tP0(L−; t) = t2 Lk(L0)(t−1 − t)P0(K1; t)P0(K2; t), (3.3)

where Lk(L0) = lk(K1,K2); see [12]. Further, for a delta skein quadruple
(L,M,L0,M0) with L, M , L0 knots and M0 a 3-component link K1 ∪K2 ∪K3,
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we obtain from (1.3):

P0(L; t)− P0(M ; t) = −t2Lk(M0)(t2 − 1)2P0(K1; t)P0(K2; t)P0(K3; t); (3.4)

([11, Theorem 4.1]).
In order to give a similar formula for a Cn-move, we consider the number of

the components of the link L[δ2, . . . , δn], n ≥ 2, given in Sect. 2, which we denote
by #L[δ2, . . . , δn]. It is easy to see the following:

#L[δ2, . . . , δn] ≡ n+#L (mod 2); (3.5)

#L[δ2, . . . , δn] ≤ n+#L. (3.6)

Furthermore, we have:

Lemma (3.7). Suppose that L is a knot. Then in the set of links
{L[δ2, . . . , δn] | δi = ±1}, the number of links with #L[δ2, . . . , δn] = n + 1 is at
most one. In particular, for n = 2, one of the links L[±1] is a knot and the other
is a 3-component link.

Proof. We shall use a chord diagram of order n, which is an oriented circle
with n chords; cf. [1], [2]. For each link L[δ2, . . . , δn], δi = ±1, we construct
the chord diagram of order n, D[δ2, . . . , δn], as follows: Consider the link L as
an image of an embedding h : S1 → S3; L = h(S1). Let α′

i = h−1(αi), i = 1,
2, . . . , n + 1. The preimage of each crossing point of L consists of two distinct
points. Let h−1(c1) = {c′1, c′′1}, h−1(cij) = {c′ij, c′′ij}, i = 2, . . . , n, j = 1, 2,

where c′1 ∈ α′
1, c

′′
1 , c

′
21, c

′
22 ∈ α′

2, c
′′
i−1,1, c

′′
i−1,2, c

′
i1, c

′
i2 ∈ α′

i, i = 3, . . . , n+ 1, and

let τ1, τij be the chords joining the two points {c′1, c′′1}, {c′ij , c′′ij}, respectively.
We define D[δ2, . . . , δn] to be a chord diagram consisting of the circle S1 and n
chords τ1, τij , i = 2, . . . , n, j = (3− δj)/2.

First, consider the chords τ1, τ21, τ22. On the arc α′
2 the point c′′1 lies between

c′21 and c′22; the other endpoint c′1 lies on a′1, and c
′′
21, c

′′
22 lie on α′

3. Thus the
chord τ1 intersects either τ21 or τ22. Next, consider the chords τi−1,1, τi−1,2, τi,1,
τi,2, i = 2, . . . , n. Similarly, on the arc α′

i the four points lie in the order of c′i1,
c′′i−1,2, c

′′
i−1,1, c

′
i2; the other endpoints c

′
i−1,2, c

′
i−1,1 lie on α′

i−1, and c
′′
i1, c

′′
i2 lie on

α′
i+1. Thus the chord τi,j , j = 1, 2, intersects either τi+1,1 or τi+1,2. Therefore,

in the set of all chord diagrams D[δ2, . . . , δn], there exists at most one that has
no intersection among the chords; see [22, Proof of Lemma 3.2].

Add 1-handles along all the chords of D[δ2, . . . , δn], that is, change each
chord as in Figure 5. Then we obtain a set of circles whose number is just
#L[δ2, . . . , δn], the number of the components of the link L[δ2, . . . , δn]. Hence,
if all n chords of D[δ2, . . . , δn] are separated from one another, then the corre-
sponding link L[δ2, . . . , δn] has n + 1 components. Conversely, if there exist a
pair of chords that intersect, then the corresponding link L[δ2, . . . , δn] has less
than n+ 1 components, and so the result follows.

Note that for n = 2, one of D[±1] is separated, and so one of the links L[±1]
is of 3 components.
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Figure 5

Let L and L′ be as in Theorem (2.7). Then from (2.8), we obtain:

P0(L)− P0(L
′) = ε1ε2 · · · εntε1+ε2+···+εn

∑
δ2,...,δn=±1

δ2 · · · δnP−n(L[δ2, . . . , δn]),

(3.8)
where n ≥ 2. Suppose L and L′ are knots. By (3.6) and Lemma (3.7), for the
links L[δ2, . . . , δn], δ2, . . . , δn = ±1, we have either;

(i) all the links have less than n+ 1 components, or
(ii) only one link, say L[δ′2, . . . , δ′n], has n+ 1 components and the other have

less than n+ 1 components.
In case (i), by (3.1) we have:

P0(L)− P0(L
′) = 0. (3.9)

In case (ii), let L[δ′2, . . . , δ
′
n] = K1 ∪K2 ∪ · · · ∪Kn+1 and λ be its total linking

number, λ =
∑

i<j lk(Ki,Kj). Then using (3.1) and (3.2), we have:

P0(L)− P0(L
′) = ε1ε2 · · · εnδ′2 · · · δ′ntε1+ε2+···+εnP−n(L[δ

′
2, . . . , δ

′
n]) (3.10)

= ε1ε2 · · · εnδ′2 · · · δ′ntε1+ε2+···+εn+2λ(t−1 − t)n
n+1∏
i=1

P0(Ki).

Moreover, we obtain:

Theorem (3.11). Let L and L′ be knots such that L′ is obtained from L by
a Cn-move as shown in Figure 1. Then

P
(n)
0 (L; 1)− P

(n)
0 (L′; 1) =

{
±8 if n = 2;

0, ±n! · 2n if n ≥ 3.
(3.12)

Conversely, for each value there exist knots L, L′ satisfying this formula.

Proof. In case (i), from (3.9) we have P
(n)
0 (L; 1)− P

(n)
0 (L′; 1) = 0. Note that

if n = 2, then from Lemma (3.7) this case does not occur; see Remark (3.16)
below. In case (ii), (3.10) is written as

P0(L)− P0(L
′) = (t− 1)nf(t) (3.13)

with

f(t) = ε1ε2 · · · εnδ′2 · · · δ′n(−1)n(t+ 1)ntε1+ε2+···+εn+2λ−n
n+1∏
i=1

P0(Ki; t). (3.14)

Then since P0(Ki; 1) = 1, we obtain

|P (n)
0 (L; 1)− P

(n)
0 (L′; 1)| = n! · |f(1)| (3.15)

= n! · 2n.
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Conversely, for any knot there exists a Cn-move that does not change its
knot type; see [22, Remark]. Also, in Examples (3.20) and (3.24) below, for any
integer n ≥ 2, we shall give an example of knots L and L′ satisfying (3.12).

Remark (3.16). (i) The case n = 2 of Theorem (3.11) is essentially Okada’s
result ([23]): She has proved that if two knots K and K ′ are related by a delta
move, then

a2(K)− a2(K
′) = ±1, (3.17)

where a2(K) is the coefficient of z2 of the Conway polynomial of K. In fact, a

delta move is equivalent to a C2-move (see Remark (3.31) below) and P
(2)
0 (K; 1) =

−8a2(K) ([10, (5.6)]); cf. [11, Remark 4.8].
(ii) The case n = 3 of Theorem (3.11) is essentially Tsukamoto’s result ([27,

Corollary 3.2]): He has proved that if two knots K and K ′ are related by a
clasp-pass move, then V (3)(K; 1)− V (3)(K ′; 1) = 0 or ±36, where V (3)(K; 1) is
the third derivative of the Jones polynomial of K at t = 1. In fact, a clasp-pass

move is equivalent to a C3-move and P
(3)
0 (K; 1) = (4/3)V (3)(K; 1) ([18]); cf. [10,

(5.9)].
(iii) For two knots K, K ′ that are related by a C4-move, Matsuzaka [15] has

studied the difference v(K) − v(K ′), where v is a finite type invariant of order
4. More explicitly, he has given this difference in terms of the v-values of certain
chord diagrams of order 4 ([15, Theorem 5.1.1]) using the result of Ohyama and
Tsukamoto ([22]). From this he has shown:

a4(K)− a4(K
′) = 0, ±2; (3.18)

V (4)(K; 1)− V (4)(K ′; 1) =0, ±6 · 4!, ±12 · 4!. (3.19)

Conversely, he has given examples of knots K and K ′ satisfying these equations.
Similarly, from Matsuzaka’s theorem, we can easily deduce Theorem (3.11) for
n = 4.

Example (3.20). We have considered the HOMFLY polynomials of the knots
Jn in Example (2.20). Here, we apply (3.10) to Jn. We see εi = 1 for all i,
and Jn[−1, . . . ,−1] is the trivial link of (n + 1) components, which is the only
(n+ 1)-component link in Jn[δ2, . . . , δn], δi = ±1. Then from (3.10), we have:

P0(Jn)− P0(Jn−1) = (−1)n−1tnP−n(Jn[−1, . . . ,−1]) (3.21)

= (−1)n−1tn(t−1 − t)n

= −(t2 − 1)n,

from which, we obtain:

P
(n)
0 (Jn; 1)− P

(n)
0 (Jn−1; 1) = −n! · 2n; (3.22)

P
(n+1)
0 (Jn; 1)− P

(n+1)
0 (Jn−1; 1) = −(n+ 1)! · 2n−1n. (3.23)

Example (3.24). Consider the knot Kn as shown in Figure 6, n ≥ 2, with K1

the trivial knot, which is given by H. A. Miyazawa ([17, p. 107]). In particular,
K2 is the figure-eight knot, K3 is the 77 knot, and K4 is the mirror image of the
1060 knot; see [25]. Performing a Cn-move on Kn, we obtain Kn−1.
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c1

c22 c21

c32 c31

cn−1,2 cn−1,1

cn2 cn1

Figure 6

We see ε1 = −1 and εi = 1 for 2 ≤ i ≤ n. By changing the crossing c1,
we obtain the trivial knot U , and by smoothing c1, we obtain Kn−1#H+, the
connected sum of Kn−1 and a positive Hopf link H+. From (1.2) we have:

t−1P (U)− tP (Kn) = zP (Kn−1#H+), (3.25)

for n ≥ 2, and so,

P (Kn) = t−2P (U)− t−1zP (H+)P (Kn−1) (3.26)

= t−2 − t−1z
(
(t− t3)z−1 + tz

)
P (Kn−1)

= t−2 + ϕP (Kn−1),

where ϕ = (−1 + t2)− z2. Then

P (Kn)− P (Kn−1) = ϕ (P (Kn−1)− P (Kn−2)) (3.27)

= ϕn−2 (P (K2)− P (K1))

= ϕn−2ψ,

where ψ = (t−2 − 2 + t2)− z2; cf. [12, p. 282]. This implies:

P0(Kn)− P0(Kn−1) = t−2(t2 − 1)n = (t− 1)n · t−2(t+ 1)n, (3.28)

and thus

P
(n)
0 (Kn; 1)− P

(n)
0 (Kn−1; 1) = n! · 2n; (3.29)

P
(n+1)
0 (Kn; 1)− P

(n+1)
0 (Kn−1; 1) = (n+ 1)! · 2n−1(n− 4). (3.30)

We may obtain (3.28) using (3.10).
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Remark (3.31). Since the delta move and the C2-move are equivalent (cf. [26,
Sect. 2]), we can obtain (1.3) from Theorem (2.7): A tangle is a disjoint union of
finitely many properly embedded arcs in a 3-ball. We may think of the four parts
of the link diagrams in Figure 3 as four 3-string tangles, which we denote by τL,
τM , τL0, τM0 from left to right. If we put these tangles into the 3-ball D in
Figure 7, we obtain the four tangles τL′, τM ′, τL′

0, τM
′
0 as shown in Figure 8,

which correspond to four links L, L′, L[1], L[−1], respectively, in Theorem (2.7)
with n = 2, ε1 = ε2 = 1. Then from (2.8), we have:

P (L)− P (L′) = t2z2 (P (L[1])− P (L[−1])) , (3.32)

giving (1.3).

D

Figure 7

τL′ τM ′ τL′
0 τM ′

0

Figure 8

Let us consider the (n+ 1)st derivative of P0. From (3.14), we have:

f ′(t) =ε
(
n(t+ 1)n−1tm +m(t+ 1)ntm−1

) n+1∏
i=1

P0(Ki; t) (3.33)

+ ε(t+ 1)ntm
n+1∑
j=1

P ′
0(Kj; t)

∏
i�=j

P0(Ki; t),

where ε = ε1ε2 · · · εnδ′2 · · · δ′n(−1)n and m = ε1 + ε2 + · · · + εn + 2λ − n. Then
since P0(Ki; 1) = 1 and P ′

0(Ki; 1) = 0, we have:

f ′(1) = ε(n · 2n−1 +m · 2n) (3.34)

= ε 2n−1(2ε1 + 2ε2 + · · ·+ 2εn + 4λ− n).
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Therefore, we obtain:

|P (n+1)
0 (L; 1)− P

(n+1)
0 (L′; 1)| = (n+ 1)! · |f ′(1)|
= (n+ 1)! · 2n−1 |2ε1 + 2ε2 + · · ·+ 2εn + 4λ− n| . (3.35)

which is a generalization of [11, Theorem 4.7, (4.18)].

4. Cn-moves and other polynomials

In this section, we will consider the Conway and Jones polynomials, which we
may be obtained from the HOMFLY polynomial, and the constant terms of the
Q polynomials.

The Conway polynomial ∇L(z) ∈ Z[z] and the Jones polynomial V (L; t) ∈
Z[t±1/2] of an oriented link L are given from the HOMFLY polynomial P (L; t, z)
by the following formulas; see [4], [9]:

∇L(z) = P (L; 1, z); (4.1)

V (L; t) = P (L; t, t1/2 − t−1/2). (4.2)

The Conway polynomial of an r-component link L is of the form

∇L(z) =
∑
n≥0

a2n+r−1(L)z
2n+r−1, (4.3)

where a2n+r−1(L) = P2n+r−1(L; 1) ∈ Z.
Suppose n ≥ 2 and let L and L′ be links as in Theorem (2.7). Then using

(4.1), we obtain immediately the following identity from (2.8):

∇L(z)−∇L′(z) = ε1ε2 · · · εnzn
∑

δ2,...,δn=±1

δ2 · · · δn ∇L[δ2,...,δn](z). (4.4)

This implies the following identity, which has been given by H. A. Miyazawa [17,
p. 102].

an(L)− an(L
′) = ε1ε2 · · · εn

∑
δ2,...,δn=±1

δ2 · · · δn a0(L[δ2, . . . , δn]). (4.5)

Notice that for a link M , a0(M) = 1 or 0 according as if #M = 1 or ≥ 2. For
n ≥ 3, using this formula, she has proved the following identity ([17, Theorem
1.3]):

an(L)− an(L
′) ≡ 0 (mod 2). (4.6)

For the case where L and L′ are knots, this had been proved by Ohyama and
Ogushi [21]. Note that if n ≡ #L (mod 2), then an(L) = an(L

′) = 0. Also
remember Okada’s equation (3.17).

Further, combining (4.5) and (4.6), we have the following:

Proposition (4.7). Suppose n ≥ 3 and n ≡ #L− 1 (mod 2). Then

an(L)− an(L
′) ∈ {±2k | k = 0, 1, . . . , 2n−3

}
. (4.8)

Proof. Put b(L) =
∑

δ2,...,δn=±1 δ2 · · · δn a0(L[δ2, . . . , δn]). If each of the links

L[δ2, . . . , δn] with δ2 · · · δn = 1 (resp. −1) has one component and each of the
links L[δ2, . . . , δn] with δ2 · · · δn = −1 (resp. 1) has more than one component,
then |b(L)| = 2n−2, otherwise |b(L)| < 2n−2; cf. (3.5). Therefore, using (4.6), we
obtain the result.
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Remark (4.9). (i) According to Matsuzaka’s result (3.18), Proposition (4.7)
with n = 4 and #L = 1 is not best possible.

(ii) H. A. Miyazawa [17] has given examples of links L and L′ such that L′ is
obtained from L by a Cn-move, n ≥ 3, which satisfies an(L) − an(L

′) = 0, ±2
for each value.

Suppose n ≥ 2 and let L and L′ be links as in Theorem (2.7). Then by using
(4.2), we obtain immediately the following identity from (2.8):

V (L; t)− V (L′; t) = ε1ε2 · · · εntε1+ε2+···+εn−n/2 (t− 1)n ·∑
δ2,...,δn=±1

δ2 · · · δnV (L[δ2, . . . , δn]; t).
(4.10)

This implies that:

V (n)(L; 1)− V (n)(L′; 1) = ε1ε2 · · · εn · n!
∑

δ2,...,δn=±1

δ2 · · · δn V (L[δ2, . . . , δn]; 1).

(4.11)
Notice that for a link M , V (M ; 1) = (−2)#M−1. For n ≥ 3, H. A. Miyazawa has
shown the following identity ([17, Theorem 1.5]):

V (n)(L; 1)− V (n)(L′; 1) ≡ 0 (mod 6 · n!). (4.12)

The Q polynomial Q(M ;x) ∈ Z[x±1] is an invariant of an unoriented link M
defined by the following formulas:

Q(U ;x) = 1; (4.13)

Q(M+;x) +Q(M−;x) = x (Q(M0;x) +Q(M∞;x)) , (4.14)

where U is the unknot and (M+,M−,M0,M∞) are four links which are identical
except inside the depicted regions as illustrated in Figure 9; see [3], [8].

M+ M− M0 M∞

Figure 9

It is known that

Q(K; 0) = P0(K;
√−1) ≡ 1 (mod 4) (4.15)

for a knot K; see [3, Property 7], [12, Theorem 4.12 (i)].
Suppose n ≥ 2. Let L and L′ be knots such that L′ is obtained from L by

a Cn-move. Then as noticed before Theorem (3.11), there are two cases (i) and
(ii) to consider for the links L[δ2, . . . , δn]. In case (i), by (3.9) we have:

Q(L; 0)−Q(L′; 0) = 0, (4.16)
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and in case (ii), from (3.10), we obtain:

|Q(L; 0)−Q(L′; 0)| = 2n
n+1∏
i=1

|Q(Ki; 0)|, (4.17)

where K1 ∪K2 ∪ · · · ∪Kn+1 is the only (n+ 1)-component link in L[δ2, . . . , δn].
This is a generalization of the result for a delta move (C2-move) in [11, Sect.
4.5].

Example (4.18). For the knots Jn (Example (2.20)) andKn (Example (2.24)),
from (3.21) and (3.28) we obtain:

Q(Jn; 0)−Q(Jn−1; 0) = P0(Jn;
√−1)− P0(Jn−1;

√−1) = −(−2)n; (4.19)

Q(Kn; 0)−Q(Kn−1; 0) = P0(Kn;
√−1)− P0(Kn−1;

√−1) = −(−2)n. (4.20)

Received April 03, 2003

Final version received March 05, 2004

Department of Mathematics

Osaka City University

Sugimoto, Sumiyoshi-ku

Osaka 558-8585

Japan

kanenobu@sci.osaka-cu.ac.jp

References

[1] D. Bar-Natan, On the Vassiliev knot invariant, Topology 34 (1995), 423–472.
[2] J. S. Birman and X.-S. Lin, Knot polynomials and Vassiliev’s invariants, Invent. Math.

111 (1993), 225–270.
[3] R. D. Brandt, W. B. R. Lickorish and K. C. Millett, A polynomial invariant for

unoriented knots and links, Invent. Math. 84 (1986), 563–573.
[4] J. H. Conway, An enumeration of knots and links, in Computational Problems in Ab-

stract Algebra, (J. Leech, ed.), Pergamon Press, New York, 1969, 329–358.
[5] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. C. Millett and A. Ocneanu,

A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239–

246.
[6] M. Gusarov, On n-equivalence of knots and invariants of finite degree, in Topology

of Manifolds and Varieties, (O. Viro, ed.), Adv. Soviet Math. 18, Amer. Math. Soc.,
Providence, RI (1994), 173–192.

[7] K. Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1–83.
[8] C. F. Ho, A new polynomial for knots and links—preliminary report, Abstracts Amer.

Math. Soc. 6 (1985), 300.
[9] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann.

Math. 126 (1987), 335–388.
[10] T. Kanenobu and Y. Miyazawa, HOMFLY polynomials as Vassiliev link invariants, in

Knot Theory, Banach Center Publications 42, (V. F. R. Jones, J. Kania-Bartoszyńska,
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A TABULATION OF 3-MANIFOLDS VIA DEHN SURGERY

AKIO KAWAUCHI

Abstract. We show that every well-order of the set of lattice points in-
duces an embedding from the set of closed connected orientable 3-manifolds
into the set of links which is a right inverse of the 0-surgery map, and this
embedding further induces two embeddings from the set of closed con-
nected orientable 3-manifolds into the well-ordered set of lattice points and
into the set of link groups. In particular, the set of closed connected ori-
entable 3-manifolds is a well-ordered set by a well-order inherited from the
well-ordered set of lattice points, and the homeomorphism problem on the
3-manifolds can in principle be replaced by the isomorphism problem on
the link groups. To determine the embedded images of every 3-manifold,
we propose a tabulation program on the well-ordered set of 3-manifolds
which can be carried out inductively until a concrete pair of indistinguish-
able 3-manifolds occurs (if there is such a pair). As a demonstration, we
tabulate 3-manifolds corresponding to the lattice points of lengths up to 7.

1. Introduction

There are two fundamental problems in the theory of 3-manifolds, that is,
the homeomorphism problem and the classification problem (see J. Hempel [11,
p.169]). The homeomorphism problem is the problem of giving an effective pro-
cedure for determining whether two given 3-manifolds are homeomorphic, and
the classification problem is the problem of effectively generating a list con-
taining exactly one 3-manifold from every (unoriented) type of 3-manifolds. In
this paper, we consider the classification problem on closed connected orientable
3-manifolds by establishing an embedding from the set of closed connected ori-
entable 3-manifolds into the set of links in the 3-sphere S3 which is a right inverse
of the 0-surgery map. For this purpose, let Z be the set of integers, and Zn the
product of n copies of Z whose elements x = (x1, x2, . . . , xn) ∈ Zn we will call
lattice points of length �(x) = n. The set X of lattice points is the disjoint union
of Zn for all n = 1, 2, 3, . . . . Let Ω be any well-order in X, although we define in
§2 the canonical order1 Ωc, a particular well-order in X such that we have x < y
for any x,y ∈ X with �(x) < �(y). We are particularly interested in the delta set
Δ, a special subset of X defined in §3 such that the lattice points of Δ smaller
than any given x ∈ X in Ωc form a finite set. The class of oriented links L′ in S3

such that there is a homeomorphism h : S3 → S3 sending L to L′ is called the
unoriented link type [L] of an oriented link L in S3, and the oriented link type
〈L〉 of L if moreover h preserves the orientation of S3 and the orientations of L

2000 Mathematics Subject Classification: 57M25, 57M27.
Keywords and phrases: braid, lattice point, link, 3-manifold, link group, tabulation.
1The present definition is modified from the definition made in earlier research announce-

ments to make an enumeration of lattice points easier.
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and L′. Let L and
→
L be the sets of unoriented link types and oriented link types

in S3, respectively. A link type will be identified with a link belonging to the link

type unless confusion might occur. Thus, L and
→
L are understood as the sets

of unoriented links and oriented links in S3, respectively. We have a canonical
surjection

clβι : X
clβ−→

→
L

ι−→ L

sending a lattice point to the closure of the associated braid (see §2 for details),

where ι :
→
L → L denotes the forgetful surjection, which simply ignores the

orientations of S3 and links. On the other hand, every well-order Ω in X induces
an injection

σ : L −→ X

which is a right inverse of clβι, so that Ω defines a well-order in L, also denoted
by Ω. This construction of σ is done in §2. In §3, we show that in the case
of Ω = Ωc the image σ(L) of a prime link L belongs to Δ. In §4, we define
the concept of a π-minimal link (depending on a choice of a well-order Ω in X).
Let Lπ be the subset of L consisting of π-minimal links. Then we see that the
restriction

σ|Lπ : Lπ −→ X

is an embedding (see Lemma 4.4). Since a π-minimal link is a prime link by
definition, we see in the case of Ω = Ωc that σ(Lπ) ⊂ Δ and every initial
segment of Lπ is a finite set. The link group of a link L in S3 is the fundamental
group π1E(L) of the exterior E(L) = cl(S3 − N(L)) of L with N(L) a tubular
neighborhood of L in S3. Let G be the set of the isomorphism types of the link
groups for links in L. The isomorphism type of a group will be identified with a
group belonging to the isomorphism type unless confusion might occur. An Artin
presentation is a finite group presentation

(x1, x2, . . . , xn |xi = wixp(i)w
−1
i , i = 1, 2, . . . , n)

where p(1), p(2), . . . , p(n) are a permutation of 1, 2, . . . , n and wi (i = 1, 2, . . . , n)
are words in x1, x2, . . . , xn which satisfy the identity

n∏
i=1

xi =

n∏
i=1

wixp(i)w
−1
i

in the free group F on the letters x1, x2, . . . , xn. Then we have a braid b ∈ Bn

corresponding to the automorphism ϕ of F defined by

ϕ(xi) = wixp(i)w
−1
i (i = 1, 2, . . . , n),

from which we see that the set G is characterized as the set of groups with Artin
presentation (see for example [15; p.83] as well as J. S. Birman [2;p.46]). If the
closure cl(b) is prime or π-minimal, then we say that the Artin presentation is
prime or π-minimal, respectively. For the map

π : L −→ G

sending every link L to the link group π1E(L), we also see that the restriction

π|Lπ : Lπ −→ G
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is an embedding (see Lemma (4.4)). Let M and
→
M be the sets of unoriented

types and oriented types of closed connected oriented 3-manifolds, respectively.
The type of a closed connected oriented 3-manifold will be identified with a 3-
manifold belonging to the type unless confusion might occur. We define the map
χ0 : L → M by χ0(L) = χ(L, 0), where χ(L, 0) denotes the 0-surgery manifold
of L. The following result is our main theorem, which is proved in §5:

Theorem (1.1). Every well-order Ω of X induces an embedding

α : M −→ Lπ ⊂ L

and hence two embeddings

σα = σα : M −→ X,

πα = πα : M −→ G

which satisfy properties (1) and (2) below:
(1) χ0α = 1.

(2) If a lattice point σα(M) ∈ X is given, then the π-minimal link α(M) ∈ L

with a braid presentation, the 3-manifold M ∈ M with a 0-surgery description
along a π-minimal link and the link group πα(M) ∈ G with a π-minimal Artin
presentation are determined.

Furthermore, when Ω = Ωc, we have σα(M) ⊂ Δ and the properties (3) and
(4) below are obtained:

(3) If a group πα(M) with a prime Artin presentation is given, then the lattice
point σα(M) is determined assuming a solution of the following problem:

Problem. Let x ∈ X be a lattice point induced from the prime Artin presen-
tation of πα(M), and x1 < x2 < · · · < xn the lattice points in Δ smaller than
or equal to x. Find the smallest index i such that the link clβ(xi) is prime and
there is an isomorphism π1E(clβ(xi)) → πα(M).

(4) If a 3-manifold M with the 0-surgery description along a π-minimal link
L is given, then the lattice point σα(M) is determined assuming a solution of the
following problem:

Problem. Let x ∈ X be a lattice point induced from a π-minimal link L, and
x1 < x2 < · · · < xn the lattice points in Δ smaller than or equal to x. Find
the smallest index i such that the link clβ(xi) is π-minimal and the 0-surgery
manifold χ(clβ(xi), 0) is χ(L, 0).

The embedding σα makes the setM a well-ordered set by a well-order inherited
from the well-order Ω of L and denoted also by Ω. The length of a 3-manifold
M ∈ M is the length of the lattice point σα(M) ∈ X. In §6, to determine the
images α(M), σα(M) and πα(M) of everyM ∈ M, we take the canonical order Ωc

and propose a classification program onM based on Theorem (1.1), which we can
carry out inductively until a concrete pair of indistinguishable 3-manifolds occurs
(if there is such a pair). As a demonstration, we carry out this classification for 3-
manifolds with lengths up to 7. The embedding πα implies that two 3-manifolds
Mi ∈ M (i = 1, 2) are homeomorphic if and only if the groups πα(Mi) (i = 1, 2)
are isomorphic, and thus the homeomorphism problem on M can be in principle
replaced by the isomorphism problem on G (see Remark (5.5)), although it
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appears difficult to calculate the group πα(M) of any given 3-manifold M ∈ M

apart from the classification program. A lifting of the embedding α to the
oriented version is discussed in §7 together with an observation on a relationship
between oriented 3-manifold invariants and oriented link invariants.

This paper is a grown up version of a part of the research announcement “Link
corresponding to closed 3-manifold ”. A version of the remaining part will appear
in [16] (see http://www.sci.osaka-cu.ac.jp/˜kawauchi/index.htm). The author is
grateful to Dr. Ikuo Tayama for finding errors from an earlier version of this
paper and to the referees for finding further errors and for helpful comments.

2. Representing links in the set of lattice points

For a lattice point x = (x1, x2, . . . , xn) of length n, we denote the lattice points
(xn, . . . , x2, x1) and (|x1|, |x2|, . . . , |xn|) by xT and |x|, respectively. Let |x|N be
a permutation (|xj1 |, |xj2 |, . . . , |xjn |) of the coordinates |xj | (j = 1, 2, . . . , n) of
|x| such that |xj1 | � |xj2 | � · · · � |xjn |. For convenience, we use kn for the
lattice point of length n with k for every coordinate and −kn for (−k)n. The
integers min1�i�n |xi| and max1�i�n |xi| are also denoted by min |x| and max |x|,
respectively. Furthermore, we define the dual lattice point δ(x) = (x′1, x

′
2, . . . , x

′
n)

of x by

x′i =

{
sign(xi)(max |x|+ 1− |xi|) xi �= 0

0 xi = 0 .

Defining δ0(x) = x and δn(x) = δ(δn−1(x)) inductively, we note that δ2(x) �=
x in general, but δn+2(x) = δn(x) for all n � 1. For example, taking x =
(23, 3,−2, 3), we have δ2m−1(x) = (23, 1,−2, 1) and δ2m(x) = (13, 2,−1, 2) for
all m � 1. For a lattice point y = (y1, y2, . . . , ym) of length m, we denote by

(x,y) the lattice point (x1, x2, . . . , xn, y1, y2, . . . , ym) of length n+m. Let
→
L be

the set of oriented links. By the Alexander theorem (see J. S. Birman [2]), every
oriented link L is represented by the closure cl(b) of an s-string braid b ∈ Bs

for some s � 1. The braiding algorithm of S. Yamada [23] would be useful to
deform a link into a closed braid form. Let σi (i = 1, 2, . . . , s−1) be the standard
generators of the s-string braid group Bs. By convention, we regard the sign of
the crossing point of the diagram σi as +1. We consider that every braid b in Bs

is written as a word on the letters σi (i = 1, 2, . . . , s− 1). When b is not written
as 1, we write

b = σε1
i1
σε2
i2
. . . σεr

ir
, εi = ±1 (i = 1, 2, . . . , r).

Then we define the lattice point x(b) of the braid b by the identity

x(b) = (ε1i1, ε2i2, . . . , εrir) ∈ Zr ⊂ X.

When b is written as 1, we understand that x(b) = 0 ∈ Z ⊂ X. For a non-zero
lattice point x = (x1, x2, . . . , xn) ∈ X, let xij (j = 1, 2, . . . ,m; i1 < i2 < · · · < im)
be the set of the non-zero integers in the coordinates xi (i = 1, 2, . . . , n) of x.
Then the lattice point x̃ = (xi1 , xi2 , . . . , xim) is called the core of x. When x
is a zero lattice point, we understand the core x̃ = 0. We note that for every
non-zero lattice point x, there is a unique braid b ∈ Bs for every s � max |x|+1
such that x(b) = x̃. The braid b is called the associated braid with index s of
x and is denoted by β(s)(x), and in particular, for s = max |x| + 1, it is called
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the associated braid of x, denoted by β(x). The associated braid with index
s of any zero lattice point of X is understood as 1 ∈ Bs, and in particular the
associated braid as 1 ∈ B1. Taking the closure clβ(x) of the braid β(x), we
obtain a surjection

clβ : X −→
→
L.

Then every well-order Ω in X defines an injection (which is a right inverse of the
map clβ)

→
σ :

→
L −→ X

by sending a link L to the initial element of the subset {x ∈ X|clβ(x) = L} of X
indicated by Ω. By definition, the closed braid clβ(s)(x) with s > max |x|+ 1 is
obtained from the closed braid clβ(x) by adding a trivial link of (s−max |x|−1)
components. We introduce an equivalence relation ∼ in X as follows:

Definition (2.1). Two lattice points x and y in X are related as x ∼ y if

clβ(x) = clβ(y) in
→
L modulo split additions of trivial links.

Clearly the relation ∼ is an equivalence relation in X. Let X/ ∼ be the
quotient set of X by ∼, and 〈x〉 the equivalence class of a lattice point x ∈ X by
∼. The quotient map

→
σ∼ :

→
L −→ X/ ∼

has the identity
→
σ∼(cl(b)) = 〈x(b)〉 and is a bijection from the quotient set

of
→
L modulo split additions of trivial links onto X/ ∼. In particular,

→
σ∼ is

independent of a choice of Ω. We can describe the equivalence relation ∼ only in
terms of X by using the braid group presentation and the Markov theorem (see
J. S. Birman [2]), as stated in the following lemma:

Lemma (2.2). The relations (1)-(6) below are in the equivalence relation ∼
in X. Conversely, if we have x ∼ y in X, then y is obtained from x by applying
the relations (1)-(6) finitely often.

1. (x, 0) ∼ x, x ∼ (x, 0) for all x ∈ X,
2. (x,y,−yT ) ∼ x, x ∼ (x,y,−yT ) for all x,y ∈ X,
3. (x, y) ∼ x, x ∼ (x, y) for all x ∈ X and y ∈ Z such that |y| > max |x|,
4 (x,y, z) ∼ (x, z,y) for all x,y, z ∈ X such that min |y| > max |z| + 1 or

min |z| > max |y|+ 1,
5. (x, εy, y + 1, y) ∼ (x, y + 1, y, ε(y + 1)) for all x ∈ X and y ∈ Z such that

y(y + 1) �= 0 and ε = ±1,
6. (x,y) ∼ (y,x) for all x,y ∈ X.

Proof. The relation (1) is in ∼ since β(x, 0) = β(x). For (2), we take β(s)(x)
and β(s)(y) in Bs for some s. Then we have

β(s)(x,y,−yT ) = β(s)(x)β(s)(y)β(s)(y)−1 = β(s)(x)

in Bs and hence
clβ(x,y,−yT ) = clβ(x)

in
→
L modulo split additions of trivial links, showing that the relation (2) is in

∼. For (3), let s = |y|+ 1. Then by the Markov theorem,

clβ(x, y) = clβ(s)(x)
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in
→
L and the last link is equal to clβ(x) modulo split additions of trivial links,

showing that the relation (3) is in ∼. For (4), we take β(s)(x), β(s)(y) and β(s)(z)
in Bs for some s. By the assumption on y and z, we have

β(s)(x,y, z) = β(s)(x)β(s)(y)β(s)(z) = β(s)(x)β(s)(z)β(s)(y) = β(s)(x, z,y)

in Bs which shows that

clβ(x,y, z) = clβ(x, z,y)

in
→
L modulo split additions of trivial links. Thus, the relation (4) is in ∼. For

(5), consider β(s)(x) and σε′
j (j = |y|, ε′ = sign(y)) in Bs for some s. Let ε′ = +1.

Then

β(s)(x, εy, y + 1, y) = β(s)(x)σε
jσj+1σj

and the last braid is equal to

β(s)(x)σj+1σjσ
ε
j+1 = β(s)(x, y + 1, y, ε(y + 1))

in Bs by a well-known braid relation. Hence we have

clβ(x, εy, y + 1, y) = clβ(x, y + 1, y, ε(y + 1))

in
→
L modulo split additions of trivial links, showing that the relation (5) is in ∼.

For ε′ = −1, a similar argument gives the desired result since sign(y + 1) = −1
by assumption. For (6), let β(s)(x) and β(s)(y) in Bs for some s. Then we have

clβ(s)(x)β(s)(y) = clβ(s)(y)β(s)(x)

by the Markov theorem and hence

clβ(x,y) = clβ(y,x)

in
→
L modulo split additions of trivial links, showing that the relation (6) is in ∼.
Next, we assume x ∼ y. By the relations (1) and (6), we assume x̃ = x and

ỹ = y. Let b = β(x) and b′ = β(y) be the associated braids. We show that
if b = b′ in Bs for an index s, then we can change x into y by finitely many
applications of the relations (2), (4), (5) and (6). We use the group presentation
of Bs with generators σi (i = 1, 2, . . . , s− 1) and relators

(i) σiσjσ
−1
i σ−1

j (|i − j| � 2) and (ii) σiσi+1σiσ
−1
i+1σ

−1
i σ−1

i+1 (1 � i � s− 2)

(see [2]). Let F be the free group on the letters σi (i = 1, 2, . . . , s− 1). If b = b′

in F , then the solution of the word problem on F guarantees that we can change
x into y by finitely many applications of the relations (2) and (6). If b = b′ in
Bs, then the word b(b′)−1 is written in the form

b(b′)−1 =

n∏
k=1

RεkWk

k

in F , where RεkWk

k = WkR
εk
k W

−1
k for εk = ±1 and Rk denotes a relator of the

type (i) or (ii) andWk is a word in F written on the letters σi (i = 1, 2, . . . , s−1).
Thus, (x,−yT ) is changed into

a = (x(Rε1W1
1 ),x(Rε2W2

2 ), . . . ,x(RεnWn
n ))
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by finitely many applications of the relations (2) and (6). Since we can change x
into (x,−yT ,y) = (a,y) by the relation (2), we may consider b(b′)−1b′ = β(a,y)
instead of b = β(x). We note that

x(Rk) = (i, j,−i,−j), x(R−1
k ) = (j, i,−j,−i)

for the relator (i) and

x(Rk) = (i, i+ 1, i,−(i+ 1),−i,−(i+ 1)),

x(R−1
k ) = (i + 1, i, i+ 1,−i,−(i+ 1),−i)

for the relator (ii). Since

x(RεkWk

k ) = (x(Wk),x(R
εk
k ),−x(Wk)

T ),

we see that (a,y) is changed into y by finitely many applications of the relations
(2), (4), (5) and (6). Thus, in the case that b = b′ in Bs for an index s, we showed
that x can be changed into y by finitely many applications of the relations (2),
(4), (5) and (6).

Now we consider the general case of b and b′. Applying the relation (3) to x

or y, we can assume that cl(b) = cl(b′) in
→
L. Then the Markov theorem says

that we have b = b′ in Bs with a suitable index s after finitely many applications
of the Markov equivalences:

b1b2 ↔ b2b1 (b1, b2 ∈ Bm),

bσ±1
m ↔ b (b ∈ Bm ⊂ Bm+1)

for any m. This is equivalent to saying that b = b′ ∈ Bs after finitely many
applications of the relations (3) and (6) besides the relations (2), (4), (5) and
(6) to x and y. Thus, x is changed into y by finitely many applications of the
relations (2), (3), (4), (5) and (6).

Composing the forgetful surjection ι :
→
L → L with the map clβ, we obtain a

canonical surjection

clβι : X → L

and an injection which is a right inverse of clβι

σ : L −→ X

sending an unoriented link L to the initial element of the subset {x|clβι(x) = L}
of X indicated by Ω. The length of a link L ∈ L is the length of the lattice point
σ(L). By the rule that L1 < L2 if and only if σ(L1) < σ(L2), a well-order in L

is defined. Since the map σ is induced from Ω, we may say that this well-order
in L is induced by Ω, and denote it also by Ω. We also introduce an equivalence
relation ≈ in X more relaxed than ∼.

Definition (2.3). Two lattice points x and y in X are related as x ≈ y if we
have clβ(x) = clβ(y) in L modulo split additions of trivial links.

It is straightforward to see that the relation ≈ is an equivalence relation in X.
The quotient map

σ≈ : L −→ X/ ≈
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is independent of a choice of Ω and induces a bijection from the quotient set of
L modulo split additions of trivial links onto X/ ≈. For the natural surjection
X/ ∼ → X/ ≈, also denoted by ι, we have the following commutative square:

→
L

→
σ∼−−−−→ X/ ∼

ι

⏐⏐� ⏐⏐�ι

L
σ≈−−−−→ X/ ≈ .

In this diagram, we denote ι〈x〉 by [x]. Then we have the identity σ≈(cl(b)) =
[x(b)]. To determine the class [x] ∈ X/ ≈, it is desirable to describe the equiv-
alence relation ≈ only in terms of X. At present, what we can say about ≈ is
only the following lemma:

Lemma (2.4). We have the following (1) and (2):
1. For any x,y ∈ X such that x ∼ y, we have x ≈ y.
2. For all x ∈ X, we have x ≈ xT ≈ −x ≈ −xT .

Proof. (1) follows directly from the surjection ι : X/ ∼→ X/ ≈ . For (2), let
−L denote the inverse of an oriented link L, and ±L̄ the mirror image of ±L.
Then we have L = −L = L̄ = −L̄ in L. Taking L = cl(b) for a braid b, we have

→
σ∼(L) = 〈x(b)〉, →

σ∼(−L) = 〈x(b)T 〉, →
σ∼(L̄) = 〈−x(b)〉, →

σ∼(−L̄) =
〈−x(b)T 〉 .

Then the commutative square preceding to Lemma (2.4) shows (2).

The following remark means that (1) and (2) of Lemma (2.4) are sufficient to
characterize the equivalence relation ≈ in the set of knots:

Remark (2.5). Let X1 be the subset of X consisting of lattice points x such
that clβ(x) is a knot. Then every relation x ≈ y for x,y ∈ X1 is generated
by the equivalence relation ∼ and the relations in (2) of Lemma (2.4). In fact,
let K = clβ(x) and K ′ = clβ(y). If x ≈ y, then we have [K] = [K ′] modulo
split additions of trivial links. Then there is an oriented knot K ′′, which is one

of the knots ±K or ±K̄, such that K ′′ = K ′ in
→
L modulo split additions of

trivial links. Thus, we have z ∼ y for a lattice point z which is one of ±x,
±xT . More generally, for oriented links L,L′ in S3, we have L = L′ in L modulo

split additions of trivial links if and only if we have L = L′ in
→
L modulo split

additions of trivial links after a suitable choice of orientations of L and S3. By
Lemma (2.4), this implies that in order to know the class σ≈(L) ∈ X/ ≈ of an
oriented link L in S3 with r(� 2)-components Ki (i = 1, 2, . . . , r), it suffices to
know a braid presentation of the link (−L′) ∪ (L \ L′) for every sublink L′ of
L with 1 � #L′ � r

2 besides a braid presentation of L, where #L′ denotes the
number of components of L′.

We now define the canonical order Ωc in X. We define a well-order in Z by
0 < 1 < −1 < 2 < −2 < 3 < −3 < . . . and extend it to a well-order in Zn for
every n � 2 as follows: Namely, for x1,x2 ∈ Zn we define x1 < x2 if we have
one of the following conditions (1)-(3):

(1) |x1|N < |x2|N by the lexicographic order (on the natural number order).
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(2) |x1|N = |x2|N and |x1| < |x2| by the lexicographic order (on the natural
number order).

(3) |x1| = |x2| and x1 < x2 by the lexicographic order on the well-order of Z
defined above.

Finally, for any two lattice points x1,x2 ∈ X with �(x1) < �(x2), we define
x1 < x2.

Then this order Ωc makes X a well-ordered set. In fact, let S be any non-
empty subset of X. Let S	 be the subset of S consisting of lattice points with
the smallest length, say n. Since Zn is a well-ordered set as defined above, we
can find the initial lattice point of S	 which is the initial lattice point of S by
definition. The following lemma is useful in an actual tabulation of prime links.

Lemma (2.6). Let L be a link without a splittable component of the trivial
knot. Then in the canonical order Ωc, the lattice point σ(L) is the initial element
of the equivalence class [σ(L)] ∈ X/ ≈. In particular, we have clβ(σ(L)) = L.

Proof. Let x be the initial element of [σ(L)]. Suppose that clβ(x) has a
splittable component of the trivial knot O. If a crossing point of the closed
braid diagram clβ(x) is in O, then there is a shorter length lattice point x′ such
that clβ(x′) is obtained from the diagram clβ(x) by removing the component O,
contradicting the minimality of x. If there are no crossing point in O, then we
see from the definition of β that there is a lattice point x′ with x′ < x such that
clβ(x′) is obtained from clβ(x) by removing the component O, contradicting the
minimality of x. Thus, we have clβ(x) = L. By definition, we have σ(L) = x.

3. The range of prime links in the canonical order

In this section, we consider X ordered by the canonical order Ωc unless oth-
erwise stated. A lattice point x ∈ X is minimal if x is the initial element of the
class [x] in Ωc. A prime link is a link which is neither a splittable link nor a
connected sum of two non-trivial links. Let Lp be the subset of L consisting of
prime links. By Lemma (2.6), the lattice point σ(L) is minimal for every prime
link L. The following relations are consequences of the relations in Lemma (2.2)
and useful in finding minimal lattice points:

Lemma (3.1).
1. (Duality relation) For any lattice point x, we have x ∼ δ(x).
2. (Flype relation) For any lattice points x, y with min |x| � 2, min |y| � 2,

any integer m � 1 and ε′, ε = ±1, we have (εm,x, ε′,y) ∼ (εm,y, ε′,x).
For any lattice points x, z, any integers m, y ∈ Z with m � 1, y(y + 1) �= 0 and
ε = ±1, we have

(x, εym, y + 1, y, z) ∼ (x, y + 1, y, ε(y + 1)m, z),

(x, y, ε(y + 1)m,−y, z) ∼ (x,−(y + 1), εym, y + 1, z) .

Proof. For (1), we note that the lattice point δ(x) is obtained by changing
the usual indices 1, 2, . . . ,m of the strings of the associated braid b = β(x) into
m,m− 1, . . . , 1 and then overturning the braid diagram, where m = max |x|+1
by definition. Since this deformation does not change the link type of cl(b) in
→
L, we have x ∼ δ(x) by Definition (2.1). For (2), the closed braid diagrams of
the lattice points (y, εm,x, ε′) and (y, ε′,x, εm) are in the braid-preserving flype
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relation (see J. S. Birman-W. W. Menasco [3]) [To understand this easier, we
number the strings of the closed braid diagram so that the innermost string is
labelled 1]. Hence they are related by the relation ∼. Since these lattice points
are related to (εm,x, ε′,y) and (εm,y, ε′,x), respectively, by a relation in Lemma
(2.2), the desired relation is obtained. For (3), the first equivalence is proved by
induction on m using (5),(6) of Lemma (2.2). The second equivalence follows
from (2),(6) of Lemma (2.2) and the first equivalence as follows:

(x, y, ε(y + 1)m,−y, z) ∼ (x,−(y + 1), y + 1, y, ε(y + 1)m,−y, z)
∼ (x,−(y + 1), εym, y + 1, y,−y, z)
∼ (x,−(y + 1), εym, y + 1, z).

To limit the image σ(Lp) ⊂ X, we introduce the delta set Δ as follows:

Definition (3.2). The delta set Δ is the subset of X consisting of

0(∈ Z), 1n(n � 2)

and all the lattice points x = (x1, x2, . . . , xn) (n � 4) which satisfy all the
following conditions (1)-(8):

(1) x1 = 1, |xn| � 2, n/2 � max |x| � 2 and min |x| � 1.
(2) For every integer k with 1 < k < max |x|, there is an index i such that

|xi| = k.
(3) Every lattice point obtained from x by permuting the coordinates of x

cyclically is not of the form (x′,x′′) where 1 � max |x′| < min |x′′|.
(4) If |xi| > |xi+1|, then |xi| − 1 = |xi+1|.
(5) If |xi| = |xi+1|, then sign(xi) = sign(xi+1).
(6) If |(xi, xi+1, . . . , xi+m+1)| = (k, (k+1)m, k), (km, k+1, k) or (k, k+1, km)

for some k,m � 1 and |xj | �= k for all j < i and j > i + m + 1, then
(xi, xi+1, . . . , xi+m+1) is equal to ±(k,−ε(k + 1)m, k), ±(εkm,−(k + 1), k) or
±(k,−(k + 1), εkm) for some ε = ±1, respectively. Furthermore, if m = 1, then
we have ε = 1.

(7) If |(xi, xi+1, . . . , xi+m+1)| is of the form (k+1, km, k+1) for some k,m � 1,
then (xi, xi+1, . . . , xi+m+1) = ±(k+1, εkm, k+1) for some ε = ±1. Furthermore
if m = 1, then we have ε = −1.

(8) x is the initial element (in the canonical order Ωc) of the set of the lattice
points obtained from every lattice point of ±x, ±xT , ±δ(x) and ±δ(x)T by
permuting the coordinates cyclically.

See Example (6.2) for some small length lattice points in Δ. It follows directly
from the definition of Ωc that the lattice points in Δ smaller than any given lattice
point x ∈ X form a finite set. To analyze the image σ(L) ∈ X of a prime link
L ∈ Lp, we use the following notion:

Definition (3.3). A lattice point x = (x1, x2, . . . , xn) is reducible if it satisfies
one of the following conditions:

1. min |x| = 0 and �(x) > 1.
2. There is an integer k such that min |x| < k < max |x| and k �= |xi| for all i.
3. There is a lattice point of the form (x′,x′′) obtained from x by permuting

the coordinates of x cyclically where 1 � max |x′| < min |x′′|.
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Otherwise, x is irreducible.

In Definition (3.3), we note the following points: In (1), the core x̃ of x has
a shorter length. In (2), the link L = clβ(x) is split. In (3), the closed braid
diagram L = clβ(x) is a connected sum of two closed braid diagrams. Thus, L
is a non-prime link or we have a shorter length lattice point x′ with x′ ∼ x.

Since min |x| = 0 if and only if x = 0 ∈ Z in Δ, we see from (2) and (3) of
Definition (3.2) that every lattice point in Δ is irreducible. The following lemma
is important to our argument:

Lemma (3.4). The lattice point σ(L) ∈ X of any prime link L ∈ Lp belongs
to Δ.

Proof. By Lemma (2.6), σ(L) = x = (x1, x2, . . . , xn) is a minimal lattice point
and L = clβ(x). If n = 1, then x = 0 ∈ Δ (and hence L is a trivial knot). In
fact, if x �= 0, then

x ∼ (x, 0) ∼ (0,x) ∼ 0

by (1),(3) and (6) of Lemma (2.2), contradicting that x is minimal. Assume
that n > 1. If x is reducible, then we see from the remarks following Definition
(3.3) that we have a shorter length lattice point x′ with x′ ∼ x because L is a
prime link except for the trivial knot, a contradiction. Hence x is irreducible.
By the duality relation, we have x′ � x with x′ ∼ x and min |x′| = 1. Since x is
minimal, we have x′ = x and min |x| = 1. By Lemmas (2.2) and (2.4), we must
have x1 = 1. If max |x| = 1, then xi = 1 for all i, since otherwise x has a shorter
length lattice point x′ with x′ ∼ x, a contradiction. Let max |x| > 1. We show
that x has the properties (1)-(8) of Definition (3.2). Using that x is irreducible,
we see that x has (1), (2), (3) except that |xn| � 2. Suppose |xn| = 1. Then
by Lemma (2.2), there is a smaller lattice point x′ with x′ ∼ x, a contradiction.
Thus, the condition |xn| � 2 is also satisfied. If |xi|− 1 > |xi+1|, then the lattice
point x′ obtained from x by interchanging xi and xi+1 has x′ < x and x′ ∼ x
by Lemma (2.2), a contradiction. Hence we have (4). We have also (5) since
otherwise x has a shorter lattice point x′ with x′ ∼ x by Lemma (2.2). For (6),
first let (xi, xi+1, . . . , xi+m+1) = (εkm, ε′(k + 1), ε′′k). When ε′′ = ε′, we obtain
from (3) of Lemma (3.1)

x ∼ x′ = (x′1, x
′
2, . . . , x

′
n)

where (x′i, x
′
i+1, . . . , x

′
i+m+1) = (ε′k, ε′k, ε(k + 1)m) and x′j = xj for all j < i

and j > i + m + 1. Since |x′j | �= k for all j < i and j > i + m + 1, we see
that x′ is reducible, contradicting the minimality of x. Hence ε′′ = −ε′. For
(xi, xi+1, . . . , xi+m+1) = (ε′k, ε′′(k + 1), εkm) or (ε′′k, ε(k + 1)m,−ε′k), we see
that ε′′ = −ε′ by a similar argument using (3) of Lemma (3.1). In particu-
lar when m = 1, we have also ε′ = ε. Thus, we have (6). For (7), we take
(xi, xi+1, . . . , xi+m+1) = (ε′(k + 1), εkm, ε′′(k + 1)). When ε′′ = −ε′, we obtain
from (3) of Lemma (3.1)

x ∼ x′ = (x′1, x
′
2, . . . , x

′
n)

where (x′i, x
′
i+1, . . . , x

′
i+m+1) = (−ε′k, ε(k + 1)m, ε′k) and x′j = xj for all j < i

and j > i +m+ 1. Then x′ < x, a contradiction. Hence ε′′ = ε′. When m = 1



290 AKIO KAWAUCHI

and ε′′ = ε′ = ε, we have

x ∼ x′ = (x′1, x
′
2, . . . , x

′
n),

where (x′i, x
′
i+1, x

′
i+2) = ε(k, k + 1, k) and x′j = xj for j �= i, i + 1, i + 2. Then

x′ < x, a contradiction. Hence ε′ = ε′′ = −ε and we have (7). Since x is
minimal, we have (8). Thus, x = σ(L) is in Δ.

We see from Lemma (2.6) that the length of a prime link (or more generally,
a link without a splittable component of the trivial knot) L in Ωc is nothing but
the minimal crossing number among the crossing numbers of the closed braid
diagrams representing L, so that there are only finitely many prime links with
the same length. This property also holds for every well-order Ω of X such
that �(x) < �(y) means x < y for any x,y ∈ X. There are long histories on
making a table of knots and links, for example, by C. F. Gauss, T. P. Kirkman,
P. G. Tait, C. N. Little, M. G. Haseman, J. W. Alexander-B. G. Briggs, K.
Reidemeister for earlier studies (see [15] for references) and by J. H. Conway
[5], D. Rolfsen [21], G. H. Dowker-M. B. Thistlethwaite [7], H. H. Doll- M. J.
Hoste [6] and Y. Nakagawa [20] for relatively recent studies. In comparison with
these tabulations, our tabulation method has three points which may be noted.
The first point is that every prime link has a unique expression in canonically
ordered lattice points, because Lp is canonically identified with a subset of the
well-ordered set Δ by σ. J. H. Conway’s expression in [5] using basic polyhedra
and algebraic tangles is excellent for enumerating knots and links together with
some global features except for ordering them in a canonical way. C. H. Dowker
and M. B. Thistlethwaite in [7] (for knots) and H. H. Doll- M. J. Hoste in [6] (for
links) assigned integer sequences to oriented, ordered knot and link diagrams for
a tabulation via computer use. As the second point, we can state in the context
of their works that we can specify a unique integer sequence among lots of integer
sequences representing every prime link, because our method specifies a unique
closed braid diagram for every prime link. Using a result of R. W. Ghrist [9],
Y. Nakagawa [20] defined an injection φ from the set of oriented knots into the
set of positive integers so that the value φ(K) reconstructs K. Then the third
point is that we can have a similar result for Lp by our argument. In fact, in the
forthcoming paper [17] (see [18]), we establish an embedding ζ from Δ into the
set Q+ of positive rational numbers so that the value ζ(x) reconstructs x. Thus,
we can identify Lp with a subset of Q+ in the sense that the value ζσ(L) ∈ Q+

reconstructs L. In §6, we explain how to make the table of prime links graded
by the canonical order Ωc and, as a demonstration, we make the table for the
prime links with lengths up to 7.

4. π-minimal links

Let Ki(i = 1, 2, . . . , r) be the components of an oriented link L in S3. A
coloring f of L is a function

f : {Ki| i = 1, 2, . . . , r } −→ Q ∪ {∞}.
By a meridian-longitude system of L on N(L), we mean a pair of a meridian
system m(L) = {mi| i = 1, 2, . . . , r } and a longitude system �(L) = {�i| i =
1, 2, . . . , r } on N(L) such that (mi, �i) is the meridian-longitude pair of Ki on
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N(Ki) for every i. We can specify the orientations of m(L) and �(L) from those
of L and S3 uniquely. Let f(Ki) =

ai

bi
for coprime integers ai, bi for every i where

we take ai = ±1 and bi = 0 when f(Ki) = ∞. Then we have a (unique up to
isotopies) simple loop si on ∂N(Ki) with [si] = ai[mi]+bi[�i] in the first integral
homology H1(∂N(Ki)). We note that if the different choice f(Ki) = −ai

−bi
is

made, then only the orientation of si is changed. The Dehn surgery manifold of
a colored link (L, f) is the oriented 3-manifold

χ(L, f) = E(L)
r⋃

i=1

si=1×∂D2
i
S1 ×D2

i

with the orientation induced from E(L) ⊂ S3, where
⋃

si=1×∂D2
i
denotes a past-

ing of S1×∂D2
i to ∂N(Ki) so that si is identified with 1×∂D2

i . In this construc-
tion, the 3-manifold χ(L, f) ∈ M is uniquely determined from the colored link
(L, f). In this paper, we are particularly interested in the 0-surgery manifolds
that are obtained, that is, in χ(L, f) with f = 0. For every link L ∈ L, we
consider the subset

{L}π = {L′ ∈ L| π1E(L′) = π1E(L)}
of L. Here are some examples on {L}π.

Example (4.1). (1) For every prime knot K ∈ L, we have {K}π = {K} by
the Gordon-Luecke theorem [10] and W. Whitten [22]. However, for example,
if K is the trefoil knot, then {K#K}π = {K#K,K#K̄}, where K̄ denotes the
mirror image of K.

(2) Let L be the Whitehead link obtained from the Hopf link O ∪ O′ by
replacing O′ with the untwisted double D of O′: L = O ∪ D. Furthermore, let
Lm be the link obtained by replacing D with the m-full twist Dm of D along O
for every m ∈ Z where we take L0 = L. Then we have

{L}π = {Lm | m ∈ Z}.
To see this, let L′ ∈ {L}π. Since E(L) is a hyperbolic 3-manifold and hence
π1E(L) = π1E(L′) means E(L) = E(L′) (see W. Jaco [12]), the meridian system
on L′ indicates a coloring f of L. Since the linking number of O and D is 0,
we have f(O) = 1

m and f(D) = 1
n for some integers m,n ∈ Z. If m or n is

not 0, then we can assume that m �= 0 since the components O and D are
interchangeable. If m �= 0, then we obtain Lm by taking m full twists along O.
Since any twisted doubled knot K ′ is non-trivial and χ(K ′, 1

n ) �= S3 for n �= 0,
we must have n = 0, giving the desired result. On this example, one may note
that since the linking number of Lm is 0, the longitude system of Lm coincides
with the longitude system of L in ∂E(L), so that χ(Lm, 0) = χ(L, 0) for every
m.

We consider L as a well-ordered set by the well-order Ω (defined from the
well-order Ω of X in §2). The following definition is needed to choose exactly
one link in the set {L}π for a link L ∈ L:

Definition (4.2). A link L ∈ L is π-minimal if L is the initial element of the
set {L}π ∩ Lp in the well-order Ω.

The following remark gives a reason why we restrict ourselves to a link in S3:



292 AKIO KAWAUCHI

Remark (4.3). For a certain torus knot L ∈ L, there are homotopy torus knot
spaces E′, not the exterior of any knot in S3, such that π1(E

′) = π1E(L) (see J.
Hempel [11], p.152).

Let Lπ be the subset of L consisting of π-minimal links. We note that

Lπ ⊂ Lp ⊂ L.

For the map π : L → G sending a link to the link group, we have the following
lemma:

Lemma (4.4). The restriction π|Lπ : Lπ −→ G is injective.

Proof. For L,L′ ∈ Lπ, assume that π1E(L) = π1E(L′). Since both L and
L′ are π-minimal in {L}π = {L′}π, we have L � L′ and L � L′ by definition.
Hence L = L′.

The following question is related to determining when a given prime link is
π-minimal:

Question (4.5). For L,L′∈Lp, does π1E(L)=π1E(L′) mean E(L)=E(L′) ?

The answer to this question is known to be yes for a large class of prime links,
including all prime knots by W. Whitten [22], and prime links L such that E(L)
does not contain any essential embedded annulus, in particular, hyperbolic links,
by the Johannson Theorem (see W. Jaco [12]). Here is another class of links.

Proposition (4.6). For links L,L′ ∈ L, assume that E(L) is a special Seifert
manifold (that is, a Seifert manifold without essential embedded tori) and that
there is an isomorphism π1E(L) → π1E(L′). Then there is a homeomorphism
E(L) → E(L′).

Proof. By a classification result of G. Burde-K. Murasugi [4], the Seifert struc-
ture of E(L) comes from a Seifert structure on S3. By [12], the orbit surface of
the Seifert manifold E(L) is

(i) the disk with at most two exceptional fibers,
(ii) the annulus with at most one exceptional fiber, or
(iii) the disk with two holes and no exceptional fibers.
In particular, π1E(L), and hence π1E(L′), are groups with non-trivial centers,

so that E(L′) is also a special Seifert fibered manifold with the same orbit data
as E(L). In the case (i), both L and L′ are torus knots and π1E(L) ∼= π1E(L′)
implies L = L′ (confirmed for example by the Alexander polynomials) and hence
E(L) = E(L′). In the cases of (ii) without exceptional fiber and (iii), we have
E(L) = E(L′) = S1 × C for C the annulus or the disk with two holes. Assume
that E(L) and E(L′) have, in the case of (ii), one exceptional fiber. Let (p, q)
and (r, s) be the types of the exceptional fibers of E(L) and E(L′), respectively,
where p, r � 2, (p, q) = 1, (r, s) = 1. Let

π1E(L) = (t, a, b|ta = at, tb = bt, tq = ap) and

π1E(L′) = (t, a, b|ta = at, tb = bt, ts = ar)

be the fundamental group presentations of E(L) and E(L′), respectively, ob-
tained from S1 × C with C the disk with two holes by adjoining a fibered solid
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torus around the exceptional fiber. Let ψ : π1E(L) → π1E(L′) be an isomor-
phism. Considering the central group which is the infinite cyclic group generated
by t, we see that ψ(t) = t±1. Replacing −s with s if necessary, we may have
ψ(t) = t. In the quotient groups, ψ induces an isomorphism

ψ∗ : (a|ap = 1) ∗ (b|−) ∼= (a|ar = 1) ∗ (b|−) .

Hence p = r and ψ(a) = tmaε for some integer m and ε = ±1. Then

tq = ψ(ap) = tmpaεp = tmpaεr = tmp+εs

and hence q ≡ ±s (mod p), which shows the types (p, q) and (r, s) are equivalent.
Thus, there is a fiber-preserving homeomorphism E(L) → E(L′).

Here is a remark on π-minimal links.

Remark (4.7). Let L be the 2-fold connected sum of the Hopf link, and L′

the (3, 3)-torus link. Then we have σ(L) = (12, 22) and σ(L′) = (12, 2, 12, 2) in
the canonical order Ωc (cf. §6). Although E(L) = E(L′) and L < L′, the link
L′ is a π-minimal link. We note that χ(L, 0) = S1 × S2 and χ(L′, 0) = P 3 (the
projective 3-space).

5. Proof of Theorem (1.1)

The following lemma is a folklore result obtained by the Kirby calculus (see
R. Kirby [19]):

Lemma (5.1). The map χ0 : L → M defined by χ0(L) = χ(L, 0) is a surjec-
tion.

Proof. For every M ∈ M, we have a colored link (L, f) with components Ki

(i = 1, 2, . . . , r) such that χ(L, f) = M and f(Ki) = mi is an even integer
for all i (see S. J. Kaplan [13]). We show that there is a link L′

2 with r + 2
components such that χ(L′

2, 0) = χ(L, f). Let L2 = L ∪ LH be the split union
of the oriented link L and an oriented Hopf link LH = O1 ∪ O2 with linking
number Link(O1, O2) = −1. Let f2 be the coloring of L2 obtained from f and

the 0-coloring of LH . If mi �= 0, then we take a fusion knot K ′
i of Ki and

|mi|
2

parallels of sign(mi)O1 and one parallel copy of O2 in the 0-framings. If mi = 0,
then we take K ′

i = Ki. Doing these operations for all i, we obtain from (L2, f2)
a colored link (L′

2, f
′
2) with L

′
2 = (∪r

i=1K
′
i) ∪ LH , a link with r + 2 components

and a coloring f ′
2 such that

f ′
2(K

′
i) = f2(Ki) + 2 Link(

mi

2
O1, O2) = mi −mi = 0.

Since f ′
2|LH = f2|LH = 0, we have f ′

2 = 0. By the Kirby calculus on handle
slides ([19], [15,p.245]), we have χ(L′

2, 0) = χ(L2, f2) =M .

Let Lπ(M) be the subset of Lπ consisting of π-minimal links L such that
χ(L, 0) = M . When we consider a prime link L ∈ L with χ(L, 0) = M to find
a π-minimal link in Lπ(M) for a given M ∈ M, the following points should be
noted: If we take the initial element L0 of the set {L}π, then the link L0 need
not be a prime link, as it is noted in Remark (4.7). If L0 is the initial element of
the prime link subset of {L}π, then L0 is a π-minimal link in Lπ(χ(L0, 0)), but
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in general we cannot guarantee that χ(L0, 0) = M , as we note in the following
example:

Remark (5.2). There are hyperbolic links L,L′ ∈ L such that E(L) = E(L′),
χ(L, 0) �= χ(L′, 0) and {L}π = {L′}π = {L,L′}. Thus, if L < L′ in the well-
order Ω, then the link L is π-minimal, but L is not in L(χ(L′, 0)). To obtain
this example, let LH = O1 ∪ O2 be the Hopf link with coloring f such that
f(O1) = 0, f(O2) = 1. Then χ(LH , f) = S3 and the dual colored link (L′

H , f
′)

of (LH , f) is given by L′
H = LH and f ′(O1) = −1 and f ′(O2) = 0. By Remark 4.7

of [16], we have a normal imitation q : (S3, L∗
H) → (S3, LH) with χ(L∗

H , fq) = S3

and a dual normal imitation q′ : (S3, L′∗
H) → (S3, L′

H), that is a normal imitation
such that E(L∗

H) = E(L′∗
H), q′|E(L∗

H) = q|E(L∗
H) and (L′∗

H , f
′q′) is the dual colored

link of (L∗
H , fq). As it is stated in Remark 4.7 of [16], we can impose on these

normal imitations the following additional properties: namely, L∗
H and L′∗

H are
totally hyperbolic, componentwise distinct links, and every homeomorphism h :
E(L′′) → E(L∗

H) extends to a homeomorphism h+ : (S3, L′′) → (S3, L∗
H) or

h+′ : (S3, L′′) → (S3, L′∗
H). On the other hand, we see that χ(L′

H , 0) = S3

and the dual colored link (LH , f
′′) of (L′

H , 0) is given by f ′′(O1) = −1 and
f ′(O2) = ∞. Furthermore, we can assume from Theorem 4.1(2) of [16] that
χ(L∗

H , 0) and χ(L
∗
H , f

′′q) = χ(L′∗
H , 0) are distinct because 0 and f ′′ are distinct

from ∞, f . Thus, we can take L∗
H and L′∗

H as L and L′, respectively. (We note
that χ(L∗

H , 0) and χ(L′∗
H , 0) are homology 3-spheres, because they are normal

imitations of χ(LH , 0) = χ(L′
H , 0) = S3.)

In spite of Example (5.2), we can show the following lemma:

Lemma (5.3). For every M ∈ M, the set Lπ(M) is an infinite set.

Proof. By Lemma (5.1), we can take a disconnected link L in S3 such that
χ(L, 0)= M . Let M �= S3. By a result of [16], there are infinitely many normal
imitations

qi : (S
3, L∗

i ) −→ (S3, L) (i = 1, 2, 3, . . . )

such that
1. χ(L∗

i , 0) = χ(L, 0) =M ,
2. L∗

i is (totally) hyperbolic, and
3. every homeomorphism h : E(L∗

i ) → E(L′) for a link L′ in S3 extends to a
homeomorphism h+ : (S3, L∗

i ) → (S3, L′).
Then L∗

i is π-minimal by (2) and (3), so that L∗
i ∈ Lπ(M), i = 1, 2, 3, . . . .

ForM = S3, let L be a Hopf link. Then χ(L, 0) = S3 and the dual link L′ of the
Dehn surgery is also the Hopf link. By Remark 4.7 of [16], there are infinitely
many pairs of normal imitations

qi : (S
3, L∗

i ) −→ (S3, L) ,

q′i : (S
3, L′∗

i ) −→ (S3, L′) (i = 1, 2, 3, . . . )

such that
1. χ(L∗

i , 0) = χ(L, 0) = S3 = χ(L′, 0) = χ(L′∗
i , 0),

2. E(L∗
i ) = E(L′∗

i ),
3. L∗

i and L′∗
i are (totally) hyperbolic,

4. every homeomorphism h : E(L∗
i ) → E(L′′) for a link L′′ in S3 extends to

a homeomorphism h+ : (S3, L∗
i ) → (S3, L′′) or h′+ : (S3, L′∗

i ) → (S3, L′′).
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Thus, {L∗
i }π = {L∗

i , L
′∗
i } for every i, and we can take a π-minimal link, say

L∗
i in {L∗

i }π for every i, so that L∗
i ∈ Lπ(S3), i = 1, 2, 3, . . . .

We are in a position to prove the first half of Theorem (1.1).

Proof of Theorem (1.1). Since Lπ(M) �= ∅ by Lemma (5.3), we can take the
initial element LM of Lπ(M) for every M ∈ M. Using the fact that the set
Lπ(M) is uniquely determined by M and Ω, we see that the well-order Ω of X
induces a map

α : M −→ Lπ ⊂ L

sending a 3-manifold M to the link LM . This map α must be injective, because
the 0-surgery manifold χ(α(M), 0) = M . Combining this result with Lemma
(4.4), we obtain the embeddings σα and πα. If a lattice point x = σα(M) is given,
then we obtain the link α(M) = clβ(x) with braid presentation, the 3-manifold
M = χ(clβ(x), 0) with 0-surgery description, and the link group π1E(clβ(x))
with Artin presentation associated with the braid β(σα(M)), completing the
proof of the first half of the theorem. If a link group G = πα(M) with a prime
Artin presentation is given, then we have a braid b such that G is the link
group of the prime link cl(b). Let xi ∈ Δ (i = 1, 2, . . . , n) be the lattice points
smaller than or equal to the lattice point x(b). By Lemma (3.4), there is a
lattice point xi with xi ≈ x(b). By using a solution of the problem in (3), let
xi0 be the smallest lattice point such that clβ(xi0 ) is a prime link and there
is an isomorphism π1E(clβ(xi0 )) → G among xi (i = 1, 2, . . . , n). Then the
link clβ(xi0 ) is π-minimal by this construction. Thus, the desired lattice point
σα(M) = xi0 is obtained, proving (3). If a π-minimal link L with χ(L, 0) = M
is given, we take a braid b representing L. Let xi ∈ Δ (i = 1, 2, . . . , n) be the
lattice points smaller than or equal to x(b). By Lemma (3.4), there is a lattice
point xi with xi ≈ x(b). By using a solution of the problem in (4), we take
the smallest lattice point xi0 such that the link clβ(xi0 ) is a π-minimal link and
χ(clβ(xi0 ), 0) = M . Thus, the desired lattice point σα(M) = xi0 is obtained,
proving (4).

As a matter of fact, we can construct many variants of the embedding α :
M → L. Here are some remarks on constructing other embeddings α.

Remark (5.4). Let Lh ⊂ L be the subset consisting of hyperbolic links L
(possibly with infinite volume) such that L is determined by its exterior E(L)
(that is, E(L) = E(L′) for a link L′ means L = L′), and Lh(M) = {L ∈
Lh |χ(L, 0) = M}. Then we still have an embedding α : M → Lh ⊂ L with
χ0α = 1 such that σα and πα are embeddings by the proof of Theorem (1.1),
using Lh(M) instead of Lπ(M). (For this proof, we use that Lh(S3) contains the
Hopf link and the set Lh(M) for M �= S3 is infinite by Lemma (5.3).) In this
case, the links α(S1 × S2), α(S3) and α(M) for every M �= S1 × S2, S3 are the
trivial knot, the Hopf link, and a hyperbolic link of finite volume, respectively.
If we take the subset L(M) ⊂ L consisting of all links L with χ(L, 0) =M , then
the proof of Theorem (1.1), using L(M) instead of Lπ(M), shows the existence
of an embedding α : M → L with χ0α = 1. However, in this case, the map
πα is no longer injective in the canonical order Ωc. In fact, if K#K is the
granny knot and K#K̄ is the square knot, where K is a trefoil knot, then we



296 AKIO KAWAUCHI

see that α(χ(K#K, 0)) = K#K and α(χ(K#K̄, 0)) = K#K̄. Then we have
πα(χ(K#K, 0)) = πα(χ(K#K̄, 0)), although χ(K#K, 0) �= χ(K#K̄, 0) (see [14,
Example 3.2]).

Remark (5.5). The subsets Lh(M) ⊂ Lπ(M) ⊂ L(M) of L are defined up
to automorphisms of M , but the Kirby calculus of [19] enables us to make
“automorphism-free” definitions of them. In fact, for a given link L, let L(L) the
set of links L′ such that the 0-colored link (L′, 0) is obtained from the 0-colored
link (L, 0) or (L̄, 0) by a finite number of Kirby moves, and then define Lh(L)
and Lπ(L) to be the restrictions of L(L) to the hyperbolic links determined by
the exteriors and the π-minimal links, respectively. R. Kirby’s theorem in [19]
shows that for a link L with χ(L, 0) =M we have the identities

L(L) = L(M), Lh(L) = Lh(M) and Lπ(L) = Lπ(M),

where the right hand sides are the sets defined before for M . Thus, the embed-
ding α is defined “automorphism-freely”. In particular, in any use of Lh(M) or
Lπ(M), the embedding πα is defined “automorphism-freely”. This is the precise
meaning of the statement that the homeomorphism problem on M can be in
principle replaced by the isomorphism problem on G, stated in the introduction.

6. A classification program

In this section we take the canonical order Ωc unless otherwise stated. We
consider the following mutually related three embeddings already established in
Theorem (1.1):

α : M −→ L,

σα : M −→ X,

πα : M −→ G.

Since σα(M) ⊂ Δ and every initial segment of Δ is a finite set, we can attach
(without overlapping) to every 3-manifoldM in M a label (n, i) where n denotes
the length of M and i denotes that M appears as the ith 3-manifold of length
n, so that we have

Mn,1 < Mn,2 < · · · < Mn,mn

for a positive integer mn <∞. Let

α(Mn,i) = Ln,i ∈ L, πα(Mn,i) = Gn,i ∈ G and σα(Mn,i) = xn,i ∈ Δ .

Our classification program is to enumerate the 3-manifolds Mn,i for all n =
1, 2, . . . and i = 1, 2, . . . ,mn together with the data Ln,i, Gn,i and xn,i, but by
(2) of Theorem (1.1) it is sufficient to give the lattice point xn,i, because we can
easily construct Ln,i, Mn,i and Gn,i by Ln,i = clβ(xn,i), Mn,i = χ(Ln,i, 0) and
Gn,i = π1E(Ln,i). We proceed with the argument by induction on the length
n of the lattice points. Since the lattice points of lengths 1, 2, 3 in Δ are 0, 12

and 13, we can do the classification of M with lengths 1, 2, 3 as follows (where
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T 2 ×A S
1 denotes the torus bundle over S1 with monodromy matrix A):

length 1: m1 = 1, M1,1 = S1 × S2, L1,1 = O (the trivial knot),

G1,1 = Z, x1,1 = 0.

length 2: m2 = 1, M2,1 = S3, L2,1 = 211 (the Hopf link),

G2,1 = Z⊕ Z, x2,1 = 12.

length 3: m3 = 1, M3,1 = T 2 ×A S
1, A =

(
1 1
−1 0

)
,

L3,1 = 31 (the trefoil knot), G3,1 = (x, y|xyx = yxy), x3,1 = 13.

To explain our classification of M with any length n � 4, we assume that
the classification of M with lengths � n − 1 is done. Let Δn be the subset of
Δ consisting of lattice points of length n. The first step of our classification
program is as follows:

Step 1. Make an ordered list Δ∗
n ⊂ Δn containing all the minimal lattice

points in Δn.
If we take a list smaller than Δ∗

n, then our work will be simpler. It is recom-
mended to make first the ordered list |Δ∗

n| = {|x| |x ∈ Δ∗
n} taking into account

the property of Ωc that x < y if we have one of the following three conditions: (i)
�(x) < �(y), (ii) �(x) = �(y) and |x|N < |y|N , and (iii) |x|N = |y|N and |x| < |y|.
To establish Step 1, we use the following notion:

Definition (6.1). A lattice point x ∈ X is locally-minimal if it is the initial
element of the subset of [x] consisting of the lattice points obtained from x by
the duality relation, the flype relation, and the moves in Lemmas (2.2) and (2.4)
except the length-increasing moves.

Every minimal lattice point is locally-minimal, but the converse is not true.
It is realistic to take as Δ∗

n a list containing all the locally-minimal lattice points
of Δn. The following list is such a list for Step 1.

Example (6.2). The following list contains all the minimal lattice points of
lengths � 7 in Δ:

Δ∗
1 : 0,

Δ∗
2 : 12,

Δ∗
3 : 13,

Δ∗
4 : 14, (1,−2, 1,−2),

Δ∗
5 : 15, (12, 2,−1, 2), (12,−2, 1,−2),

Δ∗
6 : 16, (13, 2,−1, 2), (13,−2, 1,−2), (12, 2, 12, 2),

(12, 2, (−1)2, 2), (12,−2, 12,−2), (12,−2, 1, (−2)2),

(1,−2, 1,−2, 1,−2), (1,−2, 1, 3,−2, 3),

Δ∗
7 : 17, (14, 2,−1, 2), (14,−2, 1,−2),

(13, 2, 12, 2), (13, 2, (−1)2, 2), (13,−2, 12,−2),

(13,−2, (−1)2,−2), (13, 2,−1, 22), (13,−2, 1, (−2)2),
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(12,−2, 12, (−2)2), (12,−2, 1,−2, 1,−2),

(12, 2,−1,−3, 2,−3), (12,−2, 1, 3,−2, 3), (1,−2, 1,−2, 3,−2, 3),

(1,−2, 1, 3, 22, 3), (1,−2, 1, 3, (−2)2, 3).

Let Lp
n be the subset of Lp consisting of prime links of length n. Let D∗

n

be the set consisting of the link diagrams clβ(x) for all x ∈ Δ∗
n. By Lemma

(3.4), we observe that if L = clβ(x) ∈ Lp
n for a lattice point x ∈ X, then there is

a minimal lattice point x′ ∈ Δn with x′ � x such that L = clβ(x′). This implies
that the set Lp

n consists of the prime links represented by link diagrams of D∗
n

not belonging to L
p
j (j = 1, 2, . . . , n − 1) (which are assumed to have already

constructed by our inductive hypothesis). Step 2 is the following procedure:

Step 2. Construct Lp
n from D∗

n.

The link clβ(x) of a lattice point x of length n such that x̃ = x admits a
braided link diagram with crossing number n. Thus, if a list of prime links with
crossing numbers up to n is available, then this procedure will not be so difficult.
In the following example, our main work is only to identify the lattice points of
length n � 7 in Example (6.2) with the prime links in Rolfsen’s table [21].

Example (6.3). The following list gives the elements of the sets Lp
n for n � 7

together with the corresponding lattice points.
L
p
1 : O σ(O) = 0.

L
p
2 : 221 σ(221) = 12.

L
p
3 : 31 σ(31) = 13.

L
p
4 : 421 < 41
σ(421) = 14,
σ(41) = (1,−2, 1,−2).

L
p
5 : 51 < 521
σ(51) = 15,
σ(521) = (12,−2, 1,−2).

L
p
6 : 621 < 52 < 62 < 633 < 631 < 63 < 632 < 623
σ(621) = 16,
σ(52) = (13, 2,−1, 2),
σ(62) = (13,−2, 1,−2),
σ(633) = (12, 2, 12, 2),
σ(631) = (12,−2, 12,−2),
σ(63) = (12,−2, 1, (−2)2),
σ(632) = (1,−2, 1,−2, 1,−2),
σ(623) = (1,−2, 1, 3,−2, 3).

L
p
7 : 71 < 622 < 721 < 727 < 728 < 724 < 722 < 725 < 726 < 61 < 76 < 77 < 731
σ(71) = 17,
σ(622) = (14, 2,−1, 2),
σ(721) = (14,−2, 1,−2),
σ(727) = (13, 2, 12, 2),
σ(728) = (13, 2, (−1)2, 2),
σ(724) = (13,−2, 12,−2),
σ(722) = (13,−2, 1, (−2)2),
σ(725) = (12,−2, 12, (−2)2),
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σ(726) = (12,−2, 1,−2, 1,−2),
σ(61) = (12, 2,−1,−3, 2,−3),
σ(76) = (12,−2, 1, 3,−2, 3),
σ(77) = (1,−2, 1,−2, 3,−2, 3)
σ(731) = (1,−2, 1, 3, (−2)2, 3).

The following lattice points of Example (6.2):
(12, 2,−1, 2), (12, 2, (−1)2, 2), (13,−2, (−1)2,−2), (13, 2,−1, 22), (1,−2, 1, 3,

22,3), are removed from the list, since these links are seen to be 421, 6
3
3, 7

2
7, 6

2
3, 6

3
3,

respectively. The links 72, 73, 74, 75, 7
2
3 in Rolfsen’s table of [21] are also excluded

from the list since these links turn out to have lengths greater than 7. In Steps
3 and 4, powers of low dimensional topology techniques will be seriously tested.

Step 3. Construct the subset Lπ
n ⊂ Lp

n by removing every link L ∈ Lp
n such

that there is a link L′ ∈ L
p
j (j � n) with L′ < L and π1E(L) = π1E(L′).

By construction, we see that the set Lπ
n consists of π-minimal links of length n.

Among the links in Example (6.3), we see that E(421) = E(727) and E(521) = E(728)
by taking one full twist along a component and that except these identities, all
the links have mutually distinct link groups by using the following lemma on the
Alexander polynomials:

Lemma (6.4). Let A(t1, t2, . . . , tr) and A
′(t1, t2, . . . , tr) be the Alexander poly-

nomials of oriented links L and L′ with r components. If there is a homeomor-
phism E(L) → E(L′), then there is an automorphism ψ of the multiplicative free
abelian group 〈t1, t2, . . . , tr〉 with basis ti (i = 1, 2, . . . , r) such that

A′(t1, t2, . . . , tr) = ±ts11 ts22 . . . tsrr A(ψ(t1), ψ(t2), . . . , ψ(tr))

for some integers si (i = 1, 2, . . . , r).

The proof of this lemma is direct from the definition of the Alexander poly-
nomial(see [15]). Thus, we obtain the following example:

Example (6.5). We have Lπ
n = Lp

n for n � 6 and

Lπ
7 : 71 < 622 < 721 < 724 < 722 < 61 < 725 < 726 < 76 < 77 < 731 .

Let Mn be the subset of M consisting of 3-manifolds of length n, and LM

n the
subset of Lπ

n by removing a π-minimal link L ∈ Lπ
n such that there is a π-minimal

link L′ ∈ Lπ
j (j � n) with L′ < L and χ(L, 0) = χ(L′, 0). The following step is

the final step of our classification program:
Step 4. Construct the set LM

n .
Let Li (i = 1, 2, . . . , r) be the π-minimal links in the set LM

n , ordered by Ωc.
Then we have Mn,i = χ(Li, 0), α(Mn,i) = Li (i = 1, 2, . . . , r). An important
observation is that every 3-manifold in M appears once asMn,i without overlaps.
As we shall show later, the 0-surgery manifolds of the π-minimal links in Example
(6.5) are mutually non-homeomorphic, so that we have the complete list of 3-
manifolds in M with length � 7 as stated in Example (6.6).

Example (6.6).
M1,1 = χ(O, 0), x1,1 = 0,
M2,1 = χ(221, 0), x2,1 = 12,
M3,1 = χ(31, 0), x3,1 = 13,
M4,1 = χ(421, 0), x4,1 = 14,
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M4,2 = χ(41, 0), x4,2 = (1,−2, 1,−2),
M5,1 = χ(51, 0), x5,1 = 15,
M5,2 = χ(521, 0), x5,2 = (12,−2, 1,−2),
M6,1 = χ(621, 0), x6,1 = 16,
M6,2 = χ(52, 0), x6,2 = (13, 2,−1, 2),
M6,3 = χ(62, 0), x6,3 = (13,−2, 1,−2),
M6,4 = χ(633, 0), x6,4 = (12, 2, 12, 2),
M6,5 = χ(631, 0), x6,5 = (12,−2, 12,−2),
M6,6 = χ(63, 0), x6,6 = (12,−2, 1, (−2)2),
M6,7 = χ(632, 0), x6,7 = (1,−2, 1,−2, 1,−2),
M6,8 = χ(623, 0), x6,8 = (1,−2, 1, 3,−2, 3).
M7,1 = χ(71, 0), x7,1 = 17,
M7,2 = χ(622, 0), x7,2 = (14, 2,−1, 2),
M7,3 = χ(721, 0), x7,3 = (14,−2, 1,−2),
M7,4 = χ(724, 0), x7,4 = (13,−2, 12,−2),
M7,5 = χ(722, 0), x7,5 = (13,−2, 1, (−2)2),
M7,6 = χ(725, 0), x7,6 = (12,−2, 12, (−2)2),
M7,7 = χ(726, 0), x7,7 = (12,−2, 1,−2, 1,−2),
M7,8 = χ(61, 0), x7,8 = (12, 2,−1,−3, 2,−3),
M7,9 = χ(76, 0), x7,9 = (12,−2, 1, 3,−2, 3),
M7,10 = χ(77, 0), x7,10 = (1,−2, 1,−2, 3,−2, 3),
M7,11 = χ(731, 0), x7,11 = (1,−2, 1, 3, (−2)2, 3).
To see that the 3-manifolds in Example (6.6) are mutually non-homeomorphic,

we first check their first integral homology. It is computed as follows:
(1) H1(M) = Z for M = M1,1, M3,1, M4,2, M5,1, M6,2, M6,3, M6,6, M7,1,

M7,8, M7,9, M7,10.
(2) H1(M) = Z⊕ Z for M =M5,2, M7,4, M7,7.
(3) H1(M) = Z2 for M =M6,4, M6,5, M7,11.
(4) H1(M) = Z⊕ Z⊕ Z for M =M6,7.
(5) H1(M) = Z2 ⊕ Z2 for M =M4,1, M6,8, M7,6.
(6) H1(M) = Z3 ⊕ Z3 for M =M6,1, M7,2.
(7) H1(M) = 0 for M =M2,1, M7,3, M7,5.
For (1), since the Alexander polynomial of a knot K is an invariant of the

homology handle χ(K, 0), we see that the homology handles of (1) are mutually
distinct. For (2), since the Alexander polynomial of an oriented link L with
all the linking numbers 0 is also an invariant of χ(L, 0) in the sense of Lemma
(6.4), these 3-manifolds are mutually distinct. For (3), we note that M6,4 =
P 3 the projective 3-space, M6,5 = χ(31,−2) (where we take 31 as the positive
trefoil knot) and M7,11 = χ(41,−2). We take the connected double covering

spaces M̃ of M = M6,4, M6,5 and M7,11. The homology H1(M̃) for M = M6,4,
M6,5 or M7,11 is, respectively, computed as 0, Z3, Z5, showing that these 3-
manifolds are mutually distinct. For (4), we have nothing to prove. Note that
M6,7 = T 3. For (5), we compare the first integral homologies of the three kinds
of connected double coverings of everyM =M4,1, M6,8, M7,6. ForM =M4,1, it

is the quaternion space Q and we have H1(M̃) = Z4 for every connected double

covering space M̃ of M . For M = M6,8, we have H1(M̃ ;Z3) = Z3 for every

connected double covering space M̃ of M . On the other hand, for M = M7,6,
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we have H1(M̃) = Z20 and H1(M̃ ;Z3) = 0 for some connected double covering

space M̃ of M . Thus, these 3-manifolds are mutually distinct. For (6), we use
the following lemma:

Lemma (6.7). Let H = Zp ⊕ Zp for an odd prime p > 1. If the linking form
� : H × H −→ Q/Z is hyperbolic, then the hyperbolic Zp-basis e1, e2 of H is
unique up to unit multiplications of Zp.

Proof. Let e′1, e′2 be another hyperbolic Zp-basis of H . Let e′i = ai1e1 + ai2e2.
Then

0 = �(e′i, e
′
i) =

2ai1ai2
p

(mod 1),

1

p
= �(e′1, e

′
2) =

a11a22 + a12a21
p

(mod 1).

By these identities, we have either e′1 = a11e1 and e′2 = a22e2 with a11a22 = 1 in
Zp or e′1 = a12e2 and e′2 = a21e1 with a12a21 = 1 in Zp.

By Lemma (6.7), there are just two connected Z3-coverings M̃ of every M =
M6,1,M7,2 associated with a hyperbolic direct summand Z3 ofH1(M) = Z3⊕Z3.

In other words, the covering M̃ is associated with a Z3-covering covering of the
exterior E(L) lifting one torus boundary component trivially, where L = 621, 6

2
2.

Since the link L is interchangeable, it is sufficient to check one covering for
each M . For M = M6,1 we have H1(M̃) = Z9 ⊕ Z3 and for M = M7,2 we

have H1(M̃) = Z ⊕ Z. Thus, these 3-manifolds are distinct. For (7), the Dehn
surgery manifolds χ(721, 0) and χ(722, 0) are the boundaries of Mazur manifolds
(which are normal imitations of S3) and identified with the Brieskorn homology
3-spheres Σ(2, 3, 13), Σ(2, 5, 7) by S. Akbult and R. Kirby [1]. Hence, we have
M2,1 = S3, M7,3 = Σ(2, 3, 13), and M7,5 = Σ(2, 5, 7), and these 3-manifolds
are mutually distinct. Thus, we see that the 3-manifolds of Example (6.6) are
mutually distinct.

For the Poincaré homology 3-sphere Σ = Σ(2, 3, 5), the prime link α(Σ) must
have at least 10 components. [To see this, assume that α(Σ) has r components.
Using that Σ is a homology 3-sphere and Σ = χ(α(Σ), 0), we see that Σ bounds
a simply connected 4-manifold W with an r× r non-singular intersection matrix
whose diagonal entries are all 0. Since the Rochlin invariant of Σ is non-trivial,
it follows that the signature of W is an odd multiple of 8 and r is even. Hence
r � 8. If r = 8, then the intersection matrix is a positive or negative definite
matrix, which is not the case. Thus, we have r � 10.] Since χ(31, 1) = Σ for the
positive trefoil knot 31, an answer to the following question on Kirby calculus
(see [13], [19], [21]) will help in understanding the link α(Σ):

Question (6.8). How is Ωc understood among colored links?

We note that the cardinal numbers ln = #Lp
n and mn = #Mn are indepen-

dent of a choice of any well-order Ω of X with the condition that any lattice
points x,y with �(x) < �(y) has the order x < y. A sequence of non-negative
integers kn (n = 1, 2, . . . ) is a polynomial growth sequence if there is an integral
polynomial f(x) in one variable x such that kn � f(n) for all n. Concerning the
classifications of Lp and M, the following question may be of interest:
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Question (6.9). Are the sequences ln and mn (n = 1, 2, . . . ) polynomial
growth sequences?

Let pn be the number of prime links with the crossing number n. C. Ernst
and D.W. Sumners [8] showed that the sequence pn (n = 0, 1, 2, . . . ) is not any
polynomial growth sequence by counting the numbers of 2-bridge knots and links.

7. Notes on the oriented version and oriented 3-manifold invariants

Let
→
M be the set of closed connected oriented 3-manifolds. Using the injection

→
σ :

→
L → X, we have a well-order in

→
L induced from a well-order Ω in X and also

denoted by Ω. Writing
→
Lπ = ι−1Lπ ⊂

→
L,

we can show that the embedding α : M → L in Theorem (1.1) lifts to an
embedding

→
α :

→
M −→

→
L

such that χ0
→
α = 1 and

→
α(−M) = −→

α(M) for every M ∈
→
M, where the map

χ0 :
→
L →

→
M denotes the oriented version of the 0-surgery map χ0 : L → M. To

see this, for every M ∈
→
M, we note that the link L0 = clβσα(M) is canonically

oriented and χ(L0, 0) = ±M , where −M denotes M with opposite orientation.

If M = −M , then we define
→
α(M) = L0. If M �= −M , then we define

→
α(M) so

as to satisfy

{→α(M),
→
α(−M)} = {L0,−L̄0} and χ(

→
α(M), 0) =M.

As a related question, it would be interesting to know whether or not there is

an oriented link L ∈
→
L with L = −L̄ and χ(L, 0) = M for every M ∈

→
M with

M = −M .
For an algebraic system Λ, an oriented 3-manifold invariant in Λ is a map

→
M → Λ and an oriented link invariant in Λ is a map

→
L → Λ. Let Inv(

→
M,Λ)

and Inv(
→
L,Λ) be the sets of oriented 3-manifold invariants and oriented link

invariants in Λ, respectively. Then we have χ0
→
α = 1. We consider the following

sequence

Inv(
→
M,Λ)

χ#
0−→ Inv(

→
L,Λ)

→
α

#

−→ Inv(
→
M,Λ)

of the dual maps
→
α

#
and χ#

0 of
→
α and χ0. Since the composite

→
α

#
χ#
0 = 1, we

see that χ#
0 is injective and

→
α

#
is surjective, both of which imply that every

oriented 3-manifold invariant can be obtained from an oriented link invariant.

More precisely, if I is an oriented 3-manifold invariant, then χ#
0 (I) is an oriented

link invariant which takes the same value I(M) on the subset
→
L(M) = {L ∈

→
L|χ(L, 0) =M} for every M ∈

→
M. Conversely, if J is an oriented link invariant,

then
→
α

#
(J) is an oriented 3-manifold invariant and every oriented 3-manifold

invariant is obtained in this way. Here is an example creating an oriented 3-
manifold invariant from an oriented link invariant when we use the right inverse
→
α of χ0, defined by the canonical order Ωc.
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Example (7.1). We denote by V a Seifert matrix associated with a connected
Seifert surface of the link (see [15]). Then the signature sign(V + V ′) and
the determinant det(tV − V ′) give oriented link invariants, that is, the sig-

nature invariant λ ∈ Inv(
→
L,Z) and the (one variable) Alexander polynomial

A ∈ Inv(
→
L,Z[t, t−1]) (an oriented link invariant up to multiples of ±tm, m ∈ Z).

For the right inverse
→
α of χ0 using the canonical order Ωc, we have the oriented

3-manifold invariants

λ→
α
=

→
α

#
(λ) ∈ Inv(

→
M,Z) and A→

α
=

→
α

#
(A) ∈ Inv(

→
M,Z) .

For some 3-manifolds, these invariants are calculated as follows:

λ→
α
(S3) = −1, A→

α
(S3) = t− 1 .(7.1.2)

λ→
α
(±Q) = ∓3, A→

α
(±Q) = (t− 1)(t2 + 1) (we note that Q �= −Q) .(7.1.3)

λ→
α
(P 3) = −4, A→

α
(P 3) = (t− 1)2 .(7.1.4)

λ→
α
(T 3) = 0, A→

α
(T 3) = (t− 1)4 .(7.1.5)
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SPLITTINGS OF S
4

W.B. RAYMOND LICKORISH

A miniscule tribute to the pervasive mathematical influence of Fico
González Acuña in appreciation of a long-standing friendship.

Abstract. It is shown that any two groups, with isomorphic abelianisa-
tions and finite balanced presentations, can be achieved as the fundamental
groups of the two sides of a splitting of the 4-sphere by a 3-manifold. Fur-
thermore here the two sides have handle presentations that produce the
given group presentations up to Andrews-Curtis equivalence.

1. Introduction

In a previous paper [4] a method was developed of constructing, in the 4-
sphere S

4, contractible bounded 4-manifolds for which the complement had a
given perfect balanced fundamental group. It was noted that the contractible
manifold so formed consisted of 1-handles and 2-handles added to a 4-ball so that
the resulting presentation of the trivial group could be trivialised by Andrews-
Curtis moves. Thus the contractible manifold could also be doubled to form
S
4, so giving another distinct embedding of the manifold in S

4. The method
is here explored for groups other than the trivial group. Any pair of groups
with balanced presentations, that give isomorphic groups when abelianised, are
obtained as the fundamental groups of the two halves of some splitting of S4

by a 3-manifold. These two 4-manifolds have handle structures consisting of
1-handles and 2-handles added to a 4-ball and the resulting group presentations
are Andrews-Curtis equivalent (but not in general equal to) the original pre-
sentations. If one reverts to the consideration of the trivial group one can for
example achieve, up to Andrews-Curtis equivalence, the same presentation of
the trivial group on either side of a splitting of S4. Doubling would also show
this to be the case if the Andrews-Curtis conjecture were true. In one particular
example, of a presentation which might be a counter example to this conjecture,
the same manifold can be achieved on each of the two sides of a splitting. This
will be explained below. If, as in this example, an embedding of a contractible
manifold in S

4 has a contractible complement, it is not easy to prove that there
is any other inequivalent embedding (that is, that the manifold knots in S

4).
C.Livingston has one isolated example [5] of two such embeddings. When the
complement is not simply connected he can, for carefully chosen groups, con-
struct infinite sequences of embeddings. His method is to regard the 4-manifold
as a regular neighbourhood of a contractible 2-complex in S

4 and then change

2000 Mathematics Subject Classification: Primary 57M05; Secondary 57M25 .
Keywords and phrases: 4-manifold in the 4-sphere, group presentation, Andrews-Curtis

conjecture, matrix moves .
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the embedding of that complex by taking its connected sum, in the middle of
a 2-cell, with a knotted S

2 in S
4. After taking due care with the construction,

distinct fundamental groups for the complement result. If the complement is
simply connected no change can ever occur in the fundamental group of the
complement by this method. In a final remark in this paper it is shown that for
certain knots of S2 in S

4 the ‘new’ embedding so constructed is actually isotopic
to the original one.

The author thanks the Department of Mathematics and Statistics at the Uni-
versity of Melbourne for its hospitality whilst this paper was being written.

2. Group presentations

Firstly a few simple remarks, comparing matrix presentations of abelian groups
with arbitrary presentations of (probably) non-abelian groups, will be recorded.
Suppose a free abelian group E, with additive notation, is freely generated by
e1, e2, . . . , em. The quotient group E/{ ∑m

j=1 Aijej : i = 1, 2, . . . , n } is said to

be presented by the n × m integer matrix A = {Aij}. If A is changed, by a
sequence of matrix moves of the following types, it is easy to see that there is no
change, up to isomorphism, in the group presented by A.

Matrix moves:
(a) Add the ith row (or column) to the jth row (or column).
(b) Change the sign of the ith row (or column).
(c) Permute the rows (or columns).

(d) Enlarge the matrix A to the matrix

(
A 0
0 1

)
.

Note that (b) and (c) are self inverse, that the inverse of (a) is just a com-
bination of moves of types (a) and (b), but that the inverse of (d) cannot be
achieved by a combination of these matrix moves.

Suppose now that 〈a1, a2, . . . , am : r1, r2, . . . , rn〉 is a presentation of a (not
necessarily abelian) group in terms of generators and relators. There are various
sorts of moves that can be performed on the presentation which do not change the
group presented. Amongst these are the moves of J.J. Andrews and M.L. Curtis
(sometimes called ‘extended Nielsen transformations’ or ‘Q-transformations’ or
‘Markov operations’) that are moves of the following types and their inverses.

Andrews-Curtis moves:
(i) Change rj to rirj where j �= i.

(ii) Change ri to r−1
i .

(iii) Add a new generator am+1 and a new relator am+1w where w is a word
in a1, a2, . . . , am.

(iv) Change ri to riaja
−1
j or ria

−1
j aj .

(v) Change ri to a cyclic permutation of ri.
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A presentation P of any group G, with multiplicative notation, obviously
induces a presentation of the abelianisation of G. This is obtained by allowing
the symbols to commute, cancelling all occurrences of a generator and its inverse
in the same relator, and then recording the generators’ exponents in each relator
as a matrix A.

Lemma (2.1). Suppose that P is a finite presentation of group G and A is
the corresponding presentation matrix of its abelianisation G/[G,G]. If A is
changed to B by a matrix move (as described above) then P can be changed by
Andrews-Curtis moves to a presentation Q so that B is the matrix corresponding
to Q.

Proof. Adding the ith row to the jth row corresponds to the Andrews-Curtis
move of changing rj to rirj . The analogue for columns is a little harder to
describe but it just corresponds to the geometric idea of sliding a 1-handle over
a 1-handle: Use (iii) to add a new generator am+1 and relator am+1aja

−1
i . Then

use (i) and (v) to change every occurrence of ai in r1, r2, . . . , rn to an occurrence
of am+1aj , then remove ai and relator am+1aja

−1
i using the inverse of (iii) and

finally relabel am+1 as ai. The corresponding matrix move is that of adding the
ith column to the jth column. Any relabelling of the generators throughout the
presentation can be achieved by using the same idea, with the new relator being
am+1ai

−1, to change every occurrence of ai to one of am+1 and then to remove
ai. Thus moves inducing permutation of matrix columns and the sign change
of a column can be created. Consideration of the remaining matrix moves is
straightforward.

The classification theorem for finitely generated abelian groups asserts that
if an abelian group is presented by a square matrix A, then A can be changed
by a sequence of the above matrix moves to a ‘canonical’ diagonal matrix Δ
which has only prime powers, ones or zeros on the diagonal. Furthermore, up
to a reordering, the non-unit elements on the diagonal of such a Δ are uniquely
determined by the isomorphism class of the group presented.

Corollary (2.2). Suppose that P is a balanced finite presentation of a group
G and B is some square presentation matrix of its abelianisation G/[G,G]. Then
P can be changed by Andrews-Curtis moves to a presentation Q for which the

corresponding matrix is

(
B 0
0 Ir

)
for some r ≥ 0, where Ir is the identity r × r

matrix.

Proof. The word ‘balanced’ means that P has the same number of generators
as relators. Let the matrix A correspond to P . By the above mentioned classi-
fication theorem, each of A and B can be changed by matrix moves to become
the same diagonal matrix Δ. Thus, by matrix moves, A can be changed to Δ

which can be changed to

(
B 0
0 Ir

)
, for some r ≥ 0, by inverting the moves that

change B to Δ but refusing to implement an inverse of a type (d) move. Then
each move can, by lemma (2.1), be imitated in the presentation P .
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Note that Andrews-Curtis moves of type (iv) have not so far actually been
used in any proof. Of course they could be regarded as intimately related to the
process of producing the matrix A from a presentation P .

3. 4-manifolds corresponding to group presentations

Next is the main result about splitting S
4 into two handlebodies each of a

0-handle, 1-handles and 2-handles to obtain designated fundamental groups for
these two parts.

Theorem (3.1). Let P1 and P2 be balanced presentations of groups G1 and G2

having the property that G1/[G1, G1] ∼= G2/[G2, G2]. Then S
4 can be separated

(by a closed connected 3-manifold) into 4-manifolds M1 and M2 with π1(M1) ∼=
G1 and π1(M2) ∼= G2. Each of M1 and M2 has a handle structure consisting
of one 0-handle, n 1-handles and n 2-handles, for some n, with the associated
group presentation for M1 being Andrews-Curtis equivalent to P1 and that for
M2 being Andrews-Curtis equivalent to P2.

Proof. Let P1 = 〈a1, a2, . . . , an : r1, r2, . . . , rn〉. Let P1 correspond to the
n × n matrix C presenting the abelian group G1/[G1, G1]. The transpose ma-
trix Cτ also presents this group as, for example, follows from the symmetry
with respect to rows and columns of the above mentioned classification theo-
rem. Regard Cτ as a presentation matrix for G2/[G2, G2]. By corollary (2.2)
there is, for some r ≥ 0, a presentation Π = 〈α1, α2, . . . , αn+r : ρ1, ρ2, . . . , ρn+r〉,
Andrews-Curtis equivalent to P2, so that

(
Cτ 0
0 Ir

)
is the presentation matrix

of G2/[G2, G2] corresponding to Π. Let A =

(
C 0
0 Ir

)
. Add to P1 generators

an+1, an+2, . . . , an+r and relators rn+1 = an+1, rn+2 = an+2, . . . , rn+r = an+r

so that now A is the matrix corresponding to this new P1. Suppose that in the
relator ri there are ni,j

+ occurrences of the symbol aj and ni,j
− of a−1

j . Similarly

suppose that in ρj there are νi,j+ occurrences of the symbol αi and νi,j− of α−1
i .

Then ni,j
+ − ni,j

− = Aij = νi,j+ − νi,j− . If ni,j
+ > νi,j+ alter Π by changing ρj to

ρj(αiα
−1
i )n

i,j
+ −νi,j

+ . If ni,j
+ < νi,j+ alter P1 by changing ri to ri(aja

−1
j )ν

i,j
+ −ni,j

+ .
These are, of course, Andrews-Curtis moves. By repeating this for every pair
(i, j), it may be assumed that ni,j

+ = νi,j+ and hence ni,j
− = νi,j− for all (i, j).

Let S
4 = B1 ∪ B2, the union of two 4-balls intersecting in their common

boundary S3. In S3 construct a link as follows. Let D1, D2, . . . , Dn+r and
Δ1,Δ2, . . . ,Δn+r be mutually disjoint oriented discs. For each pair (i, j) for

1 ≤ i, j ≤ n + r take a collection Hi,j
+ of ni,j

+ copies of the positive Hopf link

of two ordered, oriented components and a collection Hi,j
− of ni,j

− copies of the
negative, ordered, oriented Hopf link. Each of these Hopf links is to be in a
(small) ball in which each of the two components bounds an oriented disc meeting
the other component in one point. These balls are to be all mutually disjoint
and disjoint from the original discs. Now join the boundary of Δi once to the
first component of each link in

⋃
j(H

i,j
+ ∪Hi,j

− ) with (long thin) bands. Do this in
the order around ∂Δi specified by the relator ri. When aj occurs in the relator

connect to the first component of one of the links in Hi,j
+ , when a−1

j occurs in the
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relator connect to the first component of one of the links in Hi,j
− . Similarly when

α±1
i occurs in ρj connect the boundary of Dj to the second components of Hi,j

± .

For an occurrence of αi any unused second component of any Hopf link in Hi,j
+

may be selected and similarly for α−1
i . It can easily be ensured that all the bands

used are mutually disjoint and that they respect all orientations (but there is
enormous scope for varying the route taken by a band). Note that the numbers

of links in the Hi,j
± have been chosen so that each link in each Hi,j

± has its first
component banded to Δi and its second component banded to Dj . This banding
process changes the original discs to two new collections D′

1, D
′
2, . . . , D

′
n+r and

Δ′
1,Δ

′
2, . . . ,Δ

′
n+r, each of mutually disjoint discs, by adding to the original discs

the bands and the discs spanning the components of the Hopf links.
Now let S3 be embedded in a standard way in S

4, separating S
4 into two 4-

balls B1 and B2. From the 4-ball B1 remove neighbourhoods of n+ r standard
properly embedded discs with boundaries ∂D′

1, ∂D
′
2, . . . , ∂D

′
n+r and add them

to B2. Take these discs to be the D′
i pushed a little into B1. This creates from

B1 a ball with (n + r) 1-handles added (a technique fully described in [3]) and
changes B2 into a 4-ball with 2-handles added. Next, similarly, remove from B2

neighbourhoods of (n + r) standard properly embedded discs with boundaries
∂Δ′

1, ∂Δ
′
2, . . . , ∂Δ

′
n+r and add them to B1. Then each of B1 and B2 has been

changed into a ball with (n + r) 1-handles and (n + r) 2-handles; the resulting
manifolds are to be denoted M1 and M2.

The presentation of π1(M1) coming from the handle decomposition is obtained
by labelling each 1-handle with a generator and taking a relator for each 2-handle.
Thus, allocate the symbol ai to the 1-handle of M1 corresponding to D′

i and let
rj be the relator from the 2-handle corresponding to Δ′

j . Then rj has an entry

a±1 for every signed point of ∂Δ′
j ∩D′

i taken in order along ∂Δ′
j . Of course the

construction has been engineered so that this rj is indeed the jth relator of the
presentation P1. Similarly the presentation for π1(M2) coming from the handle
structure is indeed the presentation Π.

4. The trivial group

The general idea of the above proof was used in [4] to show that the 4-sphere
can be split so that π1(M1) is any given perfect group G with a balanced presen-
tation and M2 is contractible. Of course G/[G,G] is then the trivial group so the
trivial presentation could be used for P2. This allowed the proof in [4] to be, in
several ways, simpler than that given above. In this context, when π1(M2) is to
be trivial, the present theorem allows things to be chosen so that the presentation
of π1(M2) coming from its handle structure belongs to any given Andrews-Curtis
equivalence class of presentations of the trivial group. Of course, Andrews and
Curtis conjectured there to be only one such class although R.E.Gompf [2] makes
the conjecture (based on much experience but little evidence) that there are in-
finitely many such classes.

Example (4.1). 〈a1, a2 : a−1
2 a−2

1 a2a
3
1, a

−1
1 a−2

2 a1a
3
2〉. This is a famous presen-

tation of the trivial group which is often conjectured to be inequivalent to the
trivial presentation by Andrews-Curtis moves. In the notation of the above proof,
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the ni,j
+ and ni,j

− are the terms of the symmetric matrices

(
3 1
1 3

)
and

(
2 1
1 2

)
.

If this presentation is taken for P1 and P2 the theorem can be applied to split
S
4 into two contractible manifolds M1 and M2. However the symmetry of the

matrices means that none of the Andrews-Curtis moves used in the proof is nec-
essary. Thus M1 and M2 will have handle presentations that correspond exactly
to the the given (unmoved) group presentation. After a little experimentation
it can be seen that, in this case, M1 and M2 can be taken to be homeomorphic
manifolds.

2

2 a

αa

α 1

1

Consider for example the four simple closed curves, labelled a1, a2, α1 and
α2, shown in the diagram. These bound the discs D′

1, D
′
2, Δ

′
1 and Δ′

2 of the
proof of the theorem. Reading off the word in a1 and a2 from the boundaries of
Δ′

1 and Δ′
2 does give the required presentation. However, there is a π-rotation of

S3, about the ‘horizontal’ bisector of the diagram, which sends a1 to α1 and a2
to α2. There is then an orientation reversing involution of S4 which interchanges
M1 and M2. (Of course, the other obvious symmetry, from a rotation about an
axis perpendicular to the diagram, gives an involution preserving M1 and M2

setwise.) It is not known whether M1× I is the 5-ball (it is if the presentation is
Andrews-Curtis equivalent to a trivial presentation). If it is, then S

4 = ∂(M1×I)
has an orientation reversing involution that interchangesM1×0 andM1×1 and is
fixed on ∂

(
M1 × 1

2

)
. It does not seem likely that the involution of S4 constructed

in the example is equivalent to such a homeomorphism, but it does show that
M1 can be glued to a copy of itself to give S

4.

Example (4.2). In [5] examples were given in which a contractible 4-manifold
M was embedded in S

4 in infinitely many different knotted ways as distinguished
by the fundamental group of the complement of the embeddings. The idea was
to add to the interior of a disc core of a 2-handle of M a knotted S

2 in S
4

in the manner of connected sums. Careful choices enabled the examples to be
valid. It is easy to see, using the Van Kampen theorem that, if this is done
when S

4 − M is simply connected, the fundamental group of the complement
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of the embedding remains trivial. However, does that mean that the modified
embedding is isotopic to the original one? Can the M1 of the above example be
embedded in S

4 in an inequivalent way? The next diagram is meant to indicate,
in the following way, that the embedding does not change if the connected sum
technique is used with certain types of knotted S

2 in S
4.

S S S
S

1 2 2
2

An S1 and S
2 link in a standard (homological) way in S

4. This S1 can just be
considered as the boundary of a meridional disc of an unknotted S

2. Now take
in S

4 two copies of S2 that are unknotted and unlinked and pipe them together
by a tube. The tube is a copy of S1 × I that is contained in the boundary of an
arc joining the two spheres. The arc is to be chosen so that it follows the path of
an S1 that links each S

2 as indicated schematically in the diagram. It if easy to
ensure (see [7] for example) that the resulting 2-sphere is knotted. However in the
case of a 4-manifold M1 in S

4 with contractible complement, the S1 meridional
to a 2-handle is isotopic to a trivial S1. That is because simple connectivity
and general position ensure that it bounds a disc in the complement of M1 with
but isolated point self-intersections. In moving S1 across the disc ensure that it
passes through a self-intersection twice at two different times. Thus if to the core
of the 2-handle a connected sum is taken with the above knotted S

2, the tube
can be isotopped so that it becomes a standard tube (not linking the original
pair of S2s). Thus, up to isotopy, the construction has created no change in the
embedding.

Questions (4.3). Does every contractible 4-manifold, other than the 4-ball,
that embeds in S

4 always knot in S
4? If a 4-manifold knots in S

4 does it always
have infinitely many knots in S

4? If unbalanced presentations of groups G1 and
G2 are given, still with G2/[G2, G2] ∼= G1/[G1, G1], the above theorem could
be applied after balancing the presentations with extra generators (so changing
the groups by free products with free groups) and empty relators (a change
not possible with Andrews-Curtis moves). That adds no deep understanding.
However Livingston [6] has shown that certain perfect groups without balanced
presentations are the fundamental groups of (S4 − M4) for some contractible
4-manifolds M4. In what way does his technique generalise to splitting S

4 into
two parts with prescribed fundamental groups without balanced presentations?

Received February 19, 2003

Final version received July 29, 2003



312 W.B. RAYMOND LICKORISH

Department of Pure Mathematics and Mathematical Statistics

University of Cambridge

Wilberforce Road

Cambridge CB3 OWB

UK

wbrl@dpmms.cam.ac.uk

References

[1] J. J. Andrews and M.L. Curtis, Free groups and handlebodies, Proc. Amer. Math. Soc.
16 (1965), 192–195.

[2] R. E. Gompf, Killing the Akbulut-Kirby 4-sphere, with relevance to the Andrews-Curtis
and Schoenflies problems, Topology 30 (1991), 97–115.

[3] R.E. Gompf and A. I. Stipsicz, 4-manifolds and Kirby calculus, Grad. Stud. Math. 20,
Amer. Math. Soc., Providence, RI, 1999.

[4] W. B. R. Lickorish, Knotted contractible 4–manifolds in the 4–sphere, Pacific J. Math.
208 (2003), 283–290.

[5] C. Livingston, Observations on Lickorish knotting of contractible 4-manifolds, Pacific J.
Math. 209 (2003), 319–323.

[6] C. Livingston, Four-manifolds of large negative deficiency, to appear.

[7] D. Rolfsen, Knots and links, Publish or Perish (1976).



Bol. Soc. Mat. Mexicana (3) Vol. 10, Special issue, 2004

TOROIDAL DEHN FILLINGS AND GENERALIZED

SCHARLEMANN CYCLES

DANIEL MATIGNON AND ELSA MAYRAND1

Abstract. This paper concerns Dehn fillings on 3-manifolds which pro-
duce an essential 2-torus. Let M be an irreducible and atoroidal 3-manifold,
and T be an essential 2-torus created by a Dehn filling on M . Generically
in M , the intersection of the punctured 2-torus T ∩ M with an arbitrary
surface F , is a 1-complex which can be viewed as a graph in either T or F .
A good way to get obstructions to the existence of Dehn fillings producing
essential 2-spheres, or projective planes (T is switched with an essential
2-sphere or a projective plane) is to find generalized Scharlemann cycles in
the graph in F (see [10, 4] respectively). This paper is devoted to find sim-
ilar obstructions concerning the creation of essential tori. This obstruction
is considered as a step towards bounding the finite number of exceptional
Dehn fillings.

1. Introduction

Let M be a connected, compact and orientable 3-manifold such that a bound-
ary component ∂1M is a 2-torus. We assume that M is irreducible (i.e. all
2-spheres bound a 3-ball) and atoroidal (i.e. all 2-tori bound a solid torus or are
boundary parallel).

A slope on ∂1M is an isotopy class of essential unoriented simple closed curves
on ∂1M . To each slope r on ∂1M we associate the unique closed manifold M(r)
obtained by attaching a solid torus to M along ∂1M in such a way that the
gluing homeomorphism identifies the meridional slope of the solid torus with r.
The core of the solid torus is a knot in M(r), called the core of the Dehn filling,
denoted by Kr.
If M(r) contains an essential 2-torus, we say that r is a toroidal slope and that
the r-Dehn filling is toroidal. Toroidal Dehn fillings are the topics of a large
amount of investigations, see the nice surveys of Gordon [6, 7]. Let us say a
few words about this. Since M has a non-empty boundary, it is clearly a Haken
manifold (irreducible 3-manifold containing an essential surface). Therefore, by
[15, 16], M satisfies the Thurston Geometrisation Conjecture. Thus either

M is hyperbolic, i.e. intM admits a complete Riemannian metric of constant
sectional curvature −1; or

M is a Seifert fibered space, i.e. an S1-bundle over a surface, such that the
tubular neighbourhood of the circle fibers are trivial fibered solid tori, except for
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Keywords and phrases: essential 2-torus, Dehn filling, Scharlemann cycle, generalized

Scharlemann cycle .
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a finite number of fibers, whose tubular neighbourhood are non-trivial fibered
solid tori; or

M contains an essential surface (i.e. an incompressible, properly embedded
surface, non-parallel to the boundary of M) of non-negative Euler characteristic.

Moreover by [15, 16], if M is hyperbolic then only a finite number of Dehn
fillings can produce a non-hyperbolic 3-manifold. Such Dehn fillings are called
exceptional Dehn fillings, and the toroidal family is a special class among them.
So as to bound the finite number of exceptional slopes (slopes which correspond
to exceptional Dehn fillings) we refer to the distance between distinct slopes. Let
α and β be two distinct slopes on ∂1M . The distance Δ(α, β) between the slopes
α and β is the minimal geometric intersection number between two simple closed
curves representing respectively α and β. Gordon has shown [5] that the distance
between two toroidal slopes is bounded by 8, and has given explicitely the four
3-manifolds which admit two distinct toroidal slopes with distance apart 6, 7 and
8. Therefore, generically the distance between two toroidal slopes is bounded by
5. Moreover, Gordon has conjectured [6, 7] that if M is not one of these four
special 3-manifolds, and M is hyperbolic, then the distance between two distinct
exceptional slopes is bounded by 5. Until now, the bound 5 is reached only by
the distance between two toroidal slopes.

So far, one of the best way to bound the distance between two slopes r, s that
produce small surfaces (i.e. essential surfaces of non-negative Euler characteris-

tic) P̂ and Q̂ respectively, is to study the intersection graphs which come from

the intersection P ∩Q, where P = P̂ ∩M and Q = Q̂∩M are assumed to be in

general position. We can see the graph GP (respectively GQ) in P̂ (respectively

Q̂) considering the arc-components of P ∩ Q as edges and the components of

P̂ − P (respectively Q̂ − Q) as “fat”vertices. The Scharlemann cycles, which
are particular disk-faces in these graphs (see later in Section 2, for a precise
definition) play a key-role in the study of intersection graphs. For example,
Scharlemann has shown ([14]) that if GP contains a Scharlemann cycle and if

the corresponding edges of GQ are in a disk in Q̂ then M(s) contains a non-
trivial lens space. An efficient way to get obstructions to the existence of small
surfaces, in order to bound Δ(r, s), is to find generalized Scharlemann cycles,
which is a special subgraph in a disk, containing a Scharlemann cycle. They
lead to the construction of small surfaces intersecting the core of the correspond-

ing Dehn filling (Kr or Ks respectively) less than the original surfaces (P̂ or Q̂

respectively). They have first appeared in [4], where Q̂ was a projective plane.
The authors proved that if GP contains a generalized Scharlemann cycle, then

Q̂ is not a minimal projective plane. A surface F̂ in M(r) is minimal if the

number of intersections between F̂ and the core of the Dehn filling is minimal

amongst all the surfaces isotopic to F̂ in M(r). Similar constructions are used

by Hoffman in [10] to prove the following : if Q̂ is a minimal essential 2-sphere,
then GP cannot contain a generalized Scharlemann cycle (called closed cluster).
Other recent works (see [3, 11, 12, 13]) concern generalized Scharlemann cycles
and “minimal constructions”.

The goal of the present paper is to discuss the existence of generalized Scharle-

mann cycles when one of P̂ or Q̂ is a minimal essential 2-torus. We may note
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that the edges of a Scharlemann cycle are not necessarily in a disk in the 2-torus.
Let us fix the notations for the following.

Let α, β be two distinct slopes in ∂1M , such that M(β) is irreducible and

contains an essential 2-torus T̂ . Let F̂ be an embedded surface in M(α), and

denote by F = F̂∩M and T = T̂∩M , the punctured surfaces properly embedded
in M . After isotopy, we may assume that T and F are in general position.

We define the intersection graphs, which come from F ∩ T , in the usual way
(for more details, see [8] for example). Let GF (respectively GT ) be the graph

in F̂ (respectively T̂ ) obtained by taking the arc components of T ∩ F as edges

and taking the components of F̂ − F (respectively T̂ − T ) as fat vertices.
One important property of the intersection graphs is that the edges are labelled

by a numeration of the boundary-components of F and T in ∂1M (see the next
section for more details). This gives a label set to Scharlemann cycles and
generalized Scharlemann cycles. Notice that a generalized Scharlemann cycle
contains a Scharlemann cycle. We shall say that two generalized Scharlemann
cycles Σ1 and Σ2 are quasi-disjoint if the label set of Σ1 is disjoint from the label
set of a Scharlemann cycle in Σ2. We may note that the definition is symmetric
and that the Scharlemann cycles in a generalized Scharlemann cycle all have the
same label set. Now, we can formulate the main result of the paper.

Theorem (1.1). Assume that no arc-component of F ∩T is boundary parallel
in either F or T . If GF contains two quasi-disjoint generalized Scharlemann

cycles, then T̂ is not minimal.

The remaining of the paper is organized as follows.
In the next section, we recall the basic definitions and constructions about

intersection graphs. Then, we will give preliminary results.
In Section 3, we look at the topological effects of the existence of generalized

Scharlemann cycles. First, we focus on the existence of a single generalized
Scharlemann cycle. Then, we add a Scharlemann cycle whose label set is disjoint
from the label set of the generalized Scharlemann cycle. And finally, we give the
proof of Theorem (1.1).

2. Classical combinatorics on intersection graphs

Let t = |T̂ ∩ Kβ| be the number of intersections between T̂ and Kβ , and

f = |F̂ ∩Kα| be the number of intersections between F̂ and Kα.
Recall that the vertices of GF are the meridian disks of the α-Dehn filling

that cap off the boundary-components of F in ∂1M , to obtain F̂ . Similarly,
the vertices of GT are the meridian disks of the β-Dehn filling that cap off the

boundary-components of T , to obtain T̂ . Thus, if v is a vertex ofGF (respectively

GT ), v corresponds to a component of F̂ ∩ N(Kα) (respectively T̂ ∩ N(Kβ)),
and ∂v is a boundary component of F ∩ ∂1M (respectively of T ). After giving
an orientation to Kα and Kβ, we number the vertices of GT : v1, v2, . . . , vt
so that they correspond to consecutive meridian discs of N(Kβ) in T̂ ∩N(Kβ).

Similarly, we number the vertices of GF : w1, w2, . . . , wf in the order that F̂
cuts N(Kα).
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Each component ∂vi of ∂T intersects each component ∂wj in exactly Δ(α, β)
points. The endpoints of the edges of GF (respectively GT ) can be labelled by an
integer i ∈ {1, 2, ..., t} (respectively j ∈ {1, 2, ..., f}) as follows. Each endpoint of
an edge corresponds to a point in ∂T ∩ ∂F ∩ ∂1M . Consider one endpoint of an
edge e, corresponding to the point ∗ ∈ ∂vi ∩ ∂wj . If e is seen as lying in GT , the
endpoint ∗ is labelled j, and if e is seen in GF , then ∗ has the label i. Thus when
travelling around ∂vi, we see the labels 1, 2, .., f appearing in cyclic order, and
around ∂wj we see the labels 1, 2, . . . , t ; these sequences being repeated Δ(α, β)
times.

In the following, we assume for convenience, that F is orientable. We fix an
orientation on T and F , and let the components of ∂T and ∂F ∩ ∂1M have
the induced orientations. So we can assign a sign + or − to each component
of ∂F ∩ ∂1M and each component of ∂T according to the orientation on ∂1M .
Then we refer to a vertex of sign + or − according to whether the corresponding
boundary component is of sign + or −.

Let G be either the graph GF or the graph GT . Two vertices of G are parallel
if they have the same sign, otherwise they are called antiparallel. Since M,F
and T are orientable, we have the well known property :

Parity rule. An edge joining parallel vertices or the same vertex in GT , joins
antiparallel vertices in GF and vice versa.

Now let G be either the graphGF orGT ; and Q̂ (resp. q) be either the surface

F̂ or T̂ , (resp. q = f or q = t) according to whether G = GF or G = GT . Then

Q = Q̂ ∩M . The graph G has the label set {1, 2, . . . , r} where {q, r} = {f, t}.
If D is a disc-face of G, then ∂D consists of an alternating sequence of edges

and corners, where corners are arcs between consecutive labels on the bound-
ary of a vertex of G. An 〈i, i + 1〉-corner of G is an arc on ∂Q between two
consecutively labelled components i, i+ 1 (modulo r) of ∂R ∩ ∂1M , where R is
the other surface. The corners of GT (respectively GF ) are called the T -corners
(respectively F -corners).

An n-sided disc-face of G is a disc-face whose boundary is the union of n edges
and n corners. A trivial loop in G is a one-sided disc-face of G. Note that, if no
arc-component of F ∩ T is boundary parallel in either F or T , then the graphs
GT and GF contain no trivial loop.

A {x, y}-edge is an edge with one endpoint labelled x, and the other labelled
y.

A cycle in G is a subgraph homeomorphic to a circle when shrinking its ver-
tices to points. The length of a cycle is the number of edges which it contains.

An x-cycle in G is a cycle Σ bounding a disk DΣ in Q̂, such that all the
vertices of Σ are parallel and which can be oriented so that the tail of each edge
has label x. A great x-cycle (see Figure 1a) is an x-cycle, such that all the
vertices in the closed disc DΣ are parallel.

A Scharlemann cycle (see Figure 1b) is an x-cycle σ that bounds a disc-face
Dσ of G. Note that ∂Dσ is an alternating sequence of {x, x + 1}-edges and
〈x + 1, x〉-corners, so we assign the set of labels {x, x+ 1} to σ, and σ is called
an {x, x + 1}-Scharlemann cycle. We can note that a Scharlemann cycle is a
great cycle. A strict great cycle (see Figure 2a) is a great cycle which is not a
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Scharlemann cycle. We shall say that a strict great cycle Σ is innermost if DΣ

contains no other strict great cycle.

Remark (2.1). Since an x-cycle Σ of GF is defined in a disk DΣ in F̂ , it is

not necessary to assume that F̂ is orientable. Indeed, we can attribute a sign
to vertices in DΣ, and define parallel or antiparallel vertices in DΣ. Therefore,

x-cycles, great cycles and Scharlemann cycles are well defined, even if F̂ is not
orientable. But the parity rule is thus satisfied only in DΣ.

The existence of great cycles guarantees the existence of Scharlemann cycles,
by the following result.

Lemma (2.2) ([2, Lemma 2.6.2]). If G contains a strict great cycle Σ, then G
contains a Scharlemann cycle in DΣ.
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A generalized Scharlemann cycle in G (see Figure 2) is a subgraph Λ of G in

a disk in Q̂, such that :
(i) Λ contains {x, x+ 1}-Scharlemann cycles;
(ii) all the Scharlemann cycles in Λ have the same label set;
(iii) if D is an adjacent face to a Scharlemann cycle in Λ then D is a disk-face,

and its corners are exactly 〈x− 1, x〉-corners and 〈x+ 1, x+ 2〉-corners;
(iv) Λ consists of its Scharlemann cycles and all their adjacent faces;
(v) every {x, x+ 1}-edge of Λ belongs to a Scharlemann cycle;
(vi) Λ is connected.
(vii) Λ has no cut vertex.

Note that in [10, 12], generalized Scharlemann cycles are called (closed) clus-
ters and the faces defined in (iii) 2-cornered faces. The condition (v) implies
that the subgraph in Figure 3 is not a generalized Scharlemann cycle, since its
boundary contains a {1, 2}-edge.
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Figure 3

The label set {x − 1, x, x + 1, x + 2} is called the label set of Λ. Note that
each edge in Λ has its both endpoints in {x − 1, x, x + 1, x + 2}, and that for
each y ∈ {x − 1, x, x + 1, x + 2}, there exists an y-edge in Λ. Let Λx,Λy be
two generalized Scharlemann cycles of label sets {x − 1, x, x + 1, x + 2} and
{y−1, y, y+1, y+2} respectively. Then Λx,Λy are quasi-disjoint if {x−1, x, x+
1, x + 2} ∩ {y, y + 1} = ∅. Note that {x − 1, x, x + 1, x + 2} ∩ {y, y + 1} = ∅ if
and only if {y − 1, y, y + 1, y + 2} ∩ {x, x+ 1} = ∅.

If Λ is a generalized Scharlemann cycle, then DΛ denotes the union of the disk
faces bounded by the Scharlemann cycles in Λ with their adjacent faces. Thus
(by (vii)) DΛ is a disk such that Λ = G ∩ DΛ. For convenience, we sometimes
refer to ∂DΛ to be Λ; in this case, we would rather note Σ (as a cycle) instead
of Λ to avoid confusion.

Remark (2.3). As in the previous remark, generalized Scharlemann cycles are

well defined even if Q̂ = F̂ is non-orientable.
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An x-face in G is a disk D in Q̂ bounded by a cycle of G, such that all the
vertices in D are parallel, and all the edges in ∂D are x-edges. A strict x-face
is an x-face which is not a Scharlemann cycle. Actually, the existence of strict
great cycles or strict x-faces guarantees the existence of generalized Scharlemann
cycles, by the following result.

Lemma (2.4) ([10, Lemma 4.1], [12, Lemma 3.1]). Assume that the Scharle-
mann cycles in G all have the same label set. If G contains a strict great cycle or
a strict x-face, bounding a disk D, then G contains a generalized Scharlemann
cycle in IntD.

3. Generalized Scharlemann cycles

This section is devoted to general results concerning the effects of the existence
of both Scharlemann cycle and generalized Scharlemann cycle with disjoint labels

sets on the minimality of T̂ . There are three subsections. The first one is focused
on the effects of the existence of the generalized Scharlemann cycle. The second
one is interested in the obstructions given by the existence of both of them. Last
subsection is the proof of Theorem 1.

In the following, we assume that GF contains a generalized Scharlemann cycle
Σ and a Scharlemann cycle σx with disjoint label sets. Then t ≥ 6. After
changing the labelling if necessary, we may assume that the label set of Σ is
{t, 1, 2, 3} and the label set of σx is {x, x+ 1}, with {x, x+ 1} ∩ {t, 1, 2, 3} = ∅.
We keep the previous notations. Recall that the vertices of GT (σx) are vx and
vx+1.

Let L be a subgraph of GF . We denote by GT (L) the subgraph of GT whose
edges correspond to the edges of L, and whose vertices are the vertices of GT

incident to these edges. As example, GT (Σ) is the subgraph of GT whose edges
correspond to the edges of Σ, and whose vertices are the vertices vt, v1, v2 and
v3.

Two edges are said to be parallel if they cobound a 2-sided disk-face. The

reduced graph Ĝ of a graph G is obtained from G by replacing each family of
parallel edges by a single edge.

Figures 4 or 5 give examples of possible graphs for ̂GT (Σ), after some home-

omorphism of T̂ . Note that GT (Σ) always contain {t, 3}-edges.
Lemma (3.1) ([1, Lemma 2.8], [9, Lemma 3.1]). If GF contains a Scharlemann

cycle, then its edges cannot lie in a disc in T̂ . Furthermore, T̂ is separating, and
then t is even.

Lemma (3.2). If GT (Σ) has neither a {2, 3}-edge nor a {t, 1}-edge, then the

{3, t}-edges of GT (Σ) form an essential loop on T̂ .

Proof. Assume that GT (Σ) has neither a {2, 3}-edge nor a {t, 1}-edge. In
this case, the edges of Σ are all {1, 2}-edges or {t, 3}-edges. So the boundary
of DΣ is a 3-cycle Σ∗ such that all its edges are {t, 3}-edges. By Lemma (3.1),

these edges lie in an annulus on T̂ , which is disjoint from GT (σ), where σ is
a Scharlemann cycle on Σ. Now, suppose for a contradiction that there is a
disk D in this annulus, which contains the vertices vt, v3 and all the {t, 3}-edges
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of GT (Σ). Let H be the 3-ball in N(Kβ) between vt and v3, and containing
v1. Then N(D ∪ H ∪ DΣ) is a punctured lens space. Therefore, since M(β) is
irreducible, it is a lens space, and then M(β) is atoroidal; a contradiction.

By Lemma (3.1), the existence of σx implies that GT (Σ) lies in an essential

annulus A1 in T̂ .
Moreover, T̂ is separating. So we may color the faces of Σ black and white,

so that the Scharlemann cycle faces are colored black, and all the others are

white. Let XB, XW be respectively the black and white sides of M(β) − T̂ , i.e.
M(β) = XB ∪

̂T XW .
In the remainder of the paper, let Hi,i+1 be the 3-ball which is the portion of

N(Kβ) between the vertices vi and vi+1 that contains no other vertex.

Let V1 be the solid torus N(A1) and Y = N(A1∪H2,3∪Ht,1), pushed slightly
inside XW so that A1 lies in ∂Y . Then Y is a genus three handlebody in XW .

(3.3) Construction from Σ. A white face g of Σ is said to be interior if g is
adjacent to at least two black faces (i.e., {1, 2}-Scharlemann cycles); otherwise
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we say that g is a boundary face. We say that a black face σ in Σ is outermost
if all the faces adjacent to σ are boundary faces, except at most one.

Lemma (3.3.1). The subgraph Σ contains an outermost black face in DΣ.

Proof. We construct a dual graph, in the following way. For each black face
and interior white face g, we attribute a dual vertex v in Intg. For each {1, 2}-
edge common to a black face and an interior white face, we fix a transversal dual
edge joining the corresponding dual vertices. The dual graph Γ consists in the
dual vertices and the dual edges. Assume that all the black faces have at least
two edges adjacent to white faces in DΣ. Then Γ clearly contains a cycle, i.e.
a subgraph homeomorphic to a circle. Thus, this cycle bounds a disk in DΣ.
Since Σ = GF ∩ DΣ, all the F -corners occur in Σ, in contradiction with t ≥ 6.
Therefore, Γ cannot contain a cycle, and so GF contains an outermost black face
in DΣ.

Let σ be an outermost black face in DΣ. We have made the confusion between
the disk-face σ and its boundary denoted also by σ, which is a {1, 2}-Scharlemann
cycle. By Lemma (3.1), there are two edges e1, e2 in the cycle σ so that the simple
closed curve γ = e1 ∪ e2, obtained by shrinking the vertices v1 and v2 to points,

is essential on T̂ . Let f1, f2 be the white faces adjacent to σ along the edges
e1 and e2 respectively. As in the proof of Lemma (3.3.1), since Σ = GF ∩ DΣ,
t ≥ 6 and there are only four corners that occur in Σ : f1 
= f2. Note that σ is
outermost, so at least one face among f1, f2 is a boundary face, say f1.

Lemma (3.3.2). If g is a white face of Σ then ∂g is an essential and non-
separating simple closed curve in ∂Y .

Proof. Let g be a white face of Σ. Orient arbitrarily its boundary ∂g. There-
fore, the meridians of ∂Ht,1 are always intersected by ∂g in the same direction
(and similarly for the meridians of ∂H2,3). That implies that ∂g is essential and
non-separating on ∂Y .

Proposition (3.3.3). The annulus A1 lies in a 2-torus component of ∂N(Y ∪
f1 ∪ f2).

Proof. Let G = GT (σ ∪ f1 ∪ f2) be the graph consisting of the edges of
σ ∪ ∂f1 ∪ ∂f2 and the vertices vt, v1, v2 and v3. One can note that each white
face has {1, 2}-edges and {t, 3}-edges on its boundary. More precisely, in the
boundary of a white face, the number of {1, 2}-edges is the same as the number
of {t, 3}-edges (for more details, see [4, Lemma 2.1]). Thus G has {1, 2}-edges
and {t, 3}-edges, and possibly {2, 3}-edges and {t, 1}-edges.

Recall that the F -corners correspond to arcs on ∂Hi,i+1 and the T -corners
are the arcs on the components ∂vi of T . An n-gon (respectively, a bigon) in G
is a disc-face with n sides (respectively, with 2 sides) . We shall call again bigon
a disc on ∂Hi,i+1 whose boundary is the union of two F -corners on ∂Hi,i+1, a
T -corner on ∂vi, and a T -corner on ∂vi+1 (note that i = t or 2).

Let γ1 = ∂f1, and γ2 = ∂f2. Then γ1 and γ2 are essential circles on ∂Y , by
Lemma (3.3.2). A circle γi is a union of edges and F -corners. Each connected
component of ∂Y −{γ1, γ2} is a union of faces of G, bigons on ∂Ht,1 and bigons
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on ∂H2,3. For convenience, in the following we call n-gon an n-gon for which
n > 2; otherwise we explicitely say ‘bigon’.

Claim (3.3.4). An annulus component of ∂Y − {γ1, γ2} is a union of bigons.

Proof. Let C be an annulus component of ∂Y − {γ1, γ2}. Each boundary
component of C is a union of consecutive F -corners and edges.

Assume that C is not a union of bigons. It is easy to see that C cannot be
obtained by gluing n-gons (n > 2) and bigons together, since each T -corner of
each n-gon must be glued to a bigon in ∂Hi,i+1 (for i = t or 2). Similarly, C
cannot contain an annulus face or a punctured annulus face. (Claim (3.3.4))

Claim (3.3.5). The simple closed curves γ1 and γ2 are not parallel on ∂Y .

Proof. Assume for contradiction that γ1 and γ2 are parallel on ∂Y . Then
they cobound an annulus component of ∂Y − {γ1, γ2}. Thus by Claim (3.3.4),
it is an union of bigons. Then γ1 and γ2 have the same number of {1, 2}-edges;
consequently exactly one (as γ1, since f1 is a boundary face). Recall that e1 ⊂ γ1
and e2 ⊂ γ2. Therefore, e1 and e2 cobound a bigon on G; a contradiction.
(Claim (3.3.5))

Note that this claim can be proved by using the fundamental group of Y ; such
an argument was used in [11].

By Lemma (3.3.2), each component of ∂Y −{γ1, γ2} has at least two boundary
components. By Claim (3.3.5), that implies the components of ∂Y − {γ1, γ2}
are punctured tori. Then each boundary component of W = Y ∪ f1 ∪ f2 is a
2-torus, in particular there exists a 2-torus T ′ which contains the annulus face
A1. (Proposition (3.3.3))

Recall that W = Y ∪ f1 ∪ f2. Let :

fσ be the disk-face bounded by σ in GF ;
M1 = N(A1 ∪H1,2 ∪ fσ), T1 = ∂M1 (2-torus)
T3 be the 2-torus component of ∂N(Y ∪ f1 ∪ f2) that contains A1;
M3 be the component of W whose boundary is the torus T3;
B1 = T1 −A1 and B3 = T3 −A1 (see Figure 6).

If S is a surface in M(β), we define n(S) to be the number of intersections

between S and the knot Kβ . As an example, we have n(T̂ )=t.

Let A2 be the annulus T̂ − A1. Then t = n(A1) + n(A2). Moreover, since
n(T1) = 2n(A1)− 2 and n(∂W ) = 2n(A1)− 4, then we have

n(B1) = n(A1)− 2 and n(B3) ≤ n(A1)− 4.
Let Z1 = XB −M1 and Z3 = XW −M3. Then

∂Z1 = B1 ∪ A2 and ∂Z3 = B3 ∪ A2.

Lemma (3.3.6). If T̂ is an essential minimal 2-torus in M(β), then Z1 and
Z3 are solid tori.

Proof. Since n(∂Z1) = n(B1) + n(A2) = n(A1) − 2 + n(A2) < t, then ∂Z1

compresses in M(β). But M(β) is irreducible, implying that ∂Z1 bounds a

solid torus. Since T̂ is essential, ∂Z1 must bound a solid torus in the side that
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H23
Ht1
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Figure 6

does not contain T̂ . This means Z1 is a solid torus. Similarly, since n(∂Z3) ≤
n(A1)− 4 + n(A2), Z3 is a solid torus.

Applying the same argument, we can prove the following.

Lemma (3.3.7). If n(Ti) < t then Mi is a solid torus, where i = 1 or 3.

Lemma (3.3.8). If T̂ is an essential minimal 2-torus in M(β) then the two
following assertions are true :

i) n(A1) ≥ n(A2) + 2;
ii) if M1 is a solid torus then n(A1) ≥ n(A2) + 4.

Proof. i) Suppose that n(A1) < n(A2) + 2, then n(T1) < t; therefore, M1 is
a solid torus (Lemma (3.3.7)). Moreover, we have also that n(T3) < t, which
implies that M3 is also a solid torus (Lemma (3.3.7)). We have

XB = M1 ∪B1 Z1, and
XW = M3 ∪B3 Z3.

It follows that XW and XB are both the union of two solid tori along an

annulus. Since T̂ is essential, XB and XW must be Seifert fibered spaces which
are not solid tori. Thus the core of Bi turns at least twice around the cores of
Mi and Zi respectively, for i = 1 and 3.

Let T ′ = B1 ∪B3. Then T ′ is an essential 2-torus. Indeed, we can decompose
M(β) along T ′ in the following way :

M(β) = (M1 ∪A1 M3)
⋃
T ′
(Z1 ∪A2 Z3).

The core of B1 turns at least twice around the core of M1, and the core of B3

turns at least twice around the core ofM3; thus the core of A1 turns at least twice
around the cores of M3 and M1 respectively. Therefore, M1 ∪A1 M3 is a Seifert
fibered space over a disc, with two exceptional fibers, which are respectively the
core of M1 and the core of M3. In the same way, Z1 ∪A2 Z3 is a Seifert fibered
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space over a disc, with two exceptional fibers, which are the cores of Z1 and Z3

respectively. Thus T ′ is essential in M(β). Since n(T ′) = 2n(A1) − 6 < t, then

T̂ is not a minimal essential 2-torus in M(β).

ii) Now, if M1 is a solid torus and n(A1) < n(A2)+4, then M3 is again a solid
torus; we can repeat the same argument as above, and n(T ′) = 2n(A1) − 6 < t
gives the same conclusion.

(3.4) Constructions from Σ and σx. We keep the previous notations.

Lemma (3.4.1). The graph GT (Σ) lies in an essential annulus A1 in T̂ , and

GT (σx) lies in the annulus A2 = T̂ −A1.

Proof. Let σ be a Scharlemann cycle in DΣ. By Lemma (3.1), the edges of σ

do not lie in a disc of T̂ ; and similarly for the edges of σx.
Recall that the edges of σ join v1 to v2. Let e1, e2 be two edges in the cycle σ

so that the simple closed curve γ = e1∪ e2, obtained by shrinking the vertices v1
and v2 to points, is essential on T̂ . If we do the same with the Scharlemann cycle

σx, we obtain γ′, an essential simple closed curve on T̂ , disjoint from γ. Thus γ

and γ′ are parallel on T̂ . Therefore, we may assume that the graph GT (Σ) lies in

an essential annulus A1 in T̂ , and GT (σx) lies in the annulus A2 = T̂ −A1.

Recall that W = Y ∪ f1 ∪ f2. Let :

fσx be the disk-face bounded by σx in GF ;
M2 = N(A2 ∪Hx,x+1 ∪ fσx), T2 = ∂M2 (2-torus);
B2 = T2 −A2.

Note that :
n(T2) = 2n(A2)− 2 and n(B2) = n(A2)− 2.

Let Z2 = X −M2, where X is the side XW or XB which contains M2. Then
∂Z2 = B2 ∪ A1.

Lemma (3.4.2). If M1 and M3 are both solid tori, then T̂ is not an essential
minimal 2-torus in M(β).

Proof. Assume that M1 and M3 are both solid tori. Thus,
XB = M1 ∪B1 Z1, and
XW = M3 ∪B3 Z3,

meaning XW and XB are both the union of two solid tori along an annulus.

Since T̂ is essential, XB and XW are Seifert fibered spaces. The core of Bi turns
at least twice around the cores of Mi and Zi respectively, for i = 1 and 3.

We consider two cases according to whether M2 lies in XW or XB. Then M2

lies in Z3 or Z1 respectively, which implies M2 is a solid torus.
First, assume that M2 ⊂ XW , so M2 lies in Z3. Following the proof of

Lemma (3.3.8) we obtain that the 2-torus T ′ = B1 ∪ B2 is an essential 2-torus,
which satisfies n(T ′) < t.

Now, assume that M2 ⊂ XB, then it lies in Z1. Following the proof of
Lemma (3.3.8), we obtain that the 2-torus T ′′ = B3 ∪B2 is an essential 2-torus,
which satisfies n(T ′′) < t.

In both cases T̂ is not a minimal essential 2-torus in M(β).
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Lemma (3.4.3). If M1 is a solid torus and fσx lies in XW , then T̂ is not an
essential minimal 2-torus in M(β).

Proof. Assume that T̂ is an essential minimal 2-torus in M(β). If fσx lies in
XW , then the 2-torus T ′ = B2 ∪ A1 bounds a solid torus V ′ in XW , because
n(T ′) < t. Since M3 ⊂ V ′, we obtain that M3 is also a solid torus. The result
follows by Lemma (3.4.2).

Lemma (3.4.4). If M3 is a solid torus and fσx lies in XB, then T̂ is not an
essential minimal 2-torus in M(β).

Proof. It is the same argument, by symmetry. Assume that T̂ is an essential
minimal 2-torus in M(β). If fσx lies in XB, then the 2-torus T ′ = B2 ∪ A1

bounds a solid torus V ′ in XB, because n(T ′) < t. Since M1 ⊂ V ′, we obtain
that M1 is also a solid torus. The result follows by Lemma (3.4.2).

Proposition (3.4.5). Let T̂ be a minimal essential 2-torus. Assume that t =
6 and thet GF contains a generalized Scharlemann cycle Σ and a Scharlemann
cycle with disjoint label sets. Let σ be a Scharlemann cycle of Σ, and A be an

annulus in T̂ such that GT (σ) lies in A, then n(A) > 2 (see Figure 5).

Proof. Assume that T̂ is a minimal essential 2-torus. We keep the previous
notations.

By Lemma (3.3.8), n(A2) ≤ 2. But A2 contains vx and vx+1, thus n(A2) =
2. It follows that n(A1) = 4, and n(T3) = 4. Then M3 is a solid torus
(Lemma (3.3.7)). Let C1 be a minimal annulus in A1 which contains GT (σ),
and N1 = N(C1 ∪H1,2 ∪ fσ).

If n(C1 = 2) then n(∂N1) = 2 and so N1 is a solid torus. But M1 =
N1 ∪ N(A1 − C1) is isotopic to N1. Therefore, M1 is also a solid torus, which
contradicts Lemma (3.4.2).

Corollary (3.4.6). If t = 6 and T̂ is a minimal essential 2-torus, then GF

cannot contain two quasi-disjoint generalized Scharlemann cycles.

Proof. We assume that GF contains two quasi-disjoint generalized Scharle-
mann cycles Σ and Σx. After changing the labelling if necessary, we may assume
that the label set of Σ is {6, 1, 2, 3} and the label set of Σx is {x−1, x, x+1, x+2},
with {x, x+ 1} ∩ {6, 1, 2, 3} = ∅ so x = 4.

Let σ (resp. σ4) be a Scharlemann cycle of Σ (resp. Σ4). Let C1 (resp.
C4) be a minimal annulus which contains GT (σ) (resp. GT (σ4)). By Lemma
(3.2), n(C1) = 2 or n(C4) = 2. Therefore, the contradiction follows by Proposi-
tion (3.4.5).

(3.5) Proof of Theorem (1.1). We assume that GF contains two quasi-
disjoint generalized Scharlemann cycles Σ and Σx. After changing the labelling
if necessary, we may assume that the label set of Σ is {t, 1, 2, 3} and the label
set of Σx is {x− 1, x, x+ 1, x+ 2}, with {x, x+ 1} ∩ {t, 1, 2, 3} = ∅.

We keep the previous notations. Let σx be a Scharlemann cycle of GF in DΣx .
Let GT (Σx) be the subgraph of GT whose edges correspond to the edges of Σx,
and whose vertices are the vertices vx−1, vx, vx+1 and vx+2.
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By Corollary (3.4.6), we may assume that t ≥ 8. We want to prove that T̂ is
not a minimal essential 2-torus in M(β).

By Lemma (3.2) GT (Σ) lies in an annulus A1 in T̂ ; similarly GT (Σx) lies in

an annulus A1,x in T̂ . Note that the if σ (resp. σx) is a Scharlemann cycle of Σ
(resp. Σx) then GT (σ) (resp. GT (σx)) is disjoint to A1,x (resp. A1).

There are three cases. One is the case where the interior of A1 and A1,x are
disjoint; the second is that A1 ∩ A1,x is a disk with one vertex; the last is the
case as in Figure 7.

First, we consider the two former cases. Then A1,x = A2 ∪ E, where E is
the empty set or a disc in A1 which contains exactly one vertex. So, changing
the labelling if necessary, we may assume that n(A1) ≤ n(A2)+ 1. Indeed, since

t ≥ 8, the label sets have at most one common label. Thus T̂ is not a minimal
essential 2-torus, by Lemma (3.3.8).

To complete the proof of Theorem (1.1), we have to consider the case where the
reduced graph of GT (Σ)∪GT (Σx) corresponds to one of the graphs on Figure 7.

We assume for contradiction that T̂ is minimal.
We choose for A1 a minimal annulus containing GT (Σ) and disjoint from the

edges of any Scharlemann cycle in DΣx (see Figure 8a).
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Similarly, let A1x be a minimal annulus containing GT (Σx) and disjoint from

the edges of any Scharlemann cycle in DΣ. Let A2x = T̂ −A1x.
Now, let C be an annulus in A1 containing GT (σ) and disjoint from the {t, 3}-

edges. Similarly, let Cx be an annulus in A1x containing GT (σx) and disjoint
from the {x− 1, x+ 2}-edges (see Figure 8b).

Let Mx = N(A1x ∪ Hx,x+1 ∪ fσx). Let M ′
x = N(Cx ∪ Hx,x+1 ∪ fσx) and

M ′
1 = N(C ∪H1,2 ∪ fσ); see Figure 9.
Note that Cx is disjoint from A1.
If fσx lies in XB (see Figure 9a) then M ′

x ⊂ XB. But M
′
x is disjoint from M1,

thus M ′
x ⊂ Z1. If fσx lies in XW (see Figure 9b) then M ′

x ⊂ XW ; but M ′
x is

disjoint from M3, so M ′
x ⊂ Z3. Therefore, in both cases M ′

x is a solid torus, by
Lemma (3.3.6).

By symmetry, we obtain that M ′
1 is also a solid torus, which implies that

M1 is a solid torus, since it is isotopic to M1. Therefore, fσx lies in XB by

Lemma (3.4.3). Let A be a minimal annulus in T̂ (see Figure 8c) containing
both GT (σ) and GT (σx). We have A ⊂ A2x ∪∂ B, where B is a small annulus
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containing vx and vx+1. Then n(A) ≤ n(A2x)+ 2. By Lemma (3.3.8), n(A1x) ≥
n(A2x) + 4, so n(A2x) ≤ t/2− 2. Then n(A) ≤ t/2.

Let Z = N(A ∪H1,2 ∪Hx,x+1 ∪ fσ ∪ fσx). Then Z is a Seifert fibered space
over a disk with two exceptional fibers (the cores of M ′

1 and M ′
x).

Therefore ∂Z is an essential 2-torus, since M(β) − Z contains T̂ . Since

n(∂Z) ≤ t− 4, it contradicts the fact that the essential 2-torus T̂ is minimal in
M(β). This completes the proof of Theorem (1.1).
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SPLITTING OF CERTAIN SINGULAR FIBERS

OF GENUS TWO

YUKIO MATSUMOTO

Dedicated to Professor Francisco Javier Gonzáles Acuña on his sixtieth birthday.

Abstract. This is a detailed account of the results announced in our pre-
vious paper [Y.Matsumoto, Lefschetz fibrations of genus two - a topological
approach, in the Proceedings of the 37th Taniguchi Symposium on Topol-
ogy and Teichmüller spaces, World Scientific (1996)]. Via computer cal-
culations, we will observe how certain genus two singular fibers of specific
types split into Lefschetz type singular fibers, which are atomic in the sense
of G. Xiao and M. Reid [14]. Also, we will give explicitly the positions of
the vanishing cycles corresponding to the atomic fibers.

1. Introduction

By the splitting of a singular fiber we mean the phenomenon that a singu-
lar fiber in a holomorphic one-parameter family of Riemann surfaces splits into
several less complicated singular fibers when the family is modified by a certain
perturbation. Following G. Xiao and M. Reid [14], we will call a singular fiber
that does not split any further an atomic fiber. In the case of genus two, atomic
fibers are now completely understood thanks to the work of Horikawa [7], Xiao
[18], Reid [14], Persson [13], and Arakawa and Ashikaga [1]. Arakawa and Ashik-
aga [1] extended the investigation to hyperelliptic families of genus ≥ 2. More
recently, Takamura [15, 16, 17] has started a systematic study on splitting of
more general singular fibers, not necessarily hyperelliptic.

Our study in this paper, however, is very restricted. We will be confined to
two concrete examples of singular fibers. We will take up two specific types of
genus two singular fibers and, via computer calculations, observe concretely how
they split into atomic fibers.

We are interested not only in splittability of these singular fibers but also in
the precise positions of the vanishing cycles corresponding to those atomic fibers
that occur at the splitting. Since the topological monodromy of the original
singular fiber is decomposed into a product of the right-handed Dehn twists [6]
along the vanishing cycles of the atomic fibers, the knowledge of the precise
positions of the vanishing cycles will give a precise decomposition formula of the
original monodromy homeomorphism. Thus, the splitting of singular fibers is

2000 Mathematics Subject Classification: Primary 14D06; Secondary 14D05, 57M50,
55R55.

Keywords and phrases: Singular fibers, splitting, Lefschetz fibrations, vanishing cycles,
monodromy.
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expected to provide a heuristic method to find relations in the mapping class
group.

In the case of genus two, it is known ([1]) that there are precisely two topo-
logical types of atomic fibers. Both of them are Lefschetz type singular fibers
shown in Figure (1). We will call them an atomic fiber of type I, and of type
II, respectively. (This notation is different from that in [7] or in [1].) An atomic
fiber of type I is obtained by pinching a non-separating simple closed curve on a
genus two Riemann surface into a point, and that of type II is obtained by pinch-
ing a separating simple closed curve. The singular point of these fibers is a node.
Thus a singular fiber of type II consists of two tori intersecting transversely in a
point.

The precise statements of our main results will be given in the next section.

Figure 1. Genus two atomic fibers of types I (left) and II (right)

The author was informed by L. Balke [2] that our splitting in Theorem (2.1)
below can be neatly reconstructed by an algebraic-geometricmethod. The author
is grateful to him for communicating his construction. All the figures in this
paper were drawn by I. Hasegawa, K. Tanaka and K. Yoshida. The author
thanks them for their beautiful work and kind help. Finally but not at all least,
the author greatly appreciates the referees’ careful reading and useful comments,
which improved the paper very much.

2. Main results

First we will describe the singular fibers which we want to study.
Let Σ2 denote an oriented closed surface of genus two, and consider an invo-

lution ω : Σ2 → Σ2 shown in Figure 2. Given a complex structure on Σ2, we
may assume that ω is holomorphic. Let Δ = {ξ||ξ| < 1} be the unit disk on the
complex plane. To obtain a singular fiber having the topological monodromy ω,
consider the quotient Δ×Σ2/(−1)×ω and blow up the two singular points. The
resulting complex manifold V fibers over a disk D = Δ/(−1) with the projection
f : V → D induced by the first projection Δ × Σ2/(−1) × ω → Δ/(−1). The
family f : V → D has a single singular fiber f−1(0) and its topological mon-
odromy is ω. According to [11], the topological monodromy around a singular
fiber determines the topological type of (the fibered neighborhood of) the singu-
lar fiber. We denote the singular fiber f−1(0) (or rather its topological type) by
Fω.
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180◦

Figure 2. The involution ω : Σ2 → Σ2

1

1

2

Figure 3. Singular fiber Fω

The singular fiber Fω consists of a torus of multiplicity 2 and two 2-spheres
of multiplicity 1. Each 2-sphere intersects the torus transversely in a point (see
Figure (3)). This is the first singular fiber we shall study.

The second one is the singular fiber F ι shown in Figure (4). This fiber con-
sists of seven 2-spheres intersecting transversely as shown in the figure. The
monodromy corresponding to this singular fiber is the hyperelliptic involution
ι : Σ2 → Σ2 (see Figure (5)). The construction of F ι is similar to that of Fω.

2

1 1 1 1 1 1

Figure 4. Singular fiber F ι

180◦

Figure 5. The hyperelliptic involution ι
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The following theorem is our first main result. In this theorem the family
φ : N → D is topologically equivalent to the family f : V → D constructed
above, but their complex structures are not necessarily the same.

Theorem (2.1). There exists a holomorphic family of compact genus two
Riemann surfaces over a disk, φ : N → D, having a single singular fiber over the
origin 0 ∈ D whose topological type is Fω, such that if one perturbs the family in
a certain way by a real parameter ε then, in the perturbed family φε : Nε → D,
the singular fiber Fω disappears, and in place of it four atomic fibers occur. The
positions of their vanishing cycles β1, β2, β3, β4 are as shown in Figure (6).

β1 β2 β3 β4

Figure 6. Vanishing cycles β1, β2, β3, β4

As a corollary, the monodromy ω is decomposed as follows:

(2.2) ω = β1β2β3β4.

Note that here we use identical notation for a simple closed curve on Σ2 and
the right-handed Dehn twist along the curve. Also note that the mapping class
group M2 is assumed to act on Σ2 from the right: the composition β1β2β3β4
means that first we apply β1 and then β2, and so on. Among these vanishing
cycles, only β2 is separating. Thus the atomic fiber corresponding to β2 is of
type II. The other three atomic fibers are of type I, and the splitting of Theorem
(2.1) is simply written as

(2.3) Fω ⇒ 3I + II.

This splitting seems to be known to specialists except for the precise positions
of vanishing cycles (cf. [13]).

Although Theorem (2.1) is merely an experimental observation (and the au-
thor has a little hesitation about calling it “a theorem”), it has turned out to be
quite useful. For example, in [10], we made use of this splitting to construct a
Lefschetz fibration of genus two

(2.4) S2 × T 2#4CP 2 → S2

whose singular fibers are of types 6I + 2II and whose total monodromy is
(β1β2β3β4)

2 = 1. With this fibration, we were able to calculate the local signa-
ture σ(II) of a type II atomic fiber [10]. That is, substituting the known values

σ(I) = − 3
5 (which was known from another example) and Sign(S2×T 2#4CP 2) =

−4 in the local signature formula

(2.5) Sign(S2 × T 2#4CP 2) = 6σ(I) + 2σ(II)

we obtained

σ(II) = −1

5
.
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Figure 7. Standard curves on Σ2

Using algebraic methods, Endo [5] extended this result and calculated local
signature of singular fibers in hyperelliptic Lefschetz fibrations of genus g ≥
3. Arakawa and Ashikaga [1] studied the local signature from an algebraic-
geometric viewpoint using the Horikawa index. Moreover, Ozbagci and Stipsicz
[12], starting from the fibration (2.4) and applying Gompf’s theorem (see [6])
on the existence of symplectic structures on Lefschetz fibrations, constructed
infinitely many examples of closed symplectic 4-manifolds which do not have the
homotopy type of any complex surface. The decomposition (2.2) was extended
to higher genera by Cadavid [4] and Korkmaz [9].

Our second main result is the following

Theorem (2.6). There exists a holomorphic family of compact genus two
Riemann surfaces over a disk, ϕ : M → D, having a single singular fiber over
the origin 0 ∈ D whose topological type is F ι, such that if one perturbs the family
in a certain way by a real parameter ε, then in the perturbed family ϕε :Mε → D
the singular fiber F ι disappears, and in its place 10 atomic fibers of type I occur.
Their vanishing cycles are

(ζ1, ζ2, ζ3, ζ4, ζ5, ζ5, ζ4, ζ3, ζ2, ζ1)

where ζi, i = 1, 2, . . . , 5, are the standard simple closed curves on Σ2 given in
Figure (7).

Both in Theorems 1 and 2, we tacitly assume that a general fiber Ft0 is
fixed as a reference fiber in the family of Riemann surfaces, and that a set
of loops {l1, l2, . . . , ls} on D − {critical values} corresponding to the occurring
atomic fibers {F1, F2, . . . , Fs} are chosen as follows (see Figure (8)): The loop
li corresponding to an atomic fiber Fi starts from the locus t0 of the reference
fiber Ft0 , follows a path γi, and reaches a point on the boundary of a small
disk containing the critical value bi of Fi, then moves counter-clockwise along
the boundary of this small circle, and finally comes back to t0 along γ−1

i . We
assume that the loops li (i = 1, 2, . . . , s) are mutually disjoint except at the base
point t0, and taking a small disk D0 centered at t0, we assume that the paths
γ1, γ2, . . . , γs intersect the boundary ∂D0 counter-clockwise in this order.

The vanishing cycle corresponding to an atomic fiber Fi is considered to be
a simple closed curve Ci on the reference fiber Ft0 . This cycle Ci shrinks to
the nodal point on the atomic fiber Fi as one “moves” the reference fiber Ft0
along the path γi to Fi. The corresponding monodromy, which is the Dehn twist
along Ci, is the returning diffeomorphism obtained by moving the fiber Ft0 along
the loop li. The order and the positions of the vanishing cycles (β1, β2, β3, β4) in
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t0

b1 b2 bs

γs
γ2

γ1

Figure 8. Loops l1, l2, . . . , ls

Theorem 1 and (ζ1, ζ2, ζ3, ζ4, ζ5, ζ5, ζ4, ζ3, ζ2, ζ1) in Theorem (2.6) assume certain
choices for the loops li, as indicated above.

By Theorem (2.6), the topological monodromy ι of the singular fiber F ι de-
composes into

(2.7) ι = ζ1ζ2ζ3ζ4ζ5ζ5ζ4ζ3ζ2ζ1.

This is of course a well-known relation in the mapping class group of genus two
(see [3]). Ito [8] extended Theorem (2.6) to higher genera.

3. Construction of a fibered neighborhood of the singular fiber Fω

The construction of the family f : V → D given in §2 is simple, but for
the purpose of computer calculation it is not necessarily adequate, because the
complex structure of V is not explicitly described. Thus we must construct a
family φ : N → D which is topologically equivalent to f : V → D using concrete
equations.

We will start with a torus in the complex projective plane CP 2, defined by
the following cubic homogeneous polynomial

(3.1) x2z − y3 − z3 = 0.

The affine space CP 2 − {z = 0} will be identified with the (complex) xy-plane.
Define a polynomial f(x, y) as follows:

(3.2) f(x, y) = x2 − y3 − 1.

Then in the xy-plane the torus (3.1) is given by f(x, y) = 0. This is actually a
punctured torus.

Let N ′ be a tubular neighborhood of the punctured torus f = 0 in the xy-
plane with “constant thickness”:

(3.3) |f(x, y)| < δ,

where δ is a positive constant. Note that in the projective plane CP 2, N ′ is no
longer of constant thickness: it becomes thinner and thinner as it approaches
the point (1 : 0 : 0) at infinity.
f is a well-defined function on N ′.
We introduce another well-defined function φ on N ′ by setting as

(3.4) φ(x, y) = yf(x, y)2.
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The punctured torus f = 0 and the x-axis (y = 0) intersect in the two points
x = ±1 (cf. (3.2)). Thus the divisor φ = 0 in N ′ is a union of a punctured torus
and two disks D1, D2, as shown in Figure (9).

D2

D1

Figure 9. The divisor φ = 0

We attach two 2-handles H1 and H2 to N ′ along the boundaries of the 2-disks
D1, D2 so that φ : N ′ → C extends to a well-defined function N ′∪H1∪H2 → C.
This is explained more precisely as follows. Let p1 be the intersection point of
the disk D1 and the punctured torus f = 0. Introduce local coordinates (s, t)
whose origin is p1. We assume that D1 is locally defined by t = 0, and f = 0 by
s = 0. In these coordinates, φ is locally given by

(3.5) φ = s2t.

Take a polydisk Δ2 = {(σ, τ) ∈ C2||σ| < δ′, |τ | < δ′′}, and glue Δ2 to N ′ by
setting

(3.6) σ = s−1, τ = s2t.

Then the polydisk Δ2 is attached to N ′ as a 2-handle H1, and φ : N ′ → C

extends to N ′ ∪H1 → C. The 2-disk D1 together with the core disk (τ = 0) of
the 2-handle H1 make a 2-sphere S2.

We perform the same construction at the intersection point p2 of the other
disk D2 and the punctured torus f = 0, that is, we attach a 2-handle H2 to N ′

using another polydisk Δ2. Then the 2-disk D2 closes up to a 2-sphere.
We have attached two 2-handles H1, H2 to N ′. Let us denote the resulting

manifold by N ′′:

(3.7) N ′′ = N ′ ∪H1 ∪H2.

Then the map φ : N ′ → C extends to N ′′ → C. This extended map is denoted
again by φ.

Observe that N ′′ is an open complex manifold, but no longer an open set in
C2.

We have almost finished the construction of a fibered neighborhood of the
singular fiber Fω. But, at this stage, the singular fiber is a punctured torus
(rather than a torus) of multiplicity 2 stuck with two 2-spheres, and it only lacks
the point (1 : 0 : 0) ∈ CP 2 to become Fω.
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A general fiber φ = k (k a non-zero constant) of φ : N ′′ → C is obtained by
closing the surface N ′ ∩ {φ = k} with two 2-disks, each being defined by τ = k
in each polydisk Δ2 (i.e., a disk parallel to the core of the 2-handle H1 or H2).
This general fiber is essentially a 2-fold branched covering of the punctured torus
f = 0 branched at the two points p1 and p2. Over the point at infinity (1 : 0 : 0)
the covering is unbranched, and the general fiber φ = k is a twice punctured
surface of genus two (twice punctured since it lacks two points over (1 : 0 : 0)).

Now we will look at a neighborhood of the point (1 : 0 : 0) more closely.
The affine space CP 2 − {x = 0} has complex coordinates (u, v), where

(3.8) u =
z

x
, v =

y

x
.

The origin of this coordinate system is the point (1 : 0 : 0). Since the polynomial
function f (defined on the xy-plane) is given in homogeneous coordinates by
f(x : y : z) = (xz )

2 − (yz )
3 − 1, f is given in the uv-plane by the formula

(3.9) u−2 − u−3v3 − 1 = u−3(u− v3 − u3)

which we denote by g(u, v). In the intersection N ′ ∩ uv-plane, the function φ is
equal to

(3.10) φ(u, v) =
v

u
g(u, v)2.

From (3.3) we have that, on N ′ ∩ (a neighborhood of (1 : 0 : 0)),

(3.11) |g(u, v)| < δ.

The function g(u, v) is not defined at the point (1 : 0 : 0). But the complex
curve g = 0 (⇔ u− v3 − u3 = 0) is becoming tangent to the v-axis (u = 0) as it
approaches to (1 : 0 : 0) and, in the neighborhood of (1 : 0 : 0), the curve g = 0
does not intersect neither the u-axis nor the v-axis. (Since the domain of the
function g(u, v) does not contain the origin (u, v) = (0, 0), the curve g = 0 does
not contain this point either.) Since N ′ becomes thinner and thinner near the
origin and it has g = 0 as “core”, we have u 	= 0 and v 	= 0 on N ′. See Figure
(10).

u
v

∞ g = 0

Figure 10. Situation near (1 : 0 : 0)

In order to extend the function g(u, v) over the point at infinity, (u, v) = (0, 0),
we paste a new coordinate neighborhood U = {(ξ, η)} to N ′ by assuming that
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U ∩N ′ = N ′ ∩ (a neighborhood of (1 : 0 : 0)) and by defining the pasting map
as follows:

(3.12) ξ = v, η =

√
1− (1 + g(u, v))u2

v
g(u, v).

Recall that in the intersection of N ′ and a small neighborhood of (u, v) =
(0, 0), we have |g(u, v)| < δ and (u, v) � (0, 0). Thus, in the same intersection,

u2(1+g(u, v)) is close to 0, and
√
1− (1 + g(u, v))u2 in (3.12) may be considered

to be a well-defined complex number close to 1. The manifoldN ′ does not contain
the point (1 : 0 : 0) ∈ CP 2, but the coordinate neighborhood U contains this
point, namely, (ξ, η) = (0, 0).

Note that we do not regard U as an open set of CP 2: we paste the two open
manifolds U and N ′′, abstractly. In this pasting, N ′′, which was infinitely thin
near (1 : 0 : 0), recovers its finite thickness. Thus the pasting N ′′ ∪ U may be
considered to be a kind of blow up process.

We have that

η2 =
1− (1 + g(u, v))u2

v2
g(u, v)2(3.13)

=
1− (1 + u−3(u− v3 − u3))u2

v2
g(u, v)2

=
1− (u2 + 1− v3

u − u2)

v2
g(u, v)2

=
v

u
g(u, v)2

= yf(x, y)2

= φ.

Thus, if we denote the manifold N ′′ ∪ U = N ′ ∪ H1 ∪H2 ∪ U by N , then φ
extends to a well-defined function on N , denoted by the same symbol φ : N → C.
From (3.13), we have

(3.14) φ | U = η2.

The divisor φ = 0 in N is obtained from the divisor φ = 0 in N ′′ (which was
a punctured torus of multiplicity 2 stuck with two 2-spheres) by capping off the
puncture with the 2-disk in U of multiplicity 2 defined by η2 = 0. Thus we have
obtained a torus of multiplicity 2 stuck with 2 spheres, that is, a singular fiber
of type Fω (see Figure (11)).

A general fiber of φ : N → C is obtained from a general fiber φ = t (t a
non-zero constant) in N ′′ (which was a twice punctured surface of genus 2 as we
remarked above) by capping off the punctures with two 2-disks in U defined by
η = ±√

t (see (3.13)). The resulting general fiber is a closed surface of genus 2.
Taking a small open disk D centered at 0 of C, and denoting φ−1(D) again by

N , we have a holomorphic family of Riemann surfaces of genus 2, φ : N → D,
which has a unique singular fiber of type Fω over 0. The construction is now
complete.
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torus

2

1

1

Figure 11. Divisor φ = 0 in N

4. Perturbation of the projection φ : N → D

Recall that N = U ∪ N ′′ and N ′′ = N ′ ∪ H1 ∪ H2. The attaching maps
of the 2-handles H1, H2 are automatically determined by the requirement that
the projection map φ : N ′ → C should extend to N ′ ∪ H1 ∪ H2 → C. Thus
the main body of the information on the projection φ : N → C is contained in
φ : U ∪N ′ → C. In what follows, we will study this part of the projection closely.

The projection φ is given on U ∪N ′ as follows:

φ(x, y) = yf(x, y)2 on N ′(4.1)

φ(ξ, η) = η2 on U.

We perturb φ : N ′ → C to φε as follows:

(4.2) φε(x, y) = (yf(x, y)− ε)f(x, y)

where ε is the parameter of perturbation, and is a non-zero small real number.
Let us examine the divisor φε = 0 on U ∪N ′.
On N ′, the divisor φε = 0 has two irreducible components:

(4.3) yf(x, y)− ε = 0 and f(x, y) = 0.

These components do not intersect each other in N ′.
On U , the perturbed map φε|U is automatically determined by φε|N ′:

φε = (yf(x, y)− ε)f(x, y)(4.4)

= (
v

u
g(u, v)− ε)g(u, v)

=
v

u
g(u, v)2 − εg(u, v)

= η2 − εv
√
1− (1 + g(u, v))u2

η

= η(η − εξ
√
1− (1 + g(u, v))u2

)

� η(η − εξ).
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In the above, we used the fact that the √ in (4.4) is close to 1. Thus, in U ,

the divisor φε = 0 consists approximately of the two (complex) lines η = 0 and
η − εξ = 0, which intersect transversely at the point (ξ, η) = (0, 0).

Deforming the projection φ : N ′ → C to φε : N
′ → C necessarily changes the

attaching maps of the 2-handles H1, H2, because we require that the projection
φε : N

′ → C should extend on N ′ ∪H1 ∪H2.
We look at the attaching map of a 2-handle more closely. Previously the

2-handle H1 was attached by the pasting map (3.6). Now we attach it by the
following map:

(4.5) σ = s−1, τ = (ts− ε)s.

(Recall that the 2-handle H1 is a polydisk Δ2 = {(σ, τ)||σ| < δ′, |τ | < δ′′}
glued to N ′.) Then the projection φε|N ′ is extended on the polydisk by setting
φε = τ , and the component yf(x, y)− ε = 0 of the divisor φε|N ′ = 0 is capped
off by the disk τ = 0 in Δ2. The same thing happens in the other 2-handle H2,
where the component yf(x, y)− ε = 0 is capped off again to make a punctured
torus. The other component of f(x, y) = 0 was already a punctured torus. Thus,
if we denote the extended projection by the same symbol φε, the divisor φε = 0
in N ′′

ε (:= N ′ ∪ε H1 ∪ε H2) is a union of two punctured tori. We denote the
perturbed manifold by Nε(:= U ∪N ′′

ε ). Of course, if ε = 0, the Nε coincides with
the original manifold N : N0 = N . We are assuming, however, that ε > 0, and
in this case Nε and N are diffeomorphic, but have different complex structures.

The divisor φε = 0 in N ′′
ε was a disjoint union of two punctured tori. In U , the

punctures are capped off by the two disks η = 0 and (approximately speaking)
η− εξ = 0. Thus the divisor φε = 0 in Nε consists of two 2-tori intersecting each
other transversely at the point (ξ, η) = (0, 0). This is the “central” singular fiber
of φε : Nε → D over 0.

We will now look for the other singular fibers of φε. For this purpose, we will
study the critical points of φε.

We compute on N ′.
Recall that

φε = (yf(x, y)− ε)f(x, y)(4.6)

= (y(x2 − y3 − 1)− ε)(x2 − y3 − 1).

Thus

(4.7)
∂φε
∂x

= 2x(2y(x2 − y3 − 1)− ε)

and

(4.8)
∂φε
∂y

= (x2 − y3 − 1)2 − 6y3(x2 − y3 − 1) + 3εy2.

Solving ∂φε

∂x = 0 we have

(4.9) x = 0 or x2 − y3 − 1 =
ε

2y
.

Substituting x = 0 in ∂φε

∂y = 0 we have

(4.10) 7y6 + 8y3 + 3εy2 + 1 = 0,
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while substituting x2 − y3 − 1 = ε
2y in ∂φε

∂y = 0 we have

(4.11)
ε2

4y2
= 0.

The latter is clearly impossible, for ε > 0.
Therefore, every critical point is on the line x = 0.
If we put ε = 0, then the equation (4.10) has six solutions y = −1, (1/2)

(1 ± √−3), − 3
√
1/7, (1/2 3

√
7)(1 ± √−3). Among them, the three solutions

y = −1, (1/2)(1 ± √−3) satisfy φ0(0, y) = 0, while the solutions y = − 3
√
1/7,

(1/2 3
√
7)(1 ±√−3) do not.

Now we look for new-born singular fibers. Since ε is a sufficiently small positive
real number in this case, we look for three solutions y of (4.10) which are close
to −1, and (1/2)(1±√−3).

Put ε = 0.1. Solving 7y6 + 8y3 + 0.3y2 + 1 = 0 with Mathematica we obtain
six solutions

A = −0.982582

B = −0.540281

C = 0.245133− 0.452077
√−1(4.12)

C = 0.245133+ 0.452077
√−1

D = 0.516298− 0.866582
√−1

D = 0.516298+ 0.866582
√−1.

Among them, the three solutions A, D, D are close to −1, (1/2)(1 ± √−3).
Thus we see that the critical points A, D, and D are on the new-born singular
fibers at the splitting of the original singular fiber Fω (besides the singular fiber
φε

−1(0) which is a bouquet of two tori).

5. New-born singular fibers and their monodromies

It is well known that any family of genus two Riemann surfaces is hyperelliptic
in the sense that it is obtained by taking a double branched covering of a sphere
bundle along a branch locus which meets a general sphere-fiber in 6 points. In
the concrete situation which we are dealing with, we are very naturally led to
such a branched covering. In this section, we will explain this. Balke [2] explains
the appearance of the double branched covering in our situation more clearly.

In what follows, we will distinguish several complex planes C by the symbol
used for the variable in the plane, as in Ct, Cy, etc.

Since φε is equal to (y(x2−y3−1)− ε)(x2−y3−1), we may think of φε(x, y) :
C2 → Ct as the pull-back of

(5.1) ψε(X, y) = (y(X − y3 − 1)− ε)(X − y3 − 1) : C2 → Ct

under the branched-covering map Π : C2 → C2 defined by Π(x, y) = (x2, y) =
(X, y). The branch locus of Π is the y-axis: X = 0.

In other words, we consider the following commutative diagram:
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C2 φε−−−−→ Ct

Π

⏐⏐
�

⏐⏐
�identity

C2 −−−−→
ψε

Ct.

Let us prove that any fiber f εt (:= {(X, y)|ψε(X, y) = t}) of ψε : C2 → Ct has
no singular points.

In fact, from

(5.2)
∂ψε
∂X

= 2y(X − y3 − 1)− ε = 0

we have X − y3 − 1 = ε
2y . Substituting this into

(5.3)
∂ψε
∂y

= (X − 4y3 − 1)(X − y3 − 1) + (y(X − y3 − 1)− ε)(−3y2) = 0

we have the equation

0 = (
ε

2y
− 3y3)

ε

2y
+ (− ε

2
)(−3y2)(5.4)

= (
ε

2y
)2

which is clearly impossible, because ε 	= 0. Thus each fiber f εt of the projection
ψε is a smooth curve in the Xy-plane.

Π : C2
(x,y) → C

2
(X,y) is a double branched covering branched along the y-axis.

Thus, if a fiber f εt of ψε is tangent to the y-axis, the preimage F εt = Π−1(f εt )
is a singular fiber of φε = ψε ◦ Π. A point of f εt tangent to the y-axis lifts to a
singular point of F εt . Since f εt is always nonsingular, a singular fiber F εt occurs
only in this way. Thus, let us look for points of the fibers f εt tangent to the
y-axis.

For this, we solve the equation

(5.5)
∂ψε
∂y

|X=0 = 7y6 + 8y3 + 3εy2 + 1 = 0.

Note that this is the same equation as (4.10). For ε = 0.1 this equation had
six roots, and among them the three roots denoted by A,D,D (see (4.12)) were
related to the new-born singular fibers of the splitting of Fω.

For simplicity, we denote the values of ψε on these tangent points (0, A),
(0, D), and (0, D) by t(A), t(D), and t(D), respectively. The fibers f εt(A), f

ε
t(D),

and f ε
t(D)

of ψε are non-singular, and are tangent to the y-axis at the above

tangency points. As is easily seen, these tangency points are double tangencies,
and they split into two points in corresponding nearby fibers, f εt(A)+δ, f

ε
t(D)+δ,

and f ε
t(D)+δ

. In other words, these nearby fibers intersect the y-axis in two points

which are close to the corresponding tangency points.
The tangency points (0, A), (0, D), (0, D) lift (under Π) to the nodes on the

singular fibers F εt(A), F
ε
t(D), F

ε
t(D)

. Short arcs αA, αD, αD in the nearby fibers,

f εt(A)+δ, f
ε
t(D)+δ, f

ε
t(D)+δ

, respectively, joining the two “split” intersection points
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will lift to the vanishing cycles in F εt(A)+δ, F
ε
t(D)+δ, F

ε
t(D)+δ

, corresponding to

the nodes.
Thus, our first task will be to draw these short arcs, αA, αD and αD, on the

fibers f εt(A)+δ, f
ε
t(D)+δ and f ε

t(D)+δ
, respectively, and our second task will be to

move each of these fibers along a curve on the “base space” Ct to the common
reference fiber f εt0 over the base point t0, and then to see the final positions of the

translated arcs, α0
A, α

0
D and α0

D
, on the reference fiber f εt0 . From this last piece

of information, we will see the global monodromy associated with the new-born
singular fibers, F εt(A), F

ε
t(D), and F

ε
t(D)

, at the splitting of the original singular

fiber Fω.
Our first task encounters a little unexpected complication.
To explain this, we consider the projection p2 : C2

(X,y) → Cy of the Xy-

plane onto the y-axis, defined by p2(X, y) = y, and represent each fiber f εt as a
double branched covering over the y-axis. The projection of this double branched
covering is the restriction of the projection p2:

(5.6) p2|f εt : f εt → Cy

This makes sense, because the equation ψε = t which gives the fiber f εt is

(5.7) (y(X − y3 − 1)− ε)(X − y3 − 1) = t

(see (5.1)), or, equivalently

(5.8) yX2 − (2y4 + 2y + ε)X + (y7 + 2y4 + εy3 + y + ε− t) = 0

This is a quadratic equation for X , provided that y 	= 0. Thus, given a generic
point y 	= 0, there are two simple roots X1 and X2 of the equation, yielding two
points (X1, y) and (X2, y) on f

ε
t projected to y under p2. This means that the

fiber f εt spreads over the y-axis as a double branched covering.
The case when y = 0 seems to cause a problem, for then the equation (5.8)

becomes linear. But what we really want to know is not f εt itself but a fiber
of φε : Nε → Ct. And, near the point y = 0, the fiber φε = t is “absorbed”
into the 2-handles attached to N ′, in such a way that the intersection of the
fiber and each attached 2-handle is a 2-disk parallel to the core of the handle.
Therefore, near the point y = 0, the topology of the fiber f εt or that of the fiber
of φε : Nε → Ct does not suffer so big a change. So we may think of f εt as a
“double branched cover” of the y-axis.

The branch locus of the branched covering p2|f εt : f εt → Cy is found by solving
the equation Δ = 0, where Δ is the discriminant of the quadratic equation (5.8).

In fact,

Δ = (2y4 + 2y + ε)2 − 4y(y7 + 2y4 + εy3 + y + ε− t)(5.9)

= ε2 + 4ty.

Thus, for t 	= 0, the branch locus is a single point on the y-axis

(5.10) y = − ε
2

4t

Since the fiber f εt is a double branched covering of the y-axis branched at this
point, f εt is diffeomorphic to the 2-plane. If it is compactified by adding ∞,

the compactified fiber f̂ εt is a 2-sphere. The general fiber of φε : Nε → Ct is
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obtained by taking the double branched covering (under Π : C(x,y) → C(X,y)) of

the 2-sphere f̂ εt branched at certain six points.

Remark. Recall that the double branched covering Π : C(x,y) → C(X,y)

branches along the y-axis X = 0. Putting X = 0 in (5.8), we get a 7th de-
gree equation for y, which has seven roots if t is generic. But one root is related
to the part absorbed into the 2-handle, and may be neglected. Taking the double

covering of the 2-sphere f̂ εt branched at the remaining six roots, we get a closed
surface of genus 2, that is F εt . The details are left to the reader.

The unexpected phenomenon. The unexpected phenomenon alluded to above
is the following: Let us for instance consider the fiber f εt(D)+δ. This fiber has two

intersection points with the y-axis, say (0, D1) and (0, D2), near (0, D). ((0, D) is
the tangent point of the fiber ft(D) to the y-axis.) The unexpected phenomenon
is that these split points (0, D1) and (0, D2) are on the different sheets of the
double branched covering p2|f εt(D)+δ : f εt(D)+δ → Cy. (Here we talk about the

sheets of the double branched covering p2|f εt(D)+δ. In the concrete case below

where ε = 0.1 and δ = 0.0001, the sheets are defined, for example, by making the
“slit” along the lifted curve of the half-line whose terminal point is the branch
locus (5.13) and which is parallel to the imaginary axis of the y-plane Cy.) At
first the author could not believe this, because the tangency point (0, D) cer-
tainly lies on a sheet of the branched covering. If the deviation δ of the fiber
f εt(D)+δ from f εt(D) is very small, it seemed reasonable to expect that the split

points (0, D1) and (0, D2), both of which were born from (0, D), should be on
the same sheet.

However, the points (0, D1) and (0, D2) are already on different sheets, even
if δ takes a quite small value. To see this, let us make a numerical calculation,
setting ε = 0.1 and δ = 0.0001.

For ε = 0.1, we have already calculated

D = 0.516298− 0.866582
√−1,

and

t(D) = ψε(0, D) = −0.00126867− 0.00212911
√−1.

To find D1 and D2 for δ = 0.0001, we solve the following equation:

(5.11) y7 + 2y4 + 0.1y3 + y + 0.1 = t(D) + 0.0001

Among the roots, there are two which are close to D, namely

D1 = 0.513563− 0.864834
√−1, D2 = 0.519003− 0.868327

√−1.

The points (0, D1) and (0, D2) are two intersection points of f εt(D)+0.0001 and

the y-axis. Let c(s) be a line segment on the y-axis Cy joining D1 and D2 and
parametrised by s (0 ≤ s ≤ 1). More explicitly, c(s) is given by

c(s) = (1− s)D1 + sD2(5.12)

= (1− s)(0.513563 − 0.864834
√−1) + s(0.519003 − 0.868327

√−1)

The branch locus of the double branched covering p2|f εt(D)+0.0001 : f εt(D)+0.0001 →
Cy is calculated from (5.10) by setting ε = 0.1 and t = t(D)+0.0001. The result
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is

(5.13) 0.495292− 0.902334
√−1

Note that this branch locus is not on the segment c(s), (0 ≤ s ≤ 1).
Now, in order to check whether or not (0, D1) and (0, D2) are on the same sheet

of the double covering p2|f εt(D)+0.0001, let us lift this segment c(s) (0 ≤ s ≤ 1) to

f εt(D)+0.0001 under the double covering map p2|f εt(D)+0.0001 : ft(D)+0.0001 → Cy.

If c(s) lifts to two arcs, and one of them joins (0, D1) and (0, D2), then (0, D1)
and (0, D2) are on the same sheet. But if (0, D1) and (0, D2) belong to different
components of the lifted arcs, then the two points (0, D1) and (0, D2) are on
different sheets. To lift the segment c(s), we successively solve the following
quadratic equations for X , by putting y = c(0.1 i), i = 0, 1, . . . , 10 (cf. equation
(5.8)):

(5.14) yX2 − (2y4 + 2y+ 0.1)X + (y7 + 2y4 +0.1y3 + y+ 0.1) = t(D) + 0.0001

LetX1(s) and X2(s) denote the two roots of (5.14) with y = c(s). In Figure (12),
we plot the lines {(�(X1(s)), s)}0≤s≤1 and {(�(X2(s)), s)}0≤s≤1. These lines
should be conceptually the same as the lifted arcs.

-0.015 -0.01 -0.005 0.005 0.01 0.015

2

4

6

8

10

Figure 12. Lines {(�(X1(s)), s)}0≤s≤1 and {(�(X2(s)), s)}0≤s≤1

Each line of Figure (12) has a terminal point on �(X) = 0 which corresponds
to the point (0, D1) or (0, D2). Thus we see that one of the lifted arcs of c(s) has
(0, D1) as a terminal point, and the other has (0, D2). This implies that (0, D1)
and (0, D2) are on different sheets of the branched covering p2|f εt(D)+0.0001.

The author has not yet clearly seen the geometric process by which the two
points (0, D1) and (0, D2), which were simultaneously born from the same tan-
gency point (0, D), move so fast onto the different sheets of the double branched
covering p2|f εt(D)+0.0001 : f εt(D)+0.0001 → Cy. But this is surely related to the fact

that the tangency point (0, D) of f εt(D) to the y-axis Cy and the branch point

(XD,− ε2

4t(D) ) of the double branched covering p2|f εt(D) : f εt(D) → Cy are very

close to each other.
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In fact, we have that, for ε = 0.1,

D = 0.516298− 0.866582
√−1 and(5.15)

− ε2

4t(D)
= 0.516338− 0.866530

√−1.

K. Ahara personally communicated to the author that, if we take a very small
value of δ such as δ = 0.00000001, then the corresponding points (0, D1) and
(0, D2) are on the same sheet of the branched covering p2|f εt(D)+δ as we expected.

Then the arguments below must be quite different, but the final conclusion on the
splitting of the singular fiber Fω should be the same. The author would like to
see how the same conclusion is obtained through different geometric arguments,
which will be left to the interested readers.

Arcs joining the split points. Now we work with the original value δ =
0.0001, and want to connect the points (0, D1) and (0, D2) by an arc αD on
the fiber f εt(D)+0.0001. The projected image p2(αD) on Cy cannot be a segment,

because as we saw above the two points are not on the same sheet of the double
branched covering p2|f εt(D)+0.0001 : ft(D)+0.0001 → Cy. We can take instead

the line D1bDD2 of Figure (13) having a bend at the point bD, where bD is
the branch locus of the double branched covering f εt(D)+0.0001 → Cy, that is,

bD = 0.495292−0.902334
√−1 (see (5.13)) . Then we can construct a connecting

arc αD on f εt(D)+0.0001 as the union of the lifts of D1bD and bDD2, which contain

(0, D1) and (0, D2), respectively. Thus obviously p2(αD) = D1bDD2 holds.
Similarly, we can draw an arc αA on f εt(A)−δ (resp. an arc αD on f ε

t(D)+δ
)

connecting (0, A1) and (0, A2) (resp. (0, D1) and (0, D2)). Here (0, A1) and
(0, A2) are the two intersection points of f εt(A)−δ and the y-axis into which the

tangency point (0, A) splits. The explanation is similar for the points (0, D1)
and (0, D2). (Note that we take f εt(A)−δ instead of f εt(A)+δ. This is for later

convenience.)

bA A1 A2

bD

D1

D2

bD

D1

D2

Figure 13. The images of the connecting arcs, p2(αA), p2(αD) and p2(αD).
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Observation of local movements of the connecting arcs. We continue
the explanation taking f εt(D)+0.0001 as a typical example. We drew an arc αD
on the fiber f εt(D)+0.0001 connecting (0, D1) and (0, D2). Next we will move

this fiber f εt(D)+0.0001 around f εt(D), and will see the movement of the arc αD

inside f εt(D)+0.0001. For this purpose, we put δ(s) = 0.0001 exp(2π
√−1s), where

0 ≤ s ≤ 1, and solve the equation

(5.16) y7 + 2y4 + 0.1y3 + y + 0.1 = t(D) + δ(s).

Let D1(s) and D2(s) be the two solutions of (5.16) nearest to D = 0.516298−
0.866562

√−1. Changing the parameter s from 0 to 1, we observe the movements
of D1(s) and D2(s) in Cy.

Also, we observe the movement of the branch locus bD(s) of the double
branched covering p2|f εt(D)+δ(s) : f εt(D)+δ(s) → Cy. In fact, putting ε = 0.1

and t = t(D) + 0.0001 exp(2π
√−1s) in (5.10), we have

(5.17) bD(s) = − 0.01

4(t(D) + 0.0001 exp(2π
√−1s))

We have calculated these movements with Mathematica. We will describe the
results conceptually. The two points D1(s) and D2(s) are in opposite positions
on a circle whose center is D and whose radius is about 0.003. As the parameter
s changes from 0 to 1, the points D1(s) and D2(s) move on this circle starting
from D1(0) = D1, and D2(0) = D2, through 180◦ counterclockwise until they
exchange their positions, D1(1) = D2 and D2(1) = D1.

The movement of bD(s) is as follows: The point bD(s) starts from bD(0) =
bD = 0.495292− 0.902334

√−1 (see (5.13)) and goes around once counterclock-
wise on a circle whose center is D and whose radius is about 0.045. Note that
the radius of this circle is more than ten times that of the circle on which are
D1 and D2 lie.

Figure (14) shows these movements conceptually, neglecting the precise pro-
portion of the figures.

D1

D2

bD

Figure 14. Movements of D1(s), D2(s) and bD(s)
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From Figure (14), we can also see the movement of the line with a bend
D1(s)bD(s)D2(s), too. Tracing this movement from above in f εt(D)+δ(s) via the

branched covering map p2|f εt(D)+δ(s) : f
ε
t(D)+δ(s) → Cy, we can see the movement

of the connecting arc αD: it rotates 180◦ counterclockwise inside a disk neigh-
borhood of itself until it exchanges its terminal points (0, D1) and (0, D2) (see
Figure (15)).

bD

D1

D2 D2

bD

D1
D2

bD

D1

Figure 15. Movement of αD

Lifting αD further to the fiber F εt(D)+δ under the branched covering Π|F εt(D)+δ :

F εt(D)+δ → f εt(D)+δ, we obtain the vanishing cycle corresponding to the node of

the singular fiber F εt(D). (Recall the commutative diagram at the beginning of

§5.) And by lifting the movement of the connecting arc αD to the fiber F εt(D)+δ,

we obtain the right-handed Dehn twist along the vanishing cycle.
By similar arguments we can see that, if we move the fiber F εt(A)−δ (or F

ε
t(D)+δ

)

around the singular fiber F εt(A) (or F
ε
t(D)

), then the corresponding monodromy is

the right-hand Dehn twist along the vanishing cycle which is obtained as the lift
of αA (or αD) under the double branched covering Π|F εt(A)−δ : F

ε
t(A)−δ → f εt(A)−δ

(or Π|F ε
t(D)+δ

: F ε
t(D)+δ

→ f ε
t(D)+δ

).

6. Positions of the vanishing cycles on the reference fiber

We come to the second task mentioned in §5. We choose a base point t0 on
Ct as

(6.1) t0 = −0.001

and consider the fiber F εt0 as the reference fiber. Take δ = 0.0001 as before. We

draw the following three paths on Ct which connect t(A)− δ, t(D)+ δ, t(D)+ δ,
and t0, respectively:

lA(s) = (1 − 2s)(t(A)− δ) + 0.002s (0 ≤ s ≤ 1

2
)(6.2)

= 0.001 exp(π
√−1(2s− 1)) (

1

2
≤ s ≤ 1)

lD(s) = (1 − s)(t(D) + δ)− 0.001s (0 ≤ s ≤ 1)(6.3)

lD(s) = (1 − s)(t(D) + δ)− 0.001s (0 ≤ s ≤ 1)(6.4)
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These curves are conceptually shown in Figure (16). Using this figure, it will
become self-evident why we have chosen t(A)− δ instead of t(A)+ δ as a generic
locus near the singular locus t(A).

t(A)

lA

lD

t(D) + δ

t(D) + δ

t0

lD

0 t(A)− δ

Figure 16. Paths lA, lD, and lD

Putting X = 0, ε = 0.1 in (5.8) and moving the parameter t along the path
lD, from t(D) + δ to t0, we successively solve the equation (5.8) for y with
Mathematica, and observe the movements of D1, D2 in Cy. Also we observe the
movement of bD using the formula (5.10). Then we see how the lineD1bDD2 with
a bend moves and to what position it finally comes. Figure (17) (conceptually)
shows the final position, which is nothing but the image p2(α

0
D) of the arc α0

D

under the projection p2|f εt0 : f εt0 → Cy. Note that here α0
D denotes the final

position in f εt0 of the arc αD. The branch locus bD has come to the position b0 =
2.5. This is the branch locus of the double branched covering p2|f εt0 : f εt0 → Cy.

b0 = 2.5

D0
2

D0
1

Figure 17. The final position of D1bDD2 in Cy

Similarly, using Mathematica, we can calculate how the arcs αD (in ft(D)+δ)

and αA (in ft(A)−δ) move as we change the parameter t along the paths lD and

lA from t(D) + δ to t0 and from t(A) − δ to t0, respectively, and find their final
positions α0

D
and α0

A in f εt0 .

Figure (18) shows the projected images in Cy of the arcs α0
D, α

0
D
, and α0

A

under the projection p2 : f εt0 → Cy. These are three lines with a bend which
meet at the point b0.
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Incidentally, the dotted half line in this figure (denoted by α∞) corresponds
to the vanishing cycle of the central fiber F ε0 of type II. This is explained as
follows. The point b0 is the branch locus of the double branched covering p2 :
f εt0 → Cy. If we let t approach from t0 to 0, from the negative side, the branch

point b(= − ε2

4t ) of the branched covering p2 : f εt → Cy moves along the dotted
line α∞ in the positive direction. And if we imagine the extreme case where
t = 0, the branch locus b would disappear from our eyesight. Then the double
covering p2 : f ε0 → Cy is no longer a branched covering but just a trivial covering

consisting of two sheets of planes. The compactification f̂ ε0 of the two planes is
a bouquet of two 2-spheres. We obtain the fiber F ε0 by further taking a double
branched cover of these 2-spheres (each branched along 3 points together with
the point ∞). The result is a bouquet of two tori, which is nothing but F ε0 . The

arc α∞ connecting t0 and ∞ (in the compactified Ĉy) lifts to a simple closed

curve γ in f̂ εt0 , and is further doubly covered by a simple closed curve γ̃ in F εt0 .
When t moves from t0 to 0, the curve γ̃ shrinks to the node of F ε0 . Thus γ̃ is
the vanishing cycle for the singular point of F ε0 . This explains the relationship
of α∞ and the vanishing cycle for F ε0 .

D0
1

D0
2

A0
1 A0

2

D0
2

D0
1

b0

α∞

Figure 18. The three lines with a bend, p2(α
0
A), p2(α

0
D), p2(α

0
D
)

and α∞

Recall that the compactification f̂ εt0 of f εt0 is a 2-sphere, and that the fiber

F εt0 of genus two is obtained by taking a double branched cover of f̂ εt0 branched
at certain six points. In fact, the six branch points are solutions to the equation
(5.8) for y with X = 0, ε = 0.1 and t = t0 = −0.001. Using Mathematica, we
calculate the following seven solutions:

A0
1 = −1.00304

A0
2 = −0.960718

D0
1 = 0.501424− 0.869172

√−1

D
0

1 = 0.501424+ 0.869172
√−1

D0
2 = 0.531010− 0.864630

√−1

D
0

2 = 0.531010+ 0.864630
√−1

extra = −0.101106 � −ε
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The solution denoted by “extra” is the “negligible” solution (see the Remark

in §5). The remaining six solutions A0
1, A

0
2, D

0
1 , D

0

1, D
0
2, D

0

2 are the six branch
points. They also coincide with (the p2-image of) the terminal points of the
three arcs α0

A, α
0
D, α

0
D
. It will be evident from the notation which points are

the terminal points of which arc. In what follows, we will use the same notation
for the terminal points (in f εt0) and their p2-images (in Cy).

The 2-sphere f̂ εt0 is divided into two hemispheres by the simple closed curve
γ which is the lift of the dotted line α∞ (of Figure (18)).

Lemma (6.5). The points A0
1, D

0
1, D

0

1 are on one hemisphere bounded by γ,

and A0
2, D

0
2, D

0

2 are on the other hemisphere.

Proof. If we move t from t0 to 0 then, as we saw above, the branch point b
moves from b0 to ∞ on the line α∞ and finally disappears. We can see, using

Mathematica, that the points A0
1, D

0
1, D

0

1 meanwhile converge to the solutions

−1,
1

2
±

√−3

2

of the equation y3+1 = 0, which is one factor of the equation (5.7) (with X = 0

and t = 0), and the points A0
2, D

0
2, D

0

2, and the “extra” one, converge to the
solutions of the other factor y4 + y + ε = 0 of (5.7). During the movements,
these points do not cross the dotted line α∞. The two factors of (5.7) in the
extreme case t = 0 correspond to the two sheets of the trivial double covering

p2 : f ε0 → Cy, which is compactified to a bouquet of two 2-spheres f̂ ε0 . The

three points {A0
1, D

0
1, D

0

1} and the four points {A0
2, D

0
2 , D

0

2, “extra”} belong to
the different sheets of f ε0 , and thus lie on different components of the bouquet of

two 2-spheres f̂ ε0 . On the other hand, as t moves from t0 to 0, the simple closed

curve γ is pinched to a point and f̂ εt0 becomes the bouquet of two 2-spheres f̂ ε0 .

Thus, in f̂ εt0 the three points and the four points lie on different sides of γ.

Regard Figure (18) as a picture drawn on Ĉy. Taking a double branched cover

of Ĉy branched at the two points {b0,∞}, we obtain f̂ εt0 . The picture on Ĉy is

doubly covered by the picture on f̂ εt0 of the three arcs αA, αD, αD and the simple
closed curve γ. By Lemma (6.5), the picture must be as shown in Figure (19).

The reference fiber F εt0 is obtained by taking a double branched cover of f̂ εt0
branched at the six points {A0

1, A
0
2, D

0
1, D

0
2, D

0

1, D
0

2}. To see this, we continuously
change the picture of the three arcs and γ as shown in Figure (20). Note that in
the changed picture, we preserve the same notations A0

1, A
0
2, etc., as before.

Cut open the sphere f̂ εt0 along the three segments A0
1A

0
2, D

0

1D
0
1, D

0
2D

0

2. The
result is a 2-disk with two holes. See Figure (21).

We deform the disk with two holes into a surface as shown in Figure (22).
Take two copies of the deformed surface of Figure (22), and glue them together

along their boundaries. We then obtain a closed surface of genus two, which may
be considered as the reference fiber F εt0 . See Figure (23).

The deformed surface contains the arcs αA, αD, αD and an arc which is γ cut
open to a segment (we denote this arc by γ again). When gluing the two copies of
the deformed surface, we at the same time glue the copies of these arcs to obtain
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D0
2

A0
2

D0
2

D0
1

D0
1

A0
1

∞

∞
γ

Figure 19. The three arcs and the simple closed curve γ on f̂ εt0

A0
2D0

2D0
2

D0
1D0

1
A0

1

γ

Figure 20. Continuously changed picture

γ

A0
2D0

2

D0
2

D0
1D0

1A0
1

∞

∞
Figure 21. The disk with two holes

on F εt0 four simple closed curves β1, β2, β3, and β4, which doubly cover αD, γ,
αA and αD, respectively. (The curve β2 is nothing but γ̃.) See Figure (23). By
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D0
1 D0

1
A0

1 A0
2 D0

2D
0
2

D0
2

γ

Figure 22. The deformed surface

D0
1 D0

1
A0

1 A0
2 D0

2D
0
2

D0
2

β1
β4

β3β2

Figure 23. The closed surface F εt0

construction, these curves are the vanishing cycles for the singular fibers F εt(D),

F ε0 , F
ε
t(A), F

ε
t(D)

, respectively.

On the parameter plane Ct, the paths lD, t00, lA and lD arrive at the points
t0 in this cyclic order (counterclockwise). See Figure (16). Since the vanishing
cycle near each singular fiber is carried to the reference fiber F εt0 along these
paths, composing the right-handed Dehn twists about the simple closed curves

β1, β2, β3, β4

in this cyclic order, we obtain the monodromy ω around the singular fiber Fω.
This completes the proof of Theorem (2.1).

7. On the proof of Theorem (2.6)

Our original proof of Theorem (2.6) followed a line similar to the one used for
Theorem (2.1), and it also used computer calculations. Ito [8] extended our proof
to the general case of arbitrary genus. His proof does not depend on the use of
computers. As an application, he constructed a Lefchetz fibration CP 2#(4g +

5)CP
2 → S2 of genus g, for each g ≥ 1, which extends our previous construction

in the case of genus two [10]. His Lefschetz fibration has the total monodromy
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(ζ1ζ2 . . . ζ2g+1ζ2g+1 . . . ζ2ζ1)
2 = 1. Since Ito’s paper [8] is now available, the

author would like to refer the reader to that paper for the detailed argument.
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ON HYPERBOLIC POLYHEDRA ARISING AS CONVEX

CORES OF QUASI-FUCHSIAN PUNCTURED TORUS

GROUPS

A.D. MEDNYKH, J.R. PARKER, AND A.YU. VESNIN

Dedicated to Francisco Javier González Acuña on the occasion of his 60th birthday

Abstract. We consider two families of hyperbolic polyhedra. With one
set of face pairings, these polyhedra give the convex core of certain quasi-
Fuchsian punctured torus groups. With additional face pairings, they are
related to hyperbolic cone manifolds with singularities over certain links.
For both families we derive formulae relating the dihedral angles, side
lengths and the volume of the polyhedron.

1. Introduction

A Kleinian group G is a discrete subgroup of PSL(2,C), the isometry group
of hyperbolic space H

3. Such a group also acts by conformal automorphisms on

the Riemann sphere Ĉ = ∂H3. The action on Ĉ decomposes into the regular set
Ω(G) on which the action is properly discontinuous, and the limit set Λ(G) on
which the action is minimal, that is every orbit is dense. The limit set Λ(G) is
the set of accumulation points of the fixed points of G. A Kleinian group G is
Fuchsian if Λ(G) is a round circle.

Let S be an oriented surface of negative Euler characteristic, homeomorphic to
a closed surface with at most a finite number of punctures. A finitely generated
Kleinian group G is quasi-Fuchsian if H3/G is homeomorphic to the product of
such a surface with the open interval (0, 1), and if Ω(G) has exactly two simply
connected G-invariant components Ω+ and Ω−. Equivalently, G = π1(S) and
Λ(G) is topological circle. In this situation, the quotients Ω+/G and Ω−/G are
Riemann surfaces, both homeomorphic to S.

Let M = H3/G be the 3-manifold uniformized by the Kleinian group G. The
convex core C/G of M is the smallest closed convex set containing all closed
geodesics of M . This means that C can be defined in the universal cover H3 as
the hyperbolic convex hull of the limit set Λ(G), also called the Nielsen region
of G. If G is quasi-Fuchsian, then ∂C has exactly two components ∂C+ and
∂C− which “face” the components Ω+ and Ω− of Ω. The quotients ∂C+/G and
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∂C−/G are homeomorphic to Ω+/G and Ω−/G, respectively, and, hence, to S.
In the case where G is Fuchsian, C is contained in a single flat plane.

The convex hull boundary ∂C is made up of convex pieces of flat hyperbolic
planes which meet along a disjoint set of complete geodesics called pleating or
bending lines (see [2] and [3] for more discussions).

It is well known that a Kleinian group is geometrically finite if and only if
its convex core has finite volume. Moreover, it is also well known that finitely
generated quasi-Fuchsian groups are geometrically finite.

In the present paper we are interested in the case where S is homeomorphic
to a punctured torus. So, G = 〈X,Y | [X,Y ] is parabolic〉, where X and Y
are isometries of H3. We will be interested in cases where certain elements of
〈X,Y 〉 are purely hyperbolic. An isometry X of H3 is called purely hyperbolic
if its associated matrix X in SL(2,C) has trace tr(X) that is real and either
greater than 2 or less than −2. Geometrically such an isometry is a hyperbolic
translation along a geodesic with no twisting.

We find hyperbolic polyhedra which are fundamental domains for the con-
vex cores of certain quasi-Fuchsian punctured torus groups. In particular, we
consider the two cases of punctured torus groups 〈X,Y 〉 for which:

(i) the isometries X and Y are purely hyperbolic;
(ii) the isometries XY and XY −1 are purely hyperbolic.

These quasi-Fuchsian punctured torus groups are such that the pleating locus
on each component of the convex hull boundary is a simple closed geodesic and
either these geodesics are a pair of neighbours or else they are next-but-one
neighbours. For each of these two types of group we find a polyhedron and face
pairings so that identifying the faces of the polyhedron gives the convex core
of the quasi-Fuchsian manifold (see Sections 2.1 and 3.1). These polyhedra will
have all their dihedral angles equal to π/2 except for the dihedral angles along
the pleating curves. We demonstrate two approaches to find relations between
the lengths of these curves and the dihedral angles. In Sections 2.2 and 3.2
we use the bending formulae due to Parker and Series [12]. In Sections 2.3
and 3.3 we derive these and other formulae (which will be necessary to obtain
expressions for volumes) from the Gram matrix of the polyhedra. We then go
to use Schläfli’s formula (see [1, 9, 14]) to obtain volumes of these polyhedra in
Sections 2.4 and 3.4. In particular, we give expressions for volumes in terms of
the Lobachevsky function Λ(x), which is traditionally used to express volumes
of hyperbolic 3-polyhedra and 3-manifolds. In Sections 2.5 and 3.5 we discuss
links and cone-manifolds naturally associated with our polyhedra. For the first
case the singular set of the cone manifold is the Borromean rings, a well known
three component link, and for the second case it is a six-component link.

2. The case where X and Y are purely hyperbolic

(2.1) Constructing the polyhedron. Let matrices X,Y ∈ SL(2,C),
tr[X,Y] = −2, represent isometries X and Y of H

3 which generate a punc-
tured torus group. For the rest of this section we suppose that tr(X) and tr(Y)
are both real and greater than 2. (We remark that one may choose the signs of
the traces of X and Y when lifting from PSL(2,C) to SL(2,C).) We define the
multiplier of a matrix M, λ(M) by tr(M) = 2 coshλ(M) (see [12] for details).
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We denote x = coshλ(X) = 1
2 tr(X) and y = coshλ(Y) = 1

2 tr(Y). Thus, x and
y are real and greater than 1 in our case. In Theorem 6.3 of [12] it is shown that
either 〈X,Y 〉 is Fuchsian or else the axes of X and Y are the pleating loci of the
convex hull boundary of 〈X,Y 〉. Specifically this theorem states that

Proposition (2.1.1) ([12], Theorem 6.3). Suppose that 〈X,Y 〉 is a punctured
torus group with x = coshλ(X) > 1 and y = coshλ(Y) > 1.

(i) If x2 + y2 ≤ x2y2 then 〈X,Y 〉 is Fuchsian.
(ii) If x2 + y2 > x2y2 then 〈X,Y 〉 is quasi-Fuchsian and the axes of X and Y

are the pleating loci.

From now on we suppose that x2 + y2 > x2y2, that is the non-Fuchsian case.
We want to construct a fundamental polyhedron for the convex hull of the limit

set (Nielsen region) of 〈X,Y 〉. This will be P = P(α, β). Since X, YX−1Y−1

and their product YX−1Y−1X all have real trace, the corresponding isometries
X and Y X−1Y −1 generate a Fuchsian group. Similarly, since Y, X−1Y−1X
and their product YX−1Y−1X all have real trace, the corresponding isometries
Y and X−1Y −1X also generate a Fuchsian group.

• Let Π+ denote the plane preserved by the group 〈X, Y X−1Y −1〉;
• Let Π− denote the plane preserved by the group 〈Y, X−1Y −1X〉.

It will follow from our construction that Π+ and Π− are support planes for the
convex hull boundary of 〈X,Y 〉. In [12] this was shown using a different method.

We define geodesics γX , γY and γ0 by:

• γX is the axis of X and γY is the axis of Y ;
• γ0 is the common perpendicular of γX and γY .

A halfturn is an elliptic isometry of order 2 fixing a geodesic pointwise. We
define halfturns I0, I1 and I2 as follows.

• Let I0 to be the halfturn fixing γ0.
• Define I1 by I1 = I0X . Then I1 is a halfturn fixing a geodesic γ1.
• Define I2 by I2 = Y I0. Then I2 is a halfturn fixing a geodesic γ2.

Then we have

I0XI0 = X−1, I1XI1 = X−1, I2XI2 = Y X−1Y −1,
I0Y I0 = Y −1, I1Y I1 = X−1Y −1X, I2Y I2 = Y −1.

Lemma (2.1.2). The halfturn I2 preserves the plane Π+ and the halfturn I1
preserves the plane Π−.

Proof. Since I2XI2 = Y X−1Y −1 it is clear that I2 swaps the axes of X and
Y XY −1. These geodesics span the plane Π+ and so I2 preserves this plane.
Similarly, since I1 swaps the axes of Y and X−1Y X , it preserves Π−.

We now define reflections R0 and R′
0 in planes Π0 and Π′

0 as follows:

• Let R0 be reflection in the plane Π0 containing γ0 and γX .
• Let R′

0 be reflection in the plane Π′
0 containing γ0 and γY .

Then we have
R0XR0 = X, R′

0Y R′
0 = Y.

Lemma (2.1.3). The plane Π0 is orthogonal to γY and the plane Π′
0 is or-

thogonal to γX .
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Proof. In order to show this, we calculate the complex distance δ(X,Y ) be-
tween γX and γY and show that cosh δ(X,Y ) is purely imaginary.

We find cosh δ(X,Y ) by constructing a right angled hexagon and using Fenchel’s
generalised cosine rule (see [4]). Doing this we obtain the following formula
(which is (1.3) of [12]).

(2.1.4) cosh δ(X,Y ) =
coshλ(XY) − coshλ(X) coshλ(Y)

sinhλ(X) sinh λ(Y)

From the well known expression for the trace of the commutator

(2.1.5) tr[X,Y] = tr2(X) + tr2(Y) + tr2(XY) − tr(X) tr(Y) tr(XY)− 2,

we see that the traces of X, Y, XY satisfy the Markov equation [12]:

(2.1.6) tr2(X) + tr2(Y) + tr2(XY) = tr(X) tr(Y) tr(XY).

Therefore

(2.1.7) x2 + y2 + cosh2 λ(XY) = 2xy coshλ(XY).

Hence

cosh2 δ(X,Y ) =
(coshλ(XY) − xy)2

(x2 − 1)(y2 − 1)
=

x2y2 − x2 − y2

(x2 − 1)(y2 − 1)
< 0,

where we have used x > 1, y > 1 and x2 + y2 > x2y2. Thus the imaginary part
of the complex distance between the axes of X and Y is π/2 (it also can be seen
by the arguments of [7]).

A consequence of this lemma is

R0R
′
0 = I0, R0Y R0 = Y −1, R′

0XR′
0 = X−1.

Moreover, define

• R1 = R′
0X , a reflection fixing a plane Π1 and

• R2 = Y R0, a reflection fixing a plane Π2.

Then γX is the common orthogonal of Π1 and Π′
0. The distance between these

planes is λ(X), the multiplier of X. Also Π1 contains γ0 and γ1. Similarly, γY is
the common orthogonal of Π2 and Π0; the distance between them is λ(Y); and
Π2 contains γ0 and γ2.

Lemma (2.1.8). The planes Π1 and Π2 are each orthogonal to both of the
planes Π+ and Π−.

Proof. We have

R1(X)R1 = (R′
0X)X(X−1R′

0) = R′
0XR′

0 = X−1.

Also

R1(Y X−1Y −1X)R1 = (R′
0X)Y X−1Y −1X(X−1R′

0)

= (R′
0XR′

0)(R
′
0Y R′

0)(R
′
0X

−1R′
0)(R

′
0Y

−1R′
0)

= XY −1X−1Y

= (Y X−1Y −1X)−1.

Therefore R1 preserves the plane Π+ preserved by X and Y X−1Y −1.
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Figure 2.1. The polyhedron P′(α, β).

Moreover

R1(Y )R1 = (R′
0X)Y (X−1R′

0) = X−1Y X = (X−1Y −1X)−1.

Therefore R1 swaps the axes of Y and X−1Y X , which both lie in Π−. Therefore
R1 also preserves the plane Π− preserved by Y and X−1Y −1X . Since Π1 is
distinct from Π+ and Π− we see that it must be orthogonal to them both.

A similar argument shows Π2 is orthogonal to both Π+ and Π−.

Summarising we have:

• The planes Π0 and Π′
0 meet at right angles along γ0;

• the planes Π0 and Π1 meet at right angles along γ1;
• the planes Π′

0 and Π2 meet at right angles along γ2;
• the planes Π+ and Π0 meet along γX at dihedral angle say α/2;
• the planes Π− and Π′

0 meet along γY at dihedral angle say β/2;
• the planes Π+ and Π′

0 meet at right angles;
• the planes Π− and Π0 meet at right angles;
• the planes Π+ and Π1 meet at right angles;
• the planes Π− and Π1 meet at right angles;
• the planes Π+ and Π2 meet at right angles;
• the planes Π− and Π2 meet at right angles.

Therefore, the intersection of halfspaces bounded by Π+, Π−, Π0, Π
′
0, Π1 and

Π2 is a polyhedron, which we denote by P′ = P′(α, β), with six faces and eleven
edges, having one vertex at infinity (ideal vertex) (see Figure 2.1). We remark
that the polyhedron P′(α, β) presented in Figure 2.1 can be regarded as a de-
generate Lambert cube L(α/2, β/2, 0).

In this polyhedron, and all subsequent polyhedra we shall consider, the 3-
valent vertices are interior points of H3 and the 4-valent vertices are ideal vertices
on ∂H3. We denote these vertices by the symbol ∞ in the figures.

We are now in a position to construct the polyhedron P = P(α, β). The
polyhedron P will be the common intersection of halfspaces bounded by Π+,
Π−, Π1, Π2 and their images under I0. This consists of four copies of P′(α, β)
glued together along the planes Π0 and Π′

0. For i = 1, 2 let Fi, Fi+2 be the faces
of P contained in Πi, I0(Πi) respectively. We claim that P has the combinatorial
structure shown in Figure 2.2. In particular:
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Figure 2.2. The polyhedron P(α, β).

Proposition (2.1.9). The polyhedron P has eight vertices. Four of these
vertices are the fixed points of the parabolic maps Y X−1Y −1X, X−1Y −1XY ,
Y −1XYX−1 and XYX−1Y −1. The other four are the intersection of the axes
of the following pairs of transformations X, I1; X, I0I1I0; Y , I2; Y , I0I2I0.
Every edge with (at least) one ideal endpoint has dihedral angle π/2.

Proof. We will sketch the reason for this to be true. For example, Π1 intersects
Π+ along the geodesic with one endpoint the fixed point of Y X−1Y −1X and
passing through the intersection of the axes of X and I2. We have already
seen these two planes intersect orthogonally. Likewise, Π1 intersects Π− along
the geodesic with endpoints the fixed points of Y X−1Y −1X and X−1Y −1XY .
Again, we have seen that these planes intersect orthogonally. The other edges
and vertices may be found similarly.

Proposition (2.1.10). The polyhedron P with the side pairings X : F1 −→ F3

and Y : F4 −→ F2 is a fundamental polyhedron for the convex core of the group
〈X,Y 〉.

Proof. Define

N =
⋃

T∈〈X,Y 〉
T (P).

We show that N is the smallest group invariant convex subset of H3 and so is the
Nielsen region (convex hull of the limit set) of 〈X,Y 〉. This means that N/〈X,Y 〉
is the convex core.

It is clear that P is convex. Now consider P and X(P). These two polyhedra
share a face F3 = I0(F1) = X(F1) (since F1 is sent to itself by I1 and X = I0I1).
The dihedral angles along the three edges of P bounding F3 are all π/2. Similarly,
the dihedral angles along the three edges of X(P) bounding X(F1) are all π/2.
Thus gluing these two polyhedra along their common face gives another convex
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polyhedron. Proceeding by induction, we see that N itself is convex. Thus N

contains the smallest 〈X,Y 〉 invariant convex set, the Nielsen region.
The intersection of Π+ with ∂N is formed by removing from Π+ infinitely

many hyperbolic halfspaces bounded by the axes of X , Y XY −1 and all their
images under 〈X,Y XY −1〉. This is the Nielsen region of this subgroup and so
is contained in the Nielsen region of 〈X,Y 〉. Similarly, every other face of P is
contained in the Nielsen region of 〈X,Y 〉. If the boundary of N is contained in
the Nielsen region then, by convexity, the whole of N must be as well. Thus N
both contains and is contained in the Nielsen region. This proves the result.

(2.2) The trigonometry from bending formulae. In this section we use
the bending formulae of [12] to show that the polyhedron P only depends on the
dihedral angles across γX and γY .

The only free parameters of P are the lengths and dihedral angles in the sides
of P contained in the axes of X and Y . According to the above notation, α is
the dihedral angle between Π+ and I0(Π+) along the axis of X and we define
	α to be length of the corresponding side of P. (We choose the convention that
α is the interior angle of P and remark that this is the opposite convention to
that used in [12].) Similarly, as above, β is the dihedral angle between Π− and
I0(Π−) along the axis of Y and we define 	β to be length of the corresponding
side of P.

In [12] formulae were developed that relate the lengths and complex shear
along the pleating locus of convex hull boundaries. As indicated above, the
bending angles of [12] are related to our angles by θ = π − α, φ = π − β.
Similarly, the length 	α is the length of the geodesic represented by X and so is
twice λ(X). Similarly for 	β. That is λ(X) = 	α/2 and λ(Y) = 	β/2. In the
proof of Theorem 6.1 of [12], it was shown that

sinhλ(X) = sin(φ/2) cot(θ/2), sinhλ(Y) = sin(θ/2) cot(φ/2).

In our notation, these formulae give us

Proposition (2.2.1). The (essential) angles α, β and edge lengths 	α, 	β of
P(α, β) are related by

(2.2.2) sinh(	α/2) = cos(β/2) tan(α/2), sinh(	β/2) = cos(α/2) tan(β/2).

These formulae indicate that the polyhedron P only depends on the angles α
and β, where α, β ∈ (0, π). This justifies our notation P = P(α, β).

It is easy to see that formulae (2.2.2) imply the following:

Proposition (2.2.3) (Tangent Rule). The (essential) angles α, β and the
edge lengths 	α, 	β of the polyhedron P(α, β) are related by

(2.2.4)
tan(α/2)

tanh(	α/2)
=

tan(β/2)

tanh(	β/2)
= T,

where T is a positive number given by

(2.2.5) T 2 = tan2(α/2) + tan2(β/2) + 1.
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Figure 2.3. The projection of P(α, β).

(2.3) The trigonometry from the Gram matrix. In this section we use
the Gram matrix of the polyhedron to re-derive the formulae of the previous
section.

Consider the numbering of faces of P(α, β) as shown in its projection in
Figure 2.3. Let ρ(j, k) be the hyperbolic distance between the faces j and
k. Then we write A = cosh 	α = cosh ρ(3, 4), B = cosh 	β = cosh ρ(7, 8),
u = cosh ρ(1, 7) = coshρ(2, 8), v = cosh ρ(3, 6) = coshρ(4, 5).

Denote by Gα,β the Gram matrix of the polyhedron P(α, β):

Gα,β =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − cosα 0 0 −1 −1 −u 0
− cosα 1 0 0 −1 −1 0 −u

0 0 1 A 0 −v −1 −1
0 0 −A 1 −v 0 −1 −1

−1 −1 0 −v 1 − cosβ 0 0
−1 −1 −v 0 − cosβ 1 0 0
−u 0 −1 −1 0 0 1 −B
0 −u −1 −1 0 0 −B 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Denote by G(i1, i2, . . . , ik), k ≤ 8, the diagonal minor of Gα,β , formed by rows
and columns with numbers i1, i2, . . . , ik. Since the rank of Gα,β is equal to 4 the
determinants of each of its 5×5–minors detG(i1, i2, i3, i4, i5) vanishes. This gives
equations relating the entries of Gα,β . More precisely, taking (i1, i2, i3, i4, i5) to
be (1, 2, 3, 4, 5), (1, 2, 3, 4, 8), (2, 5, 6, 7, 8), (4, 5, 6, 7, 8), respectively, we will get
following four equations.

v2 = (A2 − 1)
1 + cosα

1− cosα
,(2.3.1)

u2 = (1− cos2 α)
A+ 1

A− 1
,(2.3.2)

u2 = (B2 − 1)
1 + cosβ

1− cosβ
,(2.3.3)

v2 = (1− cos2 β)
B + 1

B − 1
.(2.3.4)
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Recall that values A,B, u, v are greater than 1 in these equations. Taking
t = uv and calculating it in two ways using (2.3.1), (2.3.2) and using (2.3.3),
(2.3.4) we obtain:

(2.3.5) t = (1 + cosα)(A + 1) = (1 + cosβ)(B + 1).

Therefore

(2.3.6) A =
t

1 + cosα
− 1, B =

t

1 + cosβ
− 1.

It is easy to see from (2.3.1), (2.3.4) and (2.3.6) that t satisfies the equation

(t− 2− 2 cosα)(t − 2− 2 cosβ) = (1 − cos2 α)(1 − cos2 β).

This is equivalent to:

(t− 2− cosα− cosβ)2 = (1 − cosα cosβ)2.

Therefore there are two possibilities. Either

t− 2− cosα− cosβ = −1 + cosα cosβ

or

t− 2− cosα− cosβ = 1− cosα cosβ.

In the first case

t = (1 + cosα)(1 + cosβ),

which contradicts (2.3.5) since A > 1 and B > 1. In the second case

t = 4− (1 − cosα)(1− cosβ).

Hence

cosh2(	α/2) =
A+ 1

2
=

t

2 + 2 cosα
=

1− sin2(α/2) sin2(β/2)

cos2(α/2)

and

cosh2(	β/2) =
B + 1

2
=

t

2 + 2 cosβ
=

1− sin2(α/2) sin2(β/2)

cos2(β/2)
.

It easy to see that simplifying and taking square roots we will get the formulae
(2.2.2) obtained earlier using the methods of [12]. Also, Proposition (2.2.3)
follows immediately.

(2.4) Volume formulae. In this section we use the Schläfli formula and the
computations of the previous sections to find the volume of P(α, β).

Define V = V (α, β) = Vol P(α, β) to be the hyperbolic volume of P(α, β).
To find V we use the Schläfli formula (see [9] and [14] for details):

dV = − 	α
2
dα− 	β

2
dβ.

Set M = tan(α/2), N = tan(β/2) for 0 < α, β < π. Then dα =
2dM

1 +M2

and dβ =
2dN

1 +N2
. Using equation (2.2.4), we obtain 	α = 2arctanh(M/T ) and

	β = 2arctanh(N/T ). We have to integrate the differential form

ω = −dV

2
= arctanh(M/T )

dM

1 +M2
+ arctanh(N/T )

dN

1 +N2
,
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where T 2 = M2 +N2 + 1. In order to do so, consider the extended differential
form Ω = Ω(M,N, T ) of three independent variables M , N , T :

Ω = arctanh(M/T )
dM

1 +M2
+ arctanh(N/T )

dN

1 +N2

+ log

[
(T 2 −M2)(T 2 −N2)

(1 +M2)(1 +N2)

]
dT

1 + T 2
.

Note that Ω satisfies the following properties:

• Ω is smooth and exact in the region

G = {(M,N, T ) ∈ R
3 : M > 0, N > 0, T > 0};

• Ω = ω for all (M,N, T ) ∈ G satisfying equation T 2 = M2 +N2 + 1.

Let us consider

W = W (M,N) =

∫ +∞

T

log

[
(t2 −M2)(t2 −N2)

(1 +M2)(1 +N2)

]
dt

1 + t2

where T is a positive root of the equation T 2 = M2 +N2 + 1. Straightforward
calculations give

∂W

∂M
= −2arctanh(M/T )

1 + T 2
,

∂W

∂N
= −2arctanh(N/T )

1 + T 2

and W (M,N) → 0 as M,N → ∞.
Using M = tan(α/2) and N = tan(β/2), we see that the volume function

V = V (α, β) = V (M,N) satisfies the following conditions:

∂V

∂M
=

∂V

∂α
· ∂α

∂M
= − 	α

2
· 2

1 +M2
= −2 arctanh (M/T )

1 +M2
,

∂V

∂N
=

∂V

∂β
· ∂β

∂N
= − 	β

2
· 2

1 +N2
= −2 arctanh (N/T )

1 +N2
,

and V (M,N) → 0 as M,N → ∞. The last follows from the fact that P(α, β)
collapses to be flat as α (or β) tends to π. Hence, we conclude that V (M,N) =
W (M,N) for all M,N > 0.

Theorem (2.4.1). Let α and β be angles in the interval (0, π). The volume
of the polyhedron P(α, β) is given by the formula

(2.4.2) Vol P(α, β) =

∫ ∞

T

log

[
(t2 −M2)(t2 −N2)

(1 +M2)(1 +N2)

]
dt

1 + t2
,

where M = tan(α/2), N = tan(β/2) and T is a positive root of the equation
T 2 = M2 +N2 + 1.

Recall that the Lobachevsky function Λ(x) is defined by the formula (see [9]
and [14]):

Λ(x) = −
∫ x

0

log | 2 sin ζ | dζ.

To represent the volume of P(α, β) in terms of the Lobachevsky function, we will
use the following observation.
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Lemma (2.4.3). Consider

I(L, S) =

∫ +∞

S

log

∣∣∣∣ζ2 − L2

1 + L2

∣∣∣∣ dζ

1 + ζ2
,

where L = tanμ, S = tanσ, and 0 < μ, σ < π. Then

I(L, S) = Δ(μ, σ)−Δ(π/2, σ),

where Δ(μ, σ) = Λ(μ+ σ)− Λ(μ− σ).

Proof. Set ζ = tan τ , 0 ≤ τ ≤ π/2. We have

I(L, S) =

∫ +∞

S

log

∣∣∣∣ζ2 − L2

1 + L2

∣∣∣∣ dζ

1 + ζ2

=

∫ π/2

σ

log

∣∣∣∣ sin(τ − μ) sin(τ + μ)

sin(τ − π/2) sin(τ + π/2)

∣∣∣∣ dτ
=

∫ π/2

σ

log |2 sin(τ − μ)| dτ +

∫ π/2

σ

log |2 sin(τ + μ)| dτ

−
∫ π/2

σ

log |2 sin(τ − π/2)| dτ −
∫ π/2

σ

log |2 sin(τ + π/2)| dτ

=

∫ π/2+μ

σ+μ

log |2 sin η| dη +

∫ π/2−μ

σ−μ

log |2 sin η| dη

−
∫ π

σ+π/2

log |2 sin η| dη −
∫ 0

σ−π/2

log 2 |sin η| dη

= −Λ(π/2 + μ) + Λ(σ + μ)− Λ(π/2− μ) + Λ(σ − μ)

+Λ(π)− Λ(σ + π/2) + Λ(0)− Λ(σ − π/2)

= Λ(μ+ σ)− Λ(μ− σ) − (Λ(π/2 + σ)− Λ(π/2− σ))

= Δ(μ, σ)−Δ(π/2, σ),

where we used well-known properties of the Lobachevsky function (see [14] for
details).

From Theorem (2.4.1) and Lemma (2.4.3) we immediately get the following
expression for the volume.

Corollary (2.4.4). The volume of a convex hull P(α, β), where 0 < α, β <
π, is given by the formula

(2.4.5) VolP(α, β) = Δ(α/2, θ) + Δ(β/2, θ)− 2Δ(π/2, θ),

where Δ(μ, σ) = Λ(μ+ σ)−Λ(μ− σ), and θ, with 0 < θ < π/2, is the principal
parameter defined by tan2 θ = tan2(α/2) + tan2(β/2) + 1.

As observed above, the polyhedron P(α, β) is four copies of the degenerate
Lambert cube L(α/2, β/2, 0). Moreover, the parameter θ, 0 < θ < π/2, such
that T = tan θ for T defined by (2.2.5), is the principal parameter of the Lambert
cube L(α/2, β/2, 0) introduced in [6]. Thus, the expression for the volume from
(2.4.5) is, naturally, four times more than the expression for the volume of the
Lambert cube L(α/2, β/2, 0) given by R. Kellerhals in [6].
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α β
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Figure 2.4. The Borromean rings.

(2.5) The associated cone manifolds. It is interesting remark that volumes
of convex hulls coincide or are commensurable with volumes of well-known cone-
manifolds.

For the case β = α we have

Corollary (2.5.1). The volume of a convex hull P(α, α), 0 < α < π is given
by the formula

(2.5.2) Vol P(α, α) = 2

∫ π

α

arcsinh (sin(ζ/2)) dζ.

Proof. We have d
dαV (α, α) = 2∂V

∂α = −	α, tanh(	α/2) = M
T , and T 2 =

2 tan2(α/2) + 1 = 2M2 + 1. Hence

sinh2(	α/2) =
tanh2(	α/2)

1− tanh2(	α/2)
=

M2

T 2 −M2
=

M2

M2 + 1
= sin2(α/2),

that is sinh(	α/2) = sin(α/2). Since V (π, π) = 0 the result follows.

The formula we have obtained coincides with the volume formula for the
Whitehead cone-manifold W(α, 0) whose singular set is the Whitehead link with
the cone angle α on one cusp and the complete hyperbolic structure on the other
(see [11]).

Denote by B(α, β, 0) a Borromean cone-manifold whose singular set are Bor-
romean rings with cone angles α and β on two components and a complete
hyperbolic cusp on the third one (see Figure 2.4).

Recall that the fundamental set of B(α, β, 0) consists of eight copies of the
Lambert cube L(α/2, β/2, 0) (see, for example [5]). Hence we immediately get
the following

Proposition (2.5.3). The volume of the convex hull P(α, α) coincides with
the volume of the Whitehead link cone-manifold W(α, 0). The volume of the
convex hull P(α, β) is equal to one half of the volume of the Borromean cone-
manifold B(α, β, 0).
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3. The case where XY and XY −1 are purely hyperbolic

(3.1) Constructing the polyhedron. Let matrices X,Y ∈ SL(2,C) with
tr[X,Y] = −2 represent isometries X and Y of H3 which generate a punctured
torus group. For the rest of this section we suppose that tr(XY) and tr(XY−1)
are both real and greater than 2. Thus both XY and XY −1 are purely hyper-
bolic. We will show that either 〈X,Y 〉 is Fuchsian or else the axes of XY and
XY −1 are the pleating loci of the convex hull boundary.

From the expression for the trace of the commutator given above (2.1.5), we
see that the traces of X, Y, XY and the traces of X, Y, XY−1 satisfy the
Markov equations (see [12]):

tr2(X) + tr2(Y) + tr2(XY) = tr(X) tr(Y) tr(XY)

tr2(X) + tr2(Y) + tr2(XY−1) = tr(X) tr(Y) tr(XY−1)

As above, to simplify the notation, we define

x = coshλ(X) =
1

2
tr(X),

y = coshλ(Y) =
1

2
tr(Y),

A = coshλ(XY) =
1

2
tr(XY),

B = coshλ(XY−1) =
1

2
tr(XY−1).

From the Markov equations we see that A and B are the two roots of the equation

t2 − 2xy t+ x2 + y2 = 0.

Therefore, by the Vietta theorem,

2xy = A+B > 2

x2 + y2 = AB > 1.

In particular, both of these quantities are real. We obtain the following analogue
of Proposition (2.1.1).

Proposition (3.1.1). Suppose that 〈X,Y 〉 is a punctured torus group for
which A = coshλ(XY) > 1 and B = coshλ(XY−1) > 1.

(i) If (A+B) ≤ AB then 〈X,Y 〉 is Fuchsian.

(ii) If (A+B) > AB then coshλ(Y) = coshλ(X), which is not real.

Proof. (i) In this case we have, by hypothesis, that

0 ≤ AB −A−B = x2 + y2 − 2xy = (x − y)2,

0 < AB +A+B = x2 + y2 + 2xy = (x + y)2.

Therefore x− y and x+ y are real, and so x and y are both real. Thus we have
tr(X) = 2x, tr(Y) = 2y and tr(XY) = 2A all being real. Therefore 〈X,Y 〉 maps
a hyperplane in H3 to itself. Thus 〈X,Y 〉 is a two generator group of isometrics
of the hyperbolic plane for which the commutator of the generators is parabolic.
Hence this group is discrete [8].

(ii) In this case, by hypothesis, we have

0 > AB −A−B = x2 + y2 − 2xy = (x − y)2.
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Therefore x− y is purely imaginary. Together with the fact that x+ y is real we
see that coshλ(X) = x and coshλ(Y) = y are (non-real) complex conjugates of
one another.

In what follows we will be interested in the case where AB < A+ B, that is
the non-Fuchsian case. Unless we indicate otherwise we always assume that we
are in this case.

Lemma (3.1.2). Let 〈X,Y 〉 be a punctured torus group where A = coshλ(XY)
and B = coshλ(XY−1) are both real and greater than 1. Then the axes of X
and Y intersect with angle θ(X,Y ) where

cos2 θ(X,Y ) =
(A−B)2

(A−B)2 + 4
.

Proof. Calculating the complex distance δ(X,Y ) as before, we obtain equation
(2.1.4). Squaring this expression and substituting for 2xy = A+B and x2+y2 =
AB we find that

cosh2 δ(X,Y ) =
(A−B)2

(A−B)2 + 4
.

As this is real and less than 1 we see that � δ(X,Y ) = 0. In other words, the axes
of X and Y intersect with angle 	 δ(X,Y ) = θ(X,Y ). This gives the result.

Now we will construct the fundamental polyhedron for the convex core of

〈X,Y 〉. This will be Q̃ = Q̃(α, β).
Since XY, (YX)−1 and their product XYX−1Y−1 all have real trace, the

corresponding isometries XY , (Y X)−1 and XYX−1Y −1 generate a Fuchsian
group. Likewise, since XY−1, (Y−1X)−1 and XY−1X−1Y all have real trace,
the corresponding isometries XY −1, (Y −1X)−1 and XY −1X−1Y too generate
a Fuchsian group.

• Let Π+ be the plane preserved by the group 〈XY, Y X〉;
• Let Π− be the plane preserved by the group 〈XY −1, Y −1X〉.

Following the construction in Section 2.1, we define geodesics γX , γY and γ0 by

• γX is the axis of X ;
• γY is the axis of Y ;
• γ0 is the common perpendicular of γX and γY .

We define the following halfturns:

• Let I0 denote the halfturn fixing γ0.
• Define I1 by I1 = I0X . Then I1 is a halfturn fixing a geodesic γ1.
• Define I2 by I2 = Y I0. Then I2 is a halfturn fixing a geodesic γ2.

Thus γ1 is orthogonal to γX and the complex distance along γX between γ0 and
γ1 is λ(X). Similarly, γ2 is orthogonal to γY and the complex distance between

γ0 and γ1 is λ(Y) = λ(X). Moreover, we have

I0XI0 = X−1, I1XI1 = X−1, I2XI2 = Y X−1Y −1,

I0Y I0 = Y −1, I1Y I1 = X−1Y −1X, I2Y I2 = Y −1.

We claim that

Lemma (3.1.3). The geodesic γ0 is orthogonal to Π+ and Π−.
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Proof. We have

I0 (XY ) I0 = (Y X)−1, I0 (XY −1) I0 = (Y −1X)−1.

In other words I0 interchanges the axes of XY and Y X and so preserves Π+.
Likewise, I0 interchanges the axes of XY −1 and Y −1X and so preserves Π−.
Moreover,

I0 (XYX−1Y −1) I0 = (Y XY −1X−1)−1,

I0 (XY −1X−1Y ) I0 = (Y X−1Y −1X)−1.

Thus I0 swaps the fixed points of XYX−1Y −1 and Y XY −1X−1 which lie on the
boundary of Π+. Since these two fixed points are not separated by the axes of
XY and Y X , elementary plane hyperbolic geometry shows that I0 acts on Π+ as
a rotation. Similarly, I0 swaps the fixed points of XY −1X−1Y and Y X−1Y −1X
and so acts on Π− as a rotation. This gives the result.

Consider a plane Π0 containing γ0 so that the angle between Π0 and γX is the
same as the angle between Π0 and γY . There are two planes with this property.
Let Π0 be the plane separating γX ∩ γ1 and γY ∩ γ2. Let Π1 be the other such
plane.

• Let R0 be reflection in Π0;
• Let R1 be reflection in Π1;
• Then R0(γX) = R1(γX) = γY ;
• R0(γ1) = γ2;
• R0R1 = I0.

For the penultimate line we used coshλ(Y) = coshλ(X). Furthermore, we have

R0I0R0 = I0, R0I1R0 = I2, R0I2R0 = I1.

Hence

R0XR0 = R0I0I1R0 = I0I2 = Y −1, R0Y R0 = R0I2I0R0 = I1I0 = X−1.

Because I0 = R0R1, we see that Π1 contains γ0 and that Π0 and Π1 are orthog-
onal.

R1XR1 = R0I0XI0R0 = Y, R1Y R1 = R0I0Y I0R0 = X.

Lemma (3.1.4). The planes Π0 and Π1 satisfy:

(i) Π0 is orthogonal to the axes of XY and Y X, and hence to Π+;
(ii) Π0 is orthogonal to Π− and contains the fixed points of parabolic isometries

XY −1X−1Y and Y X−1Y −1X;
(iii) Π1 is orthogonal to the axes of XY −1 and Y −1X, and hence to Π−;
(iv) Π1 is orthogonal to Π+ and contains the fixed points of parabolic isometries

XYX−1Y −1 and Y XY −1X−1.

Proof. We prove (i) and (ii). Parts (iii) and (iv) will follow similarly.

R0(XY )R0 = (XY )−1, R0(Y X)R0 = (Y X)−1

and so R0 preserves the axes of XY and Y X . Hence Π0 is orthogonal to Π+.
Similarly,

R0(XY −1)R0 = Y −1X, R0(Y
−1X)R0 = XY −1
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Figure 3.1. The polyhedron Q(α, β).

and so R0 swaps the axes of XY −1 and Y −1X . Hence it preserves Π− and so
Π0 is orthogonal to Π−. Furthermore,

R0(XY −1X−1Y )R0 = (XY −1X−1Y )−1,

R0(Y X−1Y −1X)R0 = (Y X−1Y −1X)−1.

Thus R0 fixes their fixed points, which must lie in Π0.

Let Q be the hyperbolic polyhedron formed by the common intersection of
halfspaces bounded by Π+, Π−, Π0, Π1 and their images under I1. For i = 0, 1
let Fi, Fi+2 be the face of Q contained in Πi, I1(Πi) respectively (see Figure 3.1).

The intersection of the faces Π+ and I1(Π+) is the segment of the axis of Y X
with length 	α = λ(XY). Let us denote the dihedral angle at this edge by α.
(This is twice the angle between the axis of I1 and the plane Π+.) Similarly, the
intersection of the faces Π− and I1(Π−) is the segment of the axis of Y −1X with
length 	β = λ(XY−1). We denote the dihedral angle at this edge by β. (This is
twice the angle between the axis of I1 and the plane Π−.) By the construction,
all other dihedral angles of Q are right angles.

We see that planes Π1 and I1(Π0) meet at the fixed point of the parabolic
isometry X−1Y −1XY . This point is also on Π+ and I1(Π−). Therefore faces
F1 and F2 have a common point at infinity. Likewise, Π0 and I1(Π1) meet at
the fixed point of the isometry Y X−1Y −1X which also lies on Π− and I1(Π+).
Similarly, F0 and F3 have a common point at infinity too. All other vertices of
Q are ordinary. To summarise:

Proposition (3.1.5). The polyhedron Q has ten vertices. Two of these are
ideal vertices and are the fixed points of X−1Y −1XY and Y X−1Y −1X. The
other eight vertices are finite and correspond to the intersection of the axes of
Y X, Y −1X, I0 and I1I0I1 with the common perpendiculars of the axes of I0,
Y X; I0, Y

−1X; I1I0I1, Y X; I1I0I1, Y
−1X.
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Let Q′ be the hyperbolic polyhedron formed by the common intersection of
halfspaces bounded by Π+, Π−, Π0, Π1 and their images under I2. For i = 0, 1
let F ′

i , F
′
i+2 be the face of Q′ contained in Πi, I2(Πi) respectively. Clearly R0

swaps Q and Q′. Denote Q̃ = Q ∪ Q′.

Proposition (3.1.6). The polyhedron Q̃ = Q ∪ Q′ with the side pairings

Id : F0 −→ F ′
0, Y : F1 −→ F ′

3, Y X : F2 −→ F ′
2, X : F3 −→ F ′

1.

is a fundamental domain for the convex core of the group 〈X,Y 〉.
Proof. The proof is similar to the proof of Proposition (2.1.10). Again, it is

clear that
N =

⋃
T∈〈X,Y 〉

T (Q ∪ Q′)

is invariant under 〈X,Y 〉 and is convex.
The fact that the boundary of N consists of the orbit of Nielsen regions of the

Fuchsian subgroups 〈XY, Y X〉 and 〈XY −1, Y −1X〉 means that it is contained
in the Nielsen region of 〈X,Y 〉. This gives the result.

(3.2) The trigonometry from bending formulae. In this section we use
the bending formulae of [12] to show that Q only depends on the dihedral angles
across the axes of XY and XY −1.

The only free parameters for Q are the lengths and dihedral angles in the sides
of Q contained in the axes of XY and Y −1X . According to the above notation,
α is the dihedral angle between Π+ and I1(Π+) along the axis of Y X and we
define 	α to be length of the corresponding side of Q. According to the above
notation, β is the dihedral angle between Π− and I1(Π−) along the axis of Y −1X
and we define 	β to be length of the corresponding side of Q.

We now show how to relate α, β, 	α, 	β using the formulae of Parker and
Series [12]. Now the pleating loci are next-but-one neighbours with common
neighbour X . It is easy to see that the real part of the translation along XY is
half the length of this curve, that is λ(XY). Also, from the way the polyhedron
is constructed, we see that 	α is λ(XY). Likewise for the other face. Therefore,
using the formula (I) of [12] (with U = X) first with λ(W ) = 	α, τ = 	α+i(π−α)
and then with λ(W ) = 	β, τ = 	β + i(π − β) we obtain

cosh2 λ(X) =
cosh2(	α/2 + i(π − α)/2)

tanh2 	α
=

cosh2(	β/2 + i(π − β)/2)

tanh2 	β
.

Taking square roots and equating the real and imaginary parts we obtain

cosh(	α/2) sin(α/2)

tanh(	α)
= ±cosh(	β/2) sin(β/2)

tanh(	β)
,

sinh(	α/2) cos(α/2)

tanh(	α)
= ± sinh(	β/2) cos(β/2)

tanh(	β)
.

Squaring and using the duplication formula for cos and cosh we obtain

Proposition (3.2.1). The (essential) angles α, β and the edge lengths 	α, 	β
of Q = Q(α, β) are related by

A2(1− cosα)

A− 1
=

B2(1− cosβ)

B − 1
,

A2(1 + cosα)

A+ 1
=

B2(1 + cosβ)

B + 1
,
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Figure 3.2. The polyhedron Q(α, β).

where A = cosh 	α and B = cosh 	β.

These formulae indicate that the polyhedron Q only depends on the angles
α and β, where α, β ∈ (0, π). This justifies our notation Q = Q(α, β) and

Q̃ = Q̃(α, β). In the next section we will see how to write A and B in terms of
cosα and cosβ.

It easy to see from proposition (3.2.1) that the following relation follows:

tan(α/2)

tanh(	α/2)
=

tan(β/2)

tanh(	β/2)
= T

for some parameter T , but to find it we need to know more relations between
essential angles and lengths. The effective way to obtain these relations is to
consider the Gram matrix.

(3.3) The trigonometry from the Gram matrix. In this section we con-
sider the Gram matrix of Q and re-derive the formulae from the previous section.

Consider the numbering of faces of Q(α, β), for 0 < α, β < π, as shown on its
projection in Figure 3.2. Let ρ(i, j) be the distance between faces of Q(α, β) with
numbers i and j. Denote A = cosh 	α, B = cosh 	β , u = coshd = cosh ρ(2, 5) =
cosh ρ(4, 7), v = cosh ρ(2, 8) = coshρ(1, 7), w = cosh ρ(3, 5) = coshρ(4, 6).

Remark that the edges marked by d (which also denotes their lengths) are
common perpendiculars to faces 2 and 5, and faces 4 and 7. As we see from the
construction, d is distance between planes Π+ and Π−.

Let Gα,β be the Gram matrix of the polyhedron Q(α, β):

Gα,β =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 0 0 −v −A
0 1 0 −1 −x 0 − cosβ −v

−1 0 1 0 −w −B 0 0
0 −1 0 1 − cosα −w −u 0
0 −u −w − cosα 1 0 −1 0
0 0 −B −w 0 1 0 −1

−v − cosβ 0 −u −1 0 1 0
−A −v 0 0 0 −1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Denote by G(i1, i2, . . . , ik), k ≤ 8, the diagonal minor of Gα,β , formed by rows
and columns with numbers i1, i2, . . . , ik. Since the rank of Gα,β is equal to 4 the
determinants of each of its 5× 5–minors detG(i1, i2, i3, i4, i5) will vanish. Again,
this gives relations between the entries of Gα,β . Taking the minors corresponding
to the columns (1, 2, 4, 5, 6), (1, 2, 5, 6, 7), (1, 2, 4, 5, 8), (2, 3, 4, 6, 8), (1, 2, 5, 6, 8),
(1, 2, 3, 5, 6) respectively, we obtain following six equations.

w2(u2 − 1) = (u + cosα)2,(3.3.1)

v2(u2 − 1) = (u + cosβ)2,(3.3.2)

(A2 − 1)(u+ cosα)2 = v2(1− cos2 α),(3.3.3)

(B2 − 1)(u+ cosβ)2 = w2(1− cos2 β),(3.3.4)

v2 = A2(u2 − 1),(3.3.5)

w2 = B2(u2 − 1).(3.3.6)

Recall that quantities A, B, u, v and w are greater than 1 in these equations.
From equations (3.3.1) and (3.3.6) we get

(3.3.7) B(u2 − 1) = (u + cosα).

Substituting (3.3.6) into (3.3.4) we have

B2(1 + u cosβ)2 − (u+ cosβ)2 = 0.

Factorising this equation and substituting for B from (3.3.7) we obtain

fα,β(u) gα,β(u) = 0,

where

(3.3.8) fα,β(u) = u3 − u(2 + cosα cosβ)− cosα− cosβ

and
gα,β(u) = u3 + 2u2 cosβ + u cosα cosβ + cosα− cosβ.

Analogously, from (3.3.2) and (3.3.5) we get

(3.3.9) A(u2 − 1) = (u+ cosβ),

and substituting (3.3.5) into (3.3.3), we obtain

A2(1 + u cosα)2 − (u + cosα)2 = 0,

which gives
fα,β(u) gβ,α(u) = 0.

Therefore, u is a root of the equation

fα,β(u)hα,β(u) = 0,

where
hα,β(u) = gα,β(u)− gβ,α(u) = 2(u2 − 1)(cosβ − cosα).

We remark that equations hα,β(u) = 0 and gα,α(u) = 0 have no roots with
u > 1. Therefore, fα,β(u) = 0. It is easy to see that if α �= π and β �= π then
fα,β(1) < 0. Furthermore, fα,β(u) is strictly increasing on the interval (1,∞),
and so has only one root u with u > 1. Using (3.3.7) and (3.3.9) to substitute
for cos(α) and cos(β) in (3.3.8) we find that for such a root u we have

(3.3.10) u =
A+B

AB
.
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Therefore we obtain

(3.3.11) cosα =
A+B −A2B

A2
, cosβ =

A+B −AB2

B2
.

These equations are equivalent to the formulae in Proposition (3.2.1).
From this it is easy to see that the following four conditions are equivalent: (i)

u = 1; (ii) cosα = −1; (iii) cosβ = −1; (iv) A + B = AB. They correspond to
the case when the polyhedron Q(α, β) has collapsed. As we saw in Proposition
(3.1.1), the polyhedron Q(α, β) is non-degenerate if and only if A+B > AB.

Substituting for B = A/(Au − 1) and A = B/(Bu − 1) into the expressions
for cosα and cosβ in (3.3.11) gives

cosα =
u−A

Au− 1
, cosβ =

u−B

Bu− 1
.

Rearranging gives

(3.3.12) A =
u+ cosα

1 + u cosα
, B =

u+ cosβ

1 + u cosβ
.

Combining these with the expression for u given in (3.3.8) we obtain:

Proposition (3.3.13). For a non-degenerate polyhedron Q(α, β), the param-
eters A = cosh 	α and B = cosh 	β can be found by

A =
u+ cosα

1 + u cosα
B =

u+ cosβ

1 + u cosβ
,

where u > 1 is the root of the equation

(3.3.14) u3 − u(2 + cosα cosβ)− cosα− cosβ = 0.

Recall that by definition u = coshd, where d is distance between planes Π+

and Π−. Set T = coth(d/2), and note that T 2 = (u+1)/(u−1). Using standard
relations

cos ν =
1− tan2(ν/2)

1 + tan2(ν/2)
, coshμ =

1 + tanh2(μ/2)

1− tanh2(μ/2)
,

we are able to rewrite the above proposition in the following way:

Proposition (3.3.15) (Tangent Rule). The (essential) angles α, β and the
edge lengths 	α, 	β of the polyhedron Q(α, β) are related by

(3.3.16)
tan(α/2)

tanh(	α/2)
=

tan(β/2)

tanh(	β/2)
= T,

where T is a positive number given by T 2 = (u + 1)/(u− 1), and u is a root of
the equation (3.3.14).

Remark that u = (T 2+1)/(T 2−1), and it follows from (3.3.14) that u satisfies
the equation

(u2 − 1)2 = (u cosα+ 1)(u cosβ + 1).

By direct computations, we see that T satisfies the equation

T 2 −M2

1 +M2

T 2 −N2

1 +N2

[
T 2 − 1

2T 2

]2
= 1,

where M = tan(α/2) and N = tan(β/2).
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(3.4) Volume formulae. In this section we use Schläfli’s formula to find the
volume of Q(α, β).

By the construction, the volume of the convex hull Q̃(α, β) is twice the volume
of the polyhedron Q(α, β). To find the volume of the latter polyhedron, we will
use the method of the extended Schläfli differential form. Consider Schläfli’s
differential form

ω = dVolQ(α, β) = −1

2
(	αdα+ 	βdβ)

defined for 0 < α, β < π. Let us extend it to a differential form Ω = Ω(α, β, u)
of three independent variables α, β, u:

Ω = −1

2
(	αdα+ 	βdβ + 	udu) ,

where u plays a role of the principal parameter. We have to choose Ω in such a
way that following properties are satisfied:

• Ω is smooth and exact in the region

G = {(α, β, u) ∈ R
3 : 0 < α < π, 0 < β < π, u > 1};

• Ω = ω for all (α, β, u) ∈ G satisfying equation (3.3.14).

Since Ω is supposed to be exact, we have

∂	u
∂α

=
∂	α
∂u

=
∂

∂u

(
arccosh

u+ cosα

1 + u cosα

)
=

sinα

(1 + u cosα)
√
u2 − 1

.

So

	u =

∫
sinα dα

(1 + u cosα)
√
u2 − 1

= − 1

u
√
u2 − 1

log(1 + u cosα) + C(u, β)

= − 1

u
√
u2 − 1

log
(1 + u cosα)(1 + u cosβ)

(u2 − 1)2
.

We note that for u > 1 the equation (3.3.14) is equivalent to

(1 + u cosα)(1 + u cosβ)

(u2 − 1)2
= 1.

If this condition is satisfied, we have 	u = 0 and consequently Ω = ω.
Applying the same arguments as in Theorem (2.4.1), we find

Theorem (3.4.1). The volume of the convex hull Q̃(α, β) is given by

Vol Q̃(α, β) =

∫ u

1

log

[
(1 + ζ cosα)(1 + ζ cosβ)

(ζ2 − 1)2

]
· dζ

ζ
√

ζ2 − 1
,

where u > 1 is the root of the equation (3.3.14).
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ν

β

δ
α

γ
ε

Figure 3.3. The polyhedron O(α, β, γ, δ, ε, ν).

If α = β, then u = 1
2 (cosα+

√
8 + cos2 α), and

Vol Q̃(α, α) = 2

∫ u

1

log
1 + ζ cosα

ζ2 − 1
· dζ

ζ
√

ζ2 − 1

= 2

∫ π

α

arccosh

√
8 + cos2 α− cosα

2
dα.

Now we want to express Vol Q̃(α, β) in term of the Lobachevsky function.
To do this we write M = tan(α/2) and N = tan(β/2) and make the following
substitutions in the integral of Theorem (3.4.1): ζ = (t2 + 1)/(t2 − 1), cosα =
(1−M2)/(1 +M2), and cosβ = (1−N2)(1 +N2). As a result we obtain:

Corollary (3.4.2). The volume of the convex hull Q̃(α, β) is given by

Vol Q̃(α, β) = 2

∫ +∞

T

log

∣∣∣∣∣ (t
2 −M2)(t2 −N2)

(1 +M2)(1 +N2)

(
t2 − 1

2t2

)2
∣∣∣∣∣ dt

1 + t2
,

where M = tan(α/2), N = tan(β/2) and T = coth(d/2) is the variable from the
tangent rule.

Using this result and Lemma (2.4.3) we have

Corollary (3.4.3). The volume of the convex hull Q̃(α, β) is given by

Vol Q̃(α, β) = 2Δ(α/2, θ) + 2Δ(β/2, θ) +

4Δ(π/4, θ)− 4Δ(0, θ)− 4Δ(π/2, θ),

where Δ(μ, σ) = Λ(μ+ σ)− Λ(μ− σ), and θ is a principal parameter such that
T = tan θ.

In particular, VolQ(0, 0) = 2.53735 . . ., which is the maximal volume for the
family Q(α, β). Moreover, VolQ(π/2, π/2) = 1.83193 . . . which is one-half of the
volume of the ideal right-angled octahedron.
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Figure 3.4. Two representations of the singular set of the orbifold
Ω+.

(3.5) The associated cone manifolds. In this section we will determine a
link which is naturally related with the polyhedron Q(α, β) in the same manner
as the Lambert cube is related with the Borromean rings.

In order to do this we consider Q(α, β) as a particular case of a more general
polyhedron O = O(α, β, γ, δ, ε, ν) (see Figure 3.3). The dihedral angles of O

are equal to α, β, γ, δ, ε, ν on edges labelled by these letters, and are π/2
on the other edges. We allow for angles α, β, γ, δ, ε, ν to be zero. In this
case the corresponding edges become ideal vertices of polyhedra with a complete
hyperbolic structure. Note that for α = β = γ = δ = ε = ν = 0 the polyhedron
O is a regular right angled octahedron. The existence of O in the hyperbolic
space H3 for all 0 ≤ α, β, γ, δ, ε, ν < π follows from Rivin’s theorem [13]. We
remark that Q(α, β) = O(α, β, π/2, π/2, 0, 0).

Consider a hyperbolic cone-manifold Ω whose underlying space is the polyhe-
dron O and whose singular set consists of faces, edges and vertices of O. Let Ω+

be an orientable double of Ω. Then Ω+ can be obtained by gluing together O and
its mirror image along their common boundary. As a result, Ω+ can be recog-
nised as a hyperbolic cone-manifold with the 3-sphere as its underlying space
and whose singular set is formed by the edges of O with cone angles twice the
dihedral ones (see Figure 3.4, where unlabelled edges correspond to cone angles
π).

To construct the two-fold covering we will use the approach from [10] based
on the properties of the Hamiltonian circuit. Note that unbranched edges form
a Hamiltonian circuit λ passing through all vertices of the singular set of Ω+.
Consider a two-fold covering Σ → Ω+ of Ω+ branched over the cycle λ. Since
λ is unknotted in Ω+, the underlying space of Σ is the 3-sphere again. The
singular set of Σ is a six component link L formed by lifting the labelled edges.
To recognise this link we represent λ as a circle with 12 vertices as in the right
hand figure of Figure 3.4. After taking the two-fold covering branched along λ
we obtain the link L (see Figure 3.5).
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2α

2ν 2ε

2δ

2β 2γ

Figure 3.5. The link L.

Hence Σ = Σ(2α, 2β, 2γ, 2δ, 2ε, 2ν) is a hyperbolic cone-manifold with singular
set illustrated in Figure 3.5. By the construction we have

(3.5.1) VolO(α, β, γ, δ, ε, ν) =
1

4
VolΣ(2α, 2β, 2γ, 2δ, 2ε, 2ν).

In particular, we obtain

Proposition (3.5.2). The volume of the convex hull Q̃(α, β) is equal to one
half of the volume of cone-manifold Σ(2α, 2β, π, π, 0, 0).

This statement gives us a convenient way to calculate the volume of Q̃(α, β)
using J. Weeks’ computer program SnapPea [15].
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HOPF CONSTRUCTION MAP IN HIGHER DIMENSIONS

GUILLERMO MORENO

Abstract. We study the zero set of the Hopf construction map Fn : An ×
An → An × A0 given by Fn(x, y) = (2xy, ||y||2 − ||x||2) for n ≥ 4, where
An is the Cayley-Dickson algebra of dimension 2n on R.

0. Introduction

Let f1 : S3 → S2, f2 : S7 → S4 and f3 : S15 → S8 be the classical Hopf
maps ; these can be defined using the Hopf construction. Let A1 = C,A2 = H

and A3 = O be the complex, quaternion and octonion numbers respectively, and
let Fn : An × An → An × R be given by

Fn(x, y) = (2xy, ||y||2 − ||x||2)
for n = 1, 2, 3. Write S2n+1−1 = {(x, y) ∈ An × An : ||x||2 + ||y||2 = 1}. By
definition,

Fn|S2n+1−1 = fn

are the Hopf maps. Since An is a normed real algebra of dimension 2n, for
n = 1, 2, 3 we have

||(2xy, ||y||2 − ||x||2)||2 = 4||xy||2 + (||y||2 − ||x||2)2
= 4||x||2||y||2 + ||y||4 + ||x||4 − 2||x||2||y||2
= (||x||2 + ||y||2)2,

so if ||x||2 + ||y||2 = 1, then ||Fn(x, y)|| = ||(2xy, ||y||2 − ||x||2)|| = 1.
Using the Cayley-Dickson doubling process ([D]) define

An+1 = An × An

with

(a, b)(x, y) = (ax− yb, ya+ bx) for a, b, x and y in An

and

x = (x1,−x2) if x = (x1, x2) is in An−1 × An−1.

Thus if A0 = R with x = x for x a real number, then A1 = C,A2 = H and
A3 = O, which are normed algebras; i.e., ||xy|| = ||x||||y|| for all x, y in An.

For n ≥ 4, An is no longer normed and has zero divisors as well (see [K-Y]
and [Mo1]).

Let us define X∞
n = {(x, y) ∈ An × An|Fn(x, y) = (0, 0)} and, for any non-

negative real number r, (x, y) ∈ Xr
n if and only if xy = 0 and ||x|| = ||y|| = r. It

2000 Mathematics Subject Classification: 17A99, 55Q25.
Keywords and phrases: Cayley-Dickson algebras, alternative algebras, zero divisors, flexible

algebra, normed algebra.
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is clear that for real numbers r > 0 and s > 0, Xr
n is homeomorphic to Xs

n. Let
us further define Xn := X1

n.
The set Xn appears in some important problems in algebraic topology:

(1) Cohen’s approach to the Arf invariant one problem (see [C1] and [C2]).
(2) The Adem-Lam construction of normed and non-singular bilinear maps (see
[A] and [L]).

In this paper we will show that for n ≥ 4, Xn is related to certain Stiefel
manifolds; using the algebra structure in An+1 we will construct a chain of
inclusions

Xn ⊂ W2n−1−1,2 ⊂ V2n−2,2 ⊂ V2n−1,2

(see section 2) where Vm,2 and Wm,2 denote the real and complex Stiefel mani-
folds of 2-frames in Rm and Cm, respectively.

In section 3 we show that we can attach to every element in W2n−1,2, in a
canonical way, an eight dimensional vector subspace of An+1, and that, only for
the elements in Xn, this vector subspace is isomorphic, as an algebra, to A3 = O.

In section 4 we describe Xn as a certain type of algebra monomorphisms from
A3 = O to An+1 for n ≥ 4.

This paper is a sequel to [Mo1] and we use freely the results of [Sch]. We
acknowledge with gratitude the hard work done by the reviewer.

1. Pure and doubly pure elements in An+1

Throughout this paper we use the following notational conventions:
(1) Elements in An will be denoted by Latin characters a, b, c, . . . , x, y, z. and
elements in An+1 will be denoted by Greek characters α, β, γ, . . . For example,

α = (a, b) ∈ An × An.

(2) When we need to represent elements in An as elements in An−1×An−1 we use
subscripts, for instance, a = (a1, a2), b = (b1, b2), and so on, with a1, a2, b1, b2
in An−1.

Let {e0, e1, . . . , e2n−1} denote the canonical basis in An. Then by the doubling
process,

{(e0, 0), (e1, 0), . . . , (e2n−1, 0), (0, e0), . . . , (0, e2n−1)}
is the canonical basis in An+1 = An×An. By standard abuse of notation we also
denote e0=(e0, 0), e1=(e1, 0), . . . , e2n−1=(e2n−1, 0), e2n =(0, e0), . . . , e2n+1−1=
(0, e2n−1) in An+1.

For α = (a, b) ∈ An × An = An+1 we write α̃ = (−b, a) (the complexification of

α), so ẽ0 = (0, e0) and αẽ0 = (a, b)(0, e0) = (−b, a) = α̃. Notice that ˜α̃ = −α.

The trace on An+1 is the linear map tn+1 : An+1 → R given by tn+1(α) =
α+ α = 2 (real part of α), so tn+1(α) = tn(a) when α = (a, b) ∈ An × An.

Definition (1.1). α = (a, b) in An+1 is pure if

tn+1(α) = tn(a) = 0.

Furthermore, α = (a, b) in An+1 is doubly pure if it is pure and also tn(b) = 0;
i.e., α̃ is pure in An+1.
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Note that 2〈a, b〉 = tn(ab) when 〈−,−〉 is the inner product in R2n (see [A]).
Also, for pure elements a and b, a ⊥ b if and only if ab = −ba.

Notation (1.2). oAn = {eo}⊥ ⊂ An is the vector subspace consisting of pure

elements in An; i.e., oAn = Ker(tn) = R2n−1. ˜An+1 = oAn× oAn = {e0, ẽ0}⊥ =

R2n+1−2 is the vector subspace consisting of doubly pure elements in An+1.

Lemma (1.3). For a and b in ˜An we have that
(1) aẽ0 = ã and ẽ0a = −ã;
(2) aã = −||a||2ẽ0 and ãa = ||a||2ẽ0 so a ⊥ ã;

(3) ãb = − ˜ab with a a pure element;

(4) a ⊥ b if and only if ãb+˜ba = 0;

(5) ã ⊥ b if and only if ab = ˜bã;

(6) a ⊥ b and ã ⊥ b if and only if ãb = a˜b.

Proof. Note that a is pure if and only if a = −a; and if a = (a1, a2) is doubly
pure, then a1 = −a1 and a2 = −a2. Then

(1) ẽ0a = (0, e0)(a1, a2) = (−a2, a1) = (a2,−a1) = −(−a2, a1) = −ã.
(2) aã = (a1, a2)(−a2, a1) = (−a1a2 + a1a2, a

2
1 + a22) = (0,−||a||2e0) =

−||a||2ẽ0.
Similarly ãa = (−a2, a1)(a1, a2) = (−a2a1 + a2a1,−a22 − a21) = ||a||2ẽ0.
Now, since −2〈ã, a〉 = aã+ ãa = 0 we have a ⊥ ã.
(3) ãb = (−a2, a1)(b1, b2) = (−a2b1 + b2a1,−b2a2 − a1b1).

So ˜ãb = (a1b1 + b2a2, b2a1 − a2b1) = (a1, a2)(b1, b2) = ab and then −ãb = ˜ab.
Note that in this proof we only use that a1 = −a1; i.e., a is pure and b doubly

pure.

(4) a ⊥ b ⇔ ab+ ba = 0 ⇔ ab = −ba ⇔ ˜ab = − ˜ba.

⇔ −ãb = ˜ba ⇔ ãb+˜ba = 0 by (3).

(5) ã ⊥ b ⇔ ˜ãb+˜bã = 0 (by (4)) ⇔ −ab+˜bã = 0.

(6) If ã ⊥ b and a ⊥ b, then by (3) and (4) ãb = − ˜ab = ˜ba = −˜ba = a˜b.
Conversely, put a = (a1, a2) and b = (b1, b2) in An−1 × An−1 and define
c := (a1b1 + b2a2) and d := (b2a1 − a2b1) in An−1.

Then a˜b = (a1, a2)(−b2, b1) = (−a1b2 + b1a2, b1a1 + a2b2) so a˜b = (−d, c).

Now ab = (a1, a2)(b1, b2) = (a1b1 + b2a2, b2a1 − a2b1) = (c, d), so ˜ab = (−d, c)

and then ãb = (d,−c). Thus if a˜b = ãb, then c = −c and d = −d, and then

tn(ab) = tn−1(c) = c+ c = 0 and a ⊥ b

tn(ãb) = tn−1(d) = d+ d = 0 and ã ⊥ b.

Corollary (1.4). For each a 
= 0 in ˜An, the four dimensional vector sub-
space generated by {e0, ã, a, ẽ0} is a copy of A2 = H. We denote it by Ha.

Proof. We suppose that ||a|| = 1, otherwise we consider a
||a|| . Construct the

following multiplication table.
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e0 ã a ẽ0
e0 e0 ã a ẽ0
ã ã −e0 +ẽ0 −a
a a −ẽ0 −e0 ã
ẽ0 ẽ0 a −ã −e0

By lemma (1.3), aẽ0 = ã; ẽ0a = −ã; ãẽ0 = ˜ã = −a; ẽ0ã = −˜ã = a; aã = −ẽ0
and ãa = ẽ0.

Identifying e0 ↔ e0, ã ↔ e1, a ↔ e2 and ẽ0 ↔ e3 we have the multiplication
table for A2 = H.

2. The Stiefel manifold V2n−1,2 in An+1 and a T 2-action

Let 〈a, b〉n denote the standard inner product of a and b in An = R2n . Now
by [A] and [Mo1],

2〈a, b〉n = (ab + ba) = tn(ab) .

It is also well known that for α = (a, b) and χ = (x, y) in An × An = An+1 we
have

〈α, χ〉n+1 = 〈a, x〉n + 〈b, y〉n .

In particular, if α and χ are doubly pure elements in An+1, then y and b are
pure elements in An, and therefore

〈α, χ〉n+1 = 〈a, x〉n + 〈b, y〉n .
Lemma (2.1). For α = (a, b) in An+1 define α̂ := (b, a). For α ∈ ˜An+1 we

have that
(i) 〈α, α̂〉n+1 = 0 i.e. α ⊥ α̂ in An+1 if and only if 〈a, b〉n = 0, i.e. a ⊥ b in

An;
(ii) 〈α̃, α̂〉n+1 = 0, i.e. α̃ ⊥ α̂ in An+1 if and only if ||a|| = ||b|| in An.

Proof. (i) 〈α, α̂〉n+1 = 〈(a, b), (b, a)〉n+1 = 2〈a, b〉n.
(ii) 〈α̃, α̂〉n+1 = 〈(−b, a), (b, a)〉n+1 = −〈b, b〉n + 〈a, a〉n = −||b||2 + ||a||2.

By §1 we know that, for each α 
= 0 in ˜An+1, Hα = Span {e0, α̃, α, ẽ0} is
a copy of A2, and that, if H⊥

α denotes the orthogonal complement of Hα, then
An+1 = Hα ⊕H⊥

α .
Since α is doubly pure, α̂ is also doubly pure; i.e., α̂ ∈ {e0, ẽ0}⊥. If α̂ ⊥ α

and α̂ ⊥ α̃, then α̂ ∈ H⊥
α . Let S

√
2(˜An+1) = S2n+1−3 denote the sphere of radius√

2 in of ˜An+1. Thus we have a description of the real Stiefel manifold of 2-
orthonormal frames in R2n−1 as follows:

V2n−1,2 = {(a, b) ∈ oAn × oAn = ˜An+1 : ||a|| = ||b|| = 1, a ⊥ b}
and

V2n−1,2 = {α ∈ S
√
2(˜An+1) : α̂ ∈ H⊥

α} .
Lemma (2.2). If r and s are in R with r2 + s2 = 1 and (a, b) ∈ V2n−1,2 then

(ra− sb, sa+ rb) ∈ V2n−1,2.
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Proof. Suppose that ||a|| = ||b|| = 1 and a ⊥ b in An. Then ||ra − sb||2 =
r2||a||2 + s2||b||2 − 2rs〈a, b〉n and ||sa+ rb||2 = s2||a||2 + r2||b||2 + 2rs〈a, b〉n, so
||ra − sb||2 = ||sa+ rb||2 = r2 + s2 = 1. Hence,

〈ra− sb, sa+ rb〉n = rs〈a, a〉n − sr〈b, b〉n − s2〈b, a〉n + r2〈a, b〉n
= rs||a||2 − rs||b||2 + 0 = rs − sr = 0.

Corollary (2.3). The map S1 × V2n−1,2→V2n−1,2 given by

((r, s), α) �→ rα + sα̃ = (ra − sb, sa+ rb)

defines a smooth, free S1-action on V2n−1,2.

Proof. Clearly (1, 0) · α = α and (r, s)[(q, t) · α] = ((r, s)(q, t)) · α = (rq −
st, rt+ sq) ·α, so the map defines an action. It is a smooth action because it is a

restriction of a linear action of GL2(R) on ˜An+1 = R2n+1−2. Finally, the map is

a free action: if rα + sα̃ = α then r = 1 and s = 0, because α ⊥ α̃ in ˜An+1.

Next we identify V2n−2,2, the real Stiefel manifold of 2-orthonormal frames on

R2n−2, as a submanifold of V2n−1,2 as follows:

V2n−2,2 = {(a, b) ∈ V2n−1,2|(a, b) ∈ ˜An × ˜An};
i.e., (a, b) ∈ V2n−1,2 belongs to V2n−2,2 whenever a and b are doubly pure elements
in An. We have the known fibration [Wh]

S2n−4 → V2n−2,2 → S(˜An) = S2n−3

(a, b) �→ b

Thus V2n−2,2 has dimension 2n − 3 + 2n − 4 = 2n+1 − 7.
Since (ra − sb) and (sa + rb) are doubly pure elements in An when a and b

are doubly pure elements, we have that V2n−2,2 is a S1-invariant submanifold of
V2n−1,2; i.e., if α ∈ V2n−2,2 then (r, s) · α ∈ V2n−2,2 for all (r, s) ∈ S1.

We note that An+1 becomes a complex vector space by defining iα̇=α̃; thus, as
a complex vector space,

˜An+1 = 0An × 0An
∼= C⊗R 0An.

The isomorphism takes 1 ⊗ x to (x, 0) and i ⊗ y to (0, y), and S1 (the set of
modulo 1 complex numbers) acts naturally by multiplication on C, hence on
˜An+1.

Now we identify the complex Stiefel manifold W2n−1−1,2 of 2-orthonormal

frames in C2n−1−1 as a submanifold of V2n−2,2 in terms of the Cayley-Dickson
algebra An+1 for n ≥ 3.

It is known that for a, b, and x in An, 〈ax, b〉n = 〈a, bx〉n (see [A]). Thus if x
is a pure element, i.e., x = −x, then 〈ax, b〉n = −〈a, bx〉n. In other words, right
multiplication by a pure non-zero element is a skew-symmetric linear map. In

particular 〈ã, b〉n = −〈a,˜b〉n.
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Proposition (2.4). For n ≥ 3, the map Hn : ˜An × ˜An → C given by

Hn(a, b) = 2〈a, b〉n − 2i〈ã, b〉n
defines a Hermitian inner product in ˜An.

Proof. Clearly Hn is R-linear and

Hn(a, b) = 2〈a, b〉n + 2i〈ã, b〉n
= 2〈a, b〉n − 2i〈a,˜b〉n
= Hn(b, a).

On the other hand,

Hn(ã, b) = 2〈ã, b〉n − 2i〈˜ã, b〉n
= 2〈ã, b〉n + 2i〈a, b〉n
= 2i〈a, b〉n − 2i2〈ã, b〉n
= iHn(a, b).

Proposition (2.5). For n ≥ 3,

W2n−1−1,2 = {(a, b) ∈ V2n−2,2|b ∈ H⊥
a } .

Proof. First we observe that b ∈ H⊥
a for a and b in ˜An if and only if b ⊥ a and

b ⊥ ã, i.e. Hn(a, b) = 0. If ||a|| = ||b|| = 1 and Hn(a, b) = 0, then (a, b) ∈ Wm,2,
where m = 1

2 (2
n − 2) = 2n−1 − 1.

Proposition (2.6). W2n−1−1,2 is S1-invariant.

Proof. Suppose (a, b) ∈ ˜An × ˜An with ||a|| = ||b|| = 1 and b ∈ H⊥
a . From this

we have b ⊥ a, and ˜b ⊥ a (equivalently ã ⊥ b).
Now r(a, b)+s(−b, a) = (ra−sb, rb+sa) and we know that (ra−sb) ⊥ (rb+sa).

To finish, we need to show that ˜(ra− sb) ⊥ (rb + sa). But

〈 ˜ra− sb, rb + sa〉n = 〈rã − s˜b, rb + sa〉n
= r2〈ã, b〉n − s2〈˜b, a〉n + rs〈ã, a〉n − rs〈˜b, a〉n
= 0,

and therefore (ra− sb) ∈ Hrb+sa.

Note that we have a fibration

S2n−5 → W2n−1−1,2
π→ S(˜An) = S2n−3

(a, b) �→ b

and π−1(b) = S(H⊥
b ) = S2n−5 since dim H⊥

b = 2n − 4. Thus dim W2n−1−1,2 =
2n − 5 + 2n − 3 = 2n+1 − 8.

In [Mo1] it is shown that for a and b in An with n ≥ 4 and ||a|| = ||b|| = 1, if

ab = 0 then (i) (a, b) ∈ ˜An × ˜An and (ii) b ∈ H⊥
a (or equivalently a ∈ H⊥

b ). Thus

Xn := {(a, b) ∈ An × An : ||a|| = ||b|| = 1 and ab = 0}
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is a subset of W2n−1−1,2. This gives a chain of inclusions for n ≥ 3,

Xn ⊂ W2n−1−1,2 ⊂ V2n−2,2 ⊂ V2n−1,2 .

We show that Xn and W2n−1−1,2 admit a T := S1 × S1 action.

Lemma (2.7). For (a, b) ∈ V2n−2,2 and r, s, q, p in R with r2 + s2 = 1 and
p2 + q2 = 1, define

(a, b)
τ�→ (ra+ sã, pb+ qb̃) .

Then
(i) if (a, b) ∈ W2n−1−1,2 then (ra+ sã, pb+ qb̃) ∈ W2n−1−1,2;

(ii) if (a, b) ∈ Xn then (ra+ sã, pb+ qb̃) ∈ Xn;
(iii) τ defines a free T -action on W2n−1−1,2 and Xn respectively.

Proof. By direct calculations. If a ⊥ b and ã ⊥ b, then

〈ra+ sã, pb+ qb̃〉n = rp〈a, b〉n + sq〈ã, b̃〉n + rq〈a, b̃〉n + sp〈ã, b〉n
= 0 + 0 + 0 + 0

= 0.

Similarly,

〈ra+ sb̃, (pb+ qb̃)ẽ0〉n = 〈ra+ sã, pb̃− qb〉n
= rp〈a, b̃〉n + sp〈ã, b̃〉n − rq〈a, b〉n − sq〈ã, b〉n
= 0 + 0 + 0 + 0

= 0.

If ab = 0, then

(ra+ sã)(pb+ qb̃) = rp(ab) + sqãb̃+ spãb+ rqab̃

= 0.

Also

||ra+ sã||2 = r2||a||2 + s2||ã||2 = (r2 + s2)||a||2 = 1 and

||pb+ qb̃||2 = p2||b||2 + q2||b̃||2 = (p2 + q2)||b||2 = 1

Thus we have proved (i) and (ii). Finally (ra + sã, pb + qb̃) = (a, b) if and only
if r = 1, s = 0, p = 1 and q = 0. Clearly this action is smooth and free (see
Corollary (2.3)).

3. Xn, Octonions and an S3 action

In this section we show that we can attach to every element in Xn a copy
of A3 = O, the octonions inside of An+1 for n > 3. This allows us to identify
Xn with a subset of algebra monomorphisms of A3 into An+1, which will be our
main goal in §4. We recall some notation from section 1. Let e0 ∈ An−1 be
the unit, so (e0, 0) = e0 is the unit in An and ẽ0 = (0, e0) in An. For ẽ0 in An

we denote ε = (ẽ0, 0) in An+1. For example, for n = 4 , ẽ0 = e8 in A4, and
ε = (e8, 0) in A5. In general ẽ0 = e2n in An+1 and ε = e2n−1 in An+1. Since ε is
a doubly pure element of norm one, we have that Hε = Span{e0, ε̃, ε, ẽ0} ⊂ An+1

is a copy of A2 and a direct sum decomposition An+1 = Hε ⊕H⊥
ε . By definition
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α = (a, b) ∈ An × An = An+1 is doubly pure in An+1 with doubly pure entries
in An if and only if α ∈ H⊥

ε .
In section 2 we constructed the chain

Xn ⊂ W2n−1−1,2 ⊂ V2n−2,2 ⊂ V2n−1,2 ⊂ An+1

for n ≥ 3 with X3 = Φ, the empty set. Therefore by definition, V2n−2,2 =
V2n−1,2 ∩H⊥

ε .

Lemma (3.1). For α ∈ H⊥
ε ⊂ An+1 with α = (a, b) ∈ ˜An × ˜An,

1) (αε) ∈ H⊥
ε and αε = (ã,−˜b).

2) αε̃ ∈ H⊥
ε and αε̃ = α̃ε = −α̃ε = (−b̃,−ã).

Proof. By direct calculation,

αε = (a, b)(ẽ0, 0) = (aẽ0,−bẽ0) = (ã,−b̃) ∈ Ãn × Ãn = H⊥
ε

and
αε̃ = (a, b)(0, ẽ0) = (ẽ0b, ẽ0a) = (−b̃,−ã)

by Lemma (1.3) (1). Finally, using Lemma (1.3) (6) and (3), respectively, we
get αε̃ = α̃ε = −α̃ε ∈ H⊥

ε .

Corollary (3.2). For a non-zero α in H⊥
ε ⊂ An+1 and n ≥ 3,

Oα := Span{e0, ε̃, ε, ẽ0, α̃, αε, ε̃α, α} ⊂ An+1

is an 8-dimensional vector subspace of An+1 = R2n+1

.

Proof. By definition {e0, ε̃, ε, ẽ0}, {e0, α̃, α, ẽ0}, {ε, α, ε̃, α̃} are an orthogonal
set of vectors and αε ∈ H⊥

ε ∩H⊥
α . Also by Lemma (3.1). ε̃α = −αε̃ ∈ H⊥

ε ∩H⊥
α .

Thus {e0, ε̃, ε, ẽ0, α̃, αε, ε̃α, α} is an orthogonal set of vectors in An+1.

Remark (3.3). In particular, for α ∈ V2n−2,2, we have that Oα
∼= R8 ⊂ An+1

and Oα ⊕O⊥
α = An+1.

Lemma (3.4). For α ∈ V2n−2,2, α ∈ W2n−1−1,2 if and only if α̂ ∈ O⊥
α .

Proof. Recall that by definition α̂ = (b, a) if α = (a, b), so

α̂ ∈ (Span(({e0, ε̃, ε, ẽ0, α, α̃}))⊥
(see Lemma (2.1). above). Now

〈α̂, ε̃α〉n+1 = 〈(b, a), (b̃, ã)〉n+1 = 〈b, b̃〉n + 〈a, ã〉n = 0

〈α̂, αε〉n+1 = 〈(b, a), (ã,−b̃)〉n+1 = 〈b, ã〉n − 〈a, b̃〉n = 2〈b, ã〉n,
so α̂ ⊥ (αε) in An+1 if and only if ã ⊥ b in An, i.e. b ∈ H⊥

a . Therefore α̂ ∈ O⊥
α if

and only if b ∈ H⊥
a .

From this we see that W2n−1−1,2 = {α ∈ V2n−2,2|α̂ ∈ O⊥
α }.

Theorem (3.5). For α ∈ W2n−1−1,2 and n ≥ 4, the following statements are
equivalent.

(i) α ∈ Xn;
(ii) α alternates with ε i.e., (α, α, ε) = 0;
(iii) the vector subspace of An+1

V (α; ε) := Span{e0, α, ε, αε}.
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is multiplicatively closed and isomorphic to A2 = H;
(iv) Oα is multiplicatively closed and isomorphic to A3 = O;
(v) α̂ ∈ KerLα ⊂ O⊥

α , where Lα is left multiplication by α.

Proof. First of all we calculate

α(αε) = (a, b)[(a, b)(ẽ, 0)] = (a, b)(ã,−b̃) = (aã− b̃b,−b̃a− bã)

= (−||a||2ẽ0 − ||b||2ẽ0,−b̃a− b̃a) (by Lemma 1.1 (2) and (5))

= −||α||2ε+ 2(0, b̃a).

Therefore α(αε) = α2ε = −||α||2ε if and only if ba = 0; i.e., α ∈ Xn and we have
(i)⇔ (ii).

Clearly if α ∈ W2n−1−1,2 then {e0, α, ε, αε} form an orthonormal set of vectors,
dimR(V (α; ε)) = 4 so −||α||2 = α2 = (αε)2 and α(αε) = −||α||2ε if and only if
V (α; ε) = H, and we have proved (ii)⇔(iii).

To prove (iii)⇔(iv) we establish the following correspondence between the
canonical basis in A3 and the orthonormal basis of Oα.

e1 → ε̃; e2 �→ ε; e3 → ẽ0; ||α||e4 → α̃; ||α||e5 → αε; ||α||e6 → ε̃α; ||α||e7 → α

Using ii) it is a routine calculation to see that this correspondence defines an
algebra isomorphism. (See also Lemma (4.8) (1) below). Finally, from Lemma
(3.4) we know that α̂ ∈ O⊥

α and

αα̂ = (a, b)(b, a) = (ab+ ab, a2 − b2) = (2ab, ||b||2 − ||a||2)
is the Hopf construction. Thus αα̂ = 0 in An+1 if and only if α ∈ Xn. Recall
that A3

∼= Oα does not admit zero divisors.

Theorem (3.6). H⊥
ε admits a left Hε-module structure for n ≥ 3.

Proof. For α = (a, b) in H⊥
ε = ˜An× ˜An and u = re0+ sε̃+ qε+pẽ0 with r, s, q

and p in R. Define

u · α = αu = rα + sαε̃+ qαε+ pα̃ .

Trivially α̃ ∈ H⊥
ε and (αε̃) and (αε) are in H⊥

ε by Lemma (3.1) (2) and (1),
respectively. Since ε̃, ε and ẽ0 are alternative elements in An+1 (actually they
belong to the canonical basis) we have that ε̃ · α = (αε̃)ε̃ = α(ε̃)2 = −||α||2e0 =
ε̃ · α and similarly ε · (ε · α) = ε2 · α and ẽ0 · (ẽ0 · α) = ẽ20 · α.

Now ε · (ẽ0 · α) = ε · (αẽ0) = ε · α̃ = α̃ε and (εẽ0) · α = ε̃ · α = αε̃ = α̃ε by
Lemma (3.1) (2). Similarly,

ε̃ · (ẽ0 · α) = (ε̃ẽ0) · α = εα

ẽ0 · (ε̃ · α) = (ẽ0ε̃) · α = αε

ε · (ẽ0 · α) = (εẽ0) · α = α̃ε

ẽ0 · (ε · α) = (ẽ0ε) · α = −αε̃.

Finally ε̃ · (ε · α) = ε̃ · (αε) = (αε)ε̃ = (α̃ε)ε = −(̃αε)ε = ˜−α = (ε̃ε) · α and
ε · (ε̃ · α) = ε · (αε̃) = (αε̃)ε = (α̃ε)ε = α̃ = ε · (ε̃α). Apply Lemma (3.1) and
Lemma (1.3). and we are done.
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We now define a S3 action on Xn. Consider the unit sphere in Hε ⊂ An+1,

S3 = S(Hε) = {re0 + sε̃+ qε+ pẽ0|r2 + s2 + q2 + p2 = 1} .
For α ∈ H⊥

ε with α = (a, b) ∈ Ãn × Ãn define H⊥
ε × S3 → H⊥

ε by

α(re0 + sε̃+ qε+ pẽ0) = rα + sαε̃+ qαε+ pαẽ0 = rα+ sα̃ε+ qαε+ pα̃

= r(a, b) + s(−b̃,−ã) + q(ã,−b̃) + p(−b, a)

= (ra − sb̃+ qã− pb, rb− sã− qb̃ + pa).

By definition this is a group action which is smooth and free of fixed points.

Corollary (3.7). The above action of S3 = S(Hε) on H⊥
ε is a group action

which is smooth, orthogonal, and free of fixed points.

Proof. By Theorem (3.6) this is a smooth group action because it is a re-
striction of a linear action. Since right multiplication by ẽ0, ε and ε̃ are or-
thogonal linear transformations, we have that the action is orthogonal. Finally
this action is free of fixed points because {e0, ε̃, ε, ε} is an orthonormal basis, so
α(re0 + sε̃+ qε+ pẽ0) = α if and only if r = 1, s = q = p = 0.

Theorem (3.8). i) The subsets Xn and W2n−1−1,2 of H⊥
ε are S3-equivariant;

ii) for α and β in W2n−1−1,2, Oα = Oβ as vector spaces if and only if α and
β lie in the same S3-orbit.

Proof. For α ∈ H⊥
ε with α = (a, b) ∈ Ãn× Ãn and r, s, q, p in R with r2+ s2+

q2 + p2 = 1 we have that

α(re0 + sε̃+ qε+ sẽ0) = (ra− sb̃+ qã− pb, rb− sã− qb̃+ pa) .

Suppose that α ∈ W2n−1−1,2; then 〈ã, b〉n = −〈a, b̃〉n = 0; 〈a, b〉n = 〈ã, b̃〉n = 0

and, by definition, 〈a, ã〉n = 〈b, b̃〉n = 0 with ||a|| = ||ã|| = ||b̃|| = ||b|| = 1, so

〈ra− sb̃+ qã− pb, rb − sã− qb̃+ pa〉 = p||a||2 + sq||b||2 − qs||ã||2 − pr||b||2 = 0
and (α(re0 + sε̃+ qε+ sẽ0)) ∈ V2n−2,2.

Similarly, 〈ra − sb̃+ qã− pb, rb̃+ sa+ qb+ pã〉 = 0 and

α(re0 + sε̃+ qε+ sẽ0) ∈ W2n−1−1,2 .

A direct calculation shows that if ab = 0 then

ab = ãb = ab̃ = ãb̃ = 0

(ra− sb̃+ qã− pb)(rb− sã− qb̃+ pa) =

−rsaã+ rpa2 − srb̃b+ sqb̃2 − qsã2 + qpaa− prb2 + pqbb̃ =

−rs(−||a||2ẽ0 + ||b||2ẽ0) + pq(−||a||2ẽ0 + ||b||2ẽ0) + rp(a2 − b2) + sq(b̃2 − ã2) = 0

since ||a||2 = ||b||2 = 1 and a2 = b2 = −e0, so we have (i).
To prove (ii) we note that Oα = Hε ⊕ Span{α̃, αε, ε̃α, α}. Thus, if β = rα +

sα̃ε + qαε + pα̃ (recall that α̃ε = −ε̃α by Lemma (3.1)) and ||β|| = 1, then
r2 + s2 + q2 + p2 = 1 and α ≡ β mod S3 if and only if Oβ ⊂ Oα, but

dimOβ = dimOα = 8 and Oβ = Oα .
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Remark (3.9). Note that T = S1 × S1 as in Lemma (2.7) and S3 = S(Hε)
intersect in a copy of S1. Suppose that r2 + s2 + p2 + q2 = 1, u2 + v2 = 1 and
t2 +m2 = 1 in R. If (ra− sb̃+ qã− pb, rb− sã− qb̃+ pa) = (ua+ vã, tb+mb̃)
then r = u, q = v, s = 0, p = 0, r = t,−q = m, so

S(Hε) ∩ T = S1 = {(r,−q)|r2 + q2 = 1} .
4. Xn and monomorphisms from A3 to An+1

In this section we will assume that 1 ≤ m ≤ n.

Definition (4.1). An algebra monomorphism from Am to An is a linear mon-
omorphism ϕ : Am → An such that

i) ϕ(e0) = e0 (the first e0 is in Am and the second e0 in An);
ii) ϕ(xy) = ϕ(x)ϕ(y) for all x and y in Am.

By definition we have that ϕ(re0) = rϕ(e0) for all r in R, so ϕ(0Am) ⊂ ϕ(0An)

and ϕ(x) = ϕ(x). Therefore ||ϕ(x)||2 = ϕ(x)ϕ(x) = ϕ(x)ϕ(x) = ϕ(xx) =
ϕ(||x||2) = ||x||2 for all x ∈ Am, hence ||ϕ(x)|| = ||x|| and ϕ is an orthogonal
linear transformation from R2m−1 to R2n−1.

The trivial monomorphism is the one given by ϕ(x) = (x, 0, 0, . . . , 0) for
x ∈ Am and 0 in Am. M(Am;An) denotes the set of algebra monomorphisms
from Am to An. For m = n, M(Am;An) = Aut(An) is the group of algebra
automorphisms of An.

Proposition (4.2). M(A1;An) = S(oAn) = S2n−2.

Proof. A1 = C = Span{e0, e1}. If x ∈ A1, then x = re0 + se1 and for
w ∈o An with ||w|| = 1 we have that ϕw(x) = re0 + sw defines an algebra
monomorphism from A1 to An. This can be seen by direct calculation, recalling
that Center(An) = R for all n and that every associator with one real entry
vanishes.

Conversely, for ϕ ∈ M(A1;An) set w = ϕ(e1), so ||w|| = 1 and ϕw = ϕ.

Remark (4.3). In particular, we have that

Aut(A1) = S0 = Z/2 = {Identity, conjugation} = {ϕe1 , ϕ−e1} .
To calculate M(A2;An) for n ≥ 2 we need to recall the following (see [Mo2]).

Definition (4.4). For a and b in An. We say that a alternates with b and write
a� b, if (a, a, b) = 0. We say that a alternates strongly with b and write a� b,
if (a, a, b) = 0 and (a, b, b) = 0.

Clearly a alternates strongly with e0 for all a in An, and if a and b are linearly
dependent then a � b (by flexibility). Also, by definition a is an alternative
element if and only if a� x for all x in An.

By Lemma (1.3) (1) and (2) we have that for any doubly pure element a in
An (a, a, ẽ0) = 0 and (by the above remarks) ẽ0 alternate strongly with any a in
An.

For a and b pure elements in An, we define the vector subspace of An

V (a; b) = Span{e0, a, b, ab} .
Lemma (4.5). If (a, b) ∈ V2n−1,2 and a� b, then V (a; b) = A2 = H.
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Proof. Suppose that (a, b) ∈ V2n−1,2 and that (a, a, b) = 0. Then we have

〈ab, a〉 = 〈b, aa〉 = 〈b, ||a||2e0〉 = ||a||2〈b, e0〉 = 0

〈ab, a〉 = 〈a, bb〉 = 〈a, ||b||2e0〉 = ||b||2〈a, e0〉 = 0

||ab||2 = 〈ab, ab〉 = 〈a(ab), b〉 = 〈−a(ab), b〉 = 〈−a2b, b〉
= −a2〈b, b〉 = ||a||2||b||2 = 1,

so {e0, a, b, ab} is an orthonormal set of vectors in An.
Finally, using also that (a, b, b) = 0 and ab = −ba, we may check by direct

calculation that the multiplication table of {e0, a, b, ab} coincides with that of
the quaternions, and by the identification e0 �→ e0, a �→ e1, b �→ e2 and ab �→ e3
we have an algebra isomorphism between A2 = H and V (a; b).

Proposition (4.6). M(A2;An) = {(a, b) ∈ V2n−1,2|a � b} for n ≥ 2. In
particular,

Aut(A2) = M(A2;A2) = V3,2 = SO(3)

and

M(A2,A3) = V7,2.

Proof. The inclusion “⊃” follows from Lemma (4.5). Conversely, suppose that
ϕ ∈ M(A2,An); then ϕ(e0) = e0, (ϕ(e1), ϕ(e2)) ∈ V2n−1,2 and V (ϕ(e1), ϕ(e2)) =
Imϕ = H ⊂ An.

Since A2 is an asociative algebra and A3 is an alternative algebra we have
that a� b for any two elements in An when n = 2 or n = 3.

Definition (4.7). Recall that Ãn = {e0, ẽ0}⊥ = R2n−2 denotes the vector

subspace of doubly pure elements. Since a � ẽ0 for any element in Ãn, we
have that, if a ∈ S(Ãn) i.e., ||a|| = 1 then (a, ẽ0) ∈ V2n−1,2 and the assignment

a �→ (a, ẽ0) defines an inclusion from S(Ãn) = S2n−3 ↪→ M(A2;An) ⊂ V2n−1,2

which resembles the bottom cell inclusion in V2n−1,2.

Now we show that Xn can be identified with a subset of M(A3;An+1) for
n ≥ 4.

Lemma (4.8). For α ∈ H⊥
ε ⊂ An+1 and n ≥ 4,

(1) if ||α|| = 1 then Oα = Span{e0, ε̃, ε, ẽ0, α̃, αε, ε̃α, α} is isomorphic as an
algebra to A3 if and only if (α, α, ε) = 0;

(2) if α = (a, b) ∈ ˜An × ˜An then (α, α, ε) = (0,−(a, ẽ0, b)) ∈ ˜An × ˜An.

Proof. (1) By definition ẽ0 = e2n and ε = e2n−1 are elements in the canonical
basis, so they are alternative elements (See [Sch]). Since Hα is associative for all
α we have (α, α, ẽ0) = 0. Clearly if Oα

∼= A3 then (α, α, ε) = 0 because Oα is an
alternative algebra. Conversely, assume that (α, α, ε) = 0. We have the following
multiplication table which under the mapping

e0 �→ e0; e1 �→ ε̃; e2 �→ ε; e3 �→ ẽ0; e4 �→ α̃; e5 �→ αε; e0 �→ ε̃α and e7 �→ α
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becomes an algebra monomorphism from A3 into An+1:

e0 ε̃ ε ẽ0 α̃ αε ε̃α α
ε̃ −e0 ẽ0 −ε αε −α̃ −α ε̃α
ε −ẽ0 −e0 ε̃ ε̃α α −α̃ −αε
ẽ0 ε −ε̃ −e0 α −ε̃α +αε −α̃
α̃ −αε −ε̃α −α −e0 ε̃ ε −ẽ0
αε α̃ −α ε̃α −ε̃ −e0 −ẽ0 ε
ε̃α α α̃ −αε −ε ẽ0 −e0 −ε̃
α −ε̃α αε α̃ ẽ0 −ε ε̃ −e0

Note that this table is skew-symmetric with −e0’s along the diagonal. The
nontrivial calculations are the following,

ε̃α̃ = αε (by Lemma (1.3) (5)).

ε̃(αε) = −˜εα) = ε̃(εα) = ˜ε2α = −ẽ0α = −α̃ (by Lemma (1.3) (3)).

ε(ε̃α) = −ε(˜εα) = −ε̃(εα) = ε̃(εα) = −α̃ (by Lemma (1.3) (1) and (6).

α̃(αε) = −α̃(αε) = −˜α2ε = ε̃ because (α, α, ε) = 0 and ||α|| = 1.

α̃(ε̃α) = −α̃(˜εα) = +˜α̃(αε) = −α(αε) = ε,
so we are done with (1). To prove (2) we perform similar calculation as in
Theorem (3.5),

α(αε) = (a, b)[(a, b)(ẽ0, 0)] = (a, b)(ã,−˜b) = (aã−˜bb,−˜ba− bã)

= (−||a||2ẽ0 − ||b||2e0,−(bẽ0)a+ b(ẽ0a))

= −||α||2ε− (0, (b, ẽ0, a)).

Therefore

(α, α, ε) = α2ε− α(αε) = −||α||2 − α(αε)

= (0, (b, ẽ0, a)) = −(0, (a, ẽ0, b))

by flexibility.

Notation (4.9). For n ≥ 4 consider the following subsets of An+1,

En = {α ∈ H⊥
ε |(α, α, ε) = 0},

S(En) = {α ∈ En : ||α|| = 1},
P (n) = {(a, b) ∈ ˜An × ˜An|a and b areC− collinear},
Xn = {(a, b) ∈ ˜An × ˜An|a 
= 0, b 
= 0 andab = 0 },

and also the following subset of monomorphisms,

M2(A3;An+1) = {ϕ ∈ M(A3;An+1)|Hε ⊂ Imϕ}.
Remark (4.10). By Lemma (4.8) (1) we may identify S(En) and

M2(A3;An+1); that is, there is a one to one correspondence between these two
sets.

Theorem (4.11). For n ≥ 4,
(i) P (n) and Xn are subsets of En with P (n) ∩Xn = Φ, and
(ii) There is a continuous retraction R : En\P (n) → Xn.
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Proof. If (a, b) ∈ P (n), then b ∈ Ha or a ∈ Hb and (a, ẽ0, b) = 0 (recall that
Ha and Hb are associative), so by Lemma (4.8) (2), (α, α, ε) = 0 in An+1 when
α = (a, b) so P (n) ⊂ En.

On the other hand, if (a, b) ∈ Xn, then ab = 0 and b ∈ H⊥
a ⊂ An, so by

Lemma (1.3) (1), (6) and (3),

(a, ẽ0, b) = (aẽ0)b− a(ẽ0b) = ãb+ a˜b = ãb+ ãb = 2ãb = −2 ˜ab.

Therefore if ab = 0 then (a, ẽ0, b) = 0 and (α, α, ε) = 0 in An+1 for α = (a, b) by
Lemma (4.8) (2), so Xn ⊂ En.

Now if (a, b) ∈ P (n) ∩Xn then b ∈ Ha and ab = 0, but Ha is associative and
a = 0 or b = 0, which is a contradiction. Therefore P (n) ∩Xn is the empty set
and we are done with (i).

To prove (ii) suppose that α = (a, b) ∈ ˜An × ˜An with a 
= 0. Since

An = Ha ⊕H⊥
a ,

there are unique elements c and d in Ha and H⊥
a , respectively, such that b = c+d.

Now
(a, ẽ0, b) = (a, ẽ0, c+ d) = (a, ẽ0, c) + (a, ẽ0, d) = 0 + (a, ẽ0, d)

since Ha is associative. But by Lemma (1.3) (1), (6) and (3),

(a, ẽ0, d) = (aẽ0)d− a(ẽ0d) = ãd+ a˜d = ˜ad+ ãd = −2˜ad .

Therefore (a, ẽ0, b) = −2˜ad. Suppose that α = (a, b) is in En\P (n); then a 
= 0,
b 
= 0,

b = c+ d ∈ Ha ⊕H⊥
a

with d 
= 0 and (a, ẽ0, b) = 0 by Lemma (1.3) (2).Thus we have that ad = 0.
Let us define R : En\P (n) → Xn by R(a, b) = (a, d). Then R(a, b) = (a, b) if

(a, b) ∈ Xn, and R is continuous because it is the restriction of the projection
map

˜An × An → ˜An × (Ha ⊕H⊥
a ) → ˜An ×H⊥

a

(a, b) → (a, c+ d) → (a, d),

which is obviously continuous.

Remarks (4.12). (1) Recall that ˜An is a complex vector space by making
ia = ã. By definition (a, b) ∈ P (n) if and only if a and b are C-collinear for

(a, b) ∈ ˜An × ˜An. Therefore

P (n) ∼= (((˜An\{0})× C) ∪ ˜An).

(2) Consider the map wn : ˜An × ˜An → ˜An given by

wn(a, b) = (a, ẽ0, b) .

Since every associator is a pure element (a, ẽ0, b) ⊥ ẽ0 because (a,−, b) is a

skew-symmetric linear transformation (see [Mo1]), we have (a, ẽ0, b) ∈ ˜An.

Now wn is a polynomial, in fact a quadratic map, and En = w−1
n (0) is a real

algebraic set in ˜An × ˜An = H⊥
ε = R2n+1−4 with 0 in ˜An a singular value, by

Lemma (4.8) (2).
(3) Xn is a contraction of Xn via normalization on each coordinate.
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THE COMPLEX OF END REDUCTIONS OF A

CONTRACTIBLE OPEN 3-MANIFOLD:

CONSTRUCTING 1-DIMENSIONAL EXAMPLES

ROBERT MYERS

Dedicated to Fico González-Acuña in honor of his 60th birthday

Abstract. Given an irreducible, contractible, open 3-manifold W which is
not homeomorphic to R

3, there is an associated simplicial complex S(W ),
the complex of end reductions of W . Whenever W covers a 3-manifold M
one has that π1(M) is isomorphic to a subgroup of the group Aut(S(W ))
of simplicial automorphisms of S(W ).

In this paper we give a new method for constructing examples W with
S(W ) isomorphic to a triangulation of R. It follows that any 3-manifold M
covered by W must have π1(M) infinite cyclic. We also give a complete
isotopy classification of the end reductions of these W .

1. Introduction

A Whitehead manifold W is an irreducible, contractible, open 3-manifold
which is not homeomorphic to R

3. Given a compact, connected 3-manifold J
in W which is not contained in a 3-ball in W Brin and Thickstun [1] defined
a certain open submanifold V of W called an end reduction of W at J . End
reductions are rather nicely behaved but badly embedded manifolds which have
certain interesting engulfing and homotopy theoretic properties and are unique
up to isotopy with respect to these properties.

In [12] the author showed how to associate to the set of isotopy classes of end
reductions of W a certain abstract simplicial complex S(W ) with the following
properties. Every self-homeomorphism of W induces an automorphism of S(W ).
Whenever W is a non-trivial covering space of a 3-manifold M each non-trivial
element of the group π1(M) of covering translations acts without fixed points on
S(W ). Thus information about S(W ) gives information about what 3-manifolds
W can cover.

This complex seems particularly useful when W is R2-irreducible, i.e. when W
contains no “non-trivial” planes. In [12] the author considered an uncountable
collection of R2-irreducible Whitehead manifolds which are modifications of an
example due to Scott and Tucker [13]. He showed that each of these manifolds
has S(W ) isomorphic to a triangulation of the real line. It follows that each
3-manifold which is non-trivially covered by one of these 3-manifolds must have

2000 Mathematics Subject Classification: Primary: 57M10; Secondary: 57N10.
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infinite cyclic fundamental group, and in fact there are uncountably many which
do cover such manifolds.

These “modified Scott-Tucker manifolds” are easy to describe, but the proof
that their complexes of end reductions have the stated form is rather lengthy. In
the present paper we give a different method for constructing examples of R2-ir-
reducible Whitehead manifolds W which cover 3-manifolds M with π1(M) ∼= Z
and have S(W ) a triangulation of R. This method has the advantage that the
proof is much shorter. In addition we are able to classify all the end reductions
of these examples. For the modified Scott-Tucker manifolds we were able to
classify only those which are R2-irreducible (which is sufficient to determine the
complex). This gives the first R

2-irreducible Whitehead manifolds (other than
those of genus one) for which the entire set of end reductions is known.

The methods of this paper can also be used to construct R
2-irreducible

Whitehead manifolds which cover 3-manifolds with non-Abelian free funda-
mental groups and can cover only 3-manifolds with free fundamental groups.
This will be the subject of a later paper.

The paper is organized as follows. In section 2 we give general background
information and terminology. In section 3 we state those properties of end re-
ductions we will need. In section 4 we prove the existence of graphs in the 3-ball
having certain properties that we will need in our construction. In section 5 we
prove the main technical result needed to determine the end reductions of our
examples. It is a condition on the embedding of one handlebody in the interior
of another which ensures that any knot in the smaller handlebody which meets
sufficiently many compressing disks for the boundary of the smaller handlebody
in an essential way must meet all the compressing disks for the boundary of the
larger handlebody in an essential way. This result may be of some independent
interest. In section 6 we give our basic construction of the examples W . In
section 7 we prove some of their important properties. In section 8 we determine
S(W ). In section 9 we show how to modify the construction to get uncountably
many such W .

2. Background

In general we follow [5] or [6] for basic 3-manifold terminology. One slight
difference is our use of the term ∂-incompressible. This is usually reserved for
surfaces F which are properly embedded in a 3-manifold M . We extend this to
the case where F is a compact surface in ∂M as follows. F is ∂-incompressi-
ble if whenever Δ is a properly embedded disk in M with Δ ∩ F an arc α and
Δ ∩ (∂M − F ) an arc β, then α must be ∂-parallel in F .

When X is a submanifold of Y we denote the topological interior of X by
Int X and the manifold interior of X by int X . The exterior of X is the closure
of the complement of a regular neighborhood of X in Y . This term is also applied
to the case of a graph Γ in Y . The regular neighborhood is denoted N(Γ, Y ).
A meridian of an edge γ of Γ is the boundary of a properly embedded disk in
N(Γ, Y ) which meets γ transversely in a single point.
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A sequence {Cn}n≥0 of compact, connected 3-manifolds Cn in a Whitehead
manifold W such that Cn ⊆ int Cn+1 and W − int Cn has no compact compo-
nents is called a quasi-exhaustion in W . If ∪n≥0Cn = W , then it is called an
exhaustion for W .

The genus of {Cn}n≥0 is the maximum of the genera of ∂Cn or ∞ if these
genera are unbounded. The genus of W is the minimum of the genera of its
exhaustions.

A plane Π in W is proper if for each compact K ⊆ W one has that K ∩Π is
compact. A proper plane Π is trivial if some component of W − Π has closure
homeomorphic to R

2 × [0,∞). W is R
2-irreducible if every proper plane in W

is trivial. Every genus one Whitehead manifold is R2-irreducible [9].
A compact 3-manifold Y is weakly anannular if every properly embedded

incompressible annulus in Y has its boundary in a single component of ∂Y .

Lemma (2.1). Suppose that for each compact K ⊆ W there is a quasi-exhaus-
tion for W such that

(1) each Cn is irreducible,
(2) each ∂Cn is incompressible in W − int Cn,
(3) each Cn+1 − int Cn is irreducible, ∂-irreducible, and weakly anannular,

and
(4) K ⊆ C1.
Then W is R

2-irreducible.

Proof. This is Lemma 10.3 of [12], which derives from Lemma 4.2 of Scott
and Tucker [13].

3. End reductions

In this section we collect some information about end reductions and define
the complex of end reductions S(W ) of a Whitehead manifold W .

A compact, connected 3-manifold J inW is regular in W ifW−J is irreducible
and has no component with compact closure. Since W is irreducible the first
condition is equivalent to the statement that J does not lie in a 3-ball in W . A
quasi-exhaustion {Cn}n≥0 in W is regular if each Cn is regular in W .

Let J be a regular 3-manifold in W , and let V be an open subset of W which
contains J . We say that V is end irreducible rel J in W if there is a regular
quasi-exhaustion {Cn}n≥0 in W such that V = ∪n≥0Cn, J = C0, and ∂Cn is in-
compressible in W− int J for all n ≥ 0. We say that V has the engulfing property
rel J in W if whenever N is regular in W , J ⊆ int N , and ∂N is incompressible
in W − J , then V is ambient isotopic rel J to V ′ such that N ⊆ V ′. V is an
end reduction of W at J if V is end irreducible rel J in W , V has the engulfing
property rel J in W , and no component of W − V has compact closure.

Theorem (3.1) (Brin-Thickstun). Given a regular 3-manifold J in W , an
end reduction V of W at J exists and is unique up to non-ambient isotopy rel J
in W .

Proof. This follows from Theorems 2.1 and 2.3 of [1].

It may help the reader’s intuition about V to see a brief sketch of its con-
struction. We begin with a regular exhaustion {Kn}n≥0 of W with K0 = J .
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Set K∗
0 = K0. If ∂K1 is incompressible in W − J set K∗

1 = K1. Otherwise we
“completely compress” ∂K1 in W − K∗

0 to obtain K∗
1 . We may assume that

K∗
1 ⊆ int K2. If ∂K2 is incompressible in W − J we set K∗

2 = K2. Otherwise
we completely compress ∂K2 in W −K∗

1 to get K∗
2 . We continue in this fashion

to construct a sequence {K∗
n}n≥0. We let V ∗ = ∪n≥0K

∗
n and then let V be the

component of V ∗ containing J .

Proposition (3.2). Let V be an end reduction of W at J . Then the following
hold:

(1) (Brin-Thickstun) If J ′ is regular in W , J ⊆ int J ′, J ′ ⊆ V , and ∂J ′ is
incompressible in W − J , then V is an end reduction of W at J ′.

(2) There is a knot κ in int J such that V is an end reduction of W at (a
regular neighborhood of) κ.

(3) V is a Whitehead manifold.

Proof. (1) is Corollary 2.2.1 of [1]. (2) is Lemma 2.4 of [12]. (3) is Lemma
2.6 of [12].

An end reduction V of W at J is minimal if whenever U is an end reduction
of W at K and U ⊆ V , then there is a non-ambient isotopy of U to V in W .
It is easily seen that genus one end reductions are minimal; recall that they are
also R

2-irreducible.
In [14] Tucker constructed a 3-manifold W0 whose interior and boundary are

homeomorphic, respectively, to R
3 and R

2 but which is not homeomorphic to
R

2× [0,∞). W0 is a monotone union of solid tori which meet ∂W0 in a monotone
union of disks. It can be shown that the double of W0 along its boundary is a
Whitehead manifold which is a minimal end reduction of itself but is not R2-ir-
reducible.

In [12] and this paper examples are given of R2-irreducible Whitehead mani-
folds having R

2-irreducible end reductions which are not minimal.
If V is an end reduction of W , then we denote the non-ambient isotopy class

of V in W by [V ]. These isotopies are not required to be rel J . From now on we
will usually drop the phrase “non-ambient” from “non-ambient isotopy”. The
vertices of S(W ) are those [V ] for which V is minimal and R

2-irreducible.
Distinct vertices [V0] and [V1] are joined by an edge if there is an R

2-irre-
ducible end reduction E0,1 of W such that (1) E0,1 contains representatives of
[V0] and [V1], (2) every R

2-irreducible end reduction of W contained in E0,1 is
isotopic in W to V0, V1, or E0,1, and (3) [E0,1] is unique among R

2-irreducible
end reductions of W with respect to (1) and (2).

Three distinct vertices [V0], [V1], and [V2] span a 2-simplex of S(W ) if each
pair of vertices is joined by an edge and there is an R

2-irreducible end reduction
T0,1,2 of W such that (1) T0,1,2 contains representatives of each [Vi] and [Ei,j ],
(2) every R

2-irreducible end reduction of W contained in T0,1,2 is isotopic in W
to one of the Vi or Ei,j or to T0,1,2, (3) [T0,1,2] is unique among R

2-irreducible
end reductions of W with respect to (1) and (2).

There is an obvious generalization of these definitions which inductively de-
fines simplices of higher dimensions.
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Let Hom(W ) denote the group of self-homeomorphisms of W . Let Aut(S(W ))
denote the group of simplicial automorphisms of S(W ). Each g ∈ Hom(W ) in-
duces a γ ∈ Aut(S(W )). Let Ψ : Hom(W ) → Aut(S(W )) be the homomorphism
given by Ψ(g) = γ.

Theorem (3.3). If W is a non-trivial covering space of a 3-manifold M with
group of covering translations G ∼= π1(M), then the restriction Ψ|G : G →
Aut(S(W )) is one to one.

Proof. This is proved in [12].

Corollary (3.4). If S(W ) is isomorphic to a triangulation of R, then
π1(M) ∼= Z.

Proof. π1(M) must be torsion-free. The only non-trivial torsion-free sub-
groups of the infinite dihedral group Aut(S(W )) are infinite cyclic.

4. Some poly-excellent graphs in the 3-ball

A compact, connected, orientable 3-manifold is superb if it is irreducible,
∂-irreducible, and anannular, it contains a two-sided, properly embedded incom-
pressible surface, and it is not a 3-ball. It is excellent if, in addition, it is atoroidal.
In this paper superb 3-manifolds which are not excellent will occur only in the
last section. A compact, properly embedded 1-manifold in a compact, connected,
orientable 3-manifold is superb or excellent if its exterior is, respectively, superb
or excellent. It is poly-superb or poly-excellent if for each non-empty collection of
its components the union of that collection is, respectively, superb or excellent.

Define a k-tangle to be a disjoint union of k properly embedded arcs in a
3-ball.

Lemma (4.1). For all k ≥ 1 poly-excellent k-tangles exist.

Proof. This is Theorem 6.3 of [11].

In this section we generalize this to certain graphs in the 3-ball. For n ≥ 2
define an n-frame F to be a graph having one vertex of degree n and n vertices
of degree one; thus it is the cone on a set of n points. A subframe of F is a
subgraph of F which is an m-frame for some m ≥ 2. Note that a single edge of
F is not a subframe of F .

F is properly embedded in a 3-ball B if F ∩ ∂B is the set of vertices of F
of degree one. A system of frames in B is a disjoint union F of finitely many
properly embedded ni-frames Fi in B. We say that F is superb or excellent
if its exterior is, respectively, superb or excellent. It is poly-superb or poly-
excellent if every non-empty subgraph of F whose components are subframes of
the components of F is, respectively, superb or excellent. Note that the subgraph
need not meet every component of F.

Theorem (4.2). Let k ≥ 1. Suppose n1 ≥ 2. If k ≥ 2 assume that ni = 2
for 2 ≤ i ≤ k. Then there exists a poly-excellent system F of ni-frames Fi in the
3-ball B.
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In this paper we will need only the case n1 = 3, but it is no harder to prove
for n1 > 3.

We will need the following lemma for gluing together superb or excellent 3-
manifolds to obtain a superb or, respectively, excellent 3-manifold.

Lemma (4.3). Let Y be a compact, connected, orientable 3-manifold. Let S be
a compact, properly embedded, two-sided surface in Y . Let Y ′ be the 3-manifold
obtained by splitting Y along S. Let S′ and S′′ be the two copies of S which are
identified to obtain Y . If each component of Y ′ is superb (respectively excellent),
S′, S′′, and (∂Y ′)− int (S′ ∪ S′′) are incompressible in Y ′, and each component
of S has negative Euler characteristic, then Y is superb (respectively excellent).

Proof. In the excellent case this is Lemma 2.1 of [10]. The superb case follows
from the proof of that lemma.

Proof of Theorem (4.2). By Lemma (4.1) we may assume that n1 ≥ 3.
We first prove the case k = 1. Let n = n1. Let (ρ, θ, φ), ρ ≥ 0, 0 ≤ θ ≤ 2π,

0 ≤ φ ≤ π, be spherical coordinates in R
3. We regard B as the set ρ ≤ 2. Let

B′ be the set ρ ≤ 1. Let Σ be the spherical shell B − int B′. The n halfplanes
θ = 0, 2π/n, . . . , 2π(n−1)/n meet Σ in disks D0, D1, . . . , Dn−1 whose union cuts
Σ into 3-balls B0, B1, . . . , Bn−1, where ∂Bj = Dj ∪Dj+1 ∪ Ej ∪ E′

j (subscripts

taken mod n), where Ej = Bj ∩ ∂B and E′
j = Bj ∩ ∂B′. We may think of

Σ as a cantaloupe which has been cut into n wedge shaped slices and whose
seeds have been removed. See Figure 1 for a schematic diagram of the following
construction.

In each Bj we choose a poly-excellent (n+1)-tangle αj,0∪αj,1∪· · ·∪αj,n. We
require (taking the subscript j mod n) that αj,0 runs from int Ej to int Dj+1,
αj,p runs from int Dj to int Dj+1 for 1 ≤ p ≤ n− 1, and αj,n runs from int Dj

to int E′
j . In addition we require that αj,p ∩Dj+1 = αj+1,p+1 ∩Dj+1. We then

let βj = αj,0 ∪ αj+1,1 ∪ · · · ∪ αj−1,n−1 ∪ αj,n. The βj are disjoint arcs each of
which joins ∂B to ∂B′ in Σ. We may think of regular neighborhoods of the βj

as tunnels eaten out of the cantaloupe by n worms who start on the outside and
eat their way to the seed chamber in such a way that they each wind all the way
around the cantaloupe, passing through every slice from one side to the other
while coordinating their movements so that the union of the tunnels in each slice
is poly-excellent.

The exterior in Σ of the union of the βj is equal to the exterior in B of an
n-frame F . We claim that F is poly-excellent. Let F ′ be an m-frame which is a
subframe of F . Let Xj be the exterior of F ′ ∩Bj , and let Sj = Xj ∩Dj. Each
Xj is excellent. Since m ≥ 2 we have that F ′ meets each Dj at least twice. Thus
χ(Sj) < 0. Since no arc αj,p joins Dj to itself or Dj+1 to itself we have that Sj

and Sj+1 are each incompressible in Xj . Since Xj is ∂-irreducible and neither Sj

nor Sj+1 is a disk we have that ∂Xj−int Sj and ∂Xj−int Sj+1 are incompressible
in Sj . By successive applications of Lemma 4.3 we get that X ′

0 = X1∪· · ·∪Xn−1

is excellent. Now X0 and X ′
0 are glued along the surface S0 ∪S1, which is a disk

with 2m+1 holes. ∂X0 − int (S0 ∪ S1) is the disjoint union of two annuli. Since
X0 is ∂-irreducible it follows that S0∪S1 and ∂X0− int (S0∪S1) are incompress-
ible in X0. Now ∂X ′

0 − int (S0 ∪ S1) is the disjoint union of two disks with m
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Figure 1. The cantaloupe trick

holes. Since X ′
0 is ∂-irreducible it follows that S0∪S1 and ∂X ′

0− int (S0∪S1) are
incompressible in X ′

0. So by Lemma 4.3 the exterior X0 ∪X ′
0 of F ′ is excellent.

We next prove the case k > 1. We modify the construction of the previous
case as follows. In B0 we choose a poly-excellent (n+k)-tangle αj,0 ∪αj,1 ∪· · ·∪
αj,n ∪ γ2 ∪ · · · ∪ γk, where each γq runs from int E0 to itself. The α0,p have the
same properties as before. There is no change in the Bj for j �= 0. Each γq is
an arc and hence can be regarded as a 2-frame. The proof of poly-excellence
works much as before. The only notable difference is that if the n1-frame is
deleted, then B is the union of B0 and a 3-ball along the disk S0 ∪ S1 ∪E′

0, and
so γ2 ∪ · · · ∪ γk is poly-excellent in B.

5. Disk busting knots in handlebodies

In this section we consider a knot κ in the interior of a handlebody C which is

embedded in the interior of a handlebody ̂C. We assume that C and ̂C each have
genus at least one. Let D be a disjoint union of finitely many properly embedded
disks in C such that D splits C into a collection of 3-balls and no component of
D is ∂-parallel in C. We say that κ is D-busting if no compressing disk for ∂C
in C − κ has the same boundary as a component of D. We give conditions on

the embedding of C in ̂C which insure that if κ is D-busting in C, then it is disk

busting in ̂C, by which we mean that ∂ ̂C is incompressible in ̂C − κ.
An n-pod is a pair (B,P ) consisting of a 3-ball B and a disjoint union P of n

disks in ∂B. The components of P are called the feet of the n-pod. For n = 2
or n = 3 we use the term bipod or tripod, respectively.

Two compact, properly embedded surfaces S and T in a 3-manifold are in
minimal general position if they are in general position and among all such
surfaces S′ isotopic to S one has that S ∩ T has the fewest components.

Lemma (5.1). Let ̂C be a handlebody of genus at least one. Let ̂E be a disjoint

union of properly embedded disks in ̂C which splits ̂C into a union (̂B, ̂P) of bipods

and tripods. Let κ be a knot in int ̂C which is in general position with respect to
̂E. Let (κ′, ∂κ′) be the 1-manifold in (̂B, ̂P) obtained by splitting κ along κ ∩ ̂E.
Suppose that
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(1) ̂P− κ′ is incompressible in ̂B− κ′,
(2) ̂P− κ′ is ∂-incompressible in ̂B− κ′, and
(3) each foot of (̂B, ̂P) meets κ′.
Then κ is disk busting in ̂C.

Proof. Suppose D is a compressing disk for ∂ ̂C in ̂C − κ. Put D in minimal

general position with respect to ̂E− κ.

Suppose D ∩ (̂E − κ) contains a simple closed curve γ. We may assume that

γ is innermost on D, so γ = ∂Δ for a disk Δ in D with Δ ∩ (̂E − κ) = γ. By

(1) γ = ∂Δ′ for a disk Δ′ in ̂P− κ′. Then Δ ∪Δ′ is a 2-sphere which bounds a

3-ball in B which by (3) misses κ′. Thus there is an isotopy of D in ̂C −κ which
removes at least γ from the intersection, thereby contradicting minimality.

Now suppose that D ∩ (̂E − κ) has a component α which is an arc. We may
assume that α is outermost on D, so there is an arc β in ∂D such that ∂α = ∂β

and α ∪ β = ∂Δ for a disk Δ in D with Δ ∩ (̂E− κ) = α. By (2) there is a disk

Δ′ in ̂P−κ′ and an arc α′ in ∂̂P such that α∩α′ = ∂α = ∂α′ and ∂Δ′ = α∪α′.
Then Δ ∪Δ′ is a disk with ∂(Δ ∪Δ′) = α′ ∪ β. By (1) α′ ∪ β = ∂Δ′′ for a disk

Δ′′ in ∂̂B− Int ̂P. We have that Δ ∪Δ′ ∪Δ′′ is a 2-sphere bounding a 3-ball in
̂B which by (3) misses κ′. Thus there is an isotopy of D in ̂C − κ which removes
at least α from the intersection, thereby contradicting minimality.

We now have that D ∩ (̂E − κ) = ∅, so D lies in some component of ̂B. If

∂D does not bound a disk in ∂̂B− Int ̂P, then it is parallel in this surface to a

component of ∂̂P, thereby contradicting (1) and (3).

An n-pod (B,P ) is properly embedded in an m-pod ( ̂B, ̂P ) if B ⊆ ̂B and

B ∩ ∂ ̂B = B ∩ int ̂P = P . Note that (B,P ) is a regular neighborhood of an

n-frame in ̂B.

Lemma (5.2). Let ( ̂B, ̂P ) be a bipod or tripod. Let (B,P) be a disjoint union

of bipods and tripods properly embedded in ( ̂B, ̂P ). Let λ be a disjoint union of
arcs properly embedded in B with λ ∩ ∂B = ∂λ ⊆ P. Suppose that

(i) P− λ is incompressible in B− λ,
(ii) P− λ is ∂-incompressible in B− λ,
(iii) each foot of P meets λ

(iv) each foot of ̂P meets P,

(v) ∂B− int P and ̂P − int P are incompressible in ̂B − int B, and

(vi) if any component of (B,P) is a tripod, then ̂B − Int B is ∂-irreducible.

Then
(1) ̂P − λ is incompressible in ̂B − λ,

(2) ̂P − λ is ∂-incompressible in ̂B − λ, and

(3) each foot of ̂P meets λ.

Proof. Suppose D is a compressing disk for ̂P −λ in ̂B−λ. Put D in minimal
general position with respect to ∂B− int P.

Suppose D ∩ (∂B − int P) has a simple closed curve component γ. We may
assume that γ is innermost on D, so γ = ∂Δ for a disk Δ in D with Δ ∩ (∂B−
int P) = γ.
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If Δ lies in B − λ, then it follows from (i) and (iii) that γ = ∂Δ′ for a disk
Δ′ in ∂B− int P. Then Δ ∪Δ′ is a 2-sphere which bounds a 3-ball in B which

misses λ, so there is an isotopy of D in ̂B− λ which removes at least γ from the
intersection, contradicting minimality.

If Δ lies in ̂B − int B, then by (v) there is a disk Δ′ in ∂ ̂B − Int P such that

γ = ∂Δ′. Then Δ ∪Δ′ is a 2-sphere which bounds a 3-ball in ̂B − Int B which

misses λ, so there is an isotopy of D in ̂B− λ which removes at least γ from the
intersection, contradicting minimality.

Thus there are no simple closed curve components. Suppose there is a com-
ponent α which is an arc. We may assume that α is outermost on D, so there
is an arc β in ∂D such that ∂α = ∂β and α ∪ β = ∂Δ for a disk Δ in D with
Δ ∩ (∂B− int P) = α.

If Δ lies in B−λ, then β lies in P−λ. By (ii) there is a disk Δ′ in P− λ and
an arc β′ in ∂P such that β ∩ β′ = ∂β = ∂β′ and ∂Δ′ = β ∪ β′. Then Δ ∪Δ′

is a disk with ∂(Δ ∪Δ′) = α ∪ β′. By (i) there is a disk Δ′′ in ∂B− int P with
∂Δ′′ = α ∪ β′. Then Δ ∪Δ′ ∪Δ′′ is a 2-sphere which bounds a 3-ball in B that

misses λ. Thus there is an isotopy of D in ̂B − λ which removes at least γ from
the intersection, contradicting minimality.

If Δ lies in ̂B − Int B, then β lies in ̂P − P.
Suppose the component (B,P ) of (B,P) containing α is a bipod. Then there

is a disk Δ′ in ∂B − int P with ∂Δ′ = α ∪ α′, where α′ is an arc in ∂P with

∂α = ∂α′. So Δ∪Δ′ is a disk in ̂B− Int B with ∂(Δ∪Δ′) = α′∪β. By (v) there

is a disk Δ′′ in ̂P − int P with ∂Δ′′ = α′ ∪ β. Then Δ ∪Δ′ ∪Δ′′ is a 2-sphere

bounding a 3-ball in ̂B which misses λ. Thus there is an isotopy of D in ̂B − κ
which removes at least α from the intersection, contradicting minimality.

Suppose the component (B,P ) of (B,P) containing α is a tripod. By (vi)

there is a disk Δ′ in ∂( ̂B − Int B) such that ∂Δ′ = ∂Δ. Since each component

of ∂P is a non-separating curve on ∂( ̂B − Int B) we must have that ∂β lies in a
single component of ∂P. Moreover Δ′ is the union of a disk in ∂B − Int P and

a disk in ̂P − int P which meet along an arc in ∂P, and Δ ∪ Δ′ is a 2-sphere

bounding a 3-ball in ̂B which misses λ. Thus there is an isotopy of D in ̂B − λ
which removes at least α from the intersection, contradicting minimality.

So we have that D misses ∂B− int P. If D lies in B−λ, then by (i) ∂D = ∂D′

for a disk D′ in P− λ. If D lies in ̂B − Int B, then by (v) ∂D = ∂D′ for a disk

D′ in ̂P − int P. This completes the proof of (1).

Now suppose that D is a ∂-compressing disk for ̂P −λ in ̂B−λ. We have that

∂D = γ ∪ δ for arcs γ in ̂P − λ and δ in ∂ ̂B − int ̂P . Put D in minimal general
position with respect to ∂B− int P. As in the proof of (1) we may assume that
no component of the intersection is a simple closed curve.

Suppose the intersection has a component α which is an arc. We may assume
that α is outermost with respect to δ, by which we mean that there is a disk Δ in
D and an arc β in γ such that ∂α = ∂β, ∂Δ = α∪ β, and Δ∩ (∂B− int P) = α.
The analysis of Δ now proceeds as in the proof of (1), and we again contradict
minimality.
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So D misses ∂B − int P , and D lies in ̂B − Int B. By (iv) ∂D = ∂D′ for
a disk D′ in ∂( ̂B − Int B). Since each component of ∂P is non-separating in

∂( ̂B − Int B) we have that D′ ∩ P is a disk. This completes the proof of (2).
(3) follows from (iii) and (iv).

A disjoint union of ni-pods (Bi, Pi) properly embedded in an m-pod ( ̂B, ̂P ) is
poly-superb or poly-excellent if the corresponding union of ni-frames is, respec-
tively, poly-superb or poly-excellent.

We suppose now that ̂E is a disjoint union of properly embedded disks in ̂C

which splits ̂C into a union (̂B, ̂P) of bipods and tripods. These bipods and

tripods and their feet are called big. We assume that ̂E ∩ C is a union E of
properly embedded disks in C which splits C into a union (B,P) of bipods and
tripods. These bipods and tripods and their feet are called small. We further
assume thatD ⊆ E. A small foot is called hot if it is parallel in C to a component
of D. It is warm if there is no compressing disk for ∂C in C − κ which has the
same boundary. It is cold if there is such a compressing disk. Note that every
hot foot is warm.

Proposition (5.3). Suppose that for each big bipod or tripod ( ̂B, ̂P )

(1) each big foot of ( ̂B, ̂P ) contains a small warm foot of ( ̂B, ̂P )∩ (B,P), and
(2) either

(a) ( ̂B, ̂P ) ∩ (B,P) is poly-superb, or

(b) ( ̂B, ̂P ) is a bipod, ( ̂B, ̂P )∩ (B,P) consists of bipods, and each of these

small bipods meets each of the two big feet of ( ̂B, ̂P ).

Then every D-busting knot κ in C is disk busting in ̂C.

Proof. Suppose κ is D-busting in C. Isotop κ in C so that it is in minimal
general position with respect to E. We will show that after possibly modifying

(B,P) we will have that for each big bipod or tripod ( ̂B, ̂P ) it is the case that

( ̂B, ̂P )∩ (B,P) satisfies the hypotheses of Lemma 5.2 with λ = κ∩ ̂B. Note that

we do not require that the components of the modified (B,P) match up along ̂E

to give a new handlebody in ̂C.

So let ( ̂B, ̂P ) be a big bipod or tripod.
Suppose we are in case 2(a).

Consider a small bipod (B,P ) in ( ̂B, ̂P )∩(B,P). If λ∩B = ∅, then we discard
(B,P ) from (B,P) to obtain a new poly-superb system. If λ ∩ B �= ∅, then by
minimality λ meets each small foot of (B,P ) and P − λ is incompressible in
B − λ. Since (B,P ) is a bipod we then have that P − λ is ∂-incompressible in
B − λ.

Consider a small tripod (B,P ). If λ ∩ B = ∅, then we discard (B,P ) from
(B,P) to obtain a new poly-superb system. If λ ∩ B �= ∅, then by minimality λ
meets at least two small feet of (B,P ).

Suppose λ misses the third small foot. Then we push that foot slightly into

int ̂B to obtain a bipod. This gives a new poly-superb system. We have that
λ meets each foot of the new (B,P ), and P − λ is incompressible and ∂-incom-
pressible in B − λ.
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Figure 2. The systems of frames in the pieces of J

Suppose λ meets the third small foot. Then P −λ is incompressible in B−λ.
If P − λ is ∂-compressible in B − λ, then there is a properly embedded disk Δ
in B−λ which meets a component E of P in an arc α and ∂B− int P in an arc
β such that ∂α = ∂β, ∂Δ = α ∪ β, and α splits E into two disks each of which
meets λ. Since E − λ is incompressible in B − λ we must have that the two
components of P −E are separated from each other by Δ. We split (B,P ) along
(Δ, α) to obtain two bipods (B′, P ′) and (B′′, P ′′). We have that (P ′ ∪ P ′′)− λ
is incompressible and ∂-incompressible in (B′∪B′′)−λ. The exterior of the new
system is homeomorphic to that of the old system by a homeomorphism which
is the identity on the other components of ∂B− int P, and so the new system is
also poly-superb.

The feet discarded by our modification are precisely the cold feet of ( ̂B, ̂P ) ∩
(B,P). Some warm feet may be split into pairs of warm feet. It follows that
conditions (i), (ii), and (iii) of Lemma (5.2) are satisfied. Since each component

of ̂P contains a warm foot condition (iv) is satisfied. Since our modifications
preserve poly-superbness condtions (v) and (vi) are also satisfied.

Now suppose that we are in case 2(b). As in the previous case we discard all
small bipods with cold feet and get that conditions (i), (ii), (iii), and (iv) are
satisfied. Since each small bipod joins the two big feet condition (v) is satisfied.
Condition (vi) is vacuously satisfied.

The result now follows from Lemmas (5.1) and (5.2).

6. The construction of W

In this section we construct an R
2-irreducible contractible open 3-manifold W

which covers a 3-manifold W# with π1(W
#) ∼= Z. It will be shown that S(W )

is a triangulation of R and hence every 3-manifold non-trivially covered by W
must have fundamental group Z.
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Let P = D × [0, 3], where D is a closed disk. Let L− = D × [0, 1], L+ =
D× [1, 2], R = D× [2, 3], and Dj = D×{j} for j = 0, 1, 2, 3. Let L = L− ∪L+.
Attach a 1-handle H to P so that it joins ∂D× (0, 1) to ∂D× (1, 2), thus giving
a solid torus J = P ∪H . Let J# be the genus two handlebody obtained from J
by identifying D0 and D3. Let P# be the solid torus in J# which is the image
of P under the identification. With the exceptions of J , J#, P , and P# we will
usually use the same symbol for subsets of J and their images in J#, relying on
the context for the meaning. Thus we write, for example, J# = P# ∪H .

We next define a certain graph θ in J# as follows. See Figure 2 for a schematic
diagram of this construction.

Choose a poly-superb system of frames in L− consisting of a 3-frame and two
2-frames. The 3-frame consists of arcs α−, ζ−, and ω− meeting in a common
endpoint in int L−. The other endpoints of α− and ζ− lie in int D0. The other
endpoint of ω− lies in int D1. One 2-frame is an arc γ− joining int D0 and
int (L− ∩H). The other 2-frame is an arc ε− joining int D1 and int (L− ∩H).

Let r be the homeomorphism r(x, t) = (x, 2− t) from D× [0, 2] to itself which
reflects in the disk D1. We have that r(L−) = L+. Denote r(α−) by α+, etc.
This defines a poly-superb system of frames in L+.

Next choose a poly-superb 2-tangle in H with components δ− and δ+ such
that ∂δ± = (γ± ∪ ε±) ∩ H . Then choose a poly-superb 3-tangle in R with
components β−, β+, and ρ, where ∂β± = (α±∪γ±)∩R and ∂ρ = (ζ−∪ζ+)∩R.

Let η be the arc α− ∪ β− ∪ γ− ∪ δ− ∪ ε− ∪ ε+ ∪ δ+ ∪ γ+ ∪ β+ ∪α+, λ the arc
ω− ∪ ω+, and μ the arc ζ+ ∪ ρ ∪ ζ−. Set θ = η ∪ λ ∪ μ.

For each integer n ≥ 0 take a copy of each of these objects. Denote the nth

copy of Dj by Dn,j , that of each of the other objects by a subscript n. We
regard the arcs and graphs with subscripts n as embedded in the 3-manifolds
with subscript n+ 1.

We embed J#
n in int J#

n+1 as follows. Ln is sent to N(λn, Ln+1). Rn is

sent to N(μn ∩ (P#
n+1 − int Ln), P

#
n+1 − int Ln). Hn is sent to N(ηn ∩ (J#

n+1 −
int Pn), J

#
n+1 − int Pn).

Now let W# be the direct limit of the J#
n , and let p : W → W# be the

universal covering map. Then π1(W
#) is infinite cyclic. Let h : W → W be a

generator of the group of covering translations. We regard p−1(P#
n ) as Dn × R

with Pn,j = Dn× [3j, 3j+3], L−
n,j = Dn× [3j, 3j+1], L+

n,j = Dn× [3j+1, 3j+2],

and Rn,j = Dn×[3j+2, 3j+3]. We set Ln,j = L−
n,j∪L+

n,j . We have that p−1(Hn)

is a disjoint union of 1-handles Hn,j , where Hn,j is attached to ∂Dn×(3j, 3j+2),
thereby yielding a copy Jn,j = Pn,j ∪Hn,j of Jn. Set Dn,k = Dn×{k} for k ∈ Z.
For all the objects with subscript n contained in Jn+1 denote the component
of the preimage contained in Jn+1,j by the subscripts n, j. Let ηn and μn be
the component of the preimage of ηn and μn, respectively, which meets ω+

n . We
assume that h is chosen so that h(Dn,k) = Dn,k+3 and the image under h of any
object with subscripts n, j has subscripts n, j + 1.

We next describe certain families of quasi-exhaustions in W . Let P =
{p1, p2, . . . , pm} be a finite non-empty set of distinct integers with p1 < p2 <
· · · < pm. We say that P is good if its elements are consecutive. Otherwise P is
bad. If m = 1, then P is automatically good.
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Figure 3. The embedding of CP
n in CP

n+1 for a good P

For n ≥ 0 let CP
n be the union of those Rn,j with p1 − 1 ≤ j ≤ pm, those

Ln,j with p1 ≤ j ≤ pm, and those Hn,p with p ∈ P. Each CP
n is a cube with m

handles embedded in int CP
n+1. In Figure 3 we give a schematic diagram for the

case of P = {p, p+ 1, p+ 2}.
The quasi-exhaustion {CP

n }n≥0 is denoted by CP; its union is denoted by V P.
Whenever P is good and m > 1 we denote V P by V p,q, where p = p1 and q = pm.
When P = {p} we use the notation V p. The expressions Cp,q

n , Cp
n, C

p,q, and Cp

are defined similarly.

7. Some properties of W

Given P = {p1, . . . , pm} and n > 0, let Y = CP
n+1 − int CP

n , p = p1, and

q = pm. If m > 1 set Z− = Y ∩(Rn+1,p−1∪L−
n+1,p), Z

+ = Y ∩(L+
n+1,q∪Rn+1,q),

Z = Z− ∪ Z+, and X = Y − Int Z.

Lemma (7.1). Y is irreducible and ∂-irreducible.

Proof. First consider the case m = 1. Then Cp
n is a solid torus in Cp

n+1

with winding number zero. Any compressing disk for ∂Cp
n+1 in Y would be

a meridinal disk for Cp
n+1. Since δ−n,p ∪ δ+n,p is poly-superb in Hn+1,p we have

that Hn,p ∩ Ln,p ∩ Y is incompressible in Hn+1,p ∩ Y . It is incompressible in
(Cp

n+1 − Int Hn+1,p) ∩ Y for homological reasons. Thus Hn+1,p ∩ Ln+1,p ∩ Y is
incompressible in Y and thus so is ∂Cp

n+1. If ∂C
p
n is compressible in Y , then the

union of Cp
n and a 2-handle with core the compressing disk is a 3-ball in Cp

n+1,
and so ∂Cp

n+1 is compressible in Y , a contradiction.
Now suppose m > 1. Consider the surfaces Dn+1,k∩Y for 3p+1 ≤ k ≤ 3q+1

and Hn+1,p ∩ L±
n+1,p ∩ Y for p ∈ P. They split Y into irreducible pieces. With

the exception of Z± it follows from poly-superbness that each of these pieces is
superb, and so each of those surfaces contained in its boundary is incompressible
and ∂-incompressible. It follows that X is irreducible and ∂-irreducible. Z±∩X
consists of two disks with two holes, and ∂Z±−int (Z±∩X) = ∂(Z±∩X)×[0, 1].
Thus Z± ∩ X is incompressible and ∂-incompressible in Z±. Thus the result
follows.

Lemma (7.2). ∂CP
n is incompressible in W − int CP

n .
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Proof. A compressing disk D must lie in Cr,s
m − int CP

n for some r ≤ p, s ≥ q,
and m > n. We can isotop D off compressing disks for ∂Cr,s

m in Cr,s
m − int CP

n so
that it lies in CP

m− int CP
n . The result then follows from the previous lemma.

Lemma (7.3). If P is good and m > 1, then
(1) if A is an incompressible annulus in Y , then ∂A = ∂A′ for an annulus A′

in ∂Y , and
(2) if T is an incompressible torus in Y , then T bounds a compact 3-manifold

in Y .

Proof. (1) Put A in minimal general position with respect to X ∩ Z. Let α
be a component of A ∩X ∩ Z. Then α is not a simple closed curve bounding a
disk in A.

Suppose α is an outermost arc on A, so ∂Δ = α ∪ β for an arc β in ∂A and
a disk Δ in A with Δ ∩ X ∩ Z = α. If Δ ⊆ X , then ∂Δ = ∂Δ′ for a disk Δ′

in ∂X . Then Δ ∪ Δ′ bounds a 3-ball in X , and an isotopy across it removes
at least α from the intersection. If Δ ⊆ Z, then β is ∂-parallel in one of the
annuli comprising ∂Z − int (X ∩ Z); it follows that one can again reduce the
intersection. Thus α is not an arc.

So α is a simple closed curve. ∂A′ = α∪β for some annulus component A′ of
A∩X and some β in (A ∩X ∩Z)∪ ∂A. Then A′ is parallel in X to an annulus
A′′ in ∂X . If A′′ lies in X ∩Z, then we can isotop to remove at least α∪β. If A′′

does not lie in X ∩ Z, then either we can isotop to remove α or A′′ contains an
annulus component G of ∂X − int (X ∩ Z). We may assume that the centerline
of G is a meridian of β+

n,q and that the component of X ∩ Z containing ∂A′ is
F = Hn+1,q ∩ L+

n+1,q ∩ Y . We may further assume that all the components of
A ∩X are parallel to G and lie in Hn+1,q ∩ Y . For homological reasons all the
components of A ∩Z must have their boundaries in the union of F and the two
annulus components of ∂CP

n ∩ Z+. In particular, ∂A lies in the union of these
two annuli and so bounds an annulus in their union with G.

Suppose A∩X ∩Z = ∅. If A ⊆ X , then A is parallel in X to an annulus A′ in
∂X with ∂A′ in ∂X − int (X ∩ Z). It follows that A′ lies in ∂Y . If A ⊆ Z, then
for homological reasons ∂A must lie in one of the three annulus components of
∂Z± − int (X ∩ Z±).

(2) Suppose T is in minimal general position with respect to X ∩Z. T cannot
lie in X since it would be ∂-parallel in X , but ∂X has no tori. If T lies in Z±,
then since ∂Z± is connected T must bound a compact 3-manifold in Z±.

So we may assume that T ∩ Z �= ∅. Let A be a component of T ∩ X . As in
the proof of (1) we may assume that A is parallel in X to an annulus A′ in ∂X
which contains an annulus component G of ∂X − int (X ∩ Z) whose centerline
is a meridian of β+

n,q and that all such components are parallel to G and lie

in Hn+1,q ∩ Y . All the components of T ∩ Z± must have their boundaries in

the component F of X ∩ Z± which meets G. So T lies in (Hn+1,q ∪ L+
n+1,q ∪

Rn+1,q) ∩ Y . Since this 3-manifold has connected boundary T must bound a
compact 3-manifold in its interior.

Lemma (7.4). V p does not embed in R
3.
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Proof. Since β+ ∪ β− ∪ ρ is poly-superb in R we have that β+
n,p is knotted in

Rn,p. The result then follows from [4].

Proposition (7.5). W is R2-irreducible. If P is good, then V P is R2-irredu-
cible.

Proof. It suffices to show that for each good P the quasi-exhaustion CP of
W satisfies conditions (1)–(3) of Lemma (2.1). When m = 1 this follows from
[9], so assume m > 1. Each CP

n is a cube with handles, so is irreducible. We
have that ∂CP

n is incompressible in W − int CP
n and that Y is ∂-irreducible and

weakly anannular.

Proposition (7.6). If P is bad, then V P is not R2-irreducible.

Proof. There is an s such that p < s < q and s /∈ P. We may assume that

the embedding of J#
n in J#

n+1 is such that Dn,1 ⊆ Dn+1,1 for all n ≥ 0. Then
Dn,3s+1 ⊆ int Dn+1,3s+1 for all n ≥ 0. The union Π of these disks is a plane
which is proper in V P (but not in W !). V P − Π has two components, one
containing V p and the other containing V q. Since V p and V q do not embed in
R

3 we have that Π is non-trivial in V P.

A classical knot space is a space homeomorphic to the exterior of a non-trivial
knot in S3.

Lemma (7.7). If P is good and m > 1, then every incompressible torus T in
V P − int CP

n bounds a compact 3-manifold in V P − int CP
n .

Proof. Assume that T is in minimal general position with respect to ∪
m≥n

∂CP
m.

If the intersection is empty then T lies in some Y and hence bounds a compact
3-manifold in Y . If the intersection is non-empty, then T meets a single ∂CP

m.
Each annulus A into which T ∩∂CP

m splits T must have ∂A = ∂A′ for an annulus
A′ in ∂CP

m.
Consider an A in S = CP

m − int CP
n . Let T ′ = A ∪ A′. Then T ′ = ∂Q′ for

a compact 3-manifold Q′ in CP
m. We may assume that Q′ ∩ T = A. Let ̂S and

̂CP
m be obtained by adding a collar C to these 3-manifolds in V P − int CP

m. We
may assume that T meets C in a product annulus. If T ′ is incompressible in
̂S, then Q′ lies in S. If T ′ is compressible in ̂S, then since ̂S is irreducible T ′

bounds a solid torus or a classical knot space in ̂S. This must be Q′. So in either
case Q′ lies in S. Let T ′′ be the torus obtained from T by replacing A by A′.
Then T ′′ = ∂Q′′ for a compact 3-manifold Q′′ in V P. If T ′′ is incompressible in
V P − int CP

n , then by induction Q′′ lies in V P − int CP
n . If T ′′ is compressible

in V P − int CP
n , then by irreducibility T ′′ bounds a solid torus or classical knot

space in V P− int CP
n . This must be Q′′. So in either case Q′′ is in V P− int CP

n .
If Q′ ∩ Q′′ = A′, then T = ∂(Q′ ∪ Q′′). If Q′ ∩ Q′′ �= A′, then Q′ ⊆ Q′′, and
T = ∂(Q′′ − Int Q′).

Proposition (7.8). V P has finite genus. It has genus one if and only if P
has exactly one element.
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Proof. V P has genus at most m. Since V p does not embed in R
3 the genus

of V P must be at least one. So if m = 1, then V p has genus one. Now suppose
m > 1. If V P has genus one, then it has a good exhaustion {Kn}n≥0 by solid tori.
Choose n and k such that K0 ⊆ int CP

n and CP
n ⊆ int Kk. Then since ∂Kk is in-

compressible in V P− int K0 it is incompressible in the smaller space V P− int CP
n

and so bounds a compact 3-manifold in this space, which is impossible. Thus
V P has genus greater than one.

8. The complex of end reductions of W

Theorem (8.1). Every V P is an end reduction of W at each CP
n .

Proof. We know that V P is end irreducible rel CP
n in W . Clearly W −V P has

no components with compact closure. Suppose N is a regular 3-manifold in W
such that CP

n ⊆ int N and ∂N is incompressible in W −CP
n . Then N ⊆ int Cr,s

m

for some r ≤ p, s ≥ q, and m > n. We isotop ∂N off a complete set of
compressing disks for ∂Cr,s

m in Cr,s
m − int CP

n so that N lies in CP
m. This can

be done with compact support in W − int CP
n . Running the isotopy backwards

causes V P to engulf N .

Theorem (8.2). Let V be an end reduction of W at J , where J ⊆ int CQ
n .

Then V is isotopic to V P for some P ⊆ Q

Proof. We may assume that V is an end reduction of W at a knot κ ⊆ int J .
Let P be a minimal subset of Q such that, up to isotopy, κ ⊆ int CP

n for some
n. Let D be the union of the set of co-cores of the 1-handles Hn,p with p ∈ P.
Then κ is D-busting in CP

n .
If m = 1, then clearly κ is disk busting in Cp

n, so assume m > 1.

We let ̂E be the union of the attaching disks for the Hn+1,p with p ∈ P and

the Dn+1,j with 3p1 + 1 ≤ j ≤ 3pm + 1. Let E = ̂E ∩ CP
n . We may assume that

D ⊆ E. The conditions of Proposition (5.3) are satisfied, so κ is disk busting in
CP

n+1. It follows that V is isotopic to V P.

Theorem (8.3). V P and V Q are isotopic if and only if P = Q.

Proof. We first consider the case P = {p}, Q = {q}, p < q. V p is an end
reduction of W at a knot κ in Cp

0 . Let τ be the track of κ under an isotopy
taking V p to V q and κ to κ′. Then τ ⊆ int Cr,s

n for some r ≤ p, q ≤ s, and
n ≥ 0. By the covering isotopy theorem [2, 3] there is an ambient isotopy of κ
with track τ which has compact support in Cr,s

n . Let D be an attaching disk for
Hn,p. Then κ is D-busting in Cr,s

n , but κ′ is not. This is impossible since the
isotopy is the identity on ∂Cr,s

n .
Now consider the general case. Suppoes p ∈ P and p /∈ Q. Then V p is

isotopic to V R for some R ⊆ Q. Then we must have R = {r}, where r �= p, a
contradiction.

Theorem (8.4). V P is minimal if and only if P has exactly one element.

Proof. V p is clearly minimal. If m > 1, then V P contains V p which is not
homeomorphic to V P since they have different genera.

Theorem (8.5). S(W ) is isomorphic to a triangulation of R.
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Proof. The vertices of S(W ) are the [V p], p ∈ Z. We have that [V p] and
[V p+1] are joined by the edge [V p,p+1]. Every end reduction of W contained in
V p,p+1 is isotopic to V p, V p+1, or V p,p+1. If V is an end reduction of W which
contains representatives of V p and V q, where p < q, then V is isotopic to V P,
where p, q ∈ P. If P �= {p, q}, then V P contains some V r, p �= r �= q, so [V ] is
not an edge joining [V p] and [V q]. If P = {p, q} and q > p+1, then P is bad, so
V is not R2-irreducible, so again [V ] is not an edge. The result follows.

Corollary (8.6). If W is a non-trivial covering space of a 3-manifold M ,
then π1(M) ∼= Z.

Proof. This follows immediately from Theorem (8.5) and Corollary (3.4).

9. Uncountably many W

Theorem (9.1). There are uncountably many pairwise non-homeomorphic
W each of which has all the properties of sections 7 and 8.

Proof. Recall that all of the genus one end reductions V p of a fixedW resulting
from our construction are homeomorphic. We will modify our construction to
obtain uncountably many W such that different W have non-homeomorphic V p.

In our construction of W# we used a copy of the same 2-tangle δ− ∪ δ+ in H
for each 2-tangle δ−n ∪ δ+n in Hn+1. We will now change this so that the 2-tangle
depends on n.

We say that a 3-manifold Q is incompressibly embedded in a 3-manifold X if
Q ⊆ X and ∂Q is incompressible in X .

Lemma (9.2). Given an excellent classical knot space Q, there is a poly-superb
2-tangle τ in a 3-ball B with exterior X such that Q is incompressibly embedded
in X and every incompressible torus in X is isotopic to ∂Q.

Proof. Let B0 and B1 be 3-balls. Let Di be a disk in ∂Bi. Let Ai be an
annulus in int Di. Let Fi be the annulus component of Di − int Ai; let Ei be
the disk component. Let λ−

i ∪ λ+
i ∪ μ−

i ∪ μ+
i be a poly-excellent 4-tangle in Bi.

We require that λ±
0 join ∂B0 − int D0 to int F0, μ

±
1 join int F1 to int E1 , μ±

0

join E0 to itself, and λ±
1 join int E1 to ∂B1 − int D1. We now glue B0 to B1 by

identifying F0 ∪E0 with F1 ∪E1 in such a way that λ±
0 ∪μ±

1 ∪μ±
0 ∪ λ±

1 is an arc
δ±. By Lemma (2.1) δ− ∪ δ+ is a poly-excellent system of two arcs in a 3-ball
minus the interior of an unknotted solid torus with boundary A0 ∪A1. We then
glue Q to this space by identifying ∂Q with A0 ∪ A1 so that a meridian of Q is
glued to ∂E0 = ∂E1. The result is a 3-ball B containing a 2-tangle τ = δ− ∪ δ+.
Standard arguments then complete the proof.

Recall that V p is the monotone union of solid tori Cp
n, where Cp

n = Rn,p−1 ∪
Ln,p ∪ Rn,p ∪ Hn,p. Let Gn,p = Rn,p−1 ∪ Ln,p ∪ Rn,p, Yn+1,p = Cp

n+1 − int Cp
n,

Xn+1,p = Yn+1,p ∩Hn+1,p, and Zn+1,p = Yn+1,p ∩Gn+1,p.
Note that for all n and p the spaces Zn+1,p are homeomorphic. It thus follows

from the Jaco-Shalen-Johannson characteristic submanifold theory [6, 7, 8] that
there are, up to homeomorphism, only finitely many excellent classical knot
spaces which incompressibly embed in Zn+1,p. Denote this set by N.
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Let Y be the set of all homeomorphism types of excellent classical knot spaces
which are not in N. For each infinite subset S of Y we construct a W as follows.
Choose a bijection of S with the set N of natural numbers. For each n ∈ N use
the corresponding knot space Qn in the construction of the 2-tangle τn in the
previous lemma. Then use τn for δ−n−1 ∪ δ+n−1 in Hn. It follows that for each
n ≥ m ≥ 0 we have that Qp

n+1 is incompressibly embedded in V p − int Cp
m.

Lemma (9.3). Suppose Q ∈ Y and Q is incompressibly embedded in V p −
int Cp

m. Then Q ∈ S.

Proof. Since Q is excellent it can be isotoped off ∪n>m∂Cp
n. It then lies in

some Yn+1,p. Since each Xn+1,p is superb it can then be isotoped off Xn+1,p ∩
Zn+1,p. Since Q /∈ N it must lie in Xn+1,p and thus be isotopic to Qp

n+1.

Now suppose that W ′ is constructed using S′. Drop p from the notation and
denote the corresponding submanifolds of W and W ′ by V and V ′, Cn and C′

n,
etc.

Lemma (9.4). If V and V ′ are homeomorphic, then there are finite subsets
S0 of S and S′0 of S′ such that S− S0 = S′ − S′0.

Proof. Suppose h : V → V ′ is a homeomorphism. Choose m and k such that
h(C0) ⊆ int C′

m and C′
m ⊆ int h(Ck). Then for all n ≥ k we have that h(∂Cn) is

incompressible in V ′− int h(C0) and hence is incompressible in the smaller space
V ′ − int C′

m. It follows that h(Qn+1) is isotopic in this space to some Q′
j+1 with

j ≥ m. Let A = {Q1, . . . , Qk}. Then S−A ⊆ S′. A similar argument using h−1

yields a finite set A′ ⊆ S′ such that S′ − A′ ⊆ S. We then let S0 = A ∪ (S ∩A′)
and S′0 = A′ ∪ (S′ ∩A).

Define an equivalence relation on the set of infinite subsets of Y by setting S ∼
S′ if S−S0 = S′−S′0 as in the lemma. Each equivalence class has only countably
many elements, and so there are uncountably many equivalence classes. It follows
that there are uncountably many non-homeomorphic V and hence uncountably
many non-homeomorphic W .
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A NOTE ON 2-UNIVERSAL LINKS

VÍCTOR NÚÑEZ

Abstract. We show that no Montesinos knot (link) can be 2-universal.

1. Introduction

The main theorem of this note, that no Montesinos knot can be 2-universal
(Corollary (3.1)), contrasts with the existence of 2-universal knots as shown
in [3]. These two combined results are somewhat surprising, for most known
universal knots (links) are Montesinos’.

Our main result follows easily from a result about factorization of branched
coverings through cyclic coverings (Lemma (2.2)), which is interesting in its own
and very useful.

Also we obtain a result on non simply connectednes of ‘regular-like’ branched
coverings (Corollary (3.2)), as another application of Lemma (2.2).

2. Branched coverings through cyclic coverings

An m-fold branched covering ϕ : M3 → N3 is a proper open map between
3-manifolds such that there is a 1-subcomplex k ⊂ N (the branching of ϕ) with
ϕ| : M − ϕ−1(k) → N − k a finite m-fold covering space. For the purposes of
this paper, k ⊂ N will be a properly embedded submanifold; that is, k is a link
in N . We say that ‘ϕ is branched along k’, and write ϕ :M → (N, k).

Given a component k̃ ⊂ ϕ−1(k) ⊂ M , the homological local degree deg(ϕ, x)

is the same for all x ∈ k̃; this common number is called the ramification index
of k̃.

A meridian of a component k1 ⊂ k ⊂ N is a class μ ∈ π1(N − k) that can
be represented as μ = [a ∗ m ∗ ā], where m is the boundary of a disk D such
that D ∩ k = Int (D) ∩ k1 = one point, and a is an arc in N − k connecting the
base point with a point of m. Notice that meridians of the same component are
conjugate. A meridian of k is a meridian of a component of k.

An m-fold branched covering ϕ : M → (N, k) determines (and is determined
by) a representation ωϕ : π1(N − k) → Sm into the symmetric group on m
symbols Sm. If ωϕ(μ) is a product of disjoint cycles of order c1, c2, . . . for μ a
meridian of a component k1 of k, then the components of the preimage ϕ−1(k1)
have ramification indices c1, c2, . . . . We say that ϕ is a branched covering of
index dividing n, if ωϕ(μ)

n is the identity permutation for all meridians μ of k.
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Let k ⊂ S3 be a link; let us denote by BC(n; k) the set of closed, connected,
orientable 3-manifolds M such that there exists a branched covering ϕ : M →
(S3, k) of index dividing n. The link k is called n-universal if BC(n; k) coincides
with the set of all closed, connected, orientable 3-manifolds. It is common to
call universal link a 0-universal link.

We let p : Bn(k) → (S3, k) be the n-fold cyclic covering branched along all
components of k; that is, the induced representation ωp sends each meridian of
k to an n-cycle in Zn ≤ Sn. The following lemma helps to organize the details
in the proof of Lemma (2.2), and is proved for knots in [4], § 4 of Ch. 2. The
proof is essentially the same for links, and we include it here for completeness.

Lemma (2.1) ([4]). Let k ⊂ S3 be a link, and write 〈μn〉π for the normal
closure of {μn : μ is a meridian of k} in π1(S

3 − k). Then π1(S
3 − k)/〈μn〉π is

a semi-direct product

π1(S
3 − k)

〈μn〉π
∼= Zn � π1(Bn(k))

where the generator of Zn is the class of any meridian of k and acts on π1(Bn(k))
as the isomorphism induced by an order n symmetry of Bn(k) with quotient
(S3, k).

Proof. Let k ⊂ S3 be a link of c components and let H ≤ π1(S
3 − k) be the

kernel of the composition π1(S
3−k) Ab→ H1(S

3−k) ∼= Zc
ε→ Z

ρ→ Zn, where Ab is
the abelianization map, ε is the augmentation ε(xi)i =

∑
i xi, and ρ is reduction

(mod n). Notice that H1(S
3 − k) ∼= Zc has a basis of meridians μ1, . . . , μc,

one for each component of k. We have that H ∼= p#π1(Bn(k) − p−1(k)) where
p : Bn(k) → (S3, k) is the n-fold cyclic covering branched along all components
of k. If μ is a meridian of k, then p−1(μ) is a closed curve which represents, up to
conjugation, the element μn ∈ H , and we obtain the fundamental group of Bn(k)
adding the ‘branching relations’, π1(Bn(k)) ∼= H/〈μn〉H , where 〈μn〉H is the
normal closure in H of {μn : μ is a meridian of k}. Notice that 〈μn〉H = 〈μn〉π ,
for ν−1μnν = (ν−1μν)n is the n-th power of a meridian, for each pair μ, ν of
meridians of k. Therefore, the sequence

1 → H

〈μn〉H → π1(S
3 − k)

〈μn〉π
ξ→ π1(S

3 − k)

H
∼= Zn → 1

is exact. The map ξ has a section π1(S
3 − k)/H → π1(S

3 − k)/〈μn〉π, and
therefore π1(S

3 − k)/〈μn〉π ∼= Zn � π1(Bn(k)), where the generator μ̄ of Zn
acts on π1(Bn(k)) as the isomorphism induced by an order n homeomorphism
of Bn(k) with quotient (S3, k).

Lemma (2.2). Let k ⊂ S3 be a link, and let ϕ : M → (S3, k) be an m-fold
branched covering of index dividing n. Then there exists a commutative square
of branched coverings
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M̃

���
q

���
ψ

M

���ϕ

Bn(k)

���p

(S3, k)

where p is the n-fold cyclic covering of (S3, k) branched along all components
of k, ψ is an m-fold (unbranched) covering space, and q is an n-fold covering
branched along the components of ϕ−1(k) ⊂M with ramification index less than
n.

Proof. Let ω : π1(S
3 − k) → Sm be the representation determined by the

covering ϕ : M → (S3, k). The covering subgroup of ϕ is U = ω−1(St(1)) ∼=
ϕ#π1(M − ϕ−1(k)) where St(1) ≤ Sm is the subgroup of permutations fixing
the symbol 1. Since ω(μ)n is the identity permutation for each meridian μ of k,
the representation ω factors:

π1(S
3 − k)

�
��

�ω Sm

π1(S
3 − k)/〈μn〉π

�
��
ω̄

From the previous lemma we know π1(S
3 − k)/〈μn〉π ∼= Zn�π1(Bn(k)), and,

by restriction, we get τ = ω̄| : π1(Bn(k)) → Sm, a representation which is
perhaps not transitive. This τ induces an m-fold (unbranched) covering space

ψ : M̃ → Bn(k) such that M̃ is connected if and only if τ is transitive. The
covering subgroup of ψ is Ū = τ−1(St(1)) = π1(Bn(k)) ∩ ω̄−1(St(1)) = (H ∩
U)/〈μn〉H ∼= ψ#π1(M̃), if M̃ is connected. As in the proof of the previous lemma,

H ∼= π1(Bn(k)−p−1(k)). We then see that U ∩H ∼= p#ψ#π1(M̃−ψ−1(p−1(k))).

Therefore M̃ is the pullback of ϕ and p as in [2], and the lemma follows. If M̃ is
not connected, we perform the same analysis on subgroups for each component
K of M̃ ; that is, we analyze ψ| : K → (S3, k) for each component K and obtain

that M̃ is again a pullback, and the lemma follows.

Remark. The previous lemma and its proof show that getting an m-fold
covering ϕ :M → (S3, k) of index dividing n is the same as finding a special rep-
resentation π1(Bn(k)) → Sm. This point of view is exploited in [6] to construct
‘dihedral-like’ coverings of Montesinos knots. We thank the referee for pointing
out that the construction of Lemma (2.2) is a standard pullback.

3. Branched coverings of fixed index

Let k ⊂ S3 be a Montesinos link. Then B2(k) is an orientable Seifert manifold
with orbit surface the 2-sphere, (O, 0;β1/α1, . . . , βt/αt), or an orientable Seifert
manifold with orbit surface a non-orientable surface of (non-orientable) genus g,
(O,−g;β1/α1, . . . , βt/αt). See [5].

Corollary (3.1). If k is a Montesinos link, then k is not 2-universal.
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Proof. If ϕ :M → (S3, k) is an m-fold branched covering of index dividing 2,

then from Lemma (2.2) we obtain ψ : M̃ → B2(k) an m-fold (unbranched)

covering space, and q : M̃ → M a 2-fold branched covering. Since B2(k) is a

Seifert manifold, we see that M̃ is also a Seifert manifold. Since q is 2-fold, q is a
regular covering; therefore there exists an involution of M̃ with quotient M . We
conclude that M is a Seifert orbifold ([1]), and that BC(2; k) is not the set of
all closed, connected, orientable 3-manifolds. Therefore k is not 2-universal.

Remark. In particular, from the previous corollary, we see that: A hyperbolic
2-bridge knot, which is known to be 12-universal, cannot be 2-universal; the
Borromean rings, known to be 4-universal, are not 2-universal.

Corollary (3.2). Let k ⊂ S3 be a link such that order of π1(Bn(k)), possibly
infinite, does not divide m. Let ϕ :M → (S3, k) be an m-fold branched covering
with induced representation ω : π1(S

3 − k) → Sm such that ω(μ) is a product of
disjoint n-cycles for each meridian μ of k. Then M is not simply connected.

Proof. From Lemma (2.2) we obtain ψ : M̃ → Bn(k) an m-fold (unbranched)

covering space, and q : M̃ →M an n-fold covering. By hypothesis, there are no
components of ϕ−1(k) ⊂M with ramification index less than n; therefore q is a
covering (unbranched) space, and q# : π1(K) → π1(M) is an embedding for each

component K of M̃ . If π1(Bn(k)) is infinite, each component of M̃ has infinite
fundamental group and the corollary follows. If π1(Bn(k)) is finite then, since its

order does not divide m, at least one component of M̃ is not simply connected,
for the index of π1(K) in π1(Bn(k)) is a divisor of m for each component K of

M̃ ; the corollary follows.
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DIHEDRAL COVERINGS OF MONTESINOS KNOTS

VÍCTOR NÚÑEZ AND JESÚS RODRÍGUEZ–VIORATO

Abstract. We determine the family of Montesinos knots k which have the
3-sphere as a dihedral quotient S3 → (S3, k), and we find also ‘dihedral-
like’ coverings of certain Montesinos knots. Through the understanding of
the singular set of these coverings, we conclude the universality of many
Montesinos knots.

1. Introduction

Dihedral coverings. Since the time of Reidemeister (the first part of the 20th
century), it has been an interesting problem to understand the dihedral branched
coverings of knots (§ 2), especially the dihedral coverings of the 3-sphere over
itself. Fox’s Quick Trip and [1] describe coverings of this type for 2-bridge knots;
there are some examples of this kind of coverings for only a few more knots
spread in other works on the subject.

We determine the family of Montesinos knots k, in terms of its invariants,
which admit a dihedral quotient S3 → (S3, k) (Theorem (3.2)); we get this
result by using the knowledge on cyclic coverings of Seifert manifolds developed
in [12].

It is a very difficult problem to describe in an intelligible way what is the
type of the link in the preimage of a knot k under a branched covering S3 →
(S3, k) (see, for example, the heroic struggles in [6] and [16]). With our new
understanding of dihedral quotients of Montesinos knots, we are able to describe
the preimage of the knot in such a covering as a union of Montesinos knots
(Montesinos knots again!), and, in some cases, we are able to compute explicitly
the invariants of the knots. In general we give an algorithm for such a task (§ 5).

We extend the construction of dihedral quotient to ‘dihedral-like’ covering
(§ 6). With these new coverings we construct, for certain Montesinos knots k,
branched coverings S3 → (S3, k); we are able, also in these cases, to give explicit
Montesinos invariants for components of the preimage of k.

Universals. In 1982 Thurston proved the striking fact that there are universal
links ([14]). A link k ⊂ S3 is called universal if each closed, connected, orientable
3-manifold is a branched covering over (S3, k). A very interesting problem is to
describe the family of universal links in the 3-sphere. Towards this goal the
following theorems are known.

Theorem (1.1) ([6]). All hyperbolic 2-bridge links are universal.
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The 2-bridge link �(b/a) is the Montesinos knotm(b/a). A 2-bridge link �(b/a)
is hyperbolic if and only if a �≡ ±1 mod b.

The pretzel link p(b;α1, . . . , αt) is the Montesinos link m(b/1, 1/α1, . . . , 1/αt).
An Uchida link is a pretzel link p(b;α1, . . . , αt) such that at least two αi’s are
even.

Theorem (1.2) ([16]). All Uchida links are universal except for: p(2s, 2t),
p(2,−2, s), with s, t ∈ Z − {0}; p(0;±2,±3,∓4), p(0;±3,±6,∓2), p(0;±4,±4,∓2),
and p(0; 2, 2,−2,−2).

Theorem (1.3) ([13]). If |n| > 1 is odd, then p(n, n,−n) is universal.
If n �= −2, 0 is even, then p(3, 3, n) is universal.

Once one knows that certain knots (links) are universal, to decide if a given
link k is universal, one constructs branched coverings S3 → (S3, k) and tries to
find an already known universal link in the preimage of k. With our understand-
ing of preimages of links in dihedral and dihedral-like coverings, we give lists of
Montesinos knots which are universal (§§ 6 and 7). For this end we rely heavily
on the previously stated theorems.

The paper is organized as follows. In § 2 we specify precisely the notion of di-
hedral quotient and recall some tools to handle Seifert manifolds and Montesinos
knots. In § 3 we prove the main theorem of this work (Theorem (3.2)), which
is an essential ingredient to get a deeper understanding of dihedral coverings.
In § 4 we give a convenient formalization of the theory of rational tangles. In
§ 5 we plunge into a description of branch sets of dihedral quotients. Next we
extend the notion of dihedral quotient to ‘dihedral-like’ quotient and get some
universality results in § 6. Finally in § 7 we harvest several results on universality
of families of links.

2. Dihedral quotients

A branched covering ϕ :Mn → Nn is a proper open map between n-manifolds
such that there is a codimension 2 subcomplex K ⊂ N with ϕ| :M −ϕ−1(K) →
N −K a finite covering space. For the purposes of this paper, K ⊂ N will be a
properly embedded submanifold.

The map ϕ| : M −ϕ−1(K) → N −K is called the associated covering space of
ϕ. The submanifold K is called the branching of ϕ. We say that ‘ϕ is branched
along K’, ‘ϕ is a branched covering over (N,K)’, and that ‘M is a branched
covering over (N,K)’, and write ϕ :M → (N,K).

The set ϕ−1(K) is called the singular set of ϕ. The pseudo-branch of ϕ is the
set of points x ∈ ϕ−1(K) such that ϕ is a homeomorphism at x. The branch set
of ϕ is the complement, in ϕ−1(K), of the pseudo-branch of ϕ.

A branched covering ϕ : M → (N, k) determines (and is determined by) a
representation ωϕ : π1(N−k) → Sn into the symmetric group Sn. It is customary
to name a branched covering after the nature of the image Im(ωϕ). If Im(ωϕ) is
a cyclic group, then ϕ is called a cyclic covering; if Im(ωϕ) is a dihedral group,
then ϕ is called a dihedral covering, etc.

If B2(k) is the cyclic double branched covering over (S3, k) branched along
all components of k, and ρ : H1(B2(k)) → Zn is an epimorphism, the covering
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(1) (2 3)(1 2)(3 4)(1 2)

Figure 1. Dihedral quotients, but not dihedral coverings.

space ψ : M̃ → B2(k) determined by ρ has an involution ũ : M̃ → M̃ such that
the square

M̃
ũ−−−−→ M̃

ψ

⏐⏐� ⏐⏐�ψ
B2(k)

u−−−−→ B2(k)

commutes, where u : B2(k) → B2(k) is the involution with quotient (S3, k).
Therefore one has a commutative square

M̃

���
q

���
ψ

M

���ϕ

B2(k)

���p

(S3, k)

where M = M̃/ũ. In Fox’s Quick Trip, the map ϕ would be called a dihedral
covering, for it would correspond to a dihedral representation. Actually Fox
starts a discussion, and gives a procedure to obtain metacyclic representations of
knot groups in [2], pp. 160 and ff. This procedure, translated into the ‘language of
commutative squares’, is the one presented here in the particular case of dihedral
representations. But if k is not connected, or if n is even, it might be the case
that Im(ωϕ) ≤ Sn is not a dihedral group. See Figure (1).

We call ϕ : M → (S3, k) a dihedral quotient. Notice that the branching of

q : M̃ →M is also the pseudo-branch of ϕ. For other works using the language
of commutative squares for this kind of coverings, see [9] and [1].

(2.1) Standard double coverings of Seifert Manifolds. The Seifert mani-
fold M with Seifert symbol M = (O, 0;β1/α1, . . . , βt/αt), where (αi, βi) = 1 and
αi �= 0 (i = 1, . . . , t), is constructed as follows:
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Let p1, . . . , pt ∈ S2 and S2
0 = S2 − ∪N(pi); we obtain M as the union of

S2
0 × S1 with t solid tori V1, . . . , Vt along the boundaries. Call q1, . . . , qt the

boundary components of S2
0 , and h the slice {x} × S1 for some x ∈ S2

0 , and let
gi : ∂Vi → qi × S1 be a homeomorphism such that gi(mi) ∼ qαi

i h
βi for mi a

meridian of Vi, i = 1, . . . , t. Then M = (S2
0 × S1)

⋃
∪gi(∪iVi).

The core ei of Vi is called the fiber of M corresponding to the ratio βi/αi. In
case |αi| > 1, ei is called exceptional; otherwise ei and the curves h = {x} × S1

are called ordinary fibers of M .
Let M = (O, 0;β1/α1, . . . , βt/αt); there is an involution u : M → M , de-

scribed below, associated to the Seifert symbol (O, 0;β1/α1, . . . , βt/αt) (not to
the manifold M), which gives rise to a 2-fold branched covering p :M → (S3, k)
branched along all components of k; the link k is called the Montesinos knot with
symbol k = m(β1/α1, . . . , βt/αt) (see [8]).

Let E be a great circle in S2 which contains the points p1, . . . , pt in that
order with respect to a given orientation of E; then the reflection on S2 along
E induces a 180◦ rotation u0 : S2

0 × S1 → S2
0 × S1 along the ‘axis’ E0 =

(E ∩ S2
0) × {1} ∪ (E ∩ S2

0) × {−1}. u0 extends to each solid torus Vi in M
with two arcs as its fixed point set in Vi, giving the involution u : M → M . In
the quotient M/u ∼= S3 we have the picture of the branching of p in t 3-balls,
B1 = p(V1), . . . , Bt = p(Vt), joined by a ‘trivial closed braid’. See Figure (2).

β /α1 1 β /α2 2 β /α β /α
t t

Figure 2

This branching, in each 3-ball, gives rise to a rational tangle, βi/αi =
(Bi, a

i,mi ∪ �i), with ai = p(fix(u) ∩ Vi), mi = p(qi × {1}) ∪ p(qi × {−1}) =
m0 ∪m1, and �

i = p({x0} × S1) ∪ p({x1} × S1) = �0 ∪ �1, where x0, x1 are the
points in E0 ∩ qi in that order with respect to the orientation of E0 (see § 4 and
Figure (3)).

We call the covering u : M → M the Standard involution associated to the
symbol (O, 0;β1/α1, . . . , βt/αt).

We will use, without warning, the next classification theorems.

Theorem (2.1.1) ([10]). Two Seifert symbols represent homeomorphic Seifert
manifolds with a fiber preserving homeomorphism if and only if one of the symbols
can be transformed into the other with a finite sequence of the following moves:
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m0

m1

l 0
l 1β /α

ii

Figure 3

(0) Permute the ratios
(1) Add or delete 0/1
(2) Replace the pair βi/αi, βj/αj with either pair (βi+kαi)/αi, (βj − kαj)/αj.

Theorem (2.1.2) ([17]). Two Montesinos symbols with at least three α’s
greater than 1 in absolute value, represent equivalent Montesinos knots if and
only if one of the symbols can be transformed into the other with a finite se-
quence of the following moves:

(0) Permute the ratios cyclically
(1) Add or delete 0/1
(2) Replace the pair βi/αi, βj/αj with either pair (βi+kαi)/αi, (βj−kαj)/αj.
In a Montesinos knot k = m(β1/α1, . . . , βt/αt) we allow that some of the

αi = 0; but in such case k is a union of connected sums of 2-bridge links.
Notice that m(β1/α1, β2/α2) ∼ m(−(α1β2 + α2β1)/(α2r1 + β2s1)), the 2-

bridge link �(−(α1β2 + α2β1)/(α2r1 + β2s1)), where r1 and s1 are integers such
that α1r1 − β1s1 = 1.

3. Dihedral coverings of Montesinos knots

If M = (O, 0;β1/α1, . . . , βt/αt), then the fundamental group π1(M) =
π1(O, 0;β1/α1, . . . , βt/αt) = 〈q1, . . . , qt, h : [qi, h] = 1, qαi

i h
βi = 1, q1 · · · qt = 1〉.

We call the system q1, . . . , qt, h a standard system of generators for the symbol
(O, 0;β1/α1, . . . , βt/αt).

We want to understand the coverings of Seifert manifolds. The next lemma,
which follows from ([12], Lemma 1 and its proof), will help. Let ε ∈ Sn denote
the standard n-cycle, ε = (1, 2, . . . , n).

Lemma (3.1). Let ω : π1(O, 0;β1/α1, . . . , βt/αt) → Sn be the representation
given by ω(h) = ε, and ω(qi) = εri , i = 1, . . . , t, such that

∑
ri = 0. Then the

covering space associated to ω is

ϕ : (O, 0;B1/α1, . . . , Bt/αt) → (O, 0;β1/α1, . . . , βt/αt),

where Bi = (βi + riαi)/n, for i = 1, . . . , t.
Also, if ẽi is the fiber corresponding to Bi/αi, and ei is the fiber corresponding

to βi/αi, then ϕ−1(ei) = ẽi, i = 1, . . . , t. At the fundamental group level, it

holds that ϕ(h̃) ∼ hn, and ϕ(q̃i) ∼ qih
−ri , for q̃1, . . . q̃t, h̃ a standard system
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of generators of the covering. The map induced by ϕ on the orbit surface is a
homeomorphism.

Notice that, with the hypothesis of Lemma (3.1), βi + riαi ≡ 0 mod n (i =
1, . . . , t), for ω is a group homomorphism.

If k is the Montesinos knotm(β1/α1, . . . , βt/αt), the number Δ(k)=β1α2 · · ·αt
+α1β2 · · ·αt + · · ·+ α1α2 · · ·βt is called the determinant of k. Let B2(k) be the
double branched cover of (S3, k); if H1(B2(k)) is infinite, then Δ(k) = 0, and if
H1(B2(k)) is finite, then |H1(B2(k))| = |Δ(k)|.

Theorem (3.2). Let k be the Montesinos knot m(β1/α1, . . . , βt/αt), and let
n be a positive divisor of Δ(k). If (n, αi) = 1 for i = 1, . . . , t, then there exists a
dihedral quotient ϕ : S3 → (S3, k).

Any n-fold dihedral quotient ϕ : S3 → (S3, k) has the Montesinos knot

m(b1/α1, . . . , bt/αt)

as pseudo-branch, where bi = (βi + riαi)/n, i = 1, . . . , t, and the integers
r1, . . . , rt satisfy the conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

β1 + r1α1 ≡ 0 mod n
...

βt + rtαt ≡ 0 mod n∑
ri = 0.

Proof. Assume n|Δ(k); then there is an epimorphism ω : H1(B2(k)) → Zn; we
regard Zn = 〈ε〉 ≤ Sn, where ε = (1, 2, . . . , n). Write ω(qi) = εri and ω(h) = εs.

We have H1(B2(k)) = 〈q1, . . . , qt, h : qαi

i h
βi = 1, q1 · · · qt = 1, everything

commutes 〉. We can write H1(B2(k)) = 〈x2, . . . , xt, v : xδii = 1, vλxλ2
2 · · ·xλt

t =
1, everything commutes 〉, with h = v�, � = lcm{α1, . . . , αt}, α′

1 = α1, δ1 = 1,
and δi+1 = gcd{αi+1, α

′
1 · · ·α′

i}, α′
i+1 = αi+1/δi+1 for i ≥ 1 ([11], Lemma 2.2).

Assume now that (αi, n) = 1 for i = 1, . . . , t. If ω(xi) = εsi for some in-

teger si, then ω(xδii ) = εδisi = (1); therefore n|δisi. Since δi|αi, by defini-
tion, we have that (n, δi) = 1; then n|si and, therefore, ω(xi) = (1). Since ω
is epimorphism, ω(v) is an n-cycle; then ω(h) = ω(v)� is an n-cycle, because
(n, �) = (n, lcm{α1 · · ·αt}) = 1. Since ω(h) = εs, we conclude that (n, s) = 1.
By conjugating in Zn ≤ Sn, if necessary, we may assume that ω(h) = ε. Since
ω(q1 · · · qt) = εΣri = (1), therefore n|∑ ri, or

∑
ri = m ·n for some m; replacing

rt by rt −m · n, we get
∑
ri = 0.

By Lemma (3.1), ψ : M̃ = (O, 0; b1/α1, . . . , bt/αt) → B2(k) is the n-fold

cyclic covering space associated to ω, with bi = (βi + riαi)/n; also ψ(h̃) ∼ hn

and ψ(q̃i) ∼ qih
−ri . If ũ : M̃ → M̃ is the standard involution for the symbol

(O, 0; b1/α1, . . . , bt/αt), and u : B2(k) → B2(k) is the standard involution with
B2(k)/u = (S3, k), then the square

M̃
ũ−−−−→ M̃

ψ

⏐⏐� ⏐⏐�ψ
B2(k) −−−−→

u
B2(k)
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commutes, for ψ ◦ ũ(h̃) ∼ ψ(h̃−1) ∼ h−n ∼ u(hn) ∼ u ◦ ψ(h̃), and ψ ◦ ũ(q̃i) ∼
ψ(q̃−1

i ) ∼ q−1
i hri ∼ u(qih

−ri) ∼ u ◦ ψ(q̃i). If q : M̃ → M̃/ũ is the canonical
projection, then q is a double branched covering over (S3,m(b1/α1, . . . , bt/αt)) =

M̃/ũ; we have the commutative diagram

M̃
ψ−−−−→ B2(k)

q

⏐⏐� ⏐⏐�p
M −−−−→

ϕ
(S3, k)

with ϕ : S3 → (S3, k) a dihedral quotient, and m(b1/α1, . . . , bt/αt) ⊂ ϕ−1(k)
the pseudo-branch of ϕ.

(3.3) Remarks. Let k = m(β1/α1, . . . , βt/αt), and let n be a divisor of Δ(k)
such that (n, αi) = 1 for i = 1, . . . , t. Then k = m(nb1/α1, . . . , nbt/αt) with
bi = (βi + riαi)/n, and

∑
ri = 0.

3.3.1. The conclusion of Theorem (3.2) can be rephrased as: If n|Δ(k), and
(n, αi) = 1, then m(b1/α1, . . . , bt/αt) is the pseudo-branch of an n-fold dihedral
quotient S3 → (S3,m(nb1/α1, . . . , nbt/αt)).

3.3.2. Redrawing k = m(nb1/α1, . . . , nbt/αt) = m(β1/α1 + r1, . . . , βt/αt + rt)
one can easily visualize the representation ω in a projection of k: the meridians
of each piece of one strand of the trivial 2-braid connecting the rational tangles
of k (see Figure (2)) go to the same permutation under ω. Then using techniques
similar to those in [6] one can draw at once the preimage of ϕ of Theorem (3.2)
(see Figure (4) for the 5-fold dihedral covering of m(1/3, 2/3, 2/3)).

3.3.3. A possible partial converse of Theorem (3.2) is:
Let k be the Montesinos knot m(β1/α1, . . . , βt/αt). Assume n is odd and

t ≥ 3. If there exists a dihedral quotient S3 → (S3, k), then (n, αi) = 1 for
i = 1, . . . , t.

Notice that one cannot skip the hypothesis ‘t ≥ 3 and n odd’.
For example, when t ≤ 2, the 2-bridge knot

� = m(β1/nα1, β2/nα2) = m(−n(α1β2 + α2β1)/(nα2r1 + β2s1)),

where nα1r1 − β1s1 = 1, has an n-fold dihedral quotient S3 → (S3, �) with
pseudo-branch m(β1/α1, β2/α2).

When n is even, if � = m(β1/2α1, β2/2α2, β3/α3, . . . , βt/αt), the representa-
tion ω : π1(B2(�)) → S2 such that ω(q1) = (1, 2), ω(q2) = (1, 2), ω(qi) = (1), for
i = 3, . . . , t, and ω(h) = (1), gives rise to a 2-fold dihedral quotient S3 → (S3, �)
with pseudo-branch m(β1/α1, β2/α2, β3/α3, . . . , βt/αt) ([12], Lemma 2).

Corollary (3.3.4). Let k = m(β1/α1, . . . , βt/αt) be a universal link, and let
n be a positive integer such that (n, αi) = 1 (i = 1, . . . , n). Then

m(nβ1/α1, . . . , nβt/αt)

is a universal link.
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4. Rational tangles

A rational tangle is a triple (B, a,m ∪ �), where B is a 3-ball, a is a disjoint
union of two properly embedded arcs in B, a = a0 � a1, and each of m and �
are a disjoint union of two arcs in ∂B, m = m0 � m1, � = �0 � �1, such that
m ∩ � = ∂m = ∂� = ∂a and m ∪ � ∼= S1, and such that the pair (B, a) is
homeomorphic to (D2 × I, {x1, x2} × I) with x1, x2 ∈ int(D2). See Figure (5).

Two rational tangles are equivalent if they are homeomorphic as triples. A
rational tangle (B, a,m ∪ �) contains a ‘meridional disk’ dB properly embedded
in B, which is the image of δ × I ⊂ D2 × I under the homeomorphism (B, a) ∼=
(D2 × I, {x1, x2} × I) for δ ⊂ D2 a diameter separating x1 and x2. Notice that

B −N(dB) is a regular neighborhood of a, and, therefore, ai is the arc, unique
up to isotopy fixing ∂B, which connects the ends of ai in B − dB (i = 0, 1); the
isotopy class of ∂dB in ∂B, with isotopies being the identity in ∂a, determines
the isotopy class of dB in B − a, and, therefore, The curve ∂dB determines the
equivalence class of (B, a,m ∪ �).

If p : B̃ → B is the double branched cover of B branched along both a0 and
a1, then m̃ = p−1(m0) and �̃ = p−1(�0) are a meridian-longitude pair in ∂B̃; if

we fix an orientation on ∂B, an orientation of ∂B̃ is fixed; we orient m̃ and �̃
such that m̃ · �̃ = +1. Now if d̃ is a lifting of ∂dB in B̃, then d̃ ∼ �̃βm̃α in ∂B for
some orientation of d̃; we associate the rational number β/α (or ∞, if α = 0) to
the tangle (B, a,m ∪ �). It is well known that the number β/α determines the
equivalence class of (B, a,m ∪ �).

m

m

l
l

0

1

0
1

Figure 5

By pushing the arcs a into ∂B, it is possible to draw the rational tangle β/α on
a square ‘pillowcase’ with lines of slope ±β/α starting at the points {0, 1}×{i/α}
for i = 0, 1, . . . , α, and {j/β} × {0, 1} for j = 0, 1, . . . , β (Figure (6)).

In this square pillowcase the boundary of the meridional disk dB = dβ/α is
drawn “in between” the arcs a0, a1, that is, with lines of slope ±β/α starting in
the points {0, 1} × {(2i− 1)/2α} for i = 1, 2, . . . , α, and {(2j − 1)/2β} × {0, 1}
for j = 1, 2, . . . , β (Figure (7)).
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Figure 6. The rational tangle 3/5

Figure 7. The disk 3/5

5. Branch sets in dihedral coverings

Let k be the Montesinos knot k = m(β1/α1, . . . , βt/αt). Let n be a positive
integer such that n divides the determinant of k, n|Δ(k), and (n, αi) = 1 for
i = 1, . . . , t. Let ϕ : S3 → (S3, k) be the dihedral quotient guaranteed by
Theorem (3.2). We will show that:

The preimage ϕ−1(k) is a disjoint union of Montesinos knots.
We write B2(k) = (O, 0;β1/α1, . . . , βt/αt), and p : B2(k) → (S3, k) the double

covering branched along all components of k. Let ψ : M̃ → B2(k) be an n-fold

cyclic covering space (unbranched), ρ : M̃ → M̃ the homeomorphism of order n

such that M̃/ρ = B2(k), and ψ : M̃ → M̃/ρ = B2(k) the canonical projection.
Let u : B2(k) → B2(k) be the standard involution for B2(k) with respect

to the symbol (O, 0;β1/α1, . . . , βt/αt), and let ũ : M̃ → M̃ be the standard

involution for M̃ with respect to the symbol (O, 0; b1/α1, . . . , bt/αt), where, if

ẽi is the exceptional fiber of M̃ corresponding to the ratio bi/αi, and ei is the
exceptional fiber of B2(k) corresponding to the ratio βi/αi, then ψ−1(ei) =

ẽi; we see that k2 = p−1(k) is the axis of u, that is, k2 = Fix(u); let k̃0 be

the axis of ũ, k̃0 = Fix(ũ); the preimage of k2 is ψ−1(k2) = k̃0 � k̃1 � · · · �
k̃n−1 = k̃0 � ρ(k̃0) � · · · � ρn−1(k̃0). Replacing ρ by ρm for some m coprime

with n, if necessary, we may assume that, starting with k̃0, we find successively
k̃1, k̃2, . . . , k̃n−1, k̃0, k̃1, k̃2, . . . , k̃n−1 as we traverse along h̃ ⊂ M̃ , for h̃ a preimage
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of an ordinary fiber h of B2(k) with h ∩ k2 = two points. Notice that, then,

k̃� = ũ(k̃n−�) for each �.
We have q : M̃ → M̃/ũ = (S3, k0) a double branched covering, and ϕ : S3 →

(S3, k) a dihedral quotient. Then k0 = q(k̃0) is the branching of q, and also the
pseudo-branch of ϕ, and the diagram of coverings

M̃

���
q

���
ψ

M

���ϕ

B2(k)

���p

(S3, k)

commutes.
Now we define

k1 = q(k̃1) = q(k̃n−1)

k2 = q(k̃2) = q(k̃n−2)

...

k(n−1)/2 = q(k̃(n−1)/2) = q(k̃(n+1)/2)

if n is odd, and

k1 = q(k̃1) = q(k̃n−1)

k2 = q(k̃2) = q(k̃n−2)

...

k(n−2)/2 = q(k̃(n−2)/2) = q(k̃(n+2)/2)

kn/2 = q(k̃n/2)

if n is even.
Then ϕ−1(k) = k0 � k1 � k2 � · · · . Notice that, if n is even, kn/2 is the trivial

knot (always).
We show that each k� is a Montesinos knot (see Figure (8)).
Let i ∈ {1, . . . , t}; and let j ∈ {1, 2, . . . , (n − 1)/2} if n is odd, or j ∈

{1, 2, . . . , (n− 2)/2} if n is even.

In the solid torus Ṽi ⊂ M̃ there are two meridional disks D̃i, u(D̃i), which

separate the two arcs k̃j ∩ Ṽi; the image Di = q(D̃i) = q(u(D̃i)) is a 2-disk

properly embedded in the 3-ball Bi = q(Ṽi) which separates the two arcs q(k̃j ∩
Ṽi) = q(k̃n−j ∩ Ṽi) (see Figure (9)). From these arcs we get a rational tangle as
follows:

Recall that, to construct M̃ (see § (2)), the torus ∂Ṽi is glued to q̃i × S1

in a punctured M̃ (∼= S2
0 × S1). Let h̃0 = {x0} × S1 and h̃1 = {x1} × S1,

where x0 and x1 are the points in k̃0 ∩ (q̃i × {1}). Starting at xa and following

the orientation of h̃a we get three subarcs: one subarc m̃a
1 ⊂ h̃a connecting xa

with h̃a ∩ k̃j , one subarc �̃a ⊂ h̃a connecting h̃a ∩ k̃j with h̃a ∩ k̃n−j , and one
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β /α1 1
β /αt t

β  /α1 1
β  /αt t

j/n

j j
j j

Figure 8

subarc m̃a
0 ⊂ h̃a connecting h̃a ∩ k̃j with ya ∈ h̃a ∩ k̃0 − {xa} (a = 0, 1). Write

m1 = q(m̃0
1 ∪ q̃i × {1} ∪ m̃1

1), m0 = q(m̃0
0 ∪ q̃i × {y0} ∪ m̃1

0), �0 = q(�̃0), and

�1 = q(�̃1); set m
j = m0 �m1 and �j = �0 � �1; then

bji/α
j
i = (Bi, q(k̃j ∩ Ṽi),mj ∪ �j)

is a rational tangle for some number bji/α
j
i ∈ Q∪ {∞}, and it is defined by ∂Di.

Therefore
1. For j ∈ {1, 2, . . . , (n− 1)/2} if n is odd, or j ∈ {1, 2, . . . , (n− 2)/2} if n is

even, kj is the Montesinos knot m(bj1/α
j
1, . . . , b

j
t/α

j
t ).

Now we will compute the ratios bji/α
j
i .

Draw the ball Bi as a square pillowcase; then the knot kj intersects ∂Bi in
the points {0, 1} × {j/n, 1− j/n}.

We will compute the defining numbers bji/α
j
i ∈ Q ∪ {∞} of a lifting d of ∂Di

in the double cover T of ∂Bi branched along ∂Bi∩kj . The contour of the square
pillowcase, mj ∪ �j, is composed of the arcs (see Figure (10)):

m0 = ({0} × [1− j/n, 1]) ∪ (I × {1}) ∪ ({1} × [1− j/n, 1]) = v0 ∪ m̂0 ∪w0,

m1 = ({0} × [0, j/n]) ∪ (I × {0}) ∪ ({1} × [0, j/n]) = v1 ∪ m̂1 ∪w1,

�0 = {0} × [j/n, 1− j/n],

�1 = {1} × [j/n, 1− j/n].
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Figure 9. The solid torus Ṽi and qi × S1

Let V be the cylinder obtained by cutting ∂Bi along m
j ; the boundary of V

is the disjoint union of two circles m+
0 ∪m−

0 and m+
1 ∪m−

1 where m+
a and m−

a

are copies of ma in V (a = 0, 1).
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To construct T glue two copies, V1, V2, of V identifying m+
0,1 ∼ m−

0,2, m
−
0,1 ∼

m+
0,2, m

+
1,1 ∼ m−

1,2, and m
−
1,1 ∼ m+

1,2, where ∂Va = (m+
0,a ∪m−

0,a) ∪ (m+
1,a ∪m−

1,a)

(a = 1, 2).

To compute the defining numbers bji/α
j
i of a lifting d ⊂ T of ∂Di with respect

to m0 and �0, we will construct a new torus T̄ and a curve d̄ in T̄ which will
have the defining numbers bji/α

j
i with respect to some basis of T̄ .

Glue V1 and V2 but only along the arcs m̂0 and m̂1, that is, identify m̂
+
0,1 ∼

m̂−
0,2, etc., and obtain a four-punctured torus T̂ ; if in T̂ we identify the arcs

v0, w0, v1, w1 as if they were not originally cut, that is, if we identify v+0,1 ∼ v−0,1,
w+

0,1 ∼ w−
0,1, v

+
0,2 ∼ v−0,2, w

+
0,2 ∼ w−

0,2, etc., we will obtain T
0, the double covering

of ∂Bi branched along the corners of the pillowcase ∂(m̂0 ∪ m̂1). In T
0 a lifting

of ∂Di is the curve bi/αi, ∂̃Di ∼ m̂αi
0 �̂

bi
0 , where �̂0 is the preimage in T 0 of

v1 ∪ �0 ∪ v0. We regard T̂ as subset of T 0, and call d̂ = T̂ ∩ (preimage of ∂Di in
T 0).

b /α
j

i i

 j

v

m

w

l l

v w

m

^

^

j/n

1-j/n

0

0 0

0 1

1 1

1

Figure 10. The ball Bi

To obtain T from T̂ we still have to identify, as before, v+0,1 ∼ v−0,2, w
+
0,1 ∼ w−

0,2,

etc. Therefore we can construct the preimage of ∂Di in T from d̂ as follows: each

point p+ ∈ v+0,1 ∩ d̂ is identified with a point p− ∈ v−0,2 ∩ d̂, where p+ ∼ p− under

the identification v+0,1 ∼ v−0,2; each point p+ ∈ w+
0,1 ∩ d̂ is identified with a point

p− ∈ w−
0,2 ∩ d̂, etc.

If we close T̂ with four rhombi R1 = v+0,1v
−
0,2v

+
0,2v

−
0,1, R2 = w−

0,1w
+
0,2w

−
0,2w

+
0,1,

R3 = v+1,2v
−
1,1v

+
1,1v

−
1,2, R4 = w+

1,2w
−
1,1w

+
1,1w

−
1,2, in the resulting torus T̄ , we close

the arcs of d̂ with vertical lines in the rhombi connecting equivalent points of
the v’s and w’s; one of the two components, d̄0, of the resulting d̄ has defining

numbers bji/α
j
i , d̄0 ∼ m̄

±αj
i

0 �̄0
±bji , where m̄0 is the union of the preimage of m̂0

in T̂ with the horizontal diagonals of the rhombi R1 and R2 and �̄0 is the union
of the preimage of �0 in T̂ with the vertical diagonals of the rhombi R1 and R3.
See Figure (11).
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Notice that if either bi = 0 or αi = 0, then bji/α
j
i = 0 or ∞, resp.

For practical computation of the number bji/α
j
i , we may assume that bi �= 0

and αi �= 0, and visualize the universal cover of T̄ as follows:
A fundamental region for T̄ is a square [2u, 2u+2]× [2v, 2v+2] in the plane,

for u, v integers; at each vertex (u, v) ∈ Z2, we cut the plane along the interval
J(u,v) = {u} × [v − j/n, v + j/n], and glue a thin rhombus along the resulting

boundaries ({u} × [v − j/n, v])+, ({u} × [v, v + j/n])−, ({u} × [v, v + j/n])+,
({u} × [v − j/n, v])−.

A lifting of d̄0 is made out of segments of straight lines of slope bi/αi and
vertical segments in the glued rhombi:

Start in the point, say, p0 = (0, 1/2αi); draw the segment L1 of the line of
slope bi/αi starting in p0 to the right of the interval J(0,0), until it hits for the
first time an interval J(u1,v1) in a point p1 = (u1, v1 ± (2j1 − 1)/2αi); jump
to p̄1 = (u1, v1 ∓ (2j1 − 1)/2αi) with a vertical segment in the corresponding
rhombus; now draw the segment L2 of the line of slope bi/αi starting in p̄1 to
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the left of the interval J(u1,v1), until it hits for the first time an interval J(u2,v2)

in a point p2 = (u2, v2 ± (2j2 − 1)/2αi); jump to p̄2 = (u2, v2 ∓ (2j2 − 1)/2αi)
with a vertical segment in the corresponding rhombus; now draw the segment
L3 of the line of slope bi/αi starting in p̄2 to the right of the interval J(u2,v2).
Continuing in this fashion, eventually we draw a segment Lr which ends in an
interval J(ur ,vr) in a point pr = (ur, vr + 1/2αi) with ur and vr even integers,
and uq and vq are not both even for q < r if pq = (uq, vq + 1/2αi). We see that

bji/α
j
i = vr/ur.

Remark. With this representation in the plane it is easy to see that: If bi� =
−1+αik, bir = 1+αis with � and r minimal positive, and j/n ∈ (1/2αi, 3/2αi),

then bji/α
j
i = (k − s)/(�− r).

Similar expressions for bji/α
j
i when j/n > 3/2αi seem to be extremely com-

plicated.

(5.1) An algorithm. We obtain the following algorithm in the square pillow-

case Bi to compute bji/α
j
i .

Orient the curve d = ∂Di, and let ε be the sign of bi. Assume j/n ∈ [0, 1/2),
and writem0 = {0, 1}×[1−j/n, 1]∪[0, 1]×{1},m1 = {0, 1}×[0, j/n]∪[0, 1]×{0},
�0 = {0} × [j/n, 1− j/n]

1. Mark the point p0 = (0, 1/2αi) with +1.
2. If the point pu ∈ d∩ ∂I2 is marked with εu ∈ {−1,+1}, then the straight

line segment of d starting in pu and following the given orientation of d, hits ∂I2

in a point pu+1.
If pu+1 has no mark, then

If (pu ∈ m0 and pu+1 ∈ m0) or (pu ∈ m1 and pu+1 ∈ m1),
then mark pu+1 with εu+1 = −εu;
else mark pu+1 with εu+1 = εu.

Go to 2. with ‘u := u+ 1’.
If pu+1 is already marked, then call b = the sum of marks of points in m0, and

α = the sum of marks of points in �0. Then b
j
i/α

j
i = εb/α.

(5.2) Rules. Let β/α ∈ Q∗ = Q ∪ {∞} with α > 0. Let J0 = [0, 1/2α),
and J i = ((2i − 1)/2α, (2(i + 1) − 1)/2α) for i = 1, . . . , [α/2] − 1, and J [α/2] =

((2[α/2]− 1)/2α, 1/2). Let J = Jβ/α =
⋃[α/2]
i=0 J i ⊂ [0, 1/2).

Let λ ∈ J . In the square pillowcase for β/α, (B, a,m ∪ �), with meridional
disk dβ/α, define

mλ
0 = m0 ∪ {0, 1} × [1− λ, 1],

mλ
1 = m1 ∪ {0, 1} × [0, λ],

�λ0 = {0} × [λ, 1− λ],

�λ1 = {1} × [λ, 1− λ],

and mλ = mλ
0 ∪mλ

1 , �
λ = �λ0 ∪ �λ1 .

We have a function J → Q∗ such that λ �→ (β/α)λ = the defining rational
number for (B, aλ,mλ � �λ) with meridional disk dβ/α.

With this notation we get the rules:
0) If β < 0, then (β/α)λ = −(|β|/α)λ.
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a) If β� = −1 + αk, and βr = 1 + αs with � and r minimal positive, and
λ ∈ J1, then (β/α)λ = (k − s)/(�− r).

b) If λ, μ ∈ J i, then (β/α)λ = (β/λ)μ.

c) Let λ be in the last interval J [α/2]. Then (β/α)λ = b/1 for some integer b
if α is odd, and (β/α)λ = ∞ if α is even.

In view of rule (c), we get: If n > 2αi, and (n, αi) = 1 (i = 1, . . . , t),
then ϕ−1(k) contains a rational link, where k = m(nβ1/α1, . . . , nβt/αt), and
ϕ : S3 → (S3, k) is an n-fold dihedral quotient, for, by the assumption n > 2αi,
there is an integer j ∈ {1, . . . , (n−1)/2} such that j/n ∈ J [αi/2], the last interval
for the tangle βi/αi, (i = 1, . . . , t).

d) If β/α = ±1/α and λ ∈ Ju, then (β/α)λ = ±1/(α− 2u).
More generally, recalling the construction of the tangle with number β/α

in [8], we get
e) Assume α > 2k|β| for some k positive. If λ ∈ Jk|β|, then (β/α)λ =

β/(α− 2k|β|).
In the special case α ≡ ±1 mod β, examining carefully the signs in the square

pillowcase given by Algorithm 5.1, one can see that:
f) Assume α = β�± 1, and β > 0; let r be such that 0 ≤ r ≤ [�/2].
If t ∈ {0, 1, . . . , [β/2]} and λ ∈ Jrβ+t, then(

β

α

)
λ

=
β − 2t

(β − 2t)(� − 2r)± 1
.

If t ∈ {[β/2] + 1, [β/2] + 2, . . . , β − 1} and λ ∈ Jrβ+t, then(
β

α

)
λ

=
2t− β

(2t− β)(� − 2r − 2)± 1
.

In particular we compute that the first β + 1 terms (when r = 0) of the

sequence

{(
β

α

)
λ

}β
t=1

are:

β

α
=

β

β�± 1
,

β − 2

(β − 2)�± 1
,

β − 4

(β − 4)�± 1
, . . .

. . . ,

⎧⎪⎨⎪⎩
4

4�± 1
,

2

2�± 1
, 0,

2

2(�− 2)± 1
,

4

4(�− 2)± 1
, . . . ,

β

α− 2β
if β even

3

3�± 1
,

1

�± 1
,

1

(�− 2)± 1
,

3

3(�− 2)± 1
, . . . ,

β

α− 2β
if β odd

Proposition (5.2.1). Let q be an odd integer, q /∈ {−11,−7,−5,−3,−1, 1,
3, 5}, and let k be the pretzel knot k = p(2, q, q) = m(1/2,±1/|q|,±1/|q|). Then
there exists a |q + 4|-fold dihedral covering ϕ : S3 → (S3, k) such that

1) If |q| ≡ 1 mod 4, then one of the Montesinos knots m(1/2,−1/5,−1/5) or
m(1/2,−2/9,−2/9) lies in ϕ−1(k).

2) If |q| ≡ −1 mod 4, then one of the Montesinos knots m(−1/2, 3/5, 3/5) or
m(−1/2, 2/3, 2/3) lies in ϕ−1(k).

Proof. Since q is odd, (q+4, q) = (q, 2) = 1; since Δ(k) = q2+2q+2q = q(q+
4), by Theorem (3.2), there exists a |q + 4|-dihedral covering ϕ : S3 → (S3, k).
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“(1)” Assume |q| = 4β+1; then k = m( |q+4|
2 , −|q+4|β

|q| , −|q+4|β
|q| ), and, therefore,

the pseudo-branch of ϕ is k0 = m(12 ,
−β
|q| ,

−β
|q| ).

If β is odd, write i = (β− 1)/2; then i/|q+4| ∈ J i for the tangle −β/|q|, that
is, (2i− 1)/2|q| < i/|q+4| < (2i+1)/2|q|; and i/|q+4| ∈ J0 for the tangle 1/2,
that is, i/|q + 4| < 1/4.

By Rule (f),
(

−β
|q|

)
i/|q+4|

= −1/5, and
(
1
2

)
i/|q+4| = 1/2. We conclude that

ki = m(1/2,−1/5,−1/5)⊂ ϕ−1(k).
If β is even, write i = β/2 − 1; then i/|q + 4| ∈ J i for the tangle −β/|q|;

and i/|q + 4| ∈ J0 for the tangle 1/2. By Rule (f),
(

−β
|q|

)
i/|q+4|

= −2/9, and(
1
2

)
i/|q+4| = 1/2. We conclude that ki = m(1/2,−2/9,−2/9)⊂ ϕ−1(k).

“(2)” Assume |q| = 4β− 1; then k = m(−|q+4|
2 , |q+4|β

|q| , |q+4|β
|q| ), and, therefore,

the pseudo-branch of ϕ is k0 = m(− 1
2 ,

β
|q| ,

β
|q| ).

If β is odd and q ≥ 7, write i = (β + 5)/2. Then i/(q + 4) ∈ J (β+3)/2 for the

tangle β/|q|; and i/(q+4) ∈ J0 for the tangle −1/2. By Rule (f),
(
β
|q|
)
i/(q+4)

=

3/5, and
(−1

2

)
i/(q+4)

= −1/2. We conclude that ki = m(−1/2, 3/5, 3/5) ⊂
ϕ−1(k).

If β is odd and q < −11, then |q + 4| = −(q + 4) > 7; write i = (β + 1)/2.
Then −i/(q + 4) ∈ J (β+3)/2 for the tangle β/|q|; and −i/(q + 4) ∈ J0 for the
tangle −1/2. Again ki = m(−1/2, 3/5, 3/5)⊂ ϕ−1(k).

If β is even and q ≥ 7, write i = β/2+2. Then i/(q+4) ∈ Jβ/2+1 for the tangle

β/|q|; and i/(q + 4) ∈ J0 for the tangle −1/2. By Rule (f),
(
β
|q|
)
i/(q+4)

= 2/3,

and
(−1

2

)
i/(q+4)

= −1/2. We conclude that ki = m(−1/2, 2/3, 2/3)⊂ ϕ−1(k).

If β is even and q < −11, then |q + 4| = −(q + 4) > 7; write i = β/2. Then(
β
|q|
)
−i/(q+4)

= 2/3; and
(−1

2

)
−i/(q+4)

= −1/2. Again ki = m(−1/2, 2/3, 2/3)⊂
ϕ−1(k).

We finish this section rewriting a version of Theorem (3.2).

Corollary (5.2.2). Let (n, αi) = 1, and k = m(nβ1/α1, . . . , nβt/αt). If
ϕ : S3 → (S3, k) is an n-fold dihedral quotient, and kj ⊂ ϕ−1(k) is as before
with j < n/2, then

kj = m((β1/α1)j/n, . . . , (βt/αt)j/n).

6. Dihedral-like coverings of Montesinos knots

Let k ⊂ S3 be a link. Let ϕ : M → (S3, k) be an m-fold branched covering,
and let ω = ωϕ : π1(S

3 − k) → Sm be the representation determined by ϕ.
Assume that order(ω(μ)) = p for each meridian μ of k. Write 〈μp〉π for the

normal closure of 〈μp;μ a meridian of k〉 in π1(S3 − k); then ω factors through
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the quotient π1(S
3 − k)/〈μp〉π

π1(S
3 − k)

�
��

�ω Sm

π1(S
3 − k)/〈μn〉π

�
��
ω̄

It is known (see [4], Ch. 2, § 4, with the slight necessary modifications to the
argument) that this quotient is a semi-direct product

π1(S
3 − k)/〈μp〉π ∼= Zp � π1(Bp(k)),

where Bp(k) denotes the p-fold cyclic covering of S3 branched along all com-
ponents of k. The generator of Zp is the class of a meridian, μ̄, and acts
on π1(Bp(k)) as the isomorphism induced by the homeomorphism of order p,
ρ : Bp(k) → Bp(k), such that Bp(k)/ρ = (S3, k).

Let ψ :M̃→Bp(k) be them-fold covering space determined by ω̄| :π1(Bp(k))→
Sm, which might be not transitive; therefore, M̃ might be not connected.

Now assume p = 2. Then μ̄ (which is the isomorphism induced by the in-

volution ρ) leaves invariant ψ#π1(M̃) ≤ π1(B2(k)), and, therefore, ρ lifts to

an involution ρ̃ : M̃ → M̃ , with quotient a 2-fold cyclic branched covering
q : M̃ → M = M̃/ρ̃. The quotient-induced m-fold branched covering is the
original ϕ :M → (S3, k), and we have a commutative diagram

M̃

���
q

���
ψ

M

���ϕ

Bn(k)

���p

(S3, k)

The branching of q is the pseudo-branch of ϕ (if any).
Conversely, if we start with a representation

ω : π1(S
3 − k)/〈μ2〉π = Z2 � π1(B2(k)) → Sm,

we get a commutative diagram of coverings

M̃

���
q

���
ψ

M

���ϕ

B2(k)

���p

(S3, k)

with q a 2-fold covering branched along the pseudo-branch of ϕ.
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1. Let k = m(β1/α1, . . . , βt/αt). Then π1(S
3 − k)/〈μ2〉π equals the semi-

direct product Z2�π1(O, 0;β1/α1, . . . , βt/αt); the quotient, obtained by ‘killing’
an ordinary fiber of B2(k), gives the epimorphism

π1(S
3 − k)/〈μ2〉π → Z2 �Δ(α1, . . . , αt).

In terms of generators and relations, Z2 �Δ(α1, . . . , αt) = 〈μ, q1, . . . , qt : μ2 =
1, qα1

1 = 1, . . . , qαt
t = 1, q1 · · · qt = 1, qμi = q−1

i 〉 = 〈μ, q1, . . . , qt−1 : μ2 = 1, qα1
1 =

1, . . . , q
αt−1

t−1 = 1, (q1 · · · qt−1)
αt = 1, qμi = q−1

i 〉. To find a representation of Z2 �

Δ(α1, . . . , αt) into Sn, it is equivalent to find permutations τ, σ1, . . . , σt−1 ∈ Sn
such that τ2 = (1), σαi

i = (1), στi = σ−1
i (i = 1, . . . , t− 1), and (σ1 · · ·σt−1)

αt =
(1). This task simplifies when t = 3, for it is possible to easily draw the product of
two permutations ([7]), which amounts to drawing the induced branched covering

on the orbit surfaces of ψ : M̃ → B2(k).
In the computations of the following representations, the GAP programming

language ([3]) was very useful. We will use, for computations of Seifert symbols,
Lemma 2 of [12].

2. Consider k = m(β1/2, β2/3, β3/3). We find σ1 = (1), σ2 = (1, 2, 3),
τ = (2, 3) (the other two meridians of k go to (2, 3) and (1, 2)); we compute

M̃ = (O, 0;β1/2, β1/2, β1/2, β2/1, β3/1) ([12], Lemma 2), and the involution of

B2(k) lifts to the involution ũ in M̃ with axis crossing the fibers corresponding
to one of the β1/2 ratios, and β2/1, β3/1, and interchanging the other two fibers
corresponding to β1/2, as seen in Figure (12).

1

2 3

u
~

Figure 12. σ1 = (1), and σ2 = (1, 2, 3)

We have ϕ1 : M = M̃/ũ → (S3, k) a 3-fold (simple) branched covering with

pseudo-branch the branching of the quotient M̃ →M .
Let M̃0 be the result of drilling out the fibers β1/2 in M̃ interchanged by ũ;

then M̃0/ũ is the complement of a trivial knot T in S3 and the branching looks

as in Figure (13): the link m(β1/2, β2/1, β3/1) ⊂ M̃0/ũ. To construct M̃/ũ, we

have to fill M̃0/ũ with a solid torus whose meridian goes around m2�β1 for m, �
a meridian-longitude pair of T .

ThereforeM = M̃/ũ is the lens space L(2, β1). If ϕ2 : S3 →M is the universal

covering space, then ϕ−1
2 (M̃0/ũ) is the complement of a trivial knot where we

still have to perform surgery 1/β1; then the preimage in S3 of the pseudo-branch
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β /1β /1

1

321

2/β

β /2

Figure 13

of ϕ1 is the Montesinos knot

k̃ = m

(
β1
2
,
β2
1
,
β3
1
,
β1
2
,
β2
1
,
β3
1
,
2β1
1

)
= m

(
− 12β1 + 8β2 + 8β3
6β1 + 4β2 + 4β3 − 1

)
.

This link is a torus link if and only if 6β1 + 4β2 + 4β3 − 1 ≡ ±1 mod (12β1 +

8β2 + 8β3), that is, if and only if Δ(k)/3 = 3β1 + 2β2 + 2β3 = ±1. Then k̃
is a universal link if and only if Δ(k) �= ±3 (Theorem (1.1)). Notice that the
equality Δ(k) = ±3 implies that k is the pretzel knot p(±2,∓3,∓3), which is
a torus knot. We have ϕ = ϕ1 ◦ ϕ2 : S3 → (S3, k) a branched covering with

k̃ ⊂ ϕ(k); we conclude that:
The Montesinos knot k = m(β1/2, β2/3, β3/3) is a universal link if and only

if Δ(k) �= ±3.
3. Consider k = m(β1/2, β2/3, β3/5). We find σ1 = (2, 3)(4, 5), σ2 = (1, 2, 4),

τ = (1, 2)(3, 5) (the other two meridians of k go to (2, 5)(3, 4) and (2, 4)(3, 5));

we compute M̃ = (O, 0;β1/2, β1/1, β1/1, β2/3, β2/3, β2/1, β3/1) ([12], Lemma 2),

and the involution of B2(k) lifts to the involution ũ in M̃ with axis crossing the
fibers corresponding to β1/2, β2/1, β3/1, and pairwise interchanging the fibers
corresponding to β1/1 and β2/3, as seen in Figure (14).

1

2

u
~

3 5

4

Figure 14. σ1 = (2, 3)(4, 5), and σ2 = (1, 2, 4)

We have ϕ : M = M̃/ũ → (S3, k) a 5-fold branched covering with pseudo-

branch the branching of the quotient M̃ → M . To draw this pseudo branch we
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still have to perform surgeries 1/β1, and 3/β2 as before (Figure (15)); passing to

β /1β /2
321 β /1

1/β 3/β
1 2

Figure 15

the universal cover of M = L(3, 3β1 + β2) we obtain

k̃ = m

(
β1
2
,
β2
1
,
β3
1
,
β1
2
,
β2
1
,
β3
1
,
β1
2
,
β2
1
,
β3
1
,
2(3β1 + β2)

1

)
= m

(
β1
2
,
β1
2
,
β1
2
,
6β1 + 5β2 + 3β3

1

)
.

If β1 = ±1, then k̃ is an Uchida pretzel chain,

k̃ = p(±6 + 5β2 + 3β3;±2,±2,±2) =

{
(3, 6 + 5β2 + 3β3) if β1 = 1

(3,−9 + 5β2 + 3β3) if β1 = −1

which is universal if 6 + 5β2 + 3β3 �= −2,−1 for β1 = 1, and is universal if
−9 + 5β2 + 3β3 �= −2,−1 for β1 = −1 ([15]). If β1 = 1, then the equality
6+5β2+3β3 = −2,−1 is equivalent to Δ(k) = ±1; also if β1 = −1, the equality
−9 + 5β2 + 3β3 = −2,−1 is equivalent to Δ(k) = ±1. Note that Δ(k) = ±1
implies that k is the pretzel knot = p(±2,∓3,∓5), which is a torus knot. We
conclude that:

The Montesinos knot k = m(±1/2, β2/3, β3/5) is a universal link if and only
if Δ(k) �= ±1.
Note that any knot m(γ1/2, γ2/3, γ3/5) is also of the form m(±1/2, β2/3, β3/5).

4. Consider k = m(β1/2, β2/3, β3/7). We find σ1 = (2, 3)(4, 6)(5, 7)(8, 9),
σ2 = (1, 2, 4)(3, 5, 7)(6, 9, 8), τ = (2, 3)(4, 6)(5, 7)(8, 9) (the other two meridians
of k go to (2, 6)(3, 4)(5, 9)(7, 8) and (2, 4)(3, 6)(5, 8)(7, 9)); we compute

M̃ = (O, 0;β1/2, β1/1, β1/1, β1/1, β1/1, β2/1, β2/1, β2/1, β3/1, β3/7, β3/7)

([12], Lemma 2), and the involution of B2(k) lifts to the involution ũ in M̃ with
axis crossing the fibers corresponding to β1/2, β2/1, β3/1, and interchanging by
pairs the fibers corresponding to β1/1, β2/1, and β3/7, as shown in Figure (16).

We have ϕ : M = M̃/ũ → (S3, k), a 9-fold branched covering with pseudo-

branch the branching of the quotient M̃ → M . To draw this pseudo-branch we
still have to perform surgeries 1/β1, 1/β1, 1/β2, and 7/β3 as before (Figure (17));
passing to the universal cover of M = L(7, 14β1 + 7β2 + β3) we obtain
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1
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u
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Figure 16. σ1 = (2, 3)(4, 6)(5, 7)(8, 9), and σ2 = (1, 2, 4)(3, 5, 7)(6, 9, 8)

β /1
32

β /2 β /11

1/β 1/β 1/β 7/β1 1 2 3

Figure 17

k̃ = m

( 7 times︷ ︸︸ ︷
β1
2
, . . . ,

β1
2
,

7 times︷ ︸︸ ︷
β2
1
, . . . ,

β2
1
,

7 times︷ ︸︸ ︷
β3
1
, . . . ,

β3
1
,
2(14β1 + 7β2 + β3)

1

)

= m

( 7 times︷ ︸︸ ︷
β1
2
, . . . ,

β1
2
,
28β1 + 21β2 + 9β3

1

)
.

If β1 = ±1, then k̃ is a universal Uchida pretzel link,

k̃ = p(±28 + 21β2 + 9β3;

7 times︷ ︸︸ ︷
±2, . . . ,±2).

We conclude that:
The Montesinos knot k = m(±1/2, β2/3, β3/7) is a universal link.

Note that any m(γ1/2, γ2/3, γ3/7) is of the form m(±1/2, β2/3, β3/7), and that,
in particular, the Fintushel-Stern knot, k = p(−2, 3, 7), is universal; this famous
knot has Δ(k) = 1 and, therefore, has no dihedral quotients.

5. Using the same representations, and following the ideas below in para-
graphs 2., 3., and 4., we obtain also:
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a) If |x| > 1, then the pretzel link k = p(e; 2x, 3y, 3z) is universal, for, in this

case, following the constructions as in 2., k̃ is the universal Uchida pretzel link

k̃ = p(±(2 + (4x+ 1)e);

2|x| times︷ ︸︸ ︷
2x, . . . , 2x,

2|x| times︷ ︸︸ ︷
y, . . . , y ,

2|x| times︷ ︸︸ ︷
z, . . . , z ).

a.1) Similarly, if |y| > 1 or |z| > 1, then the pretzel link k = p(2, 3y, 3z) is
universal.

a.2) If |y| > 1 or |z| > 1, and β2 ≡ ±1 mod y and β3 ≡ ±1 mod z, then
the Montesinos knot k = m(1/2, β2/3y, β3/3z) is universal, for, as before, it
holds that p(−2(−1+ k2+ k3); 2, 2,±y,±y,±z,±z), which is a universal Uchida
link, is in the preimage of k in a branched covering, where β2 = k2y ± 1 and
β3 = k3z ± 1.

b) If |y| > 1, or |z| > 1, then the pretzel link k = p(±2,±3y,±5z) is universal,

for, in this case, following the constructions as in 3., k̃ is the universal Uchida
pretzel link

k̃ = p(2(±3y ± 1);

3|y| times︷ ︸︸ ︷
±2, . . . ,±2,

3|y| times︷ ︸︸ ︷
±y, . . . ,±y,

3|y| times︷ ︸︸ ︷
±z, . . . ,±z).

c) If z > 0, then the pretzel link k = p(±2,±3,±7z) is universal, for, in this

case, following the constructions as in 4., k̃ is the universal Uchida pretzel link

k̃ = p(2(±14z ± 7z ± 1);

7z times︷ ︸︸ ︷
±2, . . . ,±2,

7z times︷ ︸︸ ︷
±3, . . . ,±3,

7z times︷ ︸︸ ︷
±z, . . . ,±z).

6. Consider k = p(±2, 5y, 5z) (y, z �= 0). We find permutations σ1 =
(2, 3)(5, 7)(6, 9)(10, 11), σ2 =(1, 2, 4, 8, 5)(3, 6, 7, 10, 11), and τ =(2, 5)(3, 7)(4, 8)
(10, 11) (the other two meridians of k go to (1, 2)(3, 10)(4, 5)(6, 7) and (2, 7)(3, 5)
(4, 8)(6, 9)); we compute

M̃ = (O, 0;±1/2,±1,±1,±1,±1,±1/2,±1/2, 1/5y, 1/y, 1/y, 1/5z, 1/z, 1/z),

([12], Lemma 2), and the involution ũ in M̃ (see Figure (18)) gives M = L(2, 1)
as quotient. In the universal cover of M we find, as preimage of k,

k̃ = p(±10;±2,±2, 5y, 5y, y, y, y, y, 5z, 5z, z, z, z, z)

which is a universal Uchida link. We conclude
The pretzel knot p(±2, 5y, 5z) is universal (y, z �= 0).
7. We think that it is not possible to obtain the 3-sphere as a branched

covering over (S3,m(β1/2, β2/p, β3/q)) with this kind of dihedral-like coverings,
except for the pairs (p, q) as in paragraphs 2.–6..

7. Universal Montesinos knots

We collect the following results.

Theorem (7.1). Let q be an odd integer, q �= −1,−3,−7,−11. Then the
pretzel knot k = p(2, q, q) is universal.

Proof. If q = 1, then k = m(5/2) is universal (Theorem (1.1)). If q = 3,
k is universal by § 6.6. If q = ±5, k is universal by § 6.6. Assume |q| > 5,
q �= −7,−11. By Proposition 1 in § 5.1, there is a dihedral quotient ϕ : S3 →
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Figure 18. σ1 = (2, 3)(5, 7)(6, 9)(10, 11), and σ2 = (1, 2, 4, 8, 5)(3, 6, 7, 10, 11)

(S3, k) such that ϕ−1(k) contains one of the knots p1 = m(1/2,−1/5,−1/5),
p2 = m(1/2,−2/9,−2/9), p3 = m(−1/2, 3/5, 3/5), or p4 = m(−1/2, 2/3, 2/3).

Now p1 is universal by § 6.6; p2 is universal by § 6.5 (a.2); p4 is universal by
§ 6.2; p3 = m(7/2,−7/5,−7/5) has a 7-fold dihedral quotient with pseudo-branch
p1 which is universal, so, p3 is universal. We conclude that k is universal.

We remark that p(2,−1,−1) = trefoil knot, and p(2,−3,−3) = τ3,4 are not
universal.

Question. Are the knots p(2,−7,−7) and p(2,−11,−11) universal?

Theorem (7.2). Let n be a positive integer such that n > α(α − 2)/2 and
(n, α) = (n, αi) = 1, where α1, . . . , αt are odd positive integers with α ≥ αi + 2
for each i. Let εi ∈ {−1,+1} (i = 1, . . . , t) such that

∑
εi �= −2,−1, 0, 1. Then

k = m(nε1/α1, . . . , nεt/αt, n/α)

is a universal link.

Proof. The hypothesis n > α(α−2)/2 implies that (α−2)/2α−(αi−2)/2αi ≥
(α−2)/2α−(α−4)/2(α−2) > 1/n; therefore there is some j ∈ {1, . . . , (n−1)/2}
such that j/n is in the last interval J [αi/2] for the tangle εi/αi, and in the next-
to-last interval J [αi/2]−1 for the tangle 1/α (see § 5.2.). Then, in an n-fold
dihedral quotient ϕ : S3 → (S3, k), we have kj = m(ε1/1, . . . , εt/1, 1/3) =
m(

∑
εi + 1/3) ⊂ ϕ−1(k) (§ 5.2.(c)) if α odd, and kj = m(ε1/1, . . . , εt/1, 1/2) =

m(
∑
εi + 1/2) if α even. Since m(

∑
εi + 1/3) and m(

∑
εi + 1/2) are non-

torus 2-bridge links, by the choice of the εi’s, we see that m(
∑
εi + 1/3) and

m(
∑
εi + 1/2) are universal (Theorem (1.1)); therefore k is universal.

From Theorem (1.2) in the Introduction and Corollary (3.3.4), it follows that:
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Theorem (7.3). Let b, α1, . . . , αt be integers such that p(b;α1, . . . , αt) is a
universal Uchida link. Let n be an integer such that (n, αi) = 1 for i = 1, . . . , t.
Then

m(nb/1, n/α1, . . . , n/αt)

is a universal link.

From Theorem (1.3) in the Introduction and Corollary (3.3.4) it follows that:

Theorem (7.4). If |p| > 1 is odd and (n, p) = 1, then m(n/p, n/p,−n/p) is
a universal link.

If p �= −2, 0 is even and (n, p) = 1, then m(n/3, n/3, n/p) is a universal link.

(7.5) Montesinos knots up to ten crossings and Hatcher-Oertel knots.
Montesinos knots. We analyze the Montesinos knots up to 10 crossings. We

do not consider here 2-bridge knots, but only ‘real’ Montesinos knots.
1. Non-universal. The knots 819 = p(−2, 3, 3) = τ3,4, and 10124 = p(−2, 3, 5)

= τ3,5 are torus knots and not universal.
2. Universal. By § 6.2, the knots 85, 810, 815, 820, 821, 916, 924, 928, 1076,

1077, and 1078 are universal.
By § 6.3, the knots 922, 925, 930, 936, 942, 943, 944, 945, 1046, 1047, 1048, 1049,

1070, 1071, 1072, 1073, 10125, 10126, and 10127 are universal.
By § 6.4, the knots 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 10128, 10129,

10130, 10131, 10132, 10133, 10134, and 10135 are universal (also all of them have a
dihedral quotient with the Fintushel-Stern knot as pseudo-branch).

By § 6.5 (a), or Theorem (7.3), the knots 1061, 1062, 1063, 1064, 1065, 1066,
10139, 10140, 10141, 10142, 10143, and 10144 are universal.

The knots 1058, 1060, 10136, and 10138 have the pretzel knot p(−2, 5, 5) as
pseudo-branch in a dihedral covering of 13, 17, 3 and 7 sheets, resp. The knot
1059 has the pretzel knot p(−2,−5, 5) as pseudo-branch in a 3-fold dihedral
covering. Then, using § 6.6, we see that 1058, 1059, 1060, 10136, and 10138 are
universal knots.

The knots 937=m(1/3, 2/3, 2/3)=m(−5/3, 5/3, 5/3), 946=m(−1/3, 1/3, 1/3),
and 1074=m(1/3, 1/3, 5/3)=m(−7/3, 7/3, 7/3) are universal by Theorem (7.4).

We found sixty six universal knots.
3. Undecided. At this point, we cannot decide about the universality of ten

knots: 935, 948, 1067, 1068, 1069, 1075, 10137, 10145, 10146, and 10147.
4. No dihedral quotients. The following fourteen knots do not have the

3-sphere as a dihedral quotient (yet some of them have S3 as a dihedral-like
covering, as noted before): 810, 819, 820, 935, 946, 948, 1075, 10124, 10137, 10139,
10140, 10143, 10145, and 10147.

Hatcher-Oertel knots. The following knots are mentioned in [5].
1. k = m(2/5, 3/7,−1/3,−5/8), Δ(k) = 109. In the 109-fold dihedral quo-

tient, k33 = m(2/1, 1/1, 1/3, 1/4,−1/1) = m(−31/22) which is universal and,
therefore, k is universal.

2. k = m(−15/32, 3/11, 7/41), Δ(k) = 365. In the 365-fold dihedral quotient,
k33 = m(5/14, 2/5,−1/1) = m(−17/4) which is universal and, therefore, k is
universal.
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4. k = m(11/53, 17/43,−13/21), Δ(k) = 773. In the 773-fold dihedral quo-
tient, k19 = m(−24/49, 13/33) = m(−155/3) which is universal and, therefore,
k is universal.

5. k = m(1/3, 3/5,−3/4,−2/7, 3/11,−5/13), Δ(k) = 12869. In the 12869-
fold dihedral quotient, k2758 = m(1/1,−1/2, 1/1, 1/1) = m(7/2) which is univer-
sal and, therefore, k is universal.

6. k = m(1/3, 1/3,−1/3,−2/5, 1/5,−3/4, 2/3), Δ(k) = 405. Therefore k has
not the 3-sphere as a dihedral quotient.
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CROSSCAP NUMBER TWO KNOTS IN S3 WITH (1,1)

DECOMPOSITIONS

ENRIQUE RAMÍREZ-LOSADA AND LUIS G. VALDEZ-SÁNCHEZ

Dedicated to Fico on the occasion of his 60th birthday.

Abstract. M. Scharlemann has recently proved that any genus one tunnel
number one knot is either a satellite or 2-bridge knot, as conjectured by H.
Goda and M. Teragaito; all such knots admit a (1,1) decomposition. In this
paper we give a classification of the family of (1,1) knots in S3 with crosscap
number two (i.e., bounding an essential once-punctured Klein bottle).

1. Introduction

H. Goda and M. Teragaito classified in [6] the family of non-simple genus one
tunnel number one knots, and conjectured that any genus one tunnel number
one simple knot is a 2-bridge knot. This conjecture was shown by H. Matsuda
[9] to be equivalent to the statement that any genus one tunnel number one knot
in S3 admits a (1, 1) decomposition; it is in this form that M. Scharlemann has
recently settled it in [13].

In this paper we explore the family of crosscap number two tunnel number
one knots in S3. Recall (cf. [1]) that a knot in S3 has crosscap number two
if it bounds a once-punctured Klein bottle but not a Moebius band; it was
shown in [12] that a knot K has crosscap number two iff its exterior contains
a properly embedded essential (incompressible and boundary incompressible, in
the geometric sense) once-punctured Klein bottle F , in which case K is not a
2-torus knot, and F has integral boundary slope by [8].

In contrast with genus one knots, a crosscap number two knot can bound
once-punctured Klein bottles with distinct boundary slopes; however, as shown
in [8, 12], such knots are all satellite knots, with the exception of the figure-
8 knot and the Fintushel-Stern (−2, 3, 7) pretzel knot. Here we restrict our
attention to the family of crosscap number two knots in S3 which admit a (1, 1)
decomposition; the special cases of tunnel number one satellite knots, 2-bridge
knots, and torus knots, are also discussed.

In order to state our main result we need to define a particular family of (1, 1)
knots in S3. Let S be a Heegaard torus of S3, and let S× I be a product regular
neighborhood of S, with S corresponding to S × {1/2}. An arc β embedded in
S×I is called monotone if the natural projection map S×I → I is monotone on
β. For i = 0, 1, let ti be an embedded nontrivial circle in S × {i}; t∗i will denote

2000 Mathematics Subject Classification: Primary 57M25; Secondary 57N10.
Keywords and phrases: Crosscap number two knot, tunnel number one knot, (1, 1)

decomposition.
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Figure 1. A knot of the form K(t∗0, t
∗
1, R).

a (±1, 2) cable of ti relative to S × {i}; that is, t∗i is the boundary of a Moebius
band Bi obtained by giving a half-twist to a thin annulus intersecting S × {i}
transversely in a core circle isotopic to ti. Let R = β× I be a rectangle in S × I
such that (B0 ∪ B1) ∩ R = (∂B0 ∪ ∂B1) ∩ R = ∂β × I, and such that β is a
monotone arc in S× I. Now let K(t∗0, t

∗
1, R) be the boundary of B0∪R∪B1 (see

Fig. 1). With this notation, the following theorem summarizes our main result.

Theorem (1.1). Let K be a crosscap number two knot in S3. If K admits a
(1, 1) decomposition, then K is either a torus knot, a 2-bridge knot, a satellite
knot, or a knot of the form K(t∗0, t

∗
1, R).

The families of 2-bridge knots and tunnel number one satellite knots, both of
which admit (1, 1) decompositions, are of independent interest, and we classify
those having crosscap number two explicitly; we note here (see Section 3) that
the exteriorXK of a tunnel number one satellite knotK ⊂ S3 can be decomposed
as the union XL ∪T XK0 for some 2-bridge link L and torus knot K0. We call
any (p, q) torus knot with |p| = 2 or |q| = 2 a 2-torus knot.

Theorem (1.2). Let K be a crosscap number two knot in S3; then,

(a) K is a 2-bridge knot iff K is a plumbing of an annulus and a Moebius band,
i.e., iff K is of the form (2m(2n+1)−1)/(2n+1) for m �= 0 (see Fig. 2(a));

(b) K is a tunnel number one satellite knot, with XK = XL ∪T XK0 , iff, for
some integer m, either

(i) K0 is any nontrivial torus knot and L is the 4(4m + 2)/(4m + 1) or
8(m+ 1)/(4m+ 3) 2-bridge link (see Fig. 2(b),(c)),

(ii) K0 is any nontrivial 2-torus knot and L is the (8m + 6)/(2m + 1)
2-bridge link (see Fig. 2(d)).

We remark that in Theorem (1.2) (b) the knot K is an iterated torus knot iff
m = 0; in such case, combining the classifications of crosscap number two cable
knots in [15] and of tunnel number one cable knots in [2], it follows that K must
be an iterated torus knot of the form [(4pq± 1, 4), (p, q)] or [(6p± 1, 3), (p, 2)] for
some integers p, q.
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Figure 2. The knots and links of Theorem (1.2); the integers denote
half-twists.

p q+2q p+2

Figure 3. The (p, q, 2) pretzel knot.

Examples of (1, 1) knots of the form K(t∗0, t
∗
1, R) which are neither torus, 2-

bridge, nor satellites are provided by the (p, q,±2) pretzel knots with p, q odd
integers distinct from ±1, as shown in Fig. 3; in fact, by [11], these are the only
tunnel number one pretzel knots which are not 2-bridge.

Finally, the crosscap number two torus knots are also classified in [15]; the
crosscap number of torus knots in general are determined in [14].

Theorem (1.3) ([15]). A (p, q) torus knot has crosscap number two iff (p, q)
or (q, p) is of the form (3, 5), (3, 7), or (2(2m + 1)n ± 1, 4n) for some integers
m,n, n �= 0.

We will work in the smooth category. In Section 2 we discuss (g, n) decom-
positions for knots in S3 and prove Theorem (1.2) (a). This first case, involving
2-bridge knots, has a pleasant solution arising directly from the classification
of π1-injective surfaces in 2-bridge knot exteriors by Hatcher and Thurston [7];
we will follow and extend the basic ideas of [4, 5, 7] to handle the remaining
cases along similar lines, via Morse position of essential surfaces relative to a
Heegaard surface product structure. In the process it becomes necessary to deal
with essential surfaces Σ in knot or link exteriors, all satisfying χ(Σ) = −1. Sec-
tion 3 improves slightly on the theme of [5] to allow for nonorientable essential
surfaces in a 2-bridge link exterior; this is the content of Lemma (3.4), which
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1

0S

S

Figure 4.

leads to the proof of Theorem (1.2) (b). To handle the case of knots with a (1, 1)
decomposition along the same lines it is necessary to prove a statement similar
to Lemma (3.4); this is done in Section 4, where Lemma (4.1) is established and
which, along with some results from [9], leads to a proof of Theorem (1.1). Since
a once-punctured torus Σ also satisfies χ(Σ) = −1, the results of this paper can
be modified to obtain the classification of genus one knots in S3 with a (1, 1)
decomposition as well.

We want to thank Mario Eudave-Muñoz for making his preprint [3] accessible
to us, which motivated the line of argument used in Lemma (4.1).

2. (g, n) decompositions and 2-bridge knots

A knot or link L in S3 is said to be of type (g, n) if there is a genus g Heegaard
splitting surface S in S3 bounding handlebodies H0, H1 such that, for i = 0, 1, L
intersects Hi transversely in a trivial n-string arc system. Let S×I be a product
regular neighborhood of S in S3 and let h : S × I → I be the natural projection
map. We denote the level surfaces h−1(r) = S × {r} by Sr for each 0 ≤ r ≤ 1,
and assume that S0 ⊂ H0, S1 ⊂ H1, and that h|S × I ∩ L has no critical points
(so S × I ∩ L consists of monotone arcs).

Let F be an essential surface properly embedded in the exterior XL = S3 \
intN(L) of L; such a surface can always be isotoped in XL so that:

(M1) F intersects S0∪S1 transversely; we denote the surfaces F ∩H0, F ∩H1, F ∩
S × I by F0, F1, ˜F , respectively;

(M2) each component of ∂F is either a level meridian circle of ∂XL lying in some
level set Sr or it is transverse to all the level meridians circles of ∂XL in
S × I;

(M3) for i = 0, 1, any component of Fi containing parts of L is a cancelling disk
for some arc in L ∩Hi (see Fig. 4); in particular, such cancelling disks are
disjoint from any arc of L ∩Hi other than the one they cancel;

(M4) h| ˜F is a Morse function with a finite set Y (F ) of critical points in the

interior of ˜F , located at different levels; in particular, ˜F intersects each
noncritical level surface transversely.

We define the complexity of any surface F satisfying (M1)–(M4) as the number

c(F ) = |∂F0|+ |∂F1|+ |Y (F )|,
where |Z| stands for the number of elements in the finite set Z, or the number
of components of the topological space Z.

We say that F is meridionally incompressible if whenever F compresses in S3

via a disk D with ∂D = D∩F such that D intersects L transversely in one point
interior to D, then ∂D is parallel in F to some boundary component of F which
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is a meridian circle in ∂XL; otherwise, F is meridionally compressible. Observe
that if F is essential and meridionally compressible then a ‘meridional surgery’
on F produces a new essential surface in XL.

In the sequel we will concentrate in the case of knots and 2-component links
L of types (0, 2) or (1, 1) and certain essential surfaces F in XL with χ(F ) = −1.
We close this section with a proof of the first part of Theorem (1.2).

Proof of Theorem (1.2) (a). Suppose K is a 2-bridge knot with a (0, 2) de-
composition relative to some 2-sphere S in S3. In this context, it is proved in [7,
Lemma 2] that once F has been isotoped so as to satisfy (M1)–(M4) with mini-
mal complexity, then F lies in S×I except for the cancelling disk components of

F0 ∪F1, h| ˜F has only saddle critical points, F ∩Sr has no circle components for
any r, and each saddle joins distinct level arc components. As χ(F ) = −1 and

F0 consists of two cancelling disks only, h| ˜F has exactly three critical points, so
F is a plumbing of an annulus and a Moebius band by [7]; thus that K must be
a 2-bridge knot of the form (2m(2n + 1) − 1)/(2n+ 1) for m �= 0 follows from
Fig. 2(a), and the claim follows.

3. Satellite knots

In this section we assume that K is a tunnel number one satellite knot in
S3 of crosscap number two. By [2, 10], the exterior XK = S3 \ intN(K) of K
can be decomposed as XL ∪T XK0 , where XL = S3 \ intN(L) is the exterior of
some 2-bridge link L ⊂ S3 other than the unlink or the Hopf link and XK0 =
S3 \ intN(K0) is the exterior of some nontrivial torus knot K0 ⊂ S3, glued along
a common torus boundary component T in such a way that a meridian circle of
L in T becomes a regular fiber of the Seifert fibration of XK0 .

If F is any once-punctured Klein bottle, then any orientation preserving non-
trivial circle embedded in F either cuts F into a pair of pants, splits off a Moebius
band from F , or is parallel to ∂F ; in the first case we call such circle a meridian
of F , while in the second case we call it a longitude (cf. [12, §2]). Notice any
meridian and longitude circles of F intersect nontrivially.

As mentioned in the Introduction, K has crosscap number two iff its exterior
XK contains a properly embedded essential once-punctured Klein bottle F , in
which case K is not a 2-torus knot and F has integral boundary slope. We first
show the existence of some once-punctured Klein bottle in XK which intersects
the torus T transversely in a simple way.

Lemma (3.1). Let K be a tunnel number one satellite knot in S3 of crosscap
number two. Then there is an essential once-punctured Klein bottle F ⊂ XK =
XL ∪T XK0 which intersects T transversely and such that either:

(i) F lies in XL, or

(ii) F ∩XL is a once-punctured Moebius band FL and F ∩ XK0 is a Moebius
band; in particular, K0 is a 2-torus knot.

Proof. Let F be an essential once-punctured Klein bottle in XK , necessarily
having integral boundary slope; we may assume F has been isotoped so as to
intersect T transversely and minimally. Hence T ∩ F is a disjoint collection of
circles which are nontrivial and orientation preserving in both T and F , so each
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such circle is either a meridian or longitude of F , or parallel to ∂F in F . Thus,
the closure of any component of F \ T is either an annulus, a Moebius band, a
once-punctured Moebius band, a pair of pants, or a once punctured Klein bottle.

Suppose γ ⊂ T ∩ F is a component parallel to ∂F in F ; let ρ denote the
slope of a fiber of XK0 in T . Then the component of F ∩XL containing ∂F is
an annulus with the same boundary slope as γ on T . If the slope of γ on T is
integral then K is isotopic to K0, which is not the case; thus γ has nonintegral
slope on T and so K is a tunnel number one iterated torus knot with Δ(γ, ρ) = 1
by [2, Lemma 4.6].

In particular, as any component of F ∩XK0 must be incompressible and not
boundary parallel in XK0 by minimality of T ∩ F , no such component can be
an annulus, a Moebius band, or a pair of pants. Therefore, F ′ = F ∩ XK0 is
a once-punctured Klein bottle in XK0 with nonintegral boundary slope γ on T ,
and so, by [12, Lemma 4.5], F ′ must boundary compress in XK0 into a Moebius
band B such that Δ(∂F ′, ∂B) = 2. But then K0 is a 2-torus knot and ∂B is a
fiber of XK0 , so Δ(γ, ρ) = 2, which is not the case. Therefore, no component
of F ∩ T is parallel to ∂F in F , so either T ∩ F is empty and (i) holds or its
components are either all meridians or all longitudes of F . We now deal with
the last two options.

Case (3.2). The circles T ∩ F are all meridians of F .

Then the component P of F ∩ XL containing ∂F is a pair of pants with
two boundary components c1, c2 on T . If A is an annulus in T cobounded by
c1, c2, then P ∪A is necessarily a once-punctured Klein bottle for K which, after
pushing slightly into XL, satisfies (i).

Case (3.3). The circles T ∩ F are all longitudes of F .

If the circles T ∩ F are not all parallel in F then there are two components
of F \ T whose closures are disjoint Moebius bands B1, B2 with boundaries
on T . But then, if A is an annulus in T cobounded by ∂B1, ∂B2, the surface
B1∪B2∪A is a closed Klein bottle in XK ⊂ S3, which is not possible. Hence the
circles T ∩ F ⊂ F are mutually parallel in F , and so the component of F ∩XL

which contains ∂F is a once-punctured Moebius band FL. Moreover, there is
a component of F \ T whose closure is a Moebius band B, properly embedded
in XL or XK0 . If B lies in XL then F ∩ XK0 is a nonempty collection of
disjoint essential annuli in XK0 , hence ∂B is the meridian circle of a component
of L, which implies that B closes into a projective plane in S3, an impossibility.
Therefore B lies in XK0 , and if A is an annulus in T cobounded by ∂FL and
∂B then FL ∪ A ∪ B can be isotoped into a once punctured Klein bottle for K
satisfying (ii).

Denote the components of L by K1,K2, with ∂F isotopic to K1. We assume
that a fixed 2-bridge presentation L is given relative to some 2-sphere S in S3,
and that F has been isotoped so as to satisfy (M1)–(M4) and have minimal
complexity. Notice that H0, H1 are 3-balls in this case. The next result will be
useful in the sequel.

Lemma (3.4). Let Σ′ be a surface in S3 spanned by K1 (orientable or not)
and transverse to K2, such that Σ = Σ′ ∩ XL is essential and meridionally
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Figure 5.

incompressible in XL. If Σ is isotoped so as to satisfy (M1)–(M4) with minimal
complexity, then |Y (Σ)| = 2− (χ(Σ) + |∂Σ|), and
(i) each critical point of h|˜Σ is a saddle,
(ii) for 0 ≤ r ≤ 1 any circle component of Sr ∩ Σ is nontrivial in Sr \ L and

Σ, and
(iii) Σ0 and Σ1 each consists of one cancelling disk.

Proof. If Σ is orientable the statement follows from the proof of [5, Theorem
3.1] without any constraints on the boundary of Σ. If Σ is nonorientable, the
given hypothesis on Σ are sufficient for the arguments of [4, Proposition 2.1] and
[7, Lemma 2] to go through and establish (i)–(iii); the meridional incompress-
ibility condition is needed only for (iii), as in [5, Theorem 3.1], while the fact
that any circle component of Sr ∩ Σ is nontrivial in Σ follows by the argument
of Lemma (4.1) (ii). That |Y (F )| = 2 − (χ(Σ) + |∂Σ|) follows now from (i) and
(iii).

Proof of Theorem (1.2) (b). We will split the argument into several parts,
according to Lemma (3.1).

Case (A): F ⊂ XL and F is meridionally incompressible.
In this case Lemma (3.4) applies with Σ = F , so |Y (F )| = 2 and F ∩S0, F ∩S1

have no circle components. Let 0 < r1 < r2 < 1 be the levels at which the

two saddles of h| ˜F are located, and let α0, α1 denote the arcs F ∩ S0, F ∩ S1,
respectively. For any level 0 < r < 1, any circle component of F ∩ Sr either
separates or does not separate the points Sr ∩K2; the first option is not possible
by Lemma (3.4) (ii) since F is meridionally incompressible, while in the second
option it is not hard to see that, with the aid of the cancelling disk F0, F
compresses in XL along one such level circle (see Fig. 5).

Hence Sr ∩ F has no circle components for 0 ≤ r ≤ 1, so the saddles, when
seen from bottom to top and top to bottom, join the arcs α0, α1, respectively,
in a nonorientable fashion (see Fig. 6(a)) and so, for a sufficiently small ε > 0,
B1 = F ∩ S × [r1 − ε, r1 + ε] and B2 = F ∩ S × [r2 − ε, r2 + ε] are Moebius
bands in F . For i = 1, 2, the core circle Ci of Bi in Sri necessarily separates the
points K2∩Sri , else Ci bounds a disk Di in Sri disjoint from K2 as in Fig. 6(b),
and a boundary compression disk for F can be constructed from the subdisk D′

i

of Di as in Fig. 6(c); also, ∂Bi is a (±1, 2) cable of Ci. Let R be the rectangle
F∩S×[r1+ε, r2−ε] ⊂ F . As h|R has no critical points, there exists an embedded
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Figure 6. Boundary compression of F .

K2 K2

β

β

Figure 7. Isotoping the arc β.

arc β in R with one endpoint in ∂B1 and the other in ∂B2, and such that h|N(β)
has no critical points for some small regular neighborhood N(β) of β in R; thus
β is monotone. As the once-punctured Klein bottle F ′ = B1 ∪ N(β) ∪ B2 is
isotopic in XK2 to F , it follows that the link L has the form of Fig. 2(b) up to
isotopy (see Fig. 7), and hence that L is a 4(4m + 2)/(4m + 1) 2-bridge link.

(Case (A))
Case (B): F ⊂ XL and F is meridionally compressible.
Observe that if F meridionally compresses along a circle γ ⊂ F then γ must

be a meridian circle of F : for if γ is trivial in F then a 2-sphere in S3 can
be constructed which intersects K2 in one point, if γ is a longitude in F then
S3 contains RP 2, and if γ is parallel to ∂F then L is the Hopf link. Thus,
F meridionally compresses into an essential pair of pants Δ in XL, which is
necessarily meridionally incompressible. By Lemma (3.4), we may therefore
assume that Δ satisfies (M1)–(M4) and lies within the region S × I except for
the cancelling disks Δ0,Δ1, and |Y (Δ)| = 0.

Since Δ is orientable, the saddles must join the corresponding arcs α0 =
Δ ∩ S0, α1 = Δ ∩ S1 to themselves in an orientable fashion or to a level circle
component, when seen from bottom to top and top to bottom, respectively. Let
C1, C2 be the two level boundary circles of Δ, and let C3, C4 be the limiting
circles in the saddle levels (see Fig. 8); we assume that, for 1 ≤ i ≤ 4, the Ci’s
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Figure 8.

are located at distinct levels ri, respectively. If rj and rk are the lowest and

highest levels in this list, respectively, then there exists an embedded arc β in ˜Δ
with one endpoint in Cj and the other in Ck, such that h|N(β) has no critical

points for some small regular neighborhood N(β) of β in ˜Δ (see Fig. 8). Then
a small regular neighborhood N(Cj ∪ β ∪ Ck) in Δ yields a 2-punctured disk
with boundary isotopic to K1 in XK2 . As in Case (A), it follows that L can be
isotoped into the form of Fig. 2(c), so L is a 8(m + 1)/(4m + 3) 2-bridge link.

(Case (B))
Therefore part (i) holds when F ⊂ XL. We now handle the last possible case.

Case (C): F ∩XL = FL.
As for any level 0 ≤ r ≤ 1 each circle component of FL ∩ Sr is either parallel

to the boundary circle of FL isotopic to K1, or parallel to the boundary circle
of FL which is a level meridian of K2, and L is neither the unlink nor the Hopf
link, it follows that FL is incompressible and meridionally incompressible, hence
Lemma (3.4) applies. Therefore, the method of proof used in Case (B) above
immediately implies that L is isotopic to a link of the form of Fig. 2(d), hence
(ii) holds in this case.

Since clearly any knot constructed as above has crosscap number two, the
theorem follows.

4. Knots with (1, 1) decompositions

In this section we assume that K is a crosscap number two knot in S3 ad-
mitting a (1, 1) decomposition relative to some Heegaard torus S of S3. In this
case the handlebodies H0, H1 are solid tori with meridian disks of slope μ0, μ1 in
S0, S1, respectively. For {i, j} = {0, 1}, we project μj onto Si, continue to denote
such projection by μj , and frame Si via the circles μi, μj , so that a (p, q)-circle in
Si means a circle embedded in Si isotopic to pμi+qμj; thus Si gets the standard
framing as the boundary of the exterior of the core of Hi, and a (p, q)-circle in
S0 is isotopic in S × I to a (q, p)-circle in S1.
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Before studying the associated essential once-punctured Klein bottle for K,
we prove a statement similar to Lemma (3.4) in the present context.

Lemma (4.1). Suppose K is not a torus knot. Let Σ′ be a spanning surface
for K in S3 (orientable or not) such that Σ = Σ′ ∩XK is essential in XK. If Σ
is isotoped so as to satisfy (M1)–(M4) with minimal complexity, then |Y (Σ)| =
1− χ(Σ), and

(i) each critical point of h|˜Σ is a saddle,
(ii) for 0 ≤ r ≤ 1 any circle component of Sr ∩ Σ is nontrivial in Sr \K and

Σ, and not parallel in Σ to ∂Σ,
(iii) for i = 0, 1 Σi consists of one cancelling disk and either one Moebius band

and some annuli components, or a collection of disjoint annuli each having
boundary slope (pi, qi) in Si with |qi| ≥ 2, and

(iv) the saddle closest to either the 0-level or 1-level does not join circle com-
ponents.

Proof. Part (i) follows from the argument of [4, Proposition 2.1].
Suppose now that γ is a circle component of Sr ∩Σ for some level 0 ≤ r ≤ 1.

If γ bounds a disk D in Sr \ K then γ bounds a disk D′ in Σ, since Σ is
incompressible in XK . Construct a surface Σ′′ isotopic to Σ from (Σ \D′) ∪D
by pushing D slightly above or below Sr so that Σ′′ satisfies (M1)–(M4) and

the singularities of h|˜Σ′′ are exactly those of h|˜Σ \ D′ with an additional local

extremum in the interior of D; thus, h|˜Σ′′ has at most |Y (Σ)|+1 critical points.
If D′ is disjoint from S0∪S1 then D′ lies in S× I and, since ∂D′ is level, h|D′

has a local extremum in intD′, contradicting (i). If D′ intersects S0 ∪ S1 then
|∂Σ′′

0 |+ |∂Σ′′
1 | < |∂Σ0|+ |∂Σ1| while |Y (Σ′′)| ≤ |Y (Σ)| + 1, hence c(Σ′′) ≤ c(Σ)

and so c(Σ′′) = c(Σ) by minimality of c(Σ), again contradicting (i). Therefore,
γ is nontrivial in Sr \K and, since K is not a torus knot, γ is not parallel in Σ
to ∂Σ. Thus it only remains to verify that γ is nontrivial in Σ for (ii) to hold,
which we will do by the end of the proof.

If some component of Σ0, other than the cancelling disk, compresses in H0,
then there is one such component σ which compresses in H0 via a disk D disjoint
from all other components of Σ0. Since Σ is essential in XK , ∂D bounds a disk

D′ in Σ. Let Σ′′ = (Σ \D′) ∪D. Then h|˜Σ′′ has at most |Y (Σ)| singular points
and, since intD′ necessarily intersects S0 ∪ S1, |∂Σ′′

0 | + |∂Σ′′
1 | < |∂Σ0| + |∂Σ1|

and so c(Σ′′) < c(Σ), an impossibility. Therefore, any component of Σ0 is
incompressible in H0, hence it must be either an annulus, a Moebius band,
or a disk; since H0 is a solid torus, Σ0 may have at most one Moebius band
component.

Suppose Σ0 has an annulus component σ; then σ separatesH0 into two pieces,
one of which contains the cancelling disk component of Σ0. If σ is parallel in
H0 into S0 away from all other components of Σ0 then σ can be pushed into the
region S × I; notice this is the case if the slope of σ in S0 is of the form (p0, q0)
with |q0| = 1. It is then possible to isotope σ and Σ appropriately, so that h|σ
has one saddle and one local minimum and Σ continues to satisfy (M1)–(M4);
hence |∂Σ0| will decrease by two while |Y (Σ)| will increase by two, and so c(Σ)

will remain minimal. However, this time h|˜Σ has a local minimum critical point
in σ, contradicting (i). Therefore, since σ is incompressible in H0, any boundary
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component of σ must be nontrivial in S0 \K and distinct from μ0, so it follows
that the boundary slope of σ in S0 is of the form (p0, q0) with |q0| ≥ 2.

Consider the first saddle above level 0; if it joins a circle component γ of
Σ ∩ S0 to itself or to another such circle component then it is possible to lower
the saddle below level S0 while satisfying (M1)–(M4), thus reducing the value of
c(Σ), which is not possible. Hence (iv) holds, and the first saddle above level 0
joins the arc component α0 of S0 ∩ Σ to itself or to a circle component.

Suppose now that σ is a disk component of Σ0 other than the cancelling disk;
then σ is either a trivial disk or a meridian disk of H0. In the first case, σ
separates H0 into a 3-ball B3 and a solid torus, with the cancelling disk of Σ0

contained in B3 by the first part of (ii); we may further assume that ∂σ and α0

are adjacent in S0. Consider the first saddle above level 0. If it joins the arc
component α0 of Σ ∩ Sr to itself then either a Moebius band is created by the
saddle with core a circle bounding a disk in the saddle level, so Σ is boundary
compressible (see Fig. 6), or a trivial circle component is created in a level slightly
above the saddle level, contradicting the first part of (ii). If the saddle joins ∂σ
to α0 then pushing down the saddle slightly below level 0 isotopes Σ so as to
still satisfy (M1)–(M4) but lowers its complexity. Since by (iv) these are the
only possibilities for the first saddle, if Σ0 contains any disk components other
than the cancelling disk then all such components are meridian disks of H0. The
analysis of the possible scenarios for the first saddle above level 0 is similar to
that of the previous cases, except for when the saddle joins α0 to itself as in
Fig. 9(a). In such case, if r is the level of the first saddle above level 0, the
Moebius band created by the saddle has as core a circle in Sr which bounds a
meridian disk of the solid torus bounded by Sr below the level Sr (see Fig 9(b)).
The situation is similar to that of Fig. 6, so Σ is boundary compressible, which
is not the case. Hence Σ0, and similarly Σ1, has no such disk components and
(iii) holds.

Now let 0 ≤ r ≤ 1 and γ be any circle component of (S0 ∪ Sr ∪ S1) ∩ Σ. If
γ is trivial and innermost in Σ then it bounds a subdisk D in Σ with interior
disjoint from S0 ∪Sr ∪S1, hence D lies either in Σ0,Σ1, or S× I. But, as shown
above, neither Σ0 nor Σ1 have disk components other than the cancelling disks,
and if D lies in S × I then, as ∂D = γ is level, h|D must have a local extremum
in intD, contradicting (i). Hence γ is nontrivial in Σ and so the proof of (ii) is
complete. That |Y (Σ)| = 1− χ(Σ) now follows from (i) and (iii).
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In preparation for the proof of Theorem (1.1), the following result specializes
Lemma (4.1) to the case when Σ is a once punctured Klein bottle F ; its first
part is a slight generalization of a construction by Matsuda in [9, pp. 2161–2162].
We will say that an essential annulus A properly embedded in S × I is an F -
spanning annulus if A can be isotoped so as to be disjoint from the component

of ˜F = F ∩ S × I containing parts of K, and its boundary slope in S0 is of the
form (p, q) for some |p|, |q| ≥ 2. Notice that an F -spanning annulus A is isotopic
in S × I to the annulus (∂A ∩ S0) × I, and its boundary component in S1 has
slope (q, p).

Lemma (4.2). Let F be an essential once-punctured Klein bottle spanned by
K which has been isotoped so as to satisfy (M1)–(M4) with minimal complexity.
If there is an F -spanning annulus in S × I having boundary slope (p, q) in S0

then K is either a (p, q) torus knot or a satellite of a (p, q)-torus knot; otherwise,
F ∩ (S0 ∪ S1) has at most two circle components.

Proof. Let F ′ denote the component of ˜F = F ∩ S × I containing parts of
K. Let A be an F -spanning annulus with boundary slope (p, q) in S0, and
suppose K is not a (p, q) torus knot. By Lemma (4.1) (ii),(iii), F ′ is either a
once-punctured Moebius band or a pair of pants embedded in the solid torus
V = S× I \ intN(A), where N(A) is a small regular neighborhood of A in S× I.
In either case, ∂F ′ has one component K ′ ⊂ intV which is isotopic to K in S3,
and one or two more components embedded in ∂V , each running once around
V . Notice that V is a regular neighborhood of a (p, q) torus knot, so K ′ is not
a core of V .

If F ′ is a once-punctured Moebius band then K ′ is a nontrivial knot in V with
odd winding number. If F ′ is a pair of pants then, by Lemma (4.1) (ii),(iii), the
closure of F \ F ′ consists either of two Moebius bands or an annulus with core
a meridian circle of F . In the first case F0 and F1 each have a Moebius band
component which, due to the presence of the spanning annulus A, have boundary
slopes (p, q) and (q, p), respectively, an impossibility since then |p| = |q| = 2; in
the latter case, the closure of the annulus F \ F ′ intersects V in annuli running
once around V , thus it can be isotoped in S3, away from F ′, into S3 \ intV ,
and so the components of ∂F ′ other than K ′ must be coherently oriented in ∂V ;
therefore K ′ has winding number two in V and hence it is a nontrivial satellite
of the core of V . The first part of the lemma follows.

Suppose now that F ∩ (S0 ∪ S1) has at least three circle components; if, say,
three such components lie in S0, or at least two lie in S0 and at least one in
S1, then, since |Y (F )| = 2 by Lemma (4.1) and the saddles do not join circle
components, at least one of the circle components of F ∩ S0 must flow along

an annulus component of ˜F from S0 to S1 without interacting with the saddles.

Thus ˜F has at least one annulus component which, by Lemma (4.1) (iii), has
boundary slope of the form (p, q) in S0 for some |p|, |q| ≥ 2, and so must be an
F -spanning annulus. Thus the second part of the lemma follows.

Proof of Theorem (1.1). Let K be a crosscap number two knot in S3, and let
F be an essential once-punctured Klein bottle spanned by K; we assume F has
been isotoped so as to satisfy (M1)–(M4) with minimal complexity. To simplify
notation, let F ′

0, F
′
1 denote the components of F0, F1, respectively, other than
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Figure 10. Construction of F via saddles in Cases (A) and (B).

the cancelling disks. By Lemma (4.2), if K is neither a torus nor a satellite knot
then S × I contains no F -spanning annuli and F ∩ (S0 ∪ S1) has at most two
circle components; thus, without loss of generality, F ′

0 and F ′
1 fit in one of the

following cases.
Case (A): F ′

0 is an annulus and F ′
1 is empty.

Fig. 10(a) shows the only possible construction (abstractly) of the surface F ,

starting from F0, via the two saddles of h| ˜F . By Lemma (4.1) (iii), the boundary
slope of the annulus F ′

0 in S0 is of the form (p, q) with |q| ≥ 2. It is not hard
to see that the boundary circle C of the annulus ∂F ′

0 in Fig. 10(a) bounds an
essential annulus A in S × I \ F , hence |p| = 1 since S × I has no F -spanning
annuli, so K is a 2-bridge knot by the argument of [9, pp. 2161–2162].

Case (B): Both F ′
0 and F ′

1 are Moebius bands.
The only possibility in this case is the one shown (abstractly) in Fig. 10(b):

for otherwise, by Lemma (4.1) (iv), the first saddle above the 0-level would join
the arc component of S0∩F with itself, necessarily in an orientable fashion, and
so Sr∩F would have two circle components for any level r in between the saddle
levels; but then the first saddle below the 1-level must join the circle component
of S1 ∩ F with itself, contradicting Lemma (4.1) (iv).

Hence ˜F is a pair of pants and, since all the critical points of h| ˜F are saddles,

there exists an embedded arc β in ˜F with one endpoint in ∂F ′
0 and the other

in ∂F ′
1 which is monotone in S × I and such that h|R has no critical points for

some small regular neighborhood R of β in ˜F . Observe that, for i = 0, 1, if ∂F ′
i

is a (pi, 2)-circle in Si, then F ′
i is isotopic in S3 to a Moebius band Bi which is a

(1, 2) cable of a (pi, 1)-circle ti in Si. Therefore the once-punctured Klein bottle
F ′
0 ∪R ∪ F ′

1 can be isotoped into B0 ∪R′ ∪B1 for some monotone subrectangle
R′ of R. As F ′

0 ∪R′ ∪F ′
1 is isotopic to F in S3, it follows that K is a knot of the

form K(t∗0, t
∗
1, R

′).
Case (C): Both F ′

0 and F ′
1 are empty.
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Figure 11. Construction of F via saddles in Case (C).

In this case the saddles, when read from bottom to top and top to bottom,
must join the arcs S0 ∩ F, S1 ∩ F with themselves, respectively, both in an
orientable fashion or both in a nonorientable fashion; the possible cases are
described (abstractly) in Fig.11. In the case of Fig.11(a), if the level circle C

has slope (p, q) relative to S0, then there is an essential annulus in S × I \ ˜F
with boundary slope (p, q) in S0. Hence |p| = 1 or |q| = 1 since S × I has no
F -spanning annuli, soK is a 2-bridge knot by the argument of [9, pp. 2161–2162].

In the case of Fig.11(b) let 0 < r1 < r2 < 1 be the saddle levels and, for
i = 1, 2, let Bi be the Moebius band F ∩ S × [ri − ε, ri + ε] for a sufficiently
small ε > 0. Then F ∩ S × [r1 + ε, r2 − ε] is a rectangle R, and B1 ∪R ∪B2 is a
once-punctured Klein bottle isotopic to F in S3. Hence K is a knot of the form
K(t∗0, t

∗
1, R

′), where ti is the core of the Moebius band Bi in the level ri and R′

is a monotone subrectangle of R.
Case (D): F ′

0 is a Moebius band and F ′
1 is empty.

Suppose the first saddle below the 1-level joins the arc component of F ∩
S1 with itself in an orientable fashion; then the first saddle above the 0-level
necessarily joins the arc component of F ∩ S0 with itself in a nonorientable
fashion. The situation here is similar to that of Case (A): the circle ∂F ′

0 bounds

an annulus A in S × I which can be isotoped away from ˜F (see Fig. 10(a), with
C = ∂F ′

0), hence the slope of ∂A in S1 must be integral and so K is a 2-bridge
knot.

Otherwise, the first saddle below the 1-level, say at level 0 < r1 < 1, joins the
arc component of F ∩ S1 with itself in a nonorientable fashion, while the first
saddle above the 0-level joins the arc component of F ∩ S0 with the circle ∂F ′

0.
This time the situation is similar to that of Cases (B) and the second part of
(C): for a small ε > 0, if B1 is the Moebius band F ∩ S × [r1 − ε, r1 + ε], then
R = F ∩ S × [0, r1 − ε] is a rectangle and F ′

0 ∪R ∪B1 is a once-punctured Klein
bottle isotopic to F in S3, hence K is a knot of the form K(t∗0, t∗1, R′), where R′

is a monotone subrectangle of R and t0, t1 can be described as in Cases (B) and
(C), respectively.
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TOPOLOGY OF 3-MANIFOLDS AND A CLASS OF GROUPS II

S.K. ROUSHON

Abstract. This is a continuation of an earlier preprint [17] under the same
title. These papers grew out of an attempt to find a suitable finite sheeted
covering of an aspherical 3-manifold so that the cover either has infinite or
trivial first homology group. With this motivation we defined a new class
of groups. These groups are in some sense eventually perfect. Here we
prove results giving several classes of examples of groups which do (not)
belong to this class. Also we prove some basic results on these groups and
state two conjectures. A direct application of one of the conjectures to the
virtual Betti number conjecture is mentioned. For completeness, here we
reproduce parts of [17].

0. Introduction

The main motivation to this paper and [17] came from 3-manifold topology
while trying to find a suitable finite sheeted covering of an aspherical 3-manifold
so that the cover has either infinite or trivial first integral homology group. In [15]
it was proved that M3×Dn is topologically rigid for n > 1 whenever H1(M

3,Z)
is infinite. Also the same result is true when H1(M

3,Z) is 0. The remaining
case is when H1(M

3,Z) is nontrivial finite. There are induction techniques in
surgery theory which can be used to prove topological rigidity of a manifold
if certain finite sheeted coverings of the manifold are also topologically rigid.
In the case of manifolds with nontrivial finite first integral homology groups,
there is a natural finite sheeted cover, namely, the one which corresponds to the
commutator subgroup of the fundamental group.

So we start with a closed aspherical 3-manifold M with nontrivial finite first
integral homology group and consider the finite sheeted covering M1 of M corre-
sponding to the commutator subgroup. If H1(M1,Z) �= 0 or H1(M1,Z) = 0 then
we are done, otherwise we again take the finite sheeted cover of M1 correspond-
ing to the commutator subgroup and continue. The group theoretic conjecture
(Conjecture 0.2) in this article implies that this process stops in the sense that
for some i either H1(Mi,Z) �= 0 or H1(Mi,Z) = 0.

Motivated by the above situation we define the following class of groups.

Definition (0.1). An abstract group G is called adorable if Gi/Gi+1 = 1 for
some i, where Gi = [Gi−1, Gi−1], the commutator subgroup of Gi−1, and G0 =
G. The smallest i for which the above property is satisfied is called the degree
of adorability of G. We denote it by doa(G).

2000 Mathematics Subject Classification: Primary: 20F19, 57M99. Secondary: 20E99.
Keywords and phrases: 3-manifolds, discrete subgroup of Lie groups, commutator sub-

group, perfect groups, virtual Betti number conjecture, generalized free product, HNN-
extensions.
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Obvious examples of adorable groups are finite groups, perfect groups, simple
groups and solvable groups. The second and third class of groups are adorable
groups of degree 0. The free products of perfect groups are adorable (in fact
perfect). The nontrivial abelian groups and symmetric groups on n ≥ 5 let-
ters are adorable of degree 1. Another class of adorable groups are GL(R) =
Limn→∞GLn(R). Here R is any ring with unity and GLn(R) is the multiplica-
tive group of n × n invertible matrices. These are adorable groups of degree
1. This follows from the Whitehead lemma which says that the commutator
subgroup of GLn(R) is generated by the elementary matrices and the group
generated by the elementary matrices is a perfect group. Also SLn(C), the mul-
tiplicative group of n × n matrices with complex entries, is a perfect group. In
fact we will prove that any connected Lie group is adorable as an abstract group.
The full braid groups on more than 4 strings are adorable of degree 1.

We observe the following two elementary facts in the next section.

Theorem (1.8). A group G is adorable if and only if there is a filtration
Gn < Gn−1 < · · · < G1 < G0 = G of G so that Gi is normal in Gi−1, Gi−1/Gi

is abelian for each i, and Gn is a perfect group.

Theorem (1.10). Let H be a normal subgroup of an adorable group G. Then
H is adorable if one of the following conditions is satisfied.

• G/H is solvable.
• for some i, Gi/Hi is abelian.
• for some i, Gi is simple.
• for some i, Gi is perfect and the group Gi/Hi+1 does not have any proper

abelian normal subgroup.

Also, the braid groups on more than 4 strings provide examples which show
that an arbitrary finite index normal subgroup of an adorable group need not be
adorable.

In Section 4 the following result about Lie groups is proved.

Theorem (4.9). Every connected real or complex Lie group is adorable as an
abstract group.

Below we give some examples of nonadorable groups. Proofs of nonadorability
of some of these examples are easy. Proofs for the other examples are given in
the next sections.

Some examples of groups which are not adorable are nonabelian free groups
and fundamental groups of surfaces of genus greater than 1; for the intersection of
a monotonically decreasing sequence of characteristic subgroups of a nonabelian
free group consists of the trivial element only. The commutator subgroup of
SL2(Z) is the nonabelian free group on 2 generators. Hence SL2(Z) is not
adorable. Also, by Stallings’ theorem, if the fundamental group of a compact
3-manifold has finitely generated nonabelian commutator subgroup which is not
isomorphic to the Klein bottle group with infinite cyclic abelianization then the
group is not adorable. It is known that most of these 3-manifolds support a
hyperbolic metric by Thurston’s hyperbolization theorem. It is easy to show
that the pure braid group is not adorable as there is a surjection of any pure
braid group of more than 2 strings onto a nonabelian free group.
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From now on, whenever we give examples of nonadorable groups, we will
mention its close relationship with nonpositively curved Riemannian manifolds.
This will help us state a general conjecture (Conjecture (0.1)).

The next result gives some important classes of examples of nonadorable
groups which are generalized free products G1 ∗H G2 or HNN -extensions K∗H .
We always assume G1 �= H �= G2 and K �= H .

Theorem (2.3). Let G be a group.
If G = G1 ∗H G2 is a generalized free product and G1 ∩H = (1), then one of

the following holds.
• G1 is perfect.
• G1 is isomorphic to the infinite dihedral group.
• G is not adorable.
If G = K∗H = 〈K, t tHt−1 = φ(H)〉 is an HNN -extension and G1∩H = (1),

then G is not adorable.
In the second case and in the last possibility of the first case for i ≥ 1, the

rank of Gi/Gi+1 is ≥ 2.

In Corollary (2.7) we deduce a more general version of Theorem (2.3) and show
that if H is n-step G-solvable (see Definition (2.6)) then in the amalgamated free
product case either G is adorable of degree at most n+1 or is not adorable and
in the HNN -extension case it is always nonadorable.

We will give some more examples (Lemma (2.8) and Example (2.9)) of a
class of nonadorable generalized free products and examples of compact Haken
3-manifolds with nonadorable fundamental groups.

At this point, recall that if M is a connected, closed oriented 3-manifold
and π2(M,x) �= 0, then by the Sphere theorem (see p. 40 of [9]) there is an
embedded 2-sphere in M representing a nonzero element of π2(M,x). Hence
M can be written as a connected sum of two nonsimply connected 3-manifolds
and thus π1(M,x) is a nontrivial free product. In addition, if we assume that
π1(M,x) is not perfect and M is not the connected sum of two projective 3-
spaces then by Theorem (2.3) π1(M,x) is not adorable. Thus we see that most
closed 3-manifolds with π2(M,x) �= 0 have nonadorable fundamental groups.

The next result is about groups with some geometric assumption. Recall
that a torsion free Bieberbach groups is the fundamental group of a Riemannian
manifold with sectional curvature equal to 0 everywhere.

Corollary (4.3). A torsion free Bieberbach group is nonadorable unless it
is solvable.

The following theorem deals with groups under some homological hypothesis.
This theorem has an interesting application in knot theory and possibly in 3-
manifolds in general also.

Theorem (4.4). Let G be a group satisfying the following properties.
• H1(G,Z) has rank ≥ 3.
• H2(G

j ,Z) = 0 for j ≥ 0.
Then G is not adorable. Moreover, Gj/Gj+1 has rank ≥ 3 for each j ≥ 1.

The Proposition below is a consequence of the above Theorem.
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Proposition (4.7). A knot group is adorable if and only if it has trivial
Alexander polynomial.

In fact in this case the commutator subgroup of the knot group is perfect. All
other knot groups are not adorable. On the other hand any knot complement
supports a complete nonpositively curved Riemannian metric [13].

After seeing the preprint [17] Tim Cochran informed me that the Proposition
(4.7) was also observed by him in corollary 4.8 of [5].

Note that most of the torsion free examples of nonadorable groups we men-
tioned above act freely and properly discontinuously (except in the case of the
braid groups, which is still an open question) on a simply connected complete
nonpositively curved Riemannian manifold. Also, we recall that a solvable sub-
group of the fundamental group of a nonpositively curved manifold is virtually
abelian [20]. There are generalization of these results to the case of locally
CAT (0) spaces [1]. Considering these facts we pose the following conjecture.

Conjecture (0.1). The fundamental groups of generic class of complete non-
positively curved Riemannian manifolds, or, more generally, of generic class of
locally CAT (0) metric spaces, are not adorable.

One can even ask the same question for hyperbolic groups.
Now we state the conjecture we referred to before. Though in [17] this conjec-

ture was stated for any finitely presented torsion free groups, our primary aim
was the following particular case.

Conjecture (0.2). Let G be a finitely presented torsion free group which is
isomorphic to the fundamental group of a closed aspherical 3-manifold such that
Gi/Gi+1 is a finite group for all i. Then G is adorable.

Using Theorem (3.1) in Section 3 it is easy to show that the above conjecture
is true for aspherical Seifert fibered spaces. In fact we will show that most Seifert
fibered spaces have nonadorable fundamental groups.

Here note that a partial converse of the above conjecture is true for closed 3-
manifolds. Before we prove this claim note that the hypothesis of the conjecture
implies that each Gi is finitely generated.

Lemma (0.3). Let G be the fundamental group of a closed 3-manifold, such
that for some i, Gi is nontrivial, finitely generated, and perfect. Then for each
i, Gi/Gi+1 is a finite group.

Proof. Since Gi is a nontrivial perfect group, it is not a surface group. Also
since Gi is finitely generated, by theorem 11.1 of [9], Gi is of finite index in G.
This proves the Lemma.

Remark (0.4). After seeing the preprint [17] Peter A. Linnell pointed out to me
that certain finite index subgroups of SL(n,Z) for n ≥ 3 satisfy the hypothesis of
conjecture 0.2 of [17], but they are not adorable. These are some noncocompact
lattices in SL(n,R) which are residually finite p-groups and satisfy Kazhdan
property T. I thank Professor Linnell for the stimulating example. We describe
his example in the Appendix. Conjecture (0.2) remains open for the fundamental
groups of closed aspherical 3-manifolds and for cocompact discrete subgroups of
Lie groups. Considering this situation we state our main problem now.
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Main Problem. Find groups for which the Conjecture (0.2) is true.

Note that Gi/Gi+1 is finite for each i if and only if G/Gi is finite for each i.
Thus, in other words, the above conjecture says that a nonadorable aspherical
3-manifold group has an infinite solvable quotient. Compare this observation
with Proposition (4.1).

Also note that by Theorem (2.3), if the group G in Conjecture (0.2) is not
perfect and not isomorphic to Z2 ∗ Z2 then it is irreducible. Thus we can as-
sume that the group G in the Conjecture is irreducible. Recall that a group
is irreducible if the group is not isomorphic to a free product of two nontrivial
groups.

There is another consequence of this conjecture. That is, if Conjecture (0.2)
is true then the virtual Betti number conjecture will be true if a modified (half)
version of it is true. We mention it below.

Modified virtual Betti number conjecture. Let M be a closed aspherical
3-manifold such that H1(M,Z) = 0. Then there is a finite sheeted covering M̃

of M with H1(M̃,Z) infinite.

It is easy to see that the Conjecture (0.2) and the Modified virtual Betti
number conjecture together implies the virtual Betti number conjecture.

Virtual Betti number conjecture. Any closed aspherical 3-manifold has a
finite sheeted covering with infinite first homology group.

The virtual Betti number conjecture was raised as a question by John Hempel
in question 1.2 of [10].

1. Some elementary facts about adorable groups

Recall that a group is called perfect if the commutator subgroup of the group
is the whole group.

Lemma (1.1). Let f : G → H be a surjective homomorphism with G adorable.
Then H is also adorable and doa(H) ≤ doa(G).

Example (1.2). The Artin pure braid group on more than 2 strings is not
adorable, for it has a quotient a nonabelian free group. In fact the full braid
group on n-strings is not adorable for n ≤ 4 and adorable of degree 1 otherwise.
(see [8]).

Lemma (1.3). The product G×H of two groups are adorable if and only if both
the groups G and H are adorable. Also if G×H is adorable then doa(G×H) =
max {doa(G), doa(H)}.

On the contrary, in the case of free product of groups, almost all the time
the output is nonadorable. Hence, adorability is mainly a property for irre-
ducible groups. We will consider the case of free product and more generally the
generalized free product case in the next section.

Lemma (1.4). Let G be an adorable group and H a normal subgroup of G.
Assume that Gi0 is simple for some i0. Then H is also adorable and doa(H) ≤
doa(G).
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Remark (1.5). In the above lemma, instead of assuming the strong hypothesis
that Gi0 is simple, we can assume only that Gi0 is perfect and Gi0/Hi0+1 does
not have any proper normal abelian subgroup. With this weaker hypothesis
the proof follows from the fact that the kernel of the surjective homomorphism
Gi0/Hi0+1 → Gi0/Hi0 is either trivial or Gi0 = Hi0 . In either case it follows
that H is adorable.

Lemma (1.6). Let H be a normal subgroup of a group G such that Gi/Hi is
abelian for some i. Then G is adorable if and only if H is adorable.

Proposition (1.7). Let H be a normal subgroup of a group G such that G/H
is solvable. Then H is adorable if and only if so is G.

Proof. Before we start the proof, we note down some generality. Suppose G
has a filtration of the form Gn < Gn−1 < · · · < G1 < G0 = G, where Gi is
normal in Gi−1 and Gi−1/Gi is abelian for each i. Since Gi−1/Gi is abelian for
each i, we haveG′

i−1 ⊂ Gi. Replacing i by i+1 we get G′
i ⊂ Gi+1. Consequently,

Gi
0 = Gi = {G′}i−1 ⊂ G1

i−1 ⊂ {G1
′}i−2 ⊂ G2

i−2 ⊂ · · · ⊂ G′
i−1 ⊂ Gi. Thus we

get Gn ⊂ Gn.
Denote G/H by F . As F is solvable we have 1 ⊂ F k ⊂ · · · ⊂ F 1 ⊂ F 0 = F ,

where F k is abelian. Let π : G → G/H be the quotient map. We have the
following sequence of normal subgroups of G:

· · · ⊂ Hn ⊂ Hn−1 · · · ⊂ H1 ⊂ H ⊂ π−1(F k) · · · ⊂ π−1(F 0) = G .

Note that this sequence of normal subgroups satisfy the same properties as
those of the filtration Gi of G above. Hence Gk+i ⊂ Hi−1. Now if G is adorable
then, for some i, Gk+i is perfect. We have

Hk+i ⊂ Gk+i = Gk+k+i+2 ⊂ Hk+i+1.

But we already have Hk+i+1 ⊂ Hk+i. That is, Hk+i is perfect, hence H is
adorable. Conversely if H is adorable then for some i, Hi is perfect. Note from
the above inclusions that Hi = Gi for some large i. Hence G is also adorable.

Theorem (1.8). A group G is adorable if and only if there is a filtration
Gn < Gn−1 < · · · < G1 < G0 = G of G so that Gi is normal in Gi−1, Gi−1/Gi

is abelian for each i, and Gn is a perfect group.

Proof. We use Proposition (1.7) and induction on n to prove the ‘if’ part
of the Theorem. So assume that there is a filtration of G as in the hypothesis.
Then Gn is an adorable subgroup of G with solvable quotient G/Gn. Proposition
(1.7) proves this implication. The ‘only if’ part of the Theorem follows from the
definition of adorable groups.

Corollary (1.9). Let G be a torsion free infinite group and F be a finite
quotient of G with kernel H such that H is free abelian and also central in G.
Then G is adorable.

Proof. Recall that equivalence classes of extensions of F byH are in one to one
correspondence with H2(F,H), which is isomorphic to Hom(F, (R/Z)n) for n
the rank of H (exercise 3, p. 95 of [3]). If F is perfect then Hom(F, (R/Z)n) = 0
and hence the extension 1 → H → G → F → 1 splits. But by hypothesis G is
torsion free. Hence F is not perfect. By a similar argument it can be shown that
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F i is perfect for no i unless it is the trivial group. Since F is finite this proves
that F is solvable and hence G is adorable, in fact solvable.

We sum up the above Lemmas and Propositions in the following Theorem.

Theorem (1.10). Let H be a normal subgroup of an adorable group G. Then
H is adorable if one of the following conditions is satisfied.

• G/H is solvable.
• for some i, Gi/Hi is abelian.
• for some i, Gi is simple.
• for some i, Gi is perfect and the group Gi/Hi+1 does not have any proper

abelian normal subgroup.

Remark (1.11). It is known that any countable group is a subgroup of a count-
able simple group (see theorem 3.4, chapter IV of [14]). Also, we mentioned
before that even finite index normal subgroup of an adorable group need not be
adorable. So the above theorem is best possible in this regard.

In the next section we give some more examples of virtually adorable groups
which are not adorable.

The following is an analogue of a theorem of Hirsch for poly-cyclic groups.
The proofs of Lemmas (A) and (B) in the proof of the theorem are easy and we
leave them to the reader.

Theorem (1.12). The following are equivalent.
• G is a group which admits a filtration G = G0 > G1 > · · · > Gn with the

property that each Gi+1 is normal in Gi with quotient Gi/Gi+1 cyclic and Gn is
a perfect group which satisfies the maximal condition for subgroups.

• G is adorable and satisfies the maximal condition for subgroups, i.e., for any
sequence H1 < H2 < · · · of subgroups of G there is an i such that Hi = Hi+1 =
· · · .

Proof. The proof is along the same lines as that of Hirsch’s theorem. The
main lemma is the following.

Lemma (A). Let H1 and H2 be two subgroup of a group G and H1 ⊂ H2. Let
H be a normal subgroup of G with the property that H ∩H1 = H ∩H2 and the
subgroup generated by H and H1 is equal to the subgroup generated by H and
H2. Then H1 = H2.

Let us first prove that the first statement implies the second. By Theorem
(1.8) it follows that the first statement implies G is adorable. Now we check
the maximal condition by induction on n. As Gn already satisfies the maximal
condition, we only need to check that Gn−1 also satisfies the maximal condition,
which follows from the following Lemma and by noting that Gn−1/Gn is cyclic.

Lemma (B). Let H be a normal subgroup of a group G such that both H and
G/H satisfy the maximal condition. Then G also satisfies the maximal condition.

Proof. Let K1 < K2 < · · · be an increasing sequence of subgroups of G.
Consider the two sequences of subgroups H∩K1 < H∩K2 < · · · and {H,K1} <
{H,K2} < · · · . Here {A,B} denotes the subgroup generated by the subgroups
A and B. As H and G/H both satisfy the maximal condition, there are integers
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k and l so that H ∩ Kk = H ∩ Kk+1 = · · · and {H,Kl} = {H,Kl+1} = · · · .
Assume k ≥ l. Then by Lemma (A) Kk = Kk+1 = · · · .

Now we deduce the first statement from the second. As G is adorable, it
has a filtration G = G0 > G1 > · · · > Gn with Gn perfect and each quotient
abelian. Also Gn satisfies the maximal condition, as it is a subgroup of G and
G satisfies the maximal condition. Since G satisfies the maximal condition, each
quotient Gi/Gi+1 is finitely generated. Now a filtration as in (1) can easily be
constructed.

This proves the theorem.

2. Generalized free products and adorable groups

We begin this section with the following result on free product of groups.
Recall that the infinite dihedral group D∞ is isomorphic to Z�Z2 � Z2 ∗Z2.

Proposition (2.1). The free product G of two nontrivial groups, one of which
is not perfect, is either isomorphic to D∞ or not adorable. Moreover, in the
nonadorable case, the rank of the abelian group Gi/Gi+1 is greater than or equal
to 2 for all i ≥ 1.

Proof. Let G be the free product of the two nontrivial groups G1 and G2,
where one of G1 and G2 is not perfect. Then, as the abelianization ofG = G1∗G2

is isomorphic to G1/G
1
1 ⊕G2/G

1
2, G is also not perfect.

By Kurosh Subgroup theorem (see proposition 3.6 of [14]), any subgroup of
G is isomorphic to a free product ∗iAi ∗ F , where F is a free group and the
groups Ai are conjugates of subgroups of either G1 or G2. In particular, the
commutator subgroup G1 is isomorphic to ∗iAi ∗ F for some Ai and F . Note
that [G1, G2] = 〈g1g2g−1

1 g−1
2 | gi ∈ Gi, i = 1, 2〉 is a subgroup of G1. Now

assume that G is not D∞. Then [G1, G2] is a nonabelian free group and clearly
[G1, G2] ∩ G1 = (1) = [G1, G2] ∩ G2. Also [G1, G2] is not conjugate to any
subgroup of G1 or G2. Hence [G1, G2] is a subgroup of F , which shows that F is
a nontrivial nonabelian free group. Hence the abelianization of G1 is nontrivial.
By a similar argument, using Kurosh Subgroup theorem, we conclude that no
Gn is perfect. This proves the first assertion of the Proposition. The second part
follows from the fact that the free group F has rank ≥ 2 and a nonabelian free
group has derived series consisting of nonabelian free groups.

Remark (2.2). In Proposition (2.1) we have seen that the free product of any
nontrivial group with a nonperfect group is either D∞ or nonadorable. The nat-
ural question that arises here is what happens in the amalgamated free product
case of two groups along a nontrivial group, or in the case of anHNN -extension?
First, recall that there are examples of simple groups which are amalgamated
free product of two nonabelian free groups along a (free) subgroup (see [2]). We
give another example. Let M = S3 −N(k) be a knot complement of a knot k in
the 3-sphere. Assume that the Alexander polynomial of the knot is nontrivial.
Then by Proposition (4.7) we know that π1(M) is not adorable. Recall that
the first homology of M is generated by a meridian of the torus boundary of
M , and the longitude, which is parallel to the knot in S3, represents the zero
in H1(M,Z). Now glue two copies of M along the boundary by sending the
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above longitude of one copy to the meridian of the other and vice versa. Then
the resulting manifold N has fundamental group isomorphic to the amalgamated
free product π1(M) ∗Z×Z π1(M), and an application of the Mayer-Vietoris se-
quence for integral homology shows that N has trivial first homology. That is,
N has perfect fundamental group. Another example in this connection is the
fundamental group of a torus knot complement in S

3. This group is of the form
G = Z ∗Z Z. If the knot is of type (p, q) then the two inclusions of Z in Z in the
above amalgamated free product are defined by multiplication by p and q respec-
tively. But G is not adorable as it has nonabelian free commutator subgroup.
In the following theorem we consider a more general situation.

From now on, whenever we consider a generalized free product G = G1 ∗H G2

or an HNN -extension G = K∗H , unless otherwise stated, we will always assume
that G1 �= H �= G2 and K �= H .

Theorem (2.3). Let G be a group.
If G = G1 ∗H G2 is a generalized free product and G1 ∩H = (1), then one of

the following holds.
• G1 is perfect.
• G1 is isomorphic to the infinite dihedral group D∞.
• G is not adorable.
If G = K∗H = 〈K, t | tHt−1 = φ(H)〉 is an HNN -extension and G1 ∩ H =

(1), then G is not adorable.
In the second case and in the last possibility of the first case for i ≥ 1, the

rank of Gi/Gi+1 is ≥ 2.

Note that the assumption G1 ∩H = (1) implies that H is abelian.
To prove the theorem we need to recall the bipolar structure on generalized

free products and the characterization of generalized free products by the exis-
tence of a bipolar structure on the group by Stallings.

Definition (2.4). (definition, p. 207 of [14]) A bipolar structure on a group G
is a partition of G into five disjoint subsets H,EE,EE∗, E∗E,E∗E∗ satisfying
the following axioms. (The letters X,Y, Z will stand for the letters E or E∗ with
the convention that (X∗)∗ = X , etc.)

• H is a subgroup of G.
• If h ∈ H and g ∈ XY , then hg ∈ XY .
• If g ∈ XY , then g−1 ∈ Y X . (Inverse axiom)
• If g ∈ XY and f ∈ Y ∗Z, then gf ∈ XZ. (Product axiom)
• If g ∈ G, there is an integer N(g) such that, if there exist g1, . . . , gn ∈ G and

X0, . . . , Xn with gi ∈ X∗
i−1Xi and g = g1 · · · gn, then n ≤ N(g). (Boundedness

axiom)
• EE∗ �= ∅. (Nontriviality axiom)

It can be shown that every amalgamated free product or HNN -extension has
a bipolar structure (p. 207-208 of [14]). The following theorem of Stallings shows
that the converse is also true.

Theorem (2.5). (Theorem 6.5 of [14]) A group G has a bipolar structure if
and only if G is either a nontrivial free product with amalgamation (possibly an
ordinary free product) or an HNN -extension.
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Proof of Theorem (2.3). First note that the first 5 properties in the above
definition are hereditary, that is, any subgroup F of G has a partition by subsets
satisfying these properties. The induced partition of F is obtained by taking the
intersections of H,EE, . . . with F . But EE∗ ∩F could be empty. We replace F
by the commutator subgroup G1 of G. We would like to check the sixth property
(that is, the nontriviality axiom) for this induced partition on G1.

We consider the amalgamated free product case first. Recall that if we write
g ∈ G − H in the form g = c1 · · · cn, where no ci ∈ H and each ci is in one
of the factors G1 or G2 and successive ci, ci+1 come from different factors, then
g ∈ EE∗ if and only if c1 ∈ G1 and cn ∈ G2. Such a word is called cyclically
reduced. Thus EE∗ consists of all cyclically reduced words. Let g1 ∈ G1−H and
g2 ∈ G2 −H ; then g1g2g

−1
1 g−1

2 is a cyclically reduced word and is contained in
EE∗ ∩G1. Hence the induced partition on G1 defines a bipolar structure on G1

with amalgamating subgroup G1 ∩H = (1). Hence G1 is a free product of two
nontrivial groups. Using Proposition (2.1) we complete the proof in this case.

When G is an HNN -extension we have a similar situation. We have to check
that EE∗ ∩G1 �= ∅. Recall from (p. 208 of [14]) that if we write g ∈ G −H in
the reduced form g = h0t

ε1h1 · · · tεnhn (where εi = ±1 and hi ∈ K for each i)
then g ∈ EE∗ if and only if h0 ∈ K −H , or h0 ∈ H and ε = +1, and hn ∈ H
and εn = +1. Now let h0 ∈ K −H and h1 ∈ H , then h0(h1t

−1)h−1
0 (h1t

−1)−1 =

(h0h1)t
−1h−1

0 th−1
1 ∈ EE∗ ∩ G1. Hence the induced partition on G1 gives a

bipolar structure on G1. Since G1 ∩H = (1) we get that G1 is a free product of
a nontrivial group with the infinite cyclic group. Hence Proposition (2.1) applies
again.

We introduce below a stronger version of the notion of solvability which de-
pends both on the group and the group where it is embedded.

Definition (2.6). A subgroup H of a group G is called G-solvable (or subgroup
solvable) if Gn ∩H = (1) for some n. If in addition Gn−1 ∩H �= (1) then H is
called n-step G-solvable (or n-step subgroup solvable).

Note that if H is G-solvable then H is solvable. Also if G is solvable then any
subgroup of G is G-solvable.

Now we can state a Corollary of Theorem (2.3). The proof is easily deduced
from the proof of Theorem (2.3) and is left to the reader.

Corollary (2.7). Let G be a group.
If G = G1 ∗HG2 is a generalized free product and H is n-step G-solvable, then

one of the following holds.
• G is adorable of degree n and not solvable.
• Gn � D∞.
• G is not adorable.
If G = K∗H = 〈K, t tHt−1 = φ(H)〉 is an HNN -extension and H is G-

solvable, then G is not adorable.
In the second case and in the last possibility of the first case for i ≥ 1, the

rank of Gi/Gi+1 is ≥ 2.

The following Lemma considers some more generalized free product cases.
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Lemma (2.8). Let G1 ∗H G2 be a generalized free product with H abelian and
contained in the center of both G1 and G2. Also assume that one of G1/H or
G2/H is not perfect. Then G1 ∗H G2 is either solvable or not adorable.

Proof. Using normal form of elements of G1 ∗H G2 it is easy to show that the
center of G1 ∗H G2 is H . This implies that we have a surjective homomorphism
G1∗HG2 → (G1∗HG2)/H = G1/H ∗G2/H . By Proposition (2.1), G1/H ∗G2/H
is either the infinite dihedral group or not adorable and hence G1 ∗H G2 is either
solvable or not adorable by Lemma (1.1).

Example (2.9). Using Lemma (2.8) we now give a large class of examples
of compact Haken 3-manifolds with nonadorable fundamental groups. Let M
and N be two compact orientable Seifert fibered 3-manifolds with nonempty
boundary and orientable base orbifold. Such examples of M and N are torus
knot complements in S

3. Let ∂M and ∂N be the boundary components of M
and N respectively. Note that both ∂M and ∂N are tori. Let γ1 ⊂ ∂M and
γ2 ⊂ ∂N be simple closed curves which are parallel to some regular fiber of M
and N , respectively. Recall that both γ1 and γ2 represent central elements of
π1(M) and π1(N) respectively. Now choose an annulus neighborhood A1 of γ1
in ∂M and A2 of γ2 in ∂N and glue M and N identifying A1 with A2 by a
diffeomorphism which sends γ1 to γ2. Let P be the resulting manifold. Then
P is a compact Haken 3-manifold with tori boundary and, by the Seifert-van
Kampen theorem, π1(P ) satisfies the hypothesis of Lemma (2.8) and hence is
either solvable or not adorable. Here note that the manifold P itself is Seifert
fibered. In the next section we will show that in fact an infinite group which is
the fundamental group of a compact Seifert fibered 3-manifold is nonadorable
except for some few cases.

3. Adorability and 3-manifolds

Seifert fibered spaces are a fundamental and very important class of 3-man-
ifolds. Conjecturally (due to Thurston) any 3-manifold is build from Seifert
fibered spaces and hyperbolic 3-manifolds. Results of Jaco-Shalen, Johannson
and Thurston say that this is in fact true for any Haken 3-manifold.

Theorem (3.1). Let M3 be a compact Seifert fibered 3-manifold. Then one
of the following four cases occur.

• (π1(M))i is finite for some i ≤ 2.
• π1(M) is solvable.
• π1(M) is not adorable and (π1(M))i/(π1(M))i+1 has rank greater than 1

for all i greater than some i0.
• π1(M) is perfect.

Proof. First we recall some well known group theoretic information about the
fundamental group of Seifert fibered spaces. If B is the base orbifold of M then
there is a surjective homomorphism π1(M) → πorb

1 (B), where πorb
1 (B) is the

orbifold fundamental group of B. Recall that πorb
1 (B) is a Fuchsian group. Also

recall that the above surjective homomorphism is part of the following exact
sequence:

1 → C → π1(M) → πorb
1 (B) → 1.
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Here C is the cyclic normal subgroup of π1(M) generated by a regular fiber of
the Seifert fibration of M . Also if π1(M) is infinite then C is an infinite cyclic
subgroup of π1(M).

Some examples of Seifert fibered 3-manifolds with finite fundamental group
are lens spaces and the Poincare sphere. So, from now on we assume π1(M) is
infinite. Then we get the exact sequence:

1 → Z → π1(M) → πorb
1 (B) → 1.

There are now two cases to consider.
Case 1. πorb

1 (B) is finite. By lemma 2.5 of [7] π1(M) has a finite normal
subgroup G with quotient isomorphic either to Z or to D∞. Since D∞ is solvable
(π1(M))i is finite for some i ≤ 2.

Case 2. πorb
1 (B) is infinite and not a perfect group. Then by Theorem 1.5 of

[18] there is a torsion free normal subgroup H of πorb
1 (B) so that πorb

1 (B)/H is a
finite solvable group. Hence by Proposition (1.7) πorb

1 (B) is adorable if and only
if so is H . Since H is of finite index in πorb

1 (B) by a result of Hoare, Karrass and
Solitar (see proposition 7.4, Chapter III of [14]), H is again a Fuchsian group.
But a torsion free Fuchsian group is the fundamental group of a compact surface
(evident from the presentation of such groups). Hence H is either Z, Z × Z,
Z � Z, or nonadorable. Thus by Proposition (1.7) πorb

1 (B) is either solvable or
nonadorable. If πorb

1 (B) is solvable then from the above exact sequence it follows
that π1(M) is also solvable. On the other hand Lemma (1.1) shows π1(M) is
nonadorable whenever πorb

1 (B) is.
Next, consider the case when πorb

1 (B) is a perfect group. Let x1, x2, . . . , xn

be the cone points on B with indices p1, p2, . . . , pn greater than or equal to 2.
By (theorem 1.5 of [18]) πorb

1 (B) is perfect if and only if B = S2 and the indices
p1, p2, . . . , pn are pairwise coprime. It is well known that in this situation M is
an integral homology 3-sphere and hence π1(M) is also perfect. This proves the
theorem.

Notice that the proof of the above theorem is not very illuminating in the sense
that it does not show the cases when the groups are nonadorable or solvable.
Below we show that in fact in most cases the fundamental group of a compact
Seifert fibered space is nonadorable. For simplicity of presentation we consider
Seifert fibered spaces whose base orbifold B is orientable and has only cone
singularities. Note that the proof of the Theorem deals with both orientable and
nonorientable bases B and for any kind of singularities. First let us consider the
case when M has nonempty boundary. Since B also has nonempty boundary,
πorb
1 (B) is a free product of cyclic groups [9] and hence, by Proposition (2.1),

πorb
1 (B) is either the infinite dihedral group or is nonadorable if it is a nontrivial

free product. Hence either π1(M) is solvable (when πorb
1 (B) is dihedral or cyclic)

or (by Lemma (1.1)) π1(M) is not adorable.
If M is closed then we have the same situation as above except that πorb

1 (B)
has the following form:

πorb
1 (B) = 〈a1, . . . , ag, b1, . . . , bg, x1, . . . , xn | xj1

1 = · · · = xjn
n = 1;

Πg
j=1[aj , bj]x1 · · ·xn = 1〉,
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where x1, . . . xn represent loops around the cone points of B. We will consider
the case g = 0 at the end of the proof. If g ≥ 1 then adding the extra relations
a1 = 1 we get that πorb

1 (B) has the following homomorphic image

〈a2, . . . , ag, b1, . . . , bg, x1, . . . , xn | xj1
1 = · · · = xjn

n = 1;

Πg
j=2[aj , bj]x1 · · ·xn = 1〉 .

If there is no cone point on B and g = 1 then M is an S1-bundle over the torus,
and hence has solvable fundamental group. Otherwise, the last group is a free
product of the infinite cyclic group (generated by b1) and another group, and
hence not adorable by Proposition (2.1). Thus πorb

1 (B) is also not adorable by
Lemma (1.1). Consequently so is π1(M).

Now we consider the case when g = 0. There are two further cases to consider.
Case A. πorb

1 (B) is finite. This case occurs when B has at most 3 cone points,
and if exactly 3 cone points with indices n1, n2, n3 then 1

n1
+ 1

n2
+ 1

n3
> 1 (see

theorem 12.2, of [9]). We have already discussed this case in Case 1 in the proof
of the theorem.

Case B. πorb
1 (B) is infinite. In this case there are the following two possibil-

ities (see theorem 12.2 of [9]). (a) B has more than 3 cone points. (b) B has 3
cone points with indices j1, j2, j3 so that 1

j1
+ 1

j2
+ 1

j3
≤ 1.

For (a) we need the following easily verified remark.

Remark (3.2). If B is a sphere with 3 cone points then |πorb
1 (B)| ≥ 3.

Now recall that in (a) πorb
1 (B) has the following presentation.

〈x1, . . . , xn | xj1
1 = · · · = xjn

n = 1;x1 · · ·xn = 1〉
where n ≥ 4. Now assume n ≥ 6 and add the relation x1x2x3 = 1 in the above
presentation. Then πorb

1 (B) surjects onto the free product of

〈x1, x2, x3 | xj1
1 = xj2

2 = xj3
3 = 1;x1x2x3 = 1〉

and

〈x4, . . . , xn | xj4
4 = · · · = xjn

n = 1;x4 · · ·xn = 1〉.
By Proposition (2.1) and Remark (3.2) it follows that πorb

1 (B) is either perfect
or not adorable, and hence so is π1(M). In the case n = 5, if there is a pair
of indices jk and jl so that (jk, jl) ≥ 3 then it is easy to show that π1(M) is
nonadorable. We leave the remaining cases to the reader.

In (b), when 1
j1

+ 1
j2

+ 1
j3

= 1, πorb
1 (B) is a discrete group of isometries of the

Euclidean plane. Recall that a torsion free discrete group of isometries of the
Euclidean plane is isomorphic to Z or Z × Z or Z � Z and hence, by the result
of Sah we mentioned above, πorb

1 (B) is either perfect or solvable. On the other
hand, if 1

j1
+ 1

j2
+ 1

j3
< 1 then πorb

1 (B) is a discrete groups of isometries of the

hyperbolic plane. Since a group of isometries of the hyperbolic plane does not
contain a free abelian group on more than one generator, it follows by the result
of Sah that in this case πorb

1 (B) is either perfect, a finite solvable extension of Z,
or nonadorable. Hence π1(M) is either solvable, perfect, or nonadorable.

Remark (3.3). Recall that a Fuchsian group is a discrete subgroup of
PSL(2,R), and that it is either a free product of cyclic groups or is isomorphic
to a group of the form πorb

1 (B). In the free product case, except for the infinite
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dihedral group, all other free products are nonadorable. In the remaining cases
we have already seen in the proof of Theorem (3.1) that a Fuchsian group is either
finite, perfect, solvable, or nonadorable, and in most cases it is nonadorable. It is
not known to me if a similar situation occurs for discrete subgroups of PSL(2,C).
Such information would be very useful to get some hold on the virtual Betti
number conjecture for hyperbolic 3-manifolds.

4. (Non)adorability under homological or geometric hypothesis

In Section 2, under some group theoretic hypothesis, we showed when a gen-
eralized free product or an HNN -extension produces a nonadorable group.

This section deals with some homological or geometric (or topological) hy-
pothesis on a group which ensures that the group is nonadorable.

Proposition (4.1). Let M3 be a compact 3-manifold with the property that
there is an exact sequence of groups 1 → H → π1(M) → F → 1 such that H is
finitely generated nonabelian but not the fundamental group of the Klein bottle
and F is an infinite solvable group. Then π1(M) is not adorable.

Proof. By theorem 11.1 of [9] it follows that H is the fundamental group of a
compact surface. Also as H is nonabelian and not the Klein bottle group, it is
not adorable. The Proposition now follows from Proposition (1.7).

Proposition (4.2). Let G be a torsion free group and H a free nonabelian
(or abelian) normal subgroup of G with quotient F a nontrivial finite (or finite
perfect) group. Then G is not adorable.

Proof. If H is nonabelian then, by Stallings’ theorem, G itself is free and
hence not adorable. So assume H is free abelian. Since in this case F is a perfect
group, the restriction of the quotient map G → F to Gi is again surjective for
each i with H ∩Gi as kernel. And since G is infinite and torsion free, H ∩Gi is
nontrivial free abelian for all i. This shows that each Gi is again a Bieberbach
group. Note that if H1(Gi,Z) = 0 then Gi is centerless, and it is known that
centerless Bieberbach groups are meta-abelian with nontrivial abelian holonomy
group and hence solvable [11]. But since eachGi surjects onto a nontrivial perfect
group it cannot be solvable. Hence H1(Gi,Z) �= 0 for each i. This proves the
Proposition.

The conclusion of the above Proposition remains valid if we assume that F is
nonsolvable adorable.

By Bieberbach’s theorem [4], we have the following Corollary.

Corollary (4.3). The fundamental group of a closed flat Riemannian man-
ifold is nonadorable unless it is solvable.

So far we have given examples of nonadorable groups which are fundamen-
tal groups of known class of manifolds or of manifolds with some strong Rie-
mannian structure. The following Theorem gives a general class of examples of
nonadorable groups under some homological conditions.
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Theorem (4.4). Let G be a group satisfying the following properties
• H1(G,Z) has rank ≥ 3.
• H2(G

j ,Z) = 0 for j ≥ 0.
Then G is not adorable. Moreover, Gj/Gj+1 has rank ≥ 3 for each j ≥ 1.

Proof. Consider the short exact sequence.

1 → G1 → G → G/G1 → 1 .

We use the Hochschild-Serre spectral sequence (p. 171 of [3]) of the above ex-
act sequence. TheE2-term of the spectral sequence is E2

pq = Hp(G/G1, Hq(G
1,Z)).

Here Z is considered as a trivial G-module. This spectral sequence gives rise to
the following five term exact sequence:

H2(G,Z) → E2
20 → E2

01 → H1(G,Z) → E2
10 → 0.

Using (2) we get

0 → H2(G/G1, H0(G
1,Z)) → H0(G/G1, H1(G

1,Z)) → H1(G,Z)

→ H1(G/G1, H0(G
1,Z)) → 0.

As Z is a trivial G-module we get

0 → H2(G/G1,Z) → H0(G/G1, H1(G
1,Z)) → H1(G,Z) →

H1(G/G1,Z) → 0.

Note that the homomorphism between the last two nonzero terms in the above
exact sequence is an isomorphism. Also, the second nonzero term on the left is
isomorphic to the co-invariant H1(G

1,Z)G/G1 , and hence we have the following:

H2(G/G1,Z) � H1(G
1,Z)G/G1 .

Since G/G1 has rank ≥ 3 we get that H2(G/G1,Z) has rank greater or equal
to 3. This follows from the following lemma.

Lemma (4.5). Let A be an abelian group. Then the rank of H2(A,Z) is
rkA(rkA − 1)/2 if rkA is finite, and infinite otherwise.

Proof. If A is finitely generated then, from the formula H2(A,Z) �
∧2

A, it
follows that the rank of H2(A,Z) is rkA(rkA − 1)/2. In the case where A is
countable and infinitely generated, there are finitely generated subgroups An of
A such that A is the direct limit of An. Now, as homology of group commutes
with direct limits, the proof follows using the previous case. Similar arguments
apply when A is uncountable.

To complete the proof of the theorem, note that there is a surjective homomor-
phism H1(G

1,Z) → H1(G
1,Z)G/G1 . Thus we have proved that H1(G

1,Z) also

has rank ≥ 3. Finally, replacing G by Gn and G1 by Gn+1 and using induction
on n, the proof is completed.

There are two important consequences of Theorem (4.4). First we recall some
definitions from [19].

Let R be a nontrivial commutative ring with unity. The class E(R) consists
of groups G for which the trivial G-module R has a RG-projective resolution

· · · → P2 → P1 → P0 → R → 0
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such that the map 1R ⊗ ∂2 : R ⊗RG P2 → R ⊗RG P1 is injective. Note that if
a group belongs to E(R) then H2(G,R) = 0. Also this condition is sufficient
to belong to E(R) for groups of cohomological dimension less or equal to 2. By
definition G lies in E if it belongs to E(R) for all R. A characterization of E-
groups is that a group G is an E-group if and only if G belongs to E(Z) and
G/G1 is torsion free (see lemma 2.3 of [19]).

Corollary (4.6). Let G be an E-group and rank of H1(G,Z) is ≥ 2. Then
G is not adorable.

Proof. By Theorem A of [19] it follows that G satisfies the second condition
of Theorem (4.4). Hence we get that H1(G

2,Z) has rank ≥ 1 and hence in
particular G2 is not perfect. On the other hand, an E-group has derived length
0, 1, 2, or infinity (remark after (theorem A of [19]). Thus G is not adorable.

In the following Proposition we give an application of Theorem (4.4) for knot
groups.

Proposition (4.7). Let H = π1(S
3 − k), where k is a nontrivial knot in

the 3-sphere with nontrivial Alexander polynomial. Then H is not adorable.
Moreover, if the rank of H1/H2 is greater than or equal to 3 then the same is
true for Hj/Hj+1 for all j ≥ 2.

In fact, a stronger version of the Proposition follows, since by [19] the succes-
sive quotients of the derived series of G are torsion free. Thus we get that the
successive quotients of the derived series are nontrivial and torsion free.

Proof of Proposition (4.7). First recall that the second condition of Theorem
(4.4) follows from (theorem A of [19]). On the other hand, the commutator
subgroup of a knot group is perfect if and only if the knot has trivial Alexander
polynomial. So assume that H1 is not perfect. If H1 is finitely generated then
in fact it is nonabelian free and hence H is not adorable. If rank of H1/H2 is
≥ 3 then the proof follows from the above Theorem. So assume that rank of
H1/H2 is ≤ 2.

Recall that the rank of the abelian group H1/H2 is equal to the degree of
the Alexander polynomial of the knot (see theorem 1.1 of [6]). Thus if the rank
of H1/H2 is 1 then the Alexander polynomial has degree 1, which is impossible
as the Alexander polynomial of a knot always has even degree. Next if rank
of H1/H2 is 2 then H is not adorable by Corollary (4.6) and noting that knot
groups are E-groups.

Definition (4.8). A Lie group is called adorable if it is adorable as an abstract
group.

Theorem (4.9). Every connected (real or complex) Lie group is adorable.

Proof. Let G be a Lie group and consider its derived series:

· · · ⊂ Gn ⊂ Gn−1 · · · ⊂ G1 ⊂ G0 = G.

Note that each Gi is a normal subgroup of G. Define Gi = Gi. Then we have
a sequence of normal subgroups

· · · ⊂ Gn ⊂ Gn−1 · · · ⊂ G1 ⊂ G0 = G
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so that Gi is a closed Lie subgroup of G and Gi/Gi+1 is abelian for each i.
Suppose that, for some i, dim Gi = 0, i.e., Gi is a closed discrete normal subgroup
of G. We claim Gi is abelian. For, fix gi ∈ Gi and consider the continuous map
G → Gi given by g �→ ggig

−1. As G is connected and Gi is discrete, the image
of this map is the singleton {gi}. That is, gi commutes with all g ∈ G and hence
Gi is abelian.

As Gi ⊂ Gi, G
i is also abelian. Thus G is solvable and hence adorable.

Next assume no Gi is discrete. Then, as G is finite dimensional and the Gi’s
are Lie subgroups of G, there is an i0 so that Gj = Gj+1 for all j ≥ i0 and dim
Gi0 ≥ 1. We need the following Lemma to complete the proof of the Theorem.

Lemma (4.10). Let G be a (real or complex) Lie group such that G1 = G.
Then G2 = G1, that is, G1 is a perfect group.

Proof. The proof of the lemma follows from theorems XII.3.1 and XVI.2.1 of
[12].

We have Gi0 ⊂ Gi0 and hence

Gi0 = Gi0+1 = Gi0+1 ⊂ G1
i0
⊂ Gi0 = Gi0 .

This implies G1
i0

= Gi0 . Now from the above Lemma we get Gi0 is adorable.
Thus Gi0 is a normal adorable subgroup of Gi0−1 with quotient Gi0−1/Gi0

abelian and hence, by Proposition (1.7), Gi0−1 is also adorable. By induction,
it follows that G is adorable.

5. Appendix

In this section we describe the counterexample given by Peter A. Linnell to
conjecture 0.2 of [17].

Example (5.1). (P.A. Linnell) Let n ≥ 3 and p be an odd prime. Let K be
the kernel of the homomorphism SL(n,Z) → SL(n,Z/pZ) which is induced by
the homomorphism Z → Z/pZ. When p = 2, let K be the kernel of SL(n,Z) →
SL(n,Z/4Z). Now we have the following three facts about K.

•K is a residually finite p-group. Hence we get thatKi+1 is a proper subgroup
of Ki for each i.

• K satisfies Kazhdan property T . Hence Ki/Ki+1 is a finite group for each
i.

• K is finitely presented and torsion free.
Thus K is not adorable. But by the second and the third fact above, K

satisfies the hypothesis of conjecture 0.2 of [17].

A notable fact is that K is a noncocompact discrete subgroup of SL(n,R).
It would be very interesting to prove Conjecture (0.2) for cocompact discrete
subgroup of Lie groups.

6. Problems

In this section we state some problems for a further study on adorable groups.
We also give the motivations behind each problem and mention known results
related to the problem.
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Problem (6.1). Study the Main Problem for some particular class of groups,
for example for cocompact discrete subgroups of Lie groups or for groups which
are fundamental groups of closed nonpositively curved Riemannian manifolds.

Problem (6.1) is related to the particular case of the virtual Betti number
conjecture for hyperbolic 3-manifolds. We have already seen that a discrete
subgroup of PSL(2,R) is either finite, solvable, perfect, or nonadorable. In fact,
it is possible to describe when each of these possibilities occurs. A similar result
about discrete subgroups of PSL(2,C) would be very important. A more precise
problem is the following.

Problem (6.2). Given a positive integer n, does there exist a discrete (torsion
free) subgroup of PSL(2,C) which is adorable of degree n?

Problem (6.3). Find all 3-manifolds with adorable fundamental group.

Some examples of such 3-manifolds are integral homology 3-spheres and knot
complement of knots with trivial Alexander polynomial. In Theorem (3.1) we
have seen that most Seifert fibered spaces have nonadorable fundamental group,
and also we have shown when the fundamental group is adorable.

Problem (6.4). Prove that most groups are not adorable.

A possible approach to study Problem (6.4) is by the same method which was
used to show that most groups are hyperbolic.

A small and first step towards Conjecture (0.2) is the following.

Problem (6.5). Show that Conjecture (0.2) is true for the fundamental groups
of compact Haken 3-manifolds.

We have already mentioned that it is true for Seifert fibered spaces. Note that
if the fundamental group of a compact Haken 3-manifold satisfies the hypothesis
of Conjecture (0.2) then the manifold has to be closed.
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LUSTERNIK-SCHNIRELMANN CATEGORY, HOPF DUALITY,

AND ISOLATED INVARIANT SETS

JOSÉ M.R. SANJURJO

This paper is dedicated to Professor Francisco Javier
González Acuña on the occasion of his sixtieth birthday

Abstract. We establish an inequality relating the Lusternik–Schnirelmann
coefficient of the unstable manifold of an isolated invariant set of a flow and
the coefficients of a Morse decomposition of this set. We also establish some
homological relations between the Morse sets of a particular Morse decom-
position of an isolated invariant set. This result introduces Hopf duality
properties in the context of continuous dynamical systems.

1. Introduction

This paper can be partially considered as a continuation of the article [15], that
was devoted to the study of properties of the Lusternik-Schnirelmann category
in the context of dynamical systems. As we remarked in the introduction of that
paper, there are several different definitions of this coefficient, although most of
them agree in the important case of ANR’s (Absolute Neighborhod Retracts).
The interested reader can consult the review articles [5] by R.H.Fox and [9], [10]
by I.M. James for general information about this topological invariant.

The definition of Lusternik-Schnirelmann category of a compactum used in
this paper, as well as in [15], is that introduced by K. Borsuk in [1]. It was
also remarked in [15] that Borsuk gave this definition in the context of his shape
theory, which is a branch of Geometric Topology that has been used in the
study of the global properties of dynamical systems. The Lusternik-Schnirelman
category of a (metric) compactum X in the sense of Borsuk is defined in the
following way: Suppose that X is embedded in an ANR, M (this is no loss of
generality since all compacta can be embedded in ANR’s, for instance in the
Hilbert cube or in Euclidean spaces in the finite-dimensional case). We denote
by η(X) the number defined as follows (see [15]):

If X = ∅ then η(X) = 0
If X �= ∅ and if there exist natural numbers n such that:
(1) for every neighborhood U of X in M there exist compacta X1, . . . , Xn

contractible in U and such that X = X1 ∪ · · · ∪Xn,
then η(X) denotes the smallest of all such numbers n.
If X �= ∅ and if no natural number n satisfies (1) then η(X) = ∞.
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The definition of η(X) does not depend on M or on the particular embedding
that we consider. The coefficient η(X) is the Lusternik-Schnirelmann category
of X in the sense of Borsuk and it is a homotopy invariant or, more generally,
a shape invariant. Borsuk’s definition is different from the one considered, for
instance, in [5], but both of them agree in the case of compact ANR’s. The
coefficient η(X) is originally defined only for compacta but, by the homotopy
invariance mentioned below, it makes sense to consider it also for spaces with
the homotopy type of compacta.

The main result proved in [15] was an inequality relating the Lusternik-Schni-
relmann category of the unstable manifold of an isolated invariant compactum
of a flow and the categories of the Morse sets of a Morse decomposition of that
compactum. There was, however, an important restriction for the validity of the
result: the isolated invariant set should be regular. In the present paper we give
an example showing that this requirement is essential and that the inequality
does not hold for more general isolated invariant sets. On the other hand, we
prove that if we consider the unstable manifold endowed with its intrinsic topol-
ogy (as defined by Robbin and Salamon [14]) then the restriction can be removed
and the inequality is true in its full generality.

Another aim of this note is to provide a dynamical framework to express dual-
ity properties that are studied in Topology under the name of Hopf duality. This
kind of duality refers to (n − 1)-manifolds, W , embedded in the n-sphere Sn,
and establishes homological relations between the two n-manifolds with bound-
ary into which Sn is decomposed by W (see Steenrod and Epstein [17]). We
consider here the situation of flows defined in a locally compact metric space
X possessing an attractor, M , which is an n-manifold satisfying some specific
conditions. The attractor is endowed with a Morse decomposition {M0,M1,M2}
where M0 is an (n − 1)-submanifold of M decomposing M into two manifolds
with common boundary M0. We present in the paper some duality properties of
the homology and cohomology Conley indices of the Morse sets. We also study
the more general situation in which M is required only to be an isolated invari-
ant set (not necessarily an attractor) and we get some homological properties
of the Morse sets. The most general result in this direction, stated in Corollary
3, is presented in terms of the unstable manifold with its intrinsic topology and
formulated in the language of Čech homology. We remark that the use of the
intrinsic topology is also essential in this result. We use in our proofs some of
the basic theory of Dynamical Systems, stability, attractors, isolated invariant
sets, and Conley index as presented by Bhatia and Szego [2], Conley [3], or
Rybakowski [13], and also some Algebraic Topology of manifolds, in particular
the classical Poincaré and Lefschetz duality theorems. The books by Dold [4]
and Hatcher [8] are good references for these subjects. There are a number of
recent papers in the literature where other topological properties of attractors
and Morse decompositions are studied (see, for instance, [6], [7], [11]).

We say that a Morse decomposition {M0,M1,M2} is connected if all the
Morse sets are connected. The rest of the terminology is the standard one in the
literature.

The results in this paper were obtained while the author was visiting the
University of Manchester (U.K.). The author is grateful to the members of the
Department of Mathematics of that University, and in particular to Nigel Ray,
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for their hospitality, and to his colleagues at the Complutense and Polytechnical
Universities of Madrid, A. Giraldo, J.M. Montesinos-Amilibia, M.A. Morón and
F. Ruiz del Portal for useful conversations.

2. Lusternik-Schnirelmann category and the intrinsic topology

We shall consider a flow φ : X × R →X defined on a locally compact metric
space, X . We use the notation ω(x) (respectively ω∗(x) ) to denote the positive
(resp. negative) limit set of the point x, i.e., the set of points y ∈ X such
that there exists a sequence tn → +∞ (resp. tn → −∞) and xtn → y. A
Morse decomposition of an isolated invariant compactum K is a collection D =
{M1, . . . ,Mk} of disjoint closed invariant subsets of K such that for every x ∈ K
there are integers i and j, with i ≤ j, such that ω(x) ⊂ Mi, ω

∗(x) ⊂ Mj and, if
i = j, x ∈ Mi = Mj. See [6] for information concerning Morse decompositions.
The unstable manifold Wu(K) of an isolated invariant compactum is the set
{x ∈ X | ω∗(x) ⊂ K}.

In [15] it was proved that if K is a regular isolated invariant set (i.e. if K
admits an isolating neighborhood N such that the orbits which leave N never
return) and {M1, . . . ,Mk} is a Morse decomposition of K then the following
inequality holds:

η(Wu(K)) ≤ η(M1) + · · ·+ η(Mk).

However, the following example shows that the condition of regularitity is
essential in that result.
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Figure 1. A flow on a torus X with an isolated invariant set K
which is a copy of S1.

In this example we have a flow defined on a torus X , the isolated invariant
set K is a copy of S1 with an attractor-repeller decomposition consisting of two
stationary points and the unstable manifold Wu(K) = X . In this case we have
η(Wu(K)) = 3 but η(M1) + η(M2) = 2.

On the other hand, Robbin and Salamon introduced a new topology on the
unstable manifold of K which has proved to be very useful in the definition and
study of properties related to the shape index. We briefly recall the definition of
this topology:

Consider an index pair (N,L) for K (see [3] for a definition) and the associated
inverse system ((N/L)s, pst), where (N/L)s = N/L for every s ∈ R+ and, if
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s ≤ t, then pst : (N/L)t → (N/L)s is defined by

pst(x) =

{
x(t− s) if x[0, t− s] ⊂ N − L
∗ otherwise

(the point ∗ above corresponds to the equivalence class of L).
If we take the inverse limit Z = lim ((N/L)s , pst) and denote by � the point

in Z all of whose coordinates are the base point ∗ ∈ N/L, then there is a natural
map h : Z − {�} → Wu(K) defined in the following way: If x = (xs) ∈ Z − {�}
take t ∈ R+ such that xt ∈ N−L. Then h(x) = xtt. The map h does not depend
on the choice of t and it is a continuous bijection. The topology onWu(K) which
makes h a homeomorphism is called the intrinsic topology. The corresponding
topological space is designated by W i. Some properties of this space have been
studied in [16].

We shall prove in our first result that, if we consider the intrinsic topology on
the unstable manifold, then there are no restrictions for the validity of the former
result establishing a comparison between the Lusternik-Schnirelmann category
of the unstable manifold of the invariant set and that of its Morse decomposition.
In the sequel we shall always use proper index pairs for K, i.e. index pairs (N,L)
such that every point x in the exit set L immediately leaves the neighborhood
N (i.e. x[0, t] � N for every t > 0). By a result of McCord [12], proper index
pairs always exist.

Theorem (2.1). Suppose that K is an isolated invariant set of the flow φ :
X×R →X and {M1, . . . ,Mk} is a Morse decomposition of K. Then the unstable
manifold W i of K, endowed with its intrinsic topology, has compact homotopy
type and its Lusternik-Schnirelmann coefficient η satisfies the following inequality

η(W i) ≤ η(M1) + · · ·+ η(Mk).

Proof. The theorem can be reduced to the case when the Morse decomposition
consists of two sets, M1 and M2, together with the use of an induction argument.
The case k = 1 can be handled in practice as a particular case of k = 2 with
M1 = K and M2 = ∅. The argument is as follows: If the theorem is true for
k − 1 Morse sets then to prove the general case consider the attractor-repeller
decomposition of K given by M∗

1 = { x ∈ K | ω(x) ∪ ω∗(x) ⊂ ∪k−1
i=1 Mi} and

Mk. If the theorem is true for two Morse sets then η(W i) ≤ η(M∗
1 ) + η(Mk).

If we consider now the flow restricted to M∗
1 , then {M1, . . . ,Mk−1} is a Morse

decomposition of M∗
1 , and the (k − 1)-dimensional version of the the theorem

applied to X = K = M∗
1 establishes the general result. Hence, we restrict

ourselves to an attractor-repeller decomposition of K, {M1,M2}. Let (N,L) be
a proper index pair for K in X . We can assume that N is embedded in a space
M ∈ ANR. Consider the asymptotic negative set N− ={x ∈ N | x(−∞, 0] ⊂
N}. Let U be an arbitrary neighborhood of N− in M . If η(M1) = l1 and
η(M2) = l2 then, using elementary properties of ANRs, it is possible to see that
there are closed neighborhoods (in K) W1 and W2 of M1 and M2, respectively,

that can be represented as unionsW1 =
⋃l1

i=1 W
i
1, W2 =

⋃l2
i=1 W

i
2 of compact sets

which are contractible in U . Moreover, since {M1,M2} is an attractor-repeller
decomposition ofK, the use of Lyapunov functions allows us to show that K can
be decomposed into two closed sets K1 and K2 which are deformable in K into
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subsets of W1 and W2 respectively and, hence, representable as K1 =
⋃l1

i=1 K
i
1,

K2 =
⋃l2

i=1 K
i
2 with Ki

1 and Ki
2 contractible in U . Now, using again properties

of ANRs, we can find a neighborhood N̂ of K in X wich admits a decomposition

N̂ =

l1+l2⋃
i=1

Ni

with Ni contractible in U . It has been proved in [15] that N− is deformable to a

subset of N̂ and, hence, N− is also representable as the union of l1+ l2 compacta
contractible in U ; as a consequence, η(N−) ≤ l1 + l2.

Consider now the unstable manifold W i endowed with the intrinsic topology.
Define n− = N− ∩ L. For every point x ∈ W i − N− we select the only point
in n− contained in the trajectory of x. This point can be expressed as xtx with
tx < 0. We claim that the map α : W i → R such that α(x) = tx if x ∈ W i−N−

and α(x) = 0 otherwise is continuous. To see this, suppose that we have a
sequence of points xn → x in W i. We consider the only non-trivial case, when
x /∈ N− − n−. This convergence in the intrinsic topology is equivalent to the
fact that there is an s < 0 such that: a) xn(s) and x(s) belong to N− − n−

and b) xn(s) → x(s) with the extrinsic topology inherited from X . Take now
the positive numbers sxn and sx such that xn(s + sxn) and x(s + sx) lie in
n−. The sequence sxn is bounded since, otherwise, we would have intervals of
trajectories [xns, xn(s + sxn)] contained in N , with sxn arbitrarily large, and
this would imply that the trajectory of x(s) would be contained in N and N
would not be isolating. Hence, there is a subsequence of sxn which converges to
a number s0. We can assume, without loss of generality, that sxn → s0. Thus
xn(s + sxn) → x(s + s0). Since n− is compact, x(s + s0) ∈ n− and, hence,
s0 = sx. As a consequence, txn = sxn + s → tx0 = sx0 + s and α is continuous.
We consider now the homotopy

Φ : W i × [0, 1] → W i

defined by Φ(x, s) = x(stx). This map is continuous since it can be considered
as a composition of the map W i × [0, 1] → W i × R given by (x, s) → (x, stx ),
which is continuous, and the flow restricted to W i, which is also continuous with
the intrinsic topology. The homotopy Φ realizes a strong deformation retraction
of W i into N− and, hence, W i has compact homotopy type. Moreover, we have
already seen that η(N−) ≤ l1+ l2. Hence η(W

i) ≤ η(M1)+η(M2), which proves
the case k = 2. The general case is a consequence of the argument established
before.

3. Duality and Morse sets

We study in this section some properties of flows that are related to the topo-
logical situation of Hopf duality. This situation arises when (n − 1)-manifolds,
W , embedded in the n-sphere Sn, induce homological relations between the two
n-manifolds with boundary into which Sn is decomposed by W (see Steenrod
and Epstein [17]). We present here a much more general situation applicable
to a Morse decomposition {M0,M1,M2} of a manifold M which is an isolated
invariant set of a flow φ : X × R →X , where M0 is an (n − 1)-submanifold of
M decomposing M into two manifolds with common boundary M0, and M1
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and M2 are general Morse sets (not necessarily manifolds). We recall that con-
nected Morse decomposition means a decomposition where all the Morse sets are
connected.

Theorem (3.1). Let φ : X × R →X be a flow defined on a locally compact
metric space X. Let M ⊂ X be an orientable, compact, connected n-dimensional
manifold which is an attractor of φ. Suppose that Hk(M) = Hk+1(M) = {0} for
a given index k. Let {M0,M1,M2} be a connected Morse decomposition of M ,
where M0 is an (n − 1)-submanifold of M , decomposing M into two manifolds
with common boundary M0. We then have the following relations involving the
homological and cohomological Conley indices: 1) CHk+1(M1) = CHn−k(M2)
and 2) CHn−k−1(M0) = CHk+1(M1)⊕ CHk+1(M2).

If we only assume that M is an isolated invariant set of φ (not necessar-
ily an attractor) then, with the same hypotheses as above, we have the follow-
ing relations involving Čech homology and cohomology of the Morse sets: 1)
Ȟk(M1) = Ȟn−k−1(M2) and 2) Ȟk(M0) = Ȟk(M1)⊕ Ȟk(M2).

Proof. We shall only prove the statement in the theorem concerning the Con-
ley indices since the proof of the second part, which refers to Čech homology,
involves the same kind of ideas and can be left to the reader.

Since M0 separates M , the Morse sets M2 and M1 are contained in different
components of M − M0. The orbits γ(x) ⊂ M − M2 with ω∗(x) ⊂ M2 have
their ω-limit contained in M0 and, as a consequence, the set M02 = {x ∈ M |
ω∗(x) ⊂ M2} ∪ M0 is an isolated invariant set of X and, in fact, an attractor
of the flow restricted to M (and, hence, an attractor of the flow φ). Moreover,
(M0,M2) is an attractor-repeller decomposition of M02. Let U be a positively
invariant compact neighborhood of M02 in X and consider another positively
invariant compact neighborhood U0 of M0 not meeting M2 and such that U0 is
contained in the interior of U . Then (U,U0) is an index pair for the Morse setM2.
We select a nested sequence (Un, Un

0 ) of similar index pairs with ∩Un = M02

and ∩Un
0 = M0. By using the properties of the flow, it is possible to define a

sequence of maps rn : (U1, U1
0 ) → (Un, Un

0 ) such that jnrn  i1 and rnjn  in,
where jn : (Un, Un

0 ) → (U1, U1
0 ) is the inclusion and in : (Un, Un

0 ) → (Un, Un
0 ) is

the identity. The homotopies considered here are those of pairs. It follows that
jnn−1rn  rn−1, where jnn−1 : (Un, Un

0 ) → (Un−1, Un−1
0 ) is the inclusion, and

then we have that the induced homomorphisms between Čech homology groups
(rn)∗ : Ȟ∗(U1, U1

0 ) → Ȟ∗(Un, Un
0 ) are isomorphisms and, by continuity of Čech

homology, we get that Ȟ∗(U1, U1
0 ) is isomorphic to Ȟ∗(M02, M0). We deduce

from this that the homological Conley index CH∗(M2) is Ȟ∗(M02, M0).
The hypotheses in the theorem imply thatM02 is a compact orientable n-man-

ifold with boundary M0. Then, using Lefschetz duality, we get that Hn−k(M02,
M0) = Hk(M02). Moreover, the pair (M1, M02) is a repeller-attractor decom-
position of M and, considering the long exact sequence of cohomological Conley
indices associated to such decomposition,

· · · → CHk(M) → CHk(M02) → CHk+1(M1) → CHk+1(M) → · · · ,
and the fact that {0} = Hk(M) = CHk(M) and {0} = Hk+1(M) = CHk+1(M)
(since M is an attractor), we get that CHk+1(M1) = CHk(M02). On the other
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hand we have that CHk(M02) = Hk(M02) for the same reason as before and we
conclude from this that CHn−k(M2) = CHk+1(M1).

We consider now the triad (M,M02,M01), where M01 = {x ∈ M | ω∗(x) ⊂
M1} ∪ M0. M01 is, as M02, a compact orientable n-manifold with boundary,
and M02 ∩M01 = M0. According to Dold [4], p. 291, this triad is excisive and,
hence, it has an associated Mayer-Vietoris sequence in homology

· · · → Hn−k(M) → Hn−k−1(M0) →
Hn−k−1(M02)⊕Hn−k−1(M01) → Hn−k−1(M) → · · ·

By the Poincaré duality theorem Hn−k(M) = Hn−k−1(M) = {0} and, since
M0 is an attractor, we have that

CHn−k−1(M0) = Hn−k−1(M0) = Hn−k−1(M01)⊕Hn−k−1(M02).

Now, arguments involving Lefschetz duality, similar to those used before, show
that Hn−k−1(M01) = CHk+1(M1) and Hn−k−1(M02) = CHk+1(M2). This
establishes the second equality in the statement concerning the Conley indices
and completes the proof.

The second part of Theorem 2 admits a different, more general, version, in
which the homological hypothesis is placed on the unstable manifold of M with
its intrinsic topology. This can be obtained as the following consequence of the
theorem:

Corollary (3.2). Let φ : X × R →X be a flow defined on a locally com-
pact metric space X. Let M ⊂ X be an orientable, compact, connected n-
dimensional manifold which is an isolated invariant set of φ. Suppose that
Ȟk(W i(M)) = Ȟk+1(W i(M)) = {0} for a given index k. Let {M0,M1,M2}
be a connected Morse decomposition of M , where M0 is an (n− 1)-submanifold
of M , decomposing M into two manifolds with common boundary M0. Then,
we have the following relations involving Čech homology and cohomology of the
Morse sets: 1) Ȟk(M1) = Ȟn−k−1(M2) and 2) Ȟk(M0) = Ȟk(M1)⊕ Ȟk(M2).

Proof. The isolated invariant set K can be represented as the intersection of
a nested sequence of isolating neighborhoods Ni such that every Ni has an exit
set Li with (Ni, Li) a proper index pair. In the proof of Theorem 1 it has been
shown that the unstable manifold W i with its intrinsic topology is homotopically
equivalent to N−

i for every i. Since K is also the intersection of the nested

sequence of the N−
i we have, by the continuity property of Čech cohomology,

that Ȟk(K) = Ȟk(W i(M)) = {0} and Ȟk+1(K) = Ȟk+1(W i(M)) = {0}.
Hence the corollary is a consequence of Theorem 2.
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THE JØRGENSEN NUMBER OF THE WHITEHEAD LINK

GROUP

HIROKI SATO

Dedicated to Professor Francisco Javier Gonzalez Acuña on his sixtieth birthday

Abstract. In this paper we consider the Jørgensen number of the White-
head link group. The result is as follows: The Jørgensen number of the
Whitehead link group is two. Furthermore, we will represent the point
corresponding to the Whitehead link group by using the coordinates intro-
duced in Sato [12].

1. Introduction

(1.1) In 1976 Jørgensen obtained the following important theorem, called
Jørgensen’s inequality, which gives a necessary condition for a non-elementary
Möbius transformation group G = 〈A,B〉 to be discrete.

Theorem (A) (Jørgensen [1]). Suppose that the Möbius transformations A
and B generate a non-elementary discrete group. Then

J(A,B) := | tr2(A) − 4|+ | tr(ABA−1B−1)− 2| ≥ 1 .

The lower bound 1 is best possible.

Definition (1.1.1). Let A and B be Möbius transformations. The Jørgensen
number J(A,B) of the ordered pair (A,B) is defined by

J(A,B) := |tr2(A) − 4|+ |tr(ABA−1B−1)− 2| .
We denote by Möb the set of all orientation-preserving Möbius transforma-

tions. We recall that Möb (= PSL(2,C)) acts on the upper half space H3 of
R3 as the group of conformal isometries of hyperbolic 3-space. A subgroup G of

Möb is said to be elementary if there exists a finite G-orbit in R̂3.

Definition (1.1.2). Let G be a non-elementary two-generator subgroup of
Möb. The Jørgensen number J(G) for G is defined by J(G) := inf{J(A,B) | A
and B generate G}.

Definition (1.1.3). A non-elementary two-generator subgroup G of Möb is a
Jørgensen group if G is a discrete group with J(G) = 1.

Jørgensen and Kiikka showed the following for Jørgensen groups.

2000 Mathematics Subject Classification: Primary 30F40; Secondary 20H10, 57M25.
Keywords and phrases: Jørgensen’s inequality, Jørgensen number, Jørgensen group, the

Whitehead link group.
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Theorem (B) (Jørgensen-Kiikka [2]). Let 〈A,B〉 be a non-elementary dis-
crete group with J(A,B) = 1. Then either A is elliptic of order at least seven or
A is parabolic.

If 〈A,B〉 is a Jørgensen group such that A is parabolic and J(A,B) = 1, then
we call it a Jørgensen group of parabolic type. There is an infinite number of
Jørgensen groups (see Jørgensen-Lascurain-Pignataro [3], Li-Oichi-Sato [6], [7],
[8], Sato [12]). The following familiar groups are all Jørgensen groups of parabolic
type: The modular group, the Picard group (Jørgensen-Lascurain-Pignataro [3],
Sato [13], Sato-Yamada [14]), the figure-eight knot group [12], “the Gehring-
Maskit group” [12], where “the Gehring-Maskit group” is the group studied in
Maskit [10].

The link group of a link L is the fundamental group of the complement space
S3 −L. Since, by Mostow’s rigidity theorem, the link group of a hyperbolic link
has essentially one faithful discrete PSL(2,C)-representation, the link group is
naturally identified with a Kleinian (discrete) group. In this paper we call the link
group of the Whitehead link the Whitehead link group, that is, the Whitehead
link group is the discrete faithful representation of the fundamental group of the
Whitehead link. Now this gives rise to the following problems.

Problem (1.1.4). Is the Whitehead link group a Jørgensen group?

Problem (1.1.5). If the Whitehead link group is not a Jørgensen group, find
the Jørgensen number of the group.

In this paper we will give the answers to the problems, that is, we have the
following theorem and corollary.

Theorem (1.1.6). The Jørgensen number of the Whitehead link group is two.

Corollary (1.1.7). The Whitehead link group is not a Jørgensen group.

(1.2) Throughout this paper we will always write elements of Möb as matrices
with determinant 1. Let 〈A,B〉 be a marked two-generator group such that A is
parabolic. Then we can normalize A and B as follows:

A =

(
1 1
0 1

)
and B := Bσ,μ =

(
μσ μ2σ − 1/σ
σ μσ

)
,

where σ ∈ C \ {0} and μ ∈ C. We denote by Gσ,μ the marked group generated
by A and Bσ,μ : Gσ,μ = 〈A,Bσ,μ〉. We say that (σ, μ) ∈ (C \ {0}) × C is the
point representing a marked group Gσ,μ and that Gσ,μ is the marked group
corresponding to a point (σ, μ).

In Li-Oichi-Sato [6], [7], [8] and Sato [12], we considered the case of μ = ik (k∈
R). Namely, we considered the marked two-generator group Gσ,ik = 〈A,Bσ,ik〉
generated by

A =

(
1 1
0 1

)
and Bσ,ik =

(
ikσ −k2σ − 1/σ
σ ikσ

)
,

where σ ∈ C \ {0} and k ∈ R.
Now we have the following conjecture.
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Conjecture (1.2.1). For any Jørgensen group G of parabolic type there exists
a marked group Gσ,ik (σ ∈ C \ {0}, k ∈ R) such that Gσ,ik is conjugate to G.

If this conjecture is true, then it is sufficient to consider the case of μ = ik
in order to find all Jørgensen groups of parabolic type. We found all Jørgensen
groups Gσ,ik of parabolic type (Li-Oichi-Sato [6], [7], [8] and Sato [12]).

(1.3) Let C be the following cylinder: C = {(σ, ik) | |σ| = 1, k ∈ R}.
Theorem (C) (Sato [12]). If a marked two-generator group Gσ,ik = 〈A,Bσ,ik〉

(σ ∈ C \ {0}, k ∈ R) is a Jørgensen group such that J(A,Bσ,ik) = 1, then the
point (σ, ik) representing Gσ,ik lies on the cylinder C.

If we set σ = −ireiθ, which is used in [12], then we have the following theorem.

Theorem (D) (Jørgensen-Lascurain-Pignataro [3], Sato [12], [13], Sato-Ya-
mada [14]). (i) The group Gσ,ik with σ = −ieπi/2 and k = 0 is conjugate to the
modular group.

(ii) The group Gσ,ik with σ = −ieπi/2 and k = 1/2 is conjugate to the Picard
group.

(iii) The group Gσ,ik with σ = −ieπi/6 and k =
√
3/2 is conjugate to the

figure-eight knot group.
(iv) The group Gσ,ik with σ = −i and k =

√
3/2 is conjugate to the “Gehring

- Maskit group”.

Now this gives rise to the following problem.

Problem (1.3.1). Represent the Whitehead link group by using the coordinates
(σ, ik) introduced in §1.2, that is, by Gσ,ik (σ ∈ C \ {0}, k ∈ R).

For this problem we have the following theorem.

Theorem (1.3.2). The Whitehead link group is conjugate to the marked two-

generator group Gσ,ik where σ =
√
2e3πi/4 and k = −1/2.

Finally we note that this paper is closely connected with the following prob-
lem:

Problem (1.3.3). Let r be a real number with r ≥ 1. When is there a discrete
group whose Jørgensen number is equal to r?

The methods of the proofs of Propositions 2 and 3 are applicable to this
problem for every natural number r ≥ 2 (Li-Oichi [5]).

The author expresses gratitude to Professor M. Sakuma for his suggestions
about knot theory. Thanks are due to the referees for their careful reading and
valuable suggestions.

2. Proof of Theorem (1.1.6).

In this section we will give a proof of Theorem (1.1.6).
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Theorem (E) (cf. Wielenberg [15], Krushkal’, Apanasov and Gusevskĭı [4]).
The Whitehead link group GW has the following presentation:

GW = 〈A,B | (A−1BAB−1)(ABA−1B−1)(AB−1A−1B)(A−1B−1AB) = I〉,
where

A =

(
1 1
0 1

)
, B =

(
1 0

1− i 1

)
,

and I is the identity matrix.

Proposition (2.1). Let GW be the Whitehead link group generated by A and
B in Theorem (E). Then an element X of GW has the following form:

X =

(
1 + (1− i)a b
(1− i)c 1 + (1− i)d

)
.

where a, b, c, d ∈ Z+ iZ, (1− i)(a+ d− bc)− 2iad = 0.

Proof. We will prove this proposition by induction. Let

X =

(
1 + (1− i)a b
(1− i)c 1 + (1− i)d

)
.

be an element of GW , where a, b, c, d ∈ Z+ iZ, (1− i)(a+ d− bc)− 2iad = 0.
For the matrix A, we can take a = c = d = 0, b = 1. For the matrix B, we

can take a = b = d = 0, c = 1.
Let

Y =

(
1 + (1− i)α β
(1 − i)γ 1 + (1− i)δ

)
.

be an element of GW , where α, β, γ, δ ∈ Z+ iZ, (1− i)(α+ δ − βγ)− 2iαδ = 0.
If we set

XY =

(
x y
z u

)
,

then

x = 1 + (1 − i){a+ α+ bγ + (1− i)aα}
y = (b + β) + (1− i)(αβ + bδ)

z = (1 − i){c+ γ + (1− i)(cα+ dγ)}
u = 1 + (1 − i){d+ δ + cβ + (1− i)dδ} .

Thus XY ∈ GW . Our proof is now complete.

Proposition (2.2). Let GW be the Whitehead link group in Theorem (E).
Let 〈X,Y 〉 be a non-elementary subgroup generated by X and Y, where X,Y ∈
GW . Then the Jørgensen number of (X,Y ) is greater than or equal to two:
J(X,Y )≥ 2.

Proof. Let

X =

(
1 + (1− i)a b
(1 − i)c 1 + (1− i)d

)
, Y =

(
1 + (1− i)α β
(1− i)γ 1 + (1− i)δ

)
,

where a, b, c, d ∈ Z + iZ, (1 − i)(a + d − bc)− 2iad = 0 and α, β, γ, δ ∈ Z + iZ,
(1− i)(α+ δ − βγ)− 2iαδ = 0.

We set

XYX−1Y −1 =

(
x y
z u

)
.
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Then by straightforward calculations we have

x = 1+ (1 − i){a+ α+ d+ δ + 2bγ − (b+ β)(c+ γ)}+
(1− i)2m2 + (1− i)3m3 + (1− i)4m4

for some m2,m3,m4 ∈ Z+ iZ, and

u = 1+ (1− i){a+ α+ d+ δ + 2cβ − (b+ β)(c + γ)}+
(1− i)2n2 + (1 − i)3n3 + (1 − i)4n4

for some n2, n3, n4 ∈ Z+ iZ.
Thus

tr(XYX−1Y −1) = 2 + 2(1− i){a+ α+ d+ δ + bγ + cβ − (c+ γ)(b+ β)}
+(1− i)2(m2 + n2) + (1 − i)3(m3 + n3) + (1− i)4(m4 + n4) .

Hence we have

|tr(XYX−1Y −1)− 2| = 2|{a+ d+ α+ δ + bγ + cβ − (c+ γ)(b+ β)}(1− i)−
i(m2 + n2)− (1 + i)(m3 + n3)− 2(m4 + n4)| .

We set

K = {a+ d+ α+ δ + bγ + cβ − (c+ γ)(b+ β)}(1− i)− i(m2 + n2)−
(1 + i)(m3 + n3)− 2(m4 + n4).

Then K ∈ Z+ iZ and

|tr(XYX−1Y −1)− 2| = 2|K|.
Since 〈X,Y 〉 is non-elementary, we have K �= 0. Hence

|tr(XYX−1Y −1)− 2| ≥ 2.

Thus J(X,Y ) ≥ 2, since |tr2(X)− 4| ≥ 0.

Proposition (2.3). Let A,B be the matrices in Theorem (E). Set C = AB.
Then A and C generate the Whitehead link group GW and J(A,C) = 2.

Proof. We can see by easy calculations that

C = AB =

(
2− i 1
1− i 1

)
,

and so we have J(A,C) = |1− i|2 = 2.

Proof of Theorem (1.1.6). Theorem (1.1.6) follows from Propositions (2.2)
and (2.3).

Corollary (1.1.7) follows from Theorem (1.1.6) and Theorem (C).
Let

T =

(
1 −1/2
0 1

)
.

We set A∗ = TAT−1 and C∗ = TCT−1. Then we have

A∗ =

(
1 1
0 1

)
and C∗ =

(
(3− i)/2 (5− i)/4
1− i (3− i)/2

)
.

By easy calculations we have the following.



500 HIROKI SATO

Proposition (2.4). Let A∗ and C∗ be the above matrices. Then the group
〈A∗, C∗〉 generated by A∗ and C∗ is conjugate to the Whitehead link group GW .
The point representing the marked group 〈A∗, C∗〉 is (σ, μ) = (1− i, (2 + i)/2).

Remark (2.5). The marked group 〈A∗, C∗〉 is not a group of type Gσ,ik (σ ∈
C \ {0}, k ∈ R).

3. Proof of Theorem (1.3.2)

In this section we will prove Theorem (1.3.2). We use Poincaré’s polyhedron
theorem for the proof of Proposition (3.2). See Maskit [9] for Poincaré’s polyhe-
dron theorem and the terminology associated with the theorem, for example, a
side pairing transformation, a cycle transformation at the edge.

Let P be the regular ideal octahedron in Ratcliffe [11], p.454, Figure 10.3.14].
We denote the sides of P by SA, SB, SC , SD, SA′ , SB′ , SC′ and SD′ , which are
the sides A,B,C,D,A′, B′, C′ and D′, respectively, in Figure 10.3.14 in the Rat-
cliffe’s book. Let a, b and c be the same sides of P as in Figure 10.3.14. Fur-
thermore, the vertices vj (j = 1, 2, · · · , 6) are defined as follows: Let v1 be
the common vertex of the sides SA, SB, SC and SD. For simplicity we repre-
sent v1 by v1 = [SA, SB, SC , SD]. Similarly we set v2 = [SA, SD, SC′ , SD′ ], v3 =
[SA, SD′ , SA′ , SB], v4 = [SB , SA′ , SB′ , SC ], v5 = [SD, SC′ , SB′ , SC ] and v6 =
[SA′ , SB′ , SC′ , SD′ ].

Let fA, fB, fC and fD be the side pairing transformations of SA to SA′ , of SB

to SB′ , of SC to SC′ , and of SD to SD′ , respectively.

Proposition (3.1) (cf. Ratcliffe [11]). Let fA, fB, fC and fD be the side
pairing transformations defined in the above. Then fA, fB, fC and fD generate
the Whitehead link group GW,R in the sense of Ratcliffe.

Let A,B,C and D the matrices corresponding to the Möbius transformations
fA, fB, fC and fD, respectively. We use the same notation GW,R for the group
generated by A,B,C and D.

Proposition (3.2). Let

D =

(
(1− i)/2 (1 − i)/2
(1− i)/2 (3 + i)/2

)
and C =

(
(1− i)/2 (1− i)/2
(−1 + i)/2 (1 + 3i)/2

)
.

Then the Whitehead link group GW,R in Proposition (3.1) has the following pre-
sentation:

GW,R = 〈D,C | DC−2DCD−1C−1D−1C2D−1C−1DC = I〉.
Proof. Let P be the regular ideal octahedron in Ratcliffe [11], p.454. Let

the sides SA, SB, SC , SD; SA′ , SB′ , SC′ , SD′ , the edges a, b, c and the vertices
vj (j = 1, 2, · · · , 6) be as defined in the above. We normalize v1 = ∞, v3 = 1,
and v6 = 0. Then we have v2 = −i, v4 = i and v5 = −1.

Let fA be the side pairing transformation of SA to SA′ with fA(v1) = v3,
fA(v2) = v4, fA(v3) = v6. Then we have fA(z) = (z − 1)/(z + (2i− 1)).

Let fB be the side pairing transformation of SB to SB′ with fB(v1) = v5,
fB(v3) = v6, fB(v4) = v4. Then we have fB(z) = (−z + 1)/(z − (2i+ 1)).
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Let fC be the side pairing transformation of SC to SC′ with fC(v1) = v5,
fC(v5) = v6, fC(v4) = v2. Then we have fC(z) = (z + 1)/(−z + (2i− 1)).

Let fD be the side pairing transformation of SD to SD′ with fD(v1) =
v3, fD(v2) = v2, fD(v5) = v6. Then we have fD(z) = (z + 1)/(z + (2i+ 1)).

By considering the cycle transformations at the edges a, b and c we have the
relations f−1

B fCf
−1
D fA = I, f−1

C f−1
D fCfB = I and fAf

−1
D f−1

A fB = I, respec-
tively, where I is the identity mapping. From these relations we obtain the
following relation:

fDf−2
C fDfCf

−1
D f−1

C f−1
D f2

Cf
−1
D f−1

C fDfC = I.

Let D and C the matrices corresponding to the Möbius transformations fD
and fC , respectively. Then we have the presentation of the Whitehead link group
GW,R as follows:

GW,R = 〈D,C | DC−2DCD−1C−1D−1C2D−1C−1DC = I〉.

Proposition (3.3). Let

G∗
W,R = 〈D∗, C∗ | D∗(C∗)−2D∗C∗(D∗)−1(C∗)−1

(D∗)−1(C∗)2(D∗)−1(C∗)−1D∗C∗ = I〉,
where

D∗ =

(
1 1
0 1

)
and C∗ =

(
(1 + i)/2 (3 + i)/4
−(1− i) (1 + i)/2

)
.

Then (i) G∗
W,R is conjugate to the Whitehead link group GW,R in

Proposition (3.2).
(ii) J(D∗, C∗) = 2.

Proof. (i) We set

R =

(
21/4e−3πi/8a 21/4e−3πi/8b

2−1/4e3πi/8 2−1/4e3πi/8i

)
,

where a = −(1 + 3i)/4 and b = −(1 + i)/4.
Let D and C be the matrices as in Proposition (3.2). Then

RDR−1 =

(
1 1
0 1

)
and RCR−1 =

(
(1 + i)/2 (3 + i)/4
−(1− i) (1 + i)/2

)
.

Thus D∗ = RDR−1 and C∗ = RCR−1. Hence G∗
W,R is conjugate to GW,R.

(ii) By easy calculations we have that

D∗C∗(D∗)−1(C∗)−1 =

(−2i 2− i/2
−2i 2

)
.

Hence we have J(D∗, C∗) = 2.

We easily see the following.

Proposition (3.4). Let D∗ and C∗ be the matrices in Proposition (3.3).
Then the point representing the marked group 〈D∗, C∗〉 is (σ, ik) =

(
√
2e3πi/4,−i/2).
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Proof of Theorem (1.3.2). Theorem (1.3.2) follows from Propositions (3.3)
and (3.4).
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AUTOMORPHISMS OF THE 3-SPHERE THAT PRESERVE A

GENUS TWO HEEGAARD SPLITTING

MARTIN SCHARLEMANN

Abstract. An updated proof of a 1933 theorem of Goeritz, exhibiting a
finite set of generators for the group of automorphisms of S3 that preserve
a genus two Heegaard splitting. The group is analyzed via its action on a
certain connected 2-complex.

1. Introduction

In 1933 Goeritz [Go] described a set of automorphisms of the standard unknot-
ted genus two handlebody in S3, each of which extends to all of S3. He further
observed that any such automorphism is a product of elements of this finite set.
Stated somewhat differently, Goeritz identified a finite set of generators for the
group H, defined as isotopy classes of orientation-preserving homeomorphisms
of the 3-sphere that leave a genus two Heegaard splitting invariant. Goeritz’ the-
orem was generalized to Heegaard splittings of arbitrarily high genus by Powell
[Po], but the proof contains a serious gap.1 So a foundational question remains
unresolved: Is the group of automorphisms of the standard genus g Heegaard
splitting of S3 finitely generated and, if so, what is a natural set of generators.
The finite set of elements that Powell proposes as generators remains a very
plausible set.

Since the gap in Powell’s proof has escaped attention for 25 years, Goeritz’
original theorem might itself be worth a second look. In addition, his argument
is difficult for the modern reader to follow, is published in a fairly inaccessible
journal and is a bit old-fashioned in its outlook. In view of the use that has been
made of it in recent work on tunnel number one knots (cf [ST], [Sc]) it seems
worthwhile to present an updated proof, in hopes also that it might be relevant
to the open analogous problem for Heegaard splittings of higher genus.

The purpose of this note is to present such a proof, one influenced by the idea
of thin position. One way to describe the outcome of this investigation is this:
there is a natural 2-complex Γ (which deformation retracts to a graph) on which
H acts transitively. One can write down an explicit finite presentation for the
stabilizer HP of a vertex vP ∈ Γ and observe that the stabilizer acts transitively
on the edges of Γ incident to vP . In particular, if we add to HP any element δ

2000 Mathematics Subject Classification: 57M40.
Keywords and phrases: Heegaard splitting, reducing sphere, curve complex.
Research supported in part by an NSF grant.
1On p. 210, Case 2 the argument requires that, among the chambers into which φ−1(sk)

divides the handle, there are two adjacent ones that each contain pieces of Gh
k . There is no

apparent reason why this should be true.
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of H that takes vP to some adjacent vertex then the subgroup generated by HP

and δ is exactly the subgroup that preserves the component in which vP lies.
This in fact is all of H, because it turns out that Γ is connected. The proof that
Γ is connected can be viewed as the core argument in this paper.

2. The complex Γ and its vertex stabilizers

We outline the general setting, referring the reader to [Po, Section 1] for
details. Let V denote the standard unknotted genus-two handlebody in S3, with
closed complement W also a genus two handlebody. Let H denote the group of
orientation-preserving homeomorphisms of S3 that preserve V . Regard two as
equivalent if there is an isotopy from one to the other via isotopies that preserve
V . Any orientation preserving homeomorphism of S3 is isotopic to the identity,
so an element h : (S3, V )→(S3, V ) of H is isotopic, as a homeomorphism of S3,
to the identity. This gives an alternate view of H: an element of H corresponds
to an isotopy of S3 from the identity to a homeomorphism that preserves V
setwise.

For T = ∂V = ∂W , S3 = V ∪T W is a genus two Heegaard splitting of S3.
In the language of Heegaard splittings, a reducing sphere P ⊂ S3 is a sphere
that intersects T transversally in a single essential circle and so intersects each
handlebody in a single essential disk. Since P is separating in S3, P ∩ T is a
separating curve in T , which we will denote c. A straightforward innermost disk
argument shows that P is determined up to isotopy rel T by the circle c.

Suppose Q is another reducing sphere, with the circles c and Q ∩ T isotoped
to intersect transversally and minimally in T . Then the number of points of
intersection |P ∩ T ∩Q| is denoted P ·Q. Clearly P ·Q = 0 if and only if P and
Q are isotopic since the only separating essential curve in either punctured torus
component of T − c is boundary parallel. Since reducing spheres are separating,
P ·Q is always even. An elementary argument (see [ST, Lemma 2.5]) shows that
P ·Q �= 2 and in some sense characterizes (up to multiple half-Dehn twists about
c) all spheres Q so that P ·Q = 4. See Figure 1

c = P  ∩ T

Q  ∩ T

Figure 1
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This suggests a useful simplicial complex: Let Γ be the complex in which each
vertex represents an isotopy class of reducing spheres and a collection P0, . . . , Pn

of reducing spheres bounds an n-simplex if and only if Pi · Pj = 4 for all 0 ≤
i �= j ≤ n. In fact it follows easily from the characterization in [ST, Lemma
2.5] that n ≤ 2. Figure 2 illustrates a collection of three reducing spheres whose
corresponding vertices in Γ span a 2-simplex in Γ. (An alternate view, in which
V appears as (pair of pants) ×I, is shown in Figure 3.) Thus Γ is a 2-complex.

Each edge of Γ lies on a single 2-simplex. This is perhaps best seen in Figure
3: The curve P ∩ T is uniquely defined by the curves Q ∩ T and R ∩ T shown.
(For example, if the curve P ∩ T is altered by Dehn twists around the outside
boundary of the pair of pants, it becomes a curve that is non-trivial in π1(V ), so
it can’t bound a disk in V .) So the 2-complex Γ deformation retracts naturally
to a graph, in which each 2-simplex in Γ is replaced by the cone on its three
vertices.

Q  ∩ T

R  ∩ T

Figure 2

R  ∩ T Q  ∩ T

P  ∩ T

Figure 3

A reducing sphere P divides S3 into two 3-balls B± and T intersects each 3-
ball in a standard unknotted punctured torus, unique up to isotopy rel boundary.
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It follows that for any two reducing spheres P and Q there is an orientation
preserving homeomorphism of S3, preserving V as a set, that carries P to Q.
Thus H acts transitively on the vertices of Γ.

We now explicitly give a presentation of the group that stabilizes a vertex of
Γ. As above, let P be a reducing sphere for the Heegaard splitting S3 = V ∪T W
and suppose h : (S3, V )→(S3, V ) is an orientation preserving homeomorphism
that leaves P invariant. That is, suppose h represents an element in H that
stabilizes the vertex in Γ corresponding to P .

First assume that h preserves the orientation of P . Let T± = T ∩B± denote
the two punctured torus components of T − P ; since h preserves orientation of
both S3 and P we have h(T+) = T+ and h(T−) = T−. Up to isotopy there is a
unique non-separating curve μ± ⊂ T± that bounds a disk in V and a unique non-
separating curve λ± that bounds a disk in W and we may choose these curves so
that μ±∩λ± is a single point. Hence, up to equivalence in H, we may with little
difficulty assume that each wedge of circles γ± = μ± ∪ λ± is mapped to itself
by h and, on each γ±, the homeomorphisms h|μ± : μ±→μ± and h|λ± : λ±→λ±
are either simultaneously orientation preserving (in which case we can take them
both to be the identity) or simultaneously orientation reversing (in which case
we can take them each to be reflections that preserve their intersection point).
Having identified h on γ± we observe that T − (γ+ ∪ γ−) is an annulus A, and
any end-preserving homeomorphism A→A is determined up to isotopy and Dehn
twists around its core by h|∂A. The upshot of this discussion is the following
description:

Lemma (2.1). : Let H+
P be the subgroup of H represented by homeomorphisms

that restrict to orientation-preserving homeomorphisms of P . Then

H+
P
∼= Z2 + Z

with generators given by the automorphisms α and β shown in Figure 4.

π

π

α

β

Figure 4
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The situation is only slightly more complicated if we drop the requirement
that h|P be orientation preserving since the order two element γ ∈ H shown in
Figure 5 preserves P but reverses its orientation.

Lemma (2.2). Let HP be the subgroup of H represented by homeomorphisms
that preserve P . Then HP is an extension of H+

P by Z2, via the relations γαγ =
α and γβγ = αβ.

π

γ

Figure 5

Finally, observe that if Q and Q′ are reducing sphere so that P · Q = 4 and
P ·Q′ = 4 then for some n ∈ Z, either βn or βnγ carries Q to Q′. (See discussion
of Figure 1 above.) Interpreting this in terms of the action of H on the complex
Γ we have:

Corollary (2.3). Let HP be the subgroup of H that stabilizes the vertex
vP ∈ Γ corresponding to P . Then HP is transitive on the edges of Γ incident to
vP .

3. Intersection of reducing spheres

Suppose T0 is an oriented punctured torus containing oriented simple closed
curves μ, λ that intersect in a single point. For α an essential embedded arc in
T0 define the slope σ(α) ∈ Q ∪ {∞} of the arc α as follows: Orient α and let
p = α ·μ and q = α ·λ be the algebraic intersection numbers of the corresponding
homology classes. Then σ(α) = p/q. Reversing the orientation of α has no effect
on the slope, since it changes the sign of both p and q. An alternate description of
the (unsigned) slope is this: minimize by an isotopy in T0 the numbers p = α∩μ
and q = α ∩ λ; then |σ(α)| = p/q. If β ⊂ T0 is another essential arc, with slope
r/s define their distance Δ(α, β) = |ps − qr| ∈ N. It is easy to see that if the
arcs α and β are disjoint then Δ(α, β) ≤ 1. Any embedded collection of arcs in
T+ constitutes at most three parallel families of arcs, with slopes of any pair of
disjoint non-parallel arcs at a distance of one.

We now apply this terminology in the setting given above: P is a reducing
sphere for V ∪T W , the closed 3-ball components of S3−P are B±, the punctured
tori T ∩B± are denoted T± and Q is a reducing sphere for V ∪T W that is not
isotopic to P and has been isotoped so as to minimize |P ∩ Q ∩ T | = P · Q. It
will be convenient to imagine P as a level sphere of a standard height function
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on S3, with B+ above P and B− below P . When we use the terms above and
below in what follows, we will be refering to such a height function.

In each of T± there are closed non-separating curves μ±, λ± bounding respec-
tively disks in V and disks in W and for each pair, μ± ∩ λ± is a single point.
We will consider the collection of arcs Q ∩ T± and their slopes with respect to
μ±, λ±. Fix at the outset some orientations, e.g. orient T (hence T±) as ∂V and
orient μ±, λ± so that the algebraic intersection number μ± · λ± = 1. (The exact
choice of orientations is not critical.)

Lemma (3.1). There is some arc in either Q ∩ T+ or in Q ∩ T− that is of
slope ∞ and another such arc is of slope 0.

Proof. An outermost disk cut off by the disk P ∩ V from the disk Q ∩ V is a
meridian disk D of the solid torus V ∩B+ or V ∩B−. Then the arc D ∩ T must
be of slope 0. A symmetric argument on the disks P ∩W,Q∩W gives an arc of
slope ∞.

Lemma (3.2). Suppose that an arc α+ of Q ∩ T+ has slope ∞ (resp. 0) and
that there is an arc α− of slope 0 (resp. ∞) in T− that is disjoint from Q. Then
there is a reducing sphere R so that P ·R = 4 and R ·Q < P ·Q.

The same hypothesis, but with T+ and T− reversed, leads to the same conclu-
sion.

Proof. Since α− is merely required to be disjoint from Q, with no loss we may
assume that the ends of α± on the circle c = P ∩ T are disjoint. Say that the
arcs α± cross if the ends of α+ and α− alternate around c; that is, if the ends
of α+ lie on different arc components of c− α−.

Claim. Some pair of arcs that satisfy the hypotheses for α± cross.

Proof of claim. Assume, on the contrary, that no such pair of arcs crosses.
Then among arcs of Q ∩ T± satisfying the conditions for α± choose the pair
whose ends are closest to each other on the circle c. The ends of α± divide c
into four arcs, one of them, denoted β+, is bounded by the ends of α+ and the
other, denoted β−, by the ends of α−. Let c± = |Q ∩ interior(β±)|.

T+−η(α+) is an annulus A; denote the boundary component that contains β±
by ∂±A. Then |∂+A∩Q| = c+ and |∂−A∩Q| ≥ c−. (The inequality reflects the
fact that Q may also intersect the two intervals c−β±.) No arc of Q∩A can have
both ends on ∂−A, else it would have been parallel to α+ in T+, and yet closer
to α−. We conclude that c+ ≥ c−. Arguing symmetrically on T− − η(α−), we
obtain c− ≥ c++2, the extra 2 arising from the ends of α+. The two inequalities
conflict, a contradiction proving the claim.

Following the claim, we assume that α± cross. Let ρ ⊂ T be the circle
obtained by banding the circle c to itself along the two arcs α± ⊂ T±. It is a
single circle because α± cross. Moreover, it’s easy to see that ρ is an essential
circle in T (there are essential curves in T on both sides of ρ) and that ρ bounds
disks both in V and W . So ρ is the intersection with T of a reducing sphere R.
Moreover, R ·P = |ρ∩P | = 4 and R ·Q ≤ |ρ∩Q| = |c∩Q| − 2 = P ·Q− 2 since
the ends of α+ no longer count.
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Proposition (3.3). There is a reducing sphere R so that P · R = 4 and
R ·Q < P ·Q.

Proof. If there are two arcs of (Q∩ T )− c, one of slope 0 and one of slope ∞,
one lying in T+ and the other lying in T−, the result follows from Lemma (3.2).
Following Lemma (3.1) we know that there are arcs of slope both 0 and ∞. Thus
we are done unless both these arcs lie in T− say, and each arc of Q ∩ T+ has
finite, non-zero slope. Moreover, if all arcs of Q∩ T+ have slope 1 (or slope −1)
then a curve of slope 0 in T+ will be disjoint from Q ∩ T+ and again we would
be done by Lemma (3.2). If σ, τ are slopes of arcs in Q ∩ T+, then, because
|Δ(σ, τ )| ≤ 1, the inequality 0 < |σ| < 1 would imply that |τ | ≤ 1 and that σ
and τ have the same sign. Finally, a curve that has slope σ, will have slope 1/σ
if the roles of V and W are reversed. Following these considerations, we may as
well restrict to the following case:

• Both slopes 0 and ∞ arise among the arcs of Q ∩ T− and
• all arcs of Q ∩ T+ have slope σ with 0 < σ ≤ 1 and not all have slope 1.

Now consider a sphere P+ ⊂ B+ that intersects the solid torus V ∩ B+ in
two meridian disks, and so intersects W in an annulus. Again isotope the curve
Q ∩ T so that it intersects the two meridian circles P+ ∩ T minimally. Any arc
of Q ∩ T+ must intersect P+, else the arc would be of slope 0. In particular,
there is an essential non-separating disk F ⊂ W so that ∂F ⊂ T+ (i. e. ∂F is a
longitude of the solid torus V ∩ B+) so that F ∩ P+ is a single spanning arc of
the annulus P+ ∩W and so that the arc of ∂F − P+ lying below P+ (i. e. in
the pair of pants component of T+ − P+ adjacent to c) is disjoint from Q. See
Figure 6.

Q ∩T

P

P+
F

+

Figure 6

We now examine outermost disks cut off from the disk Q∩W by the annulus
P+ ∩W . Let E be any such disk. Let V ± be the closed components of V −P+,
with V + the 1-handle lying above P+ and V − the solid torus lying below P+.

Claim 1. The outermost arc ε = ∂E ∩ P+ spans the annulus P+ ∩W .
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Proof of Claim 1. This is obvious if E lies above P+, since all arcs of Q ∩ T
above P+ span the 1-handle V +. If E lies below P+ the argument is a bit more
subtle. Note that V − is a solid torus with two disks d1, d2 in ∂V − attached to
P+. A simple counting argument (the di are parallel in V +) shows that any arc
of Q∩(∂V −−P+) that has both ends on the same disk di is essential in the torus
∂V −. So an outermost disk D ⊂ V − cut off from the disk Q∩V by the meridian
disks di must be a meridian disk of the solid torus V −, and so the arc ∂D∩T has
both ends on d1, say. The same counting argument shows that some essential
arc in Q ∩ V − ∩ T must have both its ends on d2 and so is a meridinal arc for
V − there as well. If the ends of ε were both on the same di, then ∂E − ε would
be a longitudinal arc disjoint from the meridinal arc with ends at the other disk
dj , j �= i. But a longtiudinal arc and a meridinal arc based at different points
must necessarily intersect. Hence the ends of ε each lie on a different disk di,
proving Claim 1.

Claim 2. All the outermost disks cut off from Q ∩W by P+ must lie on the
same side of P+.

Proof of claim 2. Suppose, on the contrary, that the outermost disks E± are
cut off, with E− lying in the component of S3 − P+ that lies below P+ and
E+ lying in the component that lies above P+. Following Claim 1, both arcs
ε± = E± ∩ P+ span the annulus P+ ∩W .

Since the arc E− ∩ T is disjoint from ∂F it follows from a simple innermost
disk, outermost arc argument, that all of E− can be made disjoint from F ; in
particular the spanning arcs ε− and F ∩ P+ are disjoint. Since the spanning
arc ε+ is disjoint from the spanning arc ε− which in turn is disjoint from the
spanning arc F ∩P+, ε+ can be isotoped off of F ∩P+ without moving ε−. (See
Figure 7.) Then again an innermost disk, outermost arc argument allows us to
isotope all of E+ off of F . Now consider any arc component γ of (Q∩T+)−P+.
If γ lies below P+ then it is disjoint from ∂F , by construction; if γ lies above P+

then since it is disjoint from E+, it intersects ∂F at most once. In particular, any
arc of Q∩T+ intersects a component of P+∩T+ at least as often as it intersects
∂F , hence its slope has absolute value ≥ 1. This contradicts the second property
itemized above, and so proves claim 2).

Claim 3. All the outermost disks cut off from Q ∩W by P+ must lie above
P+.

Proof of claim 3. Following claim 2) the alternative would be that they all lie
below (in B−). We show how this leads to a contradiction. Consider the disk
Q∩W and how it is cut up by the annulus P+ ∩W . A standard innermost disk
argument ensures that all closed curves of intersection can be removed. There is
at least one (disk) component E0 of (Q ∩W )− P+ that is “second outermost”,
i. e. it is adjacent to some n ≥ 2 other components of (Q∩W )− P+, all but at
most one of them outermost. See Figure 8. Since E0 is adjacent to an outermost
component, all of which we are assuming lie below P+, E0 must lie above P+.
By Claim 1), all the outermost arcs of intersection of P+ with the disk Q ∩W
must span the annulus W ∩P+, so it follows that each of the n arc components of
∂E0 ∩T spans the 1-handle V +. In particular, the union of the disk E0 with the
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E   ∩T

P+
F

+

-E  ∩T

P+

F ∩P+ +ε

-ε

Figure 7

punctured solid torus P+∪V + is the spine of a Lens space in S3, a contradiction
proving Claim 3).

E
0

n = 4

Figure 8

Following Claim 3), consider a sphere P s that passes through the saddle point
of T+ that lies below P+. We can assume (see Figure 9) that P s intersects Q
transversally and that every arc of Q∩T+ that lies above P s spans the 1-handle
V +. According to claim 3) applied to a plane just slightly higher than P s, P s

(and so also a plane P s− lying just below P s) cuts off a disk E+ from Q ∩ W
that lies above the plane. Let α ⊂ (P s− ∩ T ) be an arc parallel in P s− ∩W to
the arc E+ ∩ P s− , so the union λ of α and the arc γ = E+ ∩ T is a longitude
lying above P s− (indeed λ is a meridian of W ). It’s easy to isotope the ends of
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E   ∩T = γ+

Ps-

α

+E  ∩Ps-

α

Figure 9

γ closer together in α until no arc of (Q ∩ T )− P s− lying above P s− has more
than one end on λ. It then follows just as in the proof of Claim 2) that any arc
component of Q∩T+ intersects a meridian of V + at least as often as it intersects
λ and so has slope ≥ 1, a contradiction that completes the proof.

Corollary (3.4). The 2-complex Γ is connected.

Proof. Let w be a fixed vertex of Γ, with associated reducing sphere Q. Let
Γ0 be any component of Γ. Choose a reducing sphere P among those represented
by vertices in Γ0 so that P · Q is minimized. Unless P = Q, Proposition (3.3)
provides a reducing sphere R which is represented by a vertex in Γ0 (indeed one
adjacent to the vertex representing P ) but for which R · Q < P · Q. From the
contradiction we conclude then that indeed P = Q, so w ∈ Γ0.

Corollary (3.4) is essentially [ST, Proposition 2.6]. There we used Goeritz’
theorem to prove the proposition; here we have proven the proposition from first
principles and now observe that it proves Goeritz’ theorem.

4. A finite set of generators

Theorem (4.1). Suppose δ ∈ H is any element with the property that P ·
δ(P ) = 4. Then the group H is generated by α, β, γ, δ.

Proof. Choose any h ∈ H and let Q = h(P ). If Q = P then by Lemma
(2.2), h is in the group generated by α, β and γ. Otherwise, following Corollary
(3.4), there is a sequence of reducing spheres P = P0, P1, . . . , Pn = Q so that
Pi−1 · Pi = 4, i = 1, . . . , n. The proof will be by induction on the length n
of this sequence – the case n = 1 follows from Corollary (2.3). In particular,
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there is a word ω in the generators α, β, γ, δ so that ω(P1) = P . Apply ω to
every sphere in the shorter sequence P1, . . . , Pn = Q and obtain a sequence
P = ω(P1), ω(P2), . . . , ω(Q) = ω(h(P )). Then by inductive hypothesis, ωh is in
the group generated by α, β, γ, δ, hence so is h.

There are several natural choices for δ. For example, if we think of V as a
ball with two 1-handles attached, the two 1-handles separated by the reducing
sphere P , then a slide of an end of one of the 1-handles over the other around a
longitudinal curve will suffice for δ. This is the genus two version of Powell’s move
Dθ ([Po, Figure 4]). Another possibility is to choose an order two element for δ,
an element that is conjugate in H to γ: note from Figure 2 that Q · γ(Q) = 4.

A bit more imaginative is the automorphism shown in Figure 10 which is of
order three and corresponds to rotating one of the two-simplices of Γ around its
center. The figure is meant to evoke a more symmetric version of Figure 2: it
depicts a thrice punctured sphere with three essential arcs, each pair intersecting
in two points. Thicken the figure (i.e. cross with an interval). Then the thrice
punctured sphere becomes a genus two handlebody V and each arc becomes a
disk. Each disk is the intersection with V of a reducing sphere, and the three
reducing spheres are represented by the corners of a single two-simplex σ in Γ.
Rotation of the figure by 2π/3 along the axis shown cyclically permutes the three
arcs, and so cyclically permutes the three reducing spheres. Hence it also rotates
the corresponding 2-simplex σ in Γ.

2π/3

Figure 10
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ON INFINITELY PERIODIC KNOTS

MAT TIMM AND OLLIE NANYES

Abstract. Fox asked the following question: “if for every g ≥ 2, there
is a periodic transformation Tg of period g of the 3-sphere S3 such that
Tg(K) = K, what kind of knot can K be?” Flapan showed that if K were
smooth and if the fixed point set was S1 and disjoint from K, that K had
to be the unknot. In this paper we show that there are non-trivial wild
knots of this type that admit periods of all orders, and that all such knots
must have an uncountable number of wild points.

1. Introduction

In [3], Fox asked the following question (Question 6, [3]) “if for every g ≥ 2,
there is a periodic transformation Tg of period g of the 3-sphere S

3 (Tg : S
3 → S3)

such that Tg(K) = K (but not necessarily Tg(p) = p for any p ∈ K), what kind
of knot can K be?”. Fox then posed Question 7, which asked, “Given a non-
trivial knot K, which periods g does it permit?” He observed that that the
answer may depend on the fixed point set F of Tg, whether T is orientation
reversing or preserving, and on K ∩ F .

A knot K is said to be infinitely periodic if, for each g ∈ N , there exists a
periodic homeomorphism Tg : S3 → S3 such that Tg(K) = K. The fixed point
set of a homeomorphism T : S3 → S3 will be denoted by F = F (T ) = {p ∈
S3 : T (p) = p}. Note that for any such T , F (T ) is homeomorphic to one of ∅,
S0, S1, S2 or S3 [3]. We will adopt Flapan’s notation [2]: a knot K will be
said to be (a, b)-periodic if there is a T with F (T ) homeomorphic to a such that
F (T ) ∩K is homeomorphic to b. K will be said to be infinitely (a, b) periodic
if for each g ≥ 2 there is a T of type (a, b) with period g. In our paper, we will
be interested in infinitely (S1, ∅) periodic knots.

In [7], Seifert showed that any smooth torus knot is infinitely periodic with
F = ∅. In [2], Flapan showed that the torus knots are the only smooth, infinitely
periodic knots K with F = ∅ and that the only smooth (S1, ∅) periodic knot
which admits infinitely many periods is the unknot.

Our main result shows that the smooth condition onK is essential to Flapan’s
argument; we will show how to construct an infinitely (S1, ∅) periodic wild knot
(Theorem (2.1)). These knots are contained in certain solid tori, and their com-
plements in these solid tori are connected open 3-manifolds with one boundary
component that have non-trivial cyclic self-covers of all orders. In section 3 we
show that there are an uncountable number of inequivalent (S1, ∅) periodic wild
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knots. We will also show that all such knots must have an uncountable number
of wild points (Theorem (4.1).

The method used to construct the knots of interest in fact illustrates a general
method that can be used to construct many spaces with cyclic self-covers of all
orders. For related work, see [1].

2. Construction of an infinitely periodic knot

Henceforth, when we say that a knotK is infinitely periodic we mean infinitely
(S1, ∅) periodic. Note that we do not require that each Tg have the same fixed
point set F for all g.

We start our construction of an infinitely periodic knot K as follows: view S3

as R3 ∪ {∞}. We will use cylindrical coordinates for R3 = {(r, θ, z) : r ≥ 0, 0 ≤
θ < 2π, z ∈ R}. Consider a solid torus V ⊂ R3, which we will parametrize as
S1 ×D2 = {(θ, ρ, φ) : 0 ≤ θ < 2π, 0 ≤ ρ ≤ 2, 0 ≤ φ < 2π}. (ρ, φ) represents a
polar coordinate system of a meridional disk of V ; the units used for ρ are not
the standard distance units in R3. For example, (0, 2, π) ∈ V has R3 coordinates

(32 , 0, 0) and (π2 , 1,
3π
4 ) ∈ V has R3 coordinates (2−

√
2

2 , π2 ,
√
2
2 ). The centerline of

V will be identified with the unit circle in the z = 0 plane of R3, with θ being
used for both S1 ⊂ V and R3. V ∩ {z = 0} will be identified with the annulus
{(r, θ, 0) : 1

2 ≤ r ≤ 3
2 , 0 ≤ θ < 2π}.

Let C denote the standard “middle thirds” Cantor set in the interval [0, 1],
and C∗ its image under π : [0, 2] → V, π(x) = {(πx, 0,−)}. Note that θ = πx.
Let D denote the set of intervals that are deleted from [0, 1] to form C, together
with (1, 2). That is,

D = {(1, 2)} ∪ {(1
3
,
2

3
), (

1

9
,
2

9
), (

7

9
,
8

9
), (

1

27
,
2

27
), (

7

27
,
8

27
), (

19

27
,
20

27
), (

25

27
,
26

27
).....}.

Let Di,j ∈ D be defined to be the j’th deleted interval of length 1
3i . We let D0,0

denote the open interval (1, 2). Let D∗
i,j denote the image of Di,j under π and

D∗
0,0 denote the semi-circular segment ((π, 0,−), (2π, 0,−)) and D∗ denote the

collection of the D∗
i,j . For each Di,j = ( p

3i ,
p+1
3i ) (i ≥ 0, j ≥ 0, where j ≤ 2i−1

for i ≥ 1), associate an open “curvilinear double cone”Ai,j ⊂ V (see Figure 1),
where

Ai,j = {(πx, ρ, φ)| p
3i < x < p+1

3i , 0 ≤ ρ < a(x) and a(x) = 1
2 (min{x −

p
3i ,

p+1
3i − x})}.

We will let Ci,j denote the open “curvilinear double cone” Ci,j = {(πx, ρ, φ)| p
3i

< x < p+1
3i , 0 ≤ ρ < b(x) and b(x) = 3

2 (min{x − p
3i ,

p+1
3i − x})}. We are using

this “nested cone” construction to facilitate our contstruction of the periodic
homeomorphisms T ; in particular the region between the two cones will serve as
a “buffer” for the expansion/contraction part of each T .

Consider a ball pair (B, k), where B is a 3-ball and k is a properly embedded
arc (possibly wild at its endpoints) with k ∩ ∂B = {c} ∪ {d}.Assume that k is
knotted in B (rel (c, d)). That is, k together with an arc in ∂B is a non-trivial
knot in B ⊂ S3. Choose a specific knot type for k (e.g., k could be the trefoil
as indicated in Figure 1, or the reader’s favorite knot). We call k a pattern
arc for K. For each Ai,j there is a smooth embedding ψi,j : (B, k) → V where

ψi,j(c) = π( p
3i ), ψi,j(d) = π(p+1

3i ), ψi,j(int(B, k)) = Ai,j and, for all i, j, all of the
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ψi,j(B, k) ⊂ Ai,j are homeomorphic by orientation preserving homeomorphisms.
That is, we glue in the “same” k into each Ai,j

Let K be the simple closed curve which consists of C∗ ∪ {∪i,j{ψi,j(k)}, (i ≥
0, j ≥ 0, where j ≤ 2i−1for i ≥ 1)}.

That is, K is the knot formed by replacing the deleted intervals with copies
of the arc k, where the copies of k are properly embedded in the Ci,j . Clearly,
K is a wild, non-trivial knot. Figure 1 shows some of the stages of K.

C

C

C

C

C

C

C

C

V

A

0,0

0,0

3,1

2,1

3,2

1,1

3,3

2,2

3,4

i, j

C

Figure 1
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Theorem (2.1). K is infinitely (S1, ∅)-periodic.
Proof. First note that for each n ∈ {1, 2, 3, . . .} there exists a homeomorphism

fn of the centerline circle S1 ⊂ V (recall S1 = {(θ, 0, 0) ∈ V, θ ∈ [0, 2π)}) of
period n that maps D∗ to itself. We describe this map as follows:

f1(θ) = θ

f2(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
θ + 2π

3 , θ ∈ [0, π3 ]

3θ(mod 2π), θ ∈ (π3 ,
2π
3 ]

(θ + 4π
3 )(mod 2π), θ ∈ (2π3 , π]

1
3θ, θ ∈ (π, 2π)

f3(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
θ + 2π

32 , θ ∈ [0, π
32 ]

3θ(mod 2π), θ ∈ ( π
32 ,

2π
3 ]

(θ+ 4π
3 )(mod 2π)

3 , θ ∈ (2π3 , π]
1
32 θ, θ ∈ (π, 2π)

fn(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
θ + 2π

3(n−1) , θ ∈ [0, π
3(n−1) ]

3θ(mod 2π), θ ∈ ( π
3(n−1) ,

2π
3 ]

(θ+ 4π
3 )(mod 2π)

3n−2 , θ ∈ (2π3 , π]
1

3n−1 θ, θ ∈ (π, 2π)

It will be helpful to define a function

κ : [0, 2π)× Z+ → {1, 3, 3−1, 3−2, ...3−m, ..}
by

κ(θ, n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, θ ∈ [0, π

3(n−1) ]

3, θ ∈ ( π
3(n−1) ,

2π
3 ]

1
3n−2 , θ ∈ (2π3 , π]
1

3n−1 , θ ∈ (π, 2π)

(n > 1)

κ(θ, n) = 1 for n = 1.
Next, we can define a homeomorphism g(a,b,κ) of the interval [0, 2] (where

0 < a < b < 2, κa < b) which takes [0, a] to [0, κa] and is the identity on [b, 2]
as follows:

g(a,b,κ)(ρ) =

⎧⎪⎨
⎪⎩
κρ, 0 ≤ ρ ≤ a

ρ( (1−κ)ρ+κb−a
b−a ), a < ρ < b

ρ, b ≤ ρ ≤ 2 .

Now, we define a homeomorphism T∗n of period n on V which maps D∗ ⊂
S1 = {(θ, 0,−)} to itself:

T∗n(θ, ρ, φ) =

{
(fn(θ), g(a(x),b(x),κ(θ,n))(ρ), φ); θ ∈ D∗

(fn(θ), ρ, φ); θ /∈ D∗ (recall: θ = πx)

The effect of T∗n for n ≥ 2 is to perform an appropriate expansion or contrac-
tion in the x coordinate, and expansion or squeezing in the ρ coordinate. Note
that for (θ, ρ, φ) ∈ ∂V , T∗n(θ, ρ, φ) = (fn(θ), ρ, φ). Hence it is easy to extend
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T∗n to a homeomorphism Tn of R3which has fixed point set F = {(0,−, z)|z ∈ R}
and has period n where Tn|V = T∗n. Note that Tn(K) = K setwise. Theorem
(2.1) is proved.

3. Construction of an uncountable number of mutually inequivalent
(S1, ∅)-periodic knots

In [5], McPherson shows how to construct an uncountable number of mutually
inequivalent Fox-Artin arcs which have one wild endpoint of penetration index
three. We will use these arcs as our pattern arc k to demonstrate that there are
an uncountable number of mutually inequivalent (S1, ∅)-periodic knots.

Let k be an embedded arc in S3 with endpoints p, q. Assume that k is tame
at all of its points except for possibly p. Let E1, E2, . . . be a system of tame
closed 3-balls where ∩∞

i=1Ei = p such that for all i ≥ 1, Ei+1 ⊂ int(Ei) and
k ∩ (Ei − int(Ei+1)) consists of exactly three arcs: αi which runs between ∂Ei

and ∂Ei+1, βi which runs between two points of ∂Ei, and γi which runs between
two points of ∂Ei+1. If βi and γi are unsplittable in each Ei− int(Ei+1) (in the

sense that if one turns βi and γi into closed loops βi, γi by adding arcs along
∂Ei and ∂Ei+1 respectively then βi ∪ γi is an unsplittable link in S3) then k is
said to be a Fox-Artin arc of penetration index 3 (the penetration index comes
from the three arcs in each Ei − int(Ei+1)). Figure 2 shows an example of a
Fox-Artin arc. In [4] McPherson shows that all Fox-Artin arcs are wild (and
therefore non-trivial) and in [5] he shows that there are an uncountable number
of Fox-Artin arcs of penetration index 3 which have inequivalent “local types”
at wild point p. It follows that there are an uncountable number of mutually
inequivalent Fox-Artin arcs.

E

E

E
E

P

1

2

3
4

Figure 2.

Theorem (3.1). Let K1 and K2 be two knots which are constructed in the
manner of Section 2, with pattern arcs k1 and k2 respectively. If K1 is equivalent
to K2 then k1 is equivalent to k2.

Theorem (3.2). There exists an uncountable number of mutually inequivalent
(S1, ∅)-periodic knots.

Proof of Theorem (3.2). Follows directly from Theorem (3.1).
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Proof of Theorem (3.1). First some notation (refer to Section 2): C∗
i refers

to the image of the Cantor set in knot Ki, k
i
m,n refers to ψm,n(ki) in Ki, p

i is

the “wild endpoint” of ki, q
i the tame endpoint of ki, p

i
m,n is ψm,n(pi) and q

i
m,n

is ψm,n(qi). Let h : S3 → S3 be a homeomorphism such that h(K1) = K2. We
need a technical lemma.

Lemma (3.3). For all m,n ∈ {0, 1, 2, . . .}, h(k1m,n) = k2r,s for some r, s ∈
{0, 1, . . .}.

Proof of the lemma. For each q1m,n there exists a disk Qm,n with a product

neighborhood [−1, 1]× Qm,n such that ({0} × Qm,n) ∩K1 = q1m,n and ([0, 1]×
Qm,n) ∩ k1m,n consists of tame arcs (tamely embedded in ([0, 1]×Qm,n)), one of

which has q1m,n as an endpoint. We say that these q1m,n are tame from one side.

Similarly, for each p1m,n there exists a disk Pm,n with a product neighborhood

[−1, 1]× Pm,n such that ({0} × Pm,n) ∩K1 = p1m,n and ([−1, 0)× Pm,n) ∩ k1m,n

consists of tame open arcs (tamely embedded in ([−1, 0)× Pm,n)), one of which
has p1m,n as an endpoint (and, of course, is wild when p1m,n is added in). We

say that these p1m,n are almost tame from one side.

If x ∈ K1 is (almost) tame from one side, then h(x) is (almost) tame from
one side. If y ∈ C∗

2 then every open neighborhood contains wild points of K2

on both sides of y. Therefore y �= h(x), which implies that y cannot be the
image of any point of any k1m,n because all of the points of k1m,n are either tame,

almost tame from one side, or tame from one side. Therefore h(q1m,n) = q2r,s
and h(p1m,n) = p2u,v. If r �= u or s �= v, any subarc of K2 running from

q2r,s to p2u,v must pass through an infinite number of wild points. Therefore

(r, s) = (u, v). Hence h takes k1m,n to k2u,v which implies that k1 and k2 are
equivalent. Lemma (3.3) and Theorem (3.1) are proved.

4. Characterization of infinitely (S1, ∅)-periodic knots

We now give a necessary condition for a knot K to be infinitely (S1, ∅)-
periodic.

Theorem (4.1). If K is a non-trivial infinitely (S1, ∅)-periodic knot, then K
has an uncountable number of wild points.

The proof of Theorem (4.1) will follow after some lemmas and propositions.
First, we establish some notation. If A is a set, A′ will denote the limit points
of A. A point x ∈ K is said to be tame if there exists a closed p.l. 3-ball B
such that x ∈ int(B) and (B, B ∩K) is a standard ball pair. If x is not a tame
point of K, then x is called wild. We denote the set of wild points of K by W .
Note that Flapan’s work implies that, for the infinitely periodic knots in which
we are interested, W �= ∅. Also note that W is a compact set in the standard
subspace topology. We can start by assuming that K has tame points, else the
theorem follows trivially.

For each p ∈ N , let Tp : S3 → S3 be a given fixed periodic homeomorphism
of period p acting freely in K. Let S = {Tp : p ∈ N}. By T k

p we mean the
composition of k copies of Tp. Of course, T p

p is the identity map. We let
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G be the group generated by S. Note that it consists of all finite composi-
tions of the homeomorphisms T k

p . We denote the orbit of x ∈ K by O(x) =
{y| y = T (x), T ∈ G}.

Proposition (4.2). For all x ∈ K, O(x) is infinite.

Proof. Suppose there is an x ∈ K with O(x) a finite set. Say, O(x) =
{x = x1, . . . , xk}. Let p = k! + 1. Let Tp ∈ S be the given homeomorphism
of period p. We see that Tp permutes the points of O(x) without fixed points
since F ∩ K = ∅. That is, the restriction (Tp|O(x)) can be thought of as a
permutation σ ∈ Sym(k), the group of permutations of k symbols. So the order
of σ divides k!. Thus σk! = (Tp|O(x))k! = T k!

p |O(x), which is the identity in

O(x). But then T k!
p would be the identity, which contradicts the fact that the

order of Tp is k! + 1. The proposition is proved.

Since homeomorphisms take wild points to wild points, if x ∈W, then O(x) ⊂
W . Thus we have now established that the set of wild points is at least countably
infinite. Suppose x ∈ W . Since W is compact and O(x) ⊂ W is infinite,
O(x)′ ⊂W is not empty. We will establish that we can assume, with no loss of
generality, that O(x) contains none of its limit points.

Lemma (4.3). If x ∈W and if O(x) ∩ (O(x))′ �= ∅, then W is uncountable.

Proof. Suppose there exists y ∈ O(x) ∩ (O(x))′. Then there is some T ∈ G
such that y = T (x). Suppose U is open and x ∈ U . Then the open set
T (U) contains an infinite number of points of O(x). Therefore, since T is a
homeomorphism, U also contains an infinite number of points of O(x). Hence

O(x) ⊂ O(x)′. Hence O(x) ⊂ O(x)′ ⊂ (O(x))′ . That is, all points of the

closure of O(x) are limit points of O(x) . Since O(x) is compact, O(x) is

uncountable (see, e.g., Theorem 6.5, page 176 of [6]). But O(x) ⊂W , therefore
W is uncountable. The lemma is proved.

We need one more lemma:

Lemma (4.4). If ya ∈ O(y)′, then O(ya)′ ⊂ O(y)′.

Proof. It suffices to show that O(ya) ⊂ O(y)′. Let x ∈ O(ya) and U be
an open set which contains x. Then x = T (ya) for some T ∈ G. T−1(U) is
open and contains ya. Hence T−1(U) contains an infinite number of points of
O(y). Therefore U contains an infinite number of points of O(y). The lemma
is proved.

Proof of Theorem (4.1). We will prove Theorem (4.1) by showing that no one
to one map from the integers to W can be onto. From Lemma (4.3), we will
assume that O(x) contains none of its limit points. Let f : N → W be a one
to one map and let f(n) = yn. We will use induction to show the following:
given subsets V1, V2, . . . , Vk which are open in K, have tame frontier (frontier in
K) and contain y1, y2, . . . , yk, respectively, where for all 1 ≤ i < j ≤ k, either
V i ∩ Vj = ∅ or Vi = Vj , we can find another open set Vk+1 containing yk+1

such that Vk+1 = Vj for some 1 ≤ j ≤ k or Vk+1 ∩ V j = ∅ for all 1 ≤ j ≤ k.
Furthermore K − (V1 ∪ V2 ∪ . . . Vk ∪ Vk+1) contains an infinite number of wild
points, namely O(yp)

′, for some p ≤ k + 1.
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Consider y1. By Lemma (4.3), there is an open set V1 ⊂ K which separates
y1 from all other points of O(y1). It follows that V1 contains no limit points of
O(y1). We can assume thatO(y1)

′ is countable, since, ifO(y1)′ were uncountable,
O(y1) ⊂ W and W is closed; it follows that O(y1)

′ would be an uncountable
subset of W , which would prove the theorem. Note that we can assume with
no loss of generality that Fr(V1) ⊂ K is tame. For, if Fr(V1) were wild, we
could attempt to find a smaller open interval (open in K) which contains y1
whose endpoints are tame; if such an interval cannot be found then W must be
uncountable. Let M1 = K − V1. M1 is a compact set which contains O(y1)

′.
Now we proceed by induction. Assume by hypothesis of induction that we

have open sets V1, V2, . . . , Vk containing y1, y2, . . . , yk respectively, and for all
1 ≤ i < j ≤ k, either V i ∩ V j = ∅ or Vi = Vj and Fr(Vi) is tame. We also have
O(yp)

′ ⊂ K − (V1 ∪ V2 ∪ · · · ∪ Vk) =Mk for some p, 1 ≤ p ≤ k. Consider yk+1.

If yk+1 ∈ V 1 ∪ V 2 ∪ · · · ∪ V k, say, yk+1 ∈ V r, then yk+1 ∈ Vr (recall: Fr(Vr) is
tame). Set Vk+1 = Vr .

Otherwise, yk+1 /∈ V 1 ∪ V 2 ∪ · · · ∪ V k and Fr(Vi) is tame for each 1 ≤ i ≤ k.
There are two cases to consider.

Case 1. If yk+1 /∈ O(yp)′ then yk+1 ∈ K−(O(yp)
′∪(V1∪V2∪· · ·∪Vk)) which

is an open set in K. Use regularity to find an open Vk+1such that yk+1 ∈ Vk+1

and V k+1 ∩ (O(yp)
′ ∪ (V1 ∪ V2 ∪ · · · ∪ Vk)) = ∅. We can assume with no loss

of generality that Fr(Vk+1) is tame. Furthermore, we can define Mk+1 = K−
(V1 ∪ V2 ∪ · · · ∪ Vk+1). Note that Mk+1 is compact and contains O(yp)

′.
Case 2. If yk+1 ∈ O(yp)

′, then by Lemma (4.4) O(yk+1)
′ ⊂ O(yp)

′ which
implies that O(yk+1)

′ ⊂ O(yp)
′ ⊂ K − (V1 ∪ V2 ∪ · · · ∪ Vk). But, since yk+1 /∈

O(yk+1)
′, yk+1 belongs to the open set K − (O(yk+1)

′ ∪ (V1 ∪ V2 ∪ · · · ∪ Vk)).
As in case 1, this open set contains an open neighborhood Vk+1 of yk+1 in K
such that V k+1 ∩ V i = ∅ for all 1 ≤ i ≤ k. Again we can assume that Fr(Vk+1)
is tame and that the compact set Mk+1 = K − (V1 ∪ V2 ∪ · · · ∪ Vk+1) equals
(K − (V1 ∪ · · · ∪ Vk)) ∩ (K − Vk+1)) which contains O(yk+1)

′.
Therefore we have obtained Mk+1 = K− (V1 ∪V2 ∪· · · ∪Vk ∪Vk+1) and have

shown that Mk+1 ∩W is nonempty.
Now consider the nested compact sets (M1∩W ) ⊃ (M2∩W ) ⊃ . . . (Mk∩W ) ⊃

. . . . These sets are all compact and the collection {Mk ∩W | k ∈ N} has the
finite intersection property. Hence∩∞

i=1(Mi ∩W ) �= ∅ and contains no point of
the sequence {yi}. Hence ∩∞

i=1(Mi ∩W ) is not in the range of f . Therefore,
the set W must be uncountable. Therefore Theorem (4.1) is proved.

5. Questions

Note that our example of an infinitely periodic knot is non-prime. Are there
any prime non-trivial infinitely periodic knots? If so, are all such examples wild
at every point? Does the wild point set of an infinitely periodic knot always
contain a Cantor set?
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ON THE PURE BRAID GROUP OF A SURFACE

MIGUEL A. XICOTÉNCATL

Abstract. Given a closed surface M �= S2 or RP 2, the classical pure
braid group Pk is known to inject as a subgroup of the pure braid group
of the surface, Pk(M). Moreover, its normal closure 〈〈Pk〉〉 is the kernel of
the epimorphism ϕ∗ : Pk(M) → (π1M)k induced by the inclusion of the

configuration space F (M, k) ⊂ Mk. In this article we exhibit an isomor-
phism between kerϕ∗ and π1FG(H, k), where M ≈ H/G and FG(H, k) is
an appropriate orbit configuration space.

1. Introduction

Given a topological space M , the configuration space of k-tuples of distinct
points is defined as

F (M,k) = {(m1, . . . ,mk) ∈ Mk | mi �= mj if i �= j}.
Since their introduction by Fadell and Neuwirth [5], configuration spaces have

proven to be very useful in geometry and algebraic topology. See [4] for a survey.

Furthermore, the case M = R2 is related to the classical braid groups as
follows. Let Σk be the symmetric group acting on F (R2, k) by permuting coor-
dinates, and set Bk to be the fundamental group of the orbit space F (R2, k)/Σk

and Pk = π1F (R2, k). Then Bk is isomorphic to the Artin’s braid group on k
strands and Pk is the k-stranded pure braid group, which is the kernel of the
natural epimorphism Bk → Σk.

By analogy with the classical case, given a finite dimensional manifold M one
defines the pure braid group of M as Pk(M) = π1F (M,k). Notice that the
natural inclusion ϕ : F (M,k) ⊂ Mk induces a homomorphism

ϕ∗ : π1F (M,k) −→ (π1M)k

which satisfies the following result of J. Birman [1].

Theorem (1.1). For a closed smooth manifold M ,
1. ϕ∗ is an isomorphism if dimM > 2,
2. ϕ∗ is an epimorphism if dimM = 2.

Therefore, the group Pk(M) is isomorphic to (π1M)k if dimM > 2, being the
most interesting case the one when M is a surface. In the case when dimM = 2,

2000 Mathematics Subject Classification: Primary 20F36, 55R80; Secondary 20J06, 55R10,
55R20, 57N05.

Keywords and phrases: surface braid groups; Orbit configuration spaces.
Partially suported by CONACyT Grant No. 37296-E.
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one obtains a short exact sequence

1 −→ kerϕ∗ −→ Pk(M)
ϕ∗−−→ (π1M)k −→ 1

and a description of the group kerϕ∗ is given next. Let V ≈ R2 be a euclidean
neighborhood in M . Then the inclusion V ⊂ M induces an inclusion at the level
of configuration spaces i : F (R2, k) → F (M,k) and thus a homomorphism of
pure braid groups

i∗ : Pk(R
2) −→ Pk(M),

which is monomorphism for any compact surface different from S2 or RP 2, by a
theorem of Birman [1] and Goldberg [6]. Thus Pk can be regarded as a subgroup
of Pk(M).

In [6] C. Goldberg has given a combinatorial description for kerϕ∗. Namely,
recall that given a subgroup H ≤ G (not necessarily normal), its normal closure
〈〈H〉〉 is defined to be the intersection of all normal subgroups of G containing
H . That is to say, 〈〈H〉〉 consists of all finite products

∏
gihig

−1
i of conjugates

of elements in H . Then the following result was proven in [6]:

Theorem (1.2). For any closed surface different from S2 or RP 2, the sub-
group kerϕ∗ ≤ Pk(M) is equal to 〈〈Pk〉〉, the normal closure of Pk in Pk(M).

The purpose of this note is to provide a more geometrical description of kerϕ∗
(in the case when M is an orientable surface), since this group appears natu-
rally as the fundamental group of an appropriate orbit configuration space (see
sections 2 and 3). Namely,

Theorem (1.3). For a closed, orientable surface M of genus g > 1, let H be
the universal cover of M such that M ≈ H/G, where G ∼= π1(M). Then there is
a natural isomorphism

〈〈Pk〉〉 ∼= π1FG(H, k)

where FG(H, k) is the orbit configuration space of k points in H.

2. Orbit configuration spaces

Let M be a finite dimensional manifold, G a group acting freely on M , and
let G ·m denote the orbit of the point m ∈ M under the action of G. Inspired
by [5], define the orbit configuration space of k points in M by:

FG(M,k) = {(m1, . . . ,mk) ∈ Mk | G ·mi �= G ·mj if i �= j}
The spaces FG(M,k) were introduced in [8] as generalizations of ordinary con-

figuration spaces, and their basic properties and some applications were studied.
In the case when the canonical map π : M → M/G is a bundle projection there
is an obvious relation to the ordinary configuration spaces given by the following:

Theorem (2.1). If the canonical map M → M/G is a bundle projection, with
classifying map f : M/G → BG, then the space FG(M,k) is the total space of
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the pull-back of the principal fibration Gk → EGk → BGk along the composition

F (M/G, k) ↪→ (M/G)k
fk

−→ BGk. Thus there are maps of Gk-bundles:

Gk

��

Gk

��

Gk

��
FG(M,k)

��

� � �� Mk

��

�� (EG)k

��
F (M/G, k) �

� �� (M/G)k
fk

�� (BG)k

Therefore, there is a principal Gk-bundle FG(M,k) → F (M/G, k). In other
words, the group Gk acts “coordinate-wise” on the space FG(M,k) and the quo-
tient FG(M,k)/Gk is homeomorphic to F (M/G, k).

In particular, there is a fibration FG(M,k) → F (M/G, k) → BGk that can
be used, for example, to do homological calculations; see for instance [3] and [9].
For simplicity, let us consider here the case when G is a discrete group. Using
the Serre spectral sequence of the fibration above, or equivalently, the spectral
sequence for a covering, one obtains the following result:

Theorem (2.2). Let G be a discrete group such that the canonical map M →
M/G is a covering projection. Then, there is a spectral sequence whose E2-term
is given by

E∗,∗
2 = H∗

(
Gk;H∗FG(M,k)

)

and which converges to H∗F (M/G, k). Here the action of Gk on the local coef-
ficient system is induced by the action of Gk on FG(M,k).

3. Proof of the theorem (1.3)

Let H = {z ∈ C | Im(z) > 0} be the complex upper-half plane, acted on by
PSL(2,R) through Möbius transformations. By Poincaré’s theorem on Fuchsian
groups, it is well known that for every compact, orientable surfaceM of genus g >
1, there is a discrete subgroup G of PSL(2,R) acting properly discontinuously
on M , and such that M ≈ H/G. Thus H is the universal cover of M . Moreover
since H is contractible, π1(M) ∼= G.

From the preceding theorem, there is a covering Gk → FG(H, k) → F (M,k)
whose long homotopy exact sequence reduces to:

(3.1) 1 −→ π1FG(H, k) −→ Pk(M) −→ Gk −→ 1

since π1(M) ∼= G. Now there is a map of extensions

1 �� 〈〈Pk〉〉 ��

���
�
�

Pk(M)
ϕ∗ �� (π1M)k ��

∼= loop lifting

��

1

1 �� π1FG(H, k) �� Pk(M) �� Gk �� 1

where the right hand side isomorphism is given by the usual lifting of loops to
the total space. This induces an isomorphism 〈〈Pk〉〉 ∼= π1FG(H, k). ��
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Another consequence of Theorem (2.1) is the existence of a spectral sequence
abutting to the cohomology of the pure braid group Pk(M), as stated next.
Explicit calculations will be done elsewhere.

Theorem (3.2). For a closed, orientable surface M of genus g > 1, there is
a discrete subgroup G ≤ PSL(2,R) and a spectral sequence

E∗,∗
2 = H∗

(
Gk;H∗FG(H, k)

)

that converges to the cohomology of Pk(M).

Proof. Using the fact that M is an Eilenberg–Mac Lane space of type K(G, 1)
and the Fadell–Neuwirth fibrations [5], it is easy to prove that F (M,k) is an
Eilenberg–Mac Lane space of type K(Pk(M), 1). Now apply Theorem (2.2).
Equivalently, this is the Lyndon-Hochschild-Serre spectral sequence associated
to the extension (3.1).
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A SIMPLIFIED INDEX FOR ROOTS

XUEZHI ZHAO

Abstract. Let f : Y → X be a map between compact connected polyhe-
dra. We shall simplify the existing index for roots at a point x∗ ∈ X, where
x∗ is a local separating point of X. We also show that this simplified index
is easy to compute, so it can be used to estimate the number of roots in
practice.

1. Root classes and their indices

Let f : Y → X be a map between compact connected polyhedra. For a given
point x∗ ∈ X , a point y ∈ Y is said to be a root of f at x∗ if f(y) = x∗. A
natural question is how to describe the set f−1(x∗); this question is discussed
in root theory, which is a branch of Nielsen’s fixed point theory (see [2] for an
introduction to this topic).

Here we give a brief account of root theory (see [5] for more details). Two
roots y1 and y2 of f at x∗ are said to be in the same root class if there is a path α
in Y joining them, such that 〈f ◦α〉 = 1 ∈ π1(X, x∗). Thus, f−1(x∗) can be split
into several root classes, each of which is an isolated set (see below) in f−1(x∗).

If we choose a root y∗, then we have a homomorphism fπ : π1(Y, y∗) →
π1(X, x∗). For any root y, pick a path γ from y∗ to y; we can define an ele-
ment 〈f ◦ γ〉 ∈ π1(X, x∗). The corresponding element in the right coset of Imfπ
in π1(X, x∗) is independent of the choice of the path γ. Such a correspondence
is written by

φ : f−1(x∗)→ π1(X, x∗)/Imfπ.

Moreover, two roots y1 and y2 are in the same root class if and only if φ(y1) =
φ(y2) (see [5, p. 133, 6.1 Theorem]). Thus, φ gives an alternative way to define
root classes.

Given an isolated root set R of f at x∗, i.e. there is an open neighborhood U
of R in Y such that Ū ∩ f−1(x∗) = R, the sequence of maps

Y
j→ (Y, Y −R)

e← (Ū , Ū −R)
f→ (X,X − x∗)

induces a homology homomorphism

f∗e−1
∗ j∗ : H∗(Y )→ H∗(X,X − x∗)

that is called the index homomorphism or simply index of the root setR. Through-
out this paper, all homology groups are assumed to have rational coefficients Q.
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The most important property of the index of any root class is its homotopy
invariance, hence it can be used to estimate the number of roots.

As we have seen, such an index is a homomorphism between homology groups,
so it is not numerical and hence difficult to compute. It is a natural idea to try to
reduce this index in some useful cases. An interesting case is when X and Y are
both oriented closed manifolds of the same dimension; here H∗(X,X − x∗) = Q,
and the index is in some sense referred to as the degree of the map f (see [5,
7.3 Corollary]). A great improvement in this case was made in [1] and [3], where
manifolds were allowed to be non-orientable.

It is the purpose of this paper to study a simpler “index”, which is just the
1-dimensional part of the original index.

2. Local separating points

We shall consider the index homomorphism in dimension one only, namely,
the 1-dimensional index homomorphism. Let f : Y → X be a map between com-
pact polyhedra, and x∗ ∈ X . In order to get a non-trivial 1-dimensional index
homomorphism, we have to assume that H1(X,X − x∗) is non-trivial. Fortu-
nately, this algebraic condition has a simple equivalent geometric interpretation,
namely the existence of a local separating point.

Definition (2.1). A point p in a topological space X is said to be a local
separating point of X if there is a connected neighborhood Op of p in X such
that Op − p is disconnected.

Proposition (2.2). Let p be point in a compact polyhedron X. Then p is a
local separating point if and only if H1(X,X − p) is non-trivial.

Proof. Since X is a compact polyheron, we can find a regular neighborhood
W of p in X , which is contractible. In the exact sequence

→ H1(W )→ H1(W,W − p)→ H̃0(W − p)→ H̃0(W )→ H̃0(W,W − p),

we know that H1(W ) = 0 and H̃0(W ) = H0(W, p) = 0. Thus H1(W,W − p) 	= 0

if and only if H̃0(W−p) 	= 0, which is the case if and only ifW−p is disconnected,
that is, if and only if p is a local separating point.

In [6], the definition of local separating point was generalized as follows:

Definition (2.3). A connected subpolyhedron A of X is said to be a local
separating set of X if there is a connected neighborhood N of A in X such that
the set N −A is not connected.

Clearly, p is a local separating point if and only if {p} is a local separating
set.

3. 1-dimensional index homomorphism

Consider a map f : Y → X and x∗ ∈ X . In this section we will assume
that x∗ is a local separating point of X . The restriction f∗e−1

∗ j∗ : H1(Y ) →
H1(X,X − x∗) of the index homomorphism to dimension one is said to be the
1-dimensional index homomorphism and is denoted by v1(f, x∗; ·).

As in the case of the original index, the homotopy invariance of the 1-dimen-
sional index homomorphism implies the following result.
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Theorem (3.1). If f has n root classes at x∗ with non-trivial 1-dimensional
index homomorphism (i.e., v1(f, x∗; ·) is a non-zero homomorphism at each of
these n root classes), then any map g homotopic to f has at least n roots at x∗,
i.e. |g−1(x∗)| ≥ n.

Proof. Observe that for any isolated root set R, a non-trivial 1-dimensional
index homomorphism implies certainly a non-trivial index homomorphism. Since
a root class corresponding to no root under homotopy must have trivial index
homomorphism ([5, p. 137]), we are done.

Now, we shall illustrate how to compute our 1-dimensional index homomor-
phism for maps between compact polyhedra.

Take a regular neighborhood W of x∗. As in the proof of Proposition (2.2),
we have an exact sequence

0→ H1(W,W − x∗)
∂∗,1→ H̃0(W − x∗)

i∗,0→ H̃0(W )→ 0.

Thus, H1(W,W −x∗) is generated by the 1-simplices whose ending points are in
different components of W − x∗.

Let R be a connected isolated root set of f : Y → X at x∗, and take a regular
neighborhoodN of R. Then the 1-dimensional index homomorphism v1(f, x∗;R)
of R is given by the composition

H1(Y )
j∗,1→ H1(Y, Y −R)

e∗,1← H1(N,N −R)
f∗,1→ H1(X,X − x∗).

Note that f∗,1e−1
∗,1j∗,1 is non-trivial if and only if f∗,1e−1

∗,1|Imj∗,1 : Imj∗,1 →
H1(X,X − x∗) is non-trivial, where Imj∗,1 ⊂ H1(Y, Y − R). From the exact

sequence · · · → H1(Y )
j∗,1→ H1(Y, Y − R)

∂∗,1→ H0(Y − R) → · · · , we get that
Imj∗,1 = Ker∂∗,1. For an element in H1(Y, Y −R) represented by a path α : I →
Y , we know that ∂∗,1(α) = α(1)− α(0). Thus, such an element lies in Imj∗,1 =
Ker∂∗,1 if and only if α(0) and α(1) are in the same component of Y − R.
Therefore, Imj∗,1 is generated by the set of paths γ : I → Y whose end points
either lie in the same component of Y − R or are the same points in R. Notice
that e∗,1 is an isomorphism, hence the generators of Imj∗,1 can be chosen to
be the paths in N . Since the neighborhood N of R can be chosen to be very
small, we may assume that f(N) ⊂ W . Thus, for any path γ : I → N which
is considered as element in H1(N,N − R), f∗,1([γ]) = 0 ∈ H1(X,X − x∗) if
and only if either f(γ(0)) and f(γ(1)) are in the same component of W − x∗ or
f(γ(0)) = f(γ(1)) = x∗. So we have proved:

Theorem (3.2). Let R be a connected isolated root set of f : Y → X at x∗. If
v1(f, x∗;R) 	= 0, then there are two components of N −R which are in the same
component of Y −R and are mapped by f into different components of W − x∗,
where N and W are regular neighborhoods of R and x∗ respectively. �

Corollary (3.3). If a connected isolated root set R of f : Y → X at x∗ is
not a local separating set in Y , then v1(f, x∗;R) = 0. �
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4. An example

Example (4.1). Let X and Y be the two compact 1-dimensional polyhedra
(i.e. graphs) which are shown in the figure below. The map f : Y → X is the
piece-wise linear map such that f◦α1 = β1, f◦α2 = β2, f◦α3 = β3β4β5β6β1β2β3

and f ◦ α4 = β1β2β3.
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Clearly, H1(Y ) = Q, and we take as its generator the homology class [α1α2α3].
A basis for H1(X,X − x∗) = Q3 can be chosen to consist of the classes
{[β−1

1 β−1
3 ], [β−1

1 β4], [β
−1
1 β−1

6 ]}. As indicated in the figure, we have the set of
roots f−1(x∗) = {y0, y1, y2, y3}.

Consider the root y1. Its regular neighborhoodN can be chosen as a small line
segment which does not meet any root other than y1. When N is small enough,
it is mapped by f into a sub-path of β3β4, centered at x∗. In 1-dimensional
homology, for the composition

H1(Y )
j∗,1→ H1(Y, Y − y1)

e∗,1← H1(N,N − y1)
f∗,1→ H1(X,X − x∗),

we have f∗,1e−1
∗,1j∗,1([α1α2α3]) = f∗,1([N ]) = [β3β4] = −[β−1

1 β−1
3 ] + [β−1

1 β4].

Using the ordered basis of H1(Y ) and H1(X,X − x∗) mentioned above, the 1-
dimensional index homomorphism v1(f, x∗; {y1}) can be simply written as the
vector (−1, 1, 0).

Observe that π1(X, x∗) = Z ∗ Z, with generators the loops a = 〈β1β2β3〉 and
b = 〈β4β5β6〉. Thus the image of fπ : π1(Y, y0) → π1(X, x∗) in π1(X, x∗) is an
infinite cyclic group generated by aba. Let γ be the line segment from y0 to y1;
then 〈f ◦γ〉 = a−1b−1 ∈ π1(X, x∗), which is the element φ(y1) in π1(X, x∗)/Imfπ
corresponding to y1.

In a similar way, we obtain the rest of the data in the following table:

root v1(f, x∗; ·) φ(·)
y0 (−1, 0, 0) 1
y1 (−1, 1, 0) a−1b−1

y2 (0, 0,−1) a−1

y3 (0, 0, 0) a

Since 1, a−1, a−1b−1 are different elements in π1(X, x∗)/Imfπ, and since a =
(aba)a−1b−1, f has three root classes, { {y0}, {y1, y3}, {y2} }, each of which has
non-trivial 1-dimensional index homomorphism. Thus, by Theorem (3.1), any
map homotopic to f has at least 3 roots at x∗.

The author thanks the referee for many helpful comments.
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ON GENUS ACTIONS OF FINITE SIMPLE GROUPS ON

HANDLEBODIES AND BOUNDED SURFACES

BRUNO P. ZIMMERMANN

Abstract. Let G be a finite nonabelian simple group of isometries of a
3-dimensional handlebody V or of a compact bounded surface of least pos-
sible genus g (a “genus action” of G). Generalizing analogous results for
genus actions of finite simple groups on closed surfaces, we prove that G
is a normal subgroup of small index in the orientation-preserving isometry
group H of V , and that H is canonically isomorphic to a subgroup of the
automorphism group of G. We present also some related results on finite
group actions of maximal possible order, in particular for nilpotent and
simple groups.

1. Introduction

By the genus of a finite group G we understand the least genus of a closed
orientable surface on which G acts by orientation-preserving diffeomorphisms.
In analogy, the handlebody genus of G is the smallest genus of a closed orientable
3-dimensional handlebody V with an orientation-preserving G-action. In each
case, such an action on a surface or handlebody of least genus is called a genus
action of G.

The algebraic or real genus of a compact surface with nonempty boundary is
the rank of its free fundamental group, and the algebraic or real genus of a finite
group G is the least algebraic genus of a compact bounded surface (possibly non-
orientable) with a G-action (possibly orientation-reversing). Given an action of
a finite group G on a bounded surface of algebraic genus g, by taking a (possibly
twisted) product of the surface and the G-action with a closed interval, one
obtains an orientation-preserving action of G on an orientable handlebody of
genus g. Hence the handlebody genus of a finite group G is smaller or equal to
its algebraic genus.

We consider genus actions of finite simple groups on handlebodies (and simple
group will always mean nonabelian simple group in the following). The only
finite simple group which acts on the 3-ball (the handlebody of genus zero) is
the dodecahedral or alternating group A5, and there are no finite simple groups
acting on the solid torus. Therefore, in the following, we can concentrate on the
case of handlebodies of genus g > 1.

Three-dimensional handlebodies V are uniformized by Schottky groups (free
Kleinian groups acting by isometries on hyperbolic 3-space and by conformal
maps on its sphere at infinity). Then the interior of V becomes a complete
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hyperbolic 3-manifold of infinite volume and its boundary a Riemann surface
(or a hyperbolic surface if g > 1). By the Proposition in the introduction of
[12], if the action of a finite group G on a surface F extends to a 3-dimensional
handlebody V then V can be uniformized by a Schottky group such that the
action of G on F extends to an action of G on the interior of V by isometries
(also, G acts by conformal maps resp. isometries on F = ∂V ). Hence, if a finite
group acts by orientation-preserving diffeomorphisms on a handlebody V then it
acts also by isometries, for some uniformization of V by a Schottky group. Note
that the isometry group of a handlebody of genus g > 1 is finite because this is
the case for the isometry group of a closed hyperbolic surface.

We say that a group is 2-generated if it is generated by two elements, and
(m,n)-generated if it is generated by two elements of orders m and n. Our main
result is the following

Theorem (1.1). Let G be a finite simple group acting by isometries on a
3-dimensional handlebody V of least genus g, or on a bounded surface V of
least algebraic genus g (a genus action of G); assume g > 1. Then G is a
normal subgroup, of index at most 10, in the orientation-preserving isometry
group H of V . If G is (2, n)-generated than G has index 1, 2 or 4 in H, and if
it is (2, 3)-generated than the index is 1 or 2. In any case, the map induced by
conjugation from H to the automorphism group AutG of G is injective, hence
G ⊂ H ⊂ AutG.

Analogous results for genus actions on closed surfaces are obtained in the
papers [17] and [2] which motivated the present paper. For bounded surfaces,
a version of the Theorem (under the hypothesis that G is (2, n)-generated) is
proved in [6]. In all these papers, the proofs use the theory of Fuchsian or
noneuclidean crystallographic groups and the formula of Riemann-Hurwitz. In
the present paper, we apply instead the corresponding theory for finite group
actions on handlebodies which uses the language of finite graphs of finite groups
and their Euler characteristics [8].

It is conjectured (and known for many classes of simple groups, see [17]) that
every finite simple group is (2, n)-generated. The part of the Theorem without
such a hypothesis uses the classification of the finite simple groups, or more
precisely the fact that every finite simple group is 2-generated [1].

A particular case of genus actions are the actions of maximal possible order.
In the case of closed orientable surfaces of genus g > 1, by a classical result of
Hurwitz and as a consequence of the formula of Riemann-Hurwitz, the maximal
order of a finite group of orientation-preserving diffeomorphisms is 84(g−1), and
the corresponding groups are called Hurwitz groups. In the case of a handlebody
of genus g > 1 or of a bounded surface of algebraic genus g > 1, the maximal
order is 12(g − 1), and we call these groups maximal handlebody resp. maximal
bounded surface groups (see [19], [8], Theorem 7.2, for the case of handlebodies,
and [5] for the case of bounded surfaces). Note that, by an above observation,
the bound for handlebodies implies that for bounded surfaces, and that every
maximal bounded surface group is a maximal handlebody group.

We complement the main Theorem by some results on finite group actions of
maximal possible order on closed and bounded surfaces, and on handlebodies.
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Proposition (1.2). Every maximal handlebody group is 2-generated. Every
maximal bounded surface group G is (2, n)-generated, for some n, and (2, 3)-
generated if G is simple (or perfect). There are infinitely many different maximal
handlebody groups which are not (2, n)-generated, for any n.

Comparing the maximal actions on surfaces extending to handlebodies with
the Hurwitz actions, the following holds

Proposition (1.3). Let G be a finite group of orientation-preserving isome-
tries of maximal possible order 12(g−1) of a handlebody V of genus g > 1. Then
either G is a normal subgroup of index at most three in the orientation-preserving
isometry group H of the hyperbolic surface F = ∂V , or H is a Hurwitz group of
order 84(g− 1). In the latter case, if H is simple then H is the smallest Hurwitz
group PSL(2, 7) of order 168, acting on Klein’s quartic of genus three, and G is
the symmetric group S4 of order 24.

In fact, if H is a Hurwitz group it might always be true that H is isomorphic
to PSL(2, 7).

The finite simple groups which are maximal handlebody or maximal bounded
surface groups of even genus can be characterized as follows.

Proposition (1.4). a) For a prime power q, the linear fractional group
PSL(2, q) is a maximal handlebody group of order 12(g− 1) (respectively a max-
imal bounded surface group) if and only if q is different from 2, 7, 9, 11 and
32m+1.

b) A finite simple group G is a maximal handlebody group (respectively a
maximal bounded surface group) of even genus if and only if G is isomorphic to
a linear fractional group PSL(2, q), for a prime power q ≡ ±3 mod 8 different
from 11 and 32m+1.

Finally, for finite nilpotent groups our methods imply the following result
(proved in [23] for the case of closed surfaces, and in [7] for the case of bounded
surfaces; see also the Remark in section 6 for the case of closed surfaces). Various
upper and lower bounds for finite group actions on handlebodies and bounded
surfaces are obtained in [10], and in [8], Theorem 7.6, for the case of finite cyclic
and abelian groups.

Proposition (1.5). A finite nilpotent group G of orientation-preserving dif-
feomorphisms of a handlebody or a bounded surface of (algebraic) genus g > 1
has order at most 8(g − 1), and this upper bound is attained for infinitely many
different genera g. Moreover, if G has maximal order 8(g−1) then it is a 2-group.

2. Proof of Theorem (1.1)

For a finite graph of finite groups (Γ,G), we denote by π1(Γ,G) its fundamental
group (that is the iterated free product with amalgamation and HNN-extension
over the vertex groups, amalgamated over the edge groups of a maximal tree,
with the HNN-generators corresponding to the edges in the complement of the
chosen maximal tree), and by

χ(Γ,G) :=
∑

1/|Gv| −
∑

1/|Ge|
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its Euler characteristic; the sum is extended over all vertex groups Gv resp. edge
groups Ge of (Γ,G). For example, the graph of groups

Γ(B1, A,B2)

with one edge with edge group A and two vertices with vertex groups B1 and
B2 has Euler charateristic χ(Γ(B1, A,B2)) = 1/|B1|− 1/|B2|− 1/|A| and funda-
mental group π1(Γ(B1, A,B2)) ∼= B1 ∗A B2.

A finite graph of finite groups (Γ,G) is admissible if it satisfies a certain set
of normalized or unnormalized conditions (see [8]); most importantly, the vertex
groups of (Γ,G) are spherical groups (finite subgroups of the orthogonal group
SO(3)), and the edge groups are cyclic groups which are either trivial or max-
imal cyclic in the adjacent vertex goups. Equivalently, (Γ,G) is associated to a
handlebody orbifold whose orbifold fundamental group is isomorphic to π1(Γ,G)
(see [21]).

For a finite group G, a finite graph of finite groups (Γ,G) is G-admissible
if it is admissible and there exists an epimorphism from π1(Γ,G) onto G with
torsionfree kernel (or equivalently, the epimorphism is injective on the vertex
groups). Now, in a similar way as finite group actions on closed surfaces are
connected to Fuchsian groups and the formula of Riemann-Hurwitz, finite group
actions on handlebodies are connected to admissible graphs of groups, their
fundamental groups and the multiplicativity of their Euler characteristics under
finite coverings. In particular, the following holds ([8], [21]).

Proposition (2.1). A finite group G acts on a handlebody Vg of genus g if
and only if there exists a G-admissible finite graph of finite groups (Γ,G) such
that

g − 1 = −χ(Γ,G)|G| .

An analogous result for finite group actions on bounded surfaces is proved in
[9]; in this case the vertex groups are finite subgroups of the orthogonal group
O(2), that is cyclic or dihedral groups (cyclic groups in the orientation-preserving
case), and the edge groups are trivial or of order two (corresponding to reflections
in dihedral vertex groups).

The maximal negative Euler characteristic of an admissible graph of groups
is −1/12, and there are exactly the following four admissible graphs of groups
with this Euler characteristic ([20], [8], p.401, Chart B)

Γ(D2,Z2,D3), Γ(D3,Z3,A4), Γ(D4,Z4, S4), Γ(D5,Z5,A5)

(where Dn denotes the dihedral group of order 2n and A4, S4 and A5 the tetra-
hedral, octahedral and dodecahedral group, respectively). It follows then from
Proposition (2.1) that the maximal possible order of a finite group G acting on
a handlebody of genus g > 1 is 12(g − 1), and that the maximal handlebody
groups are exactly the finite admissible quotients (i.e., by torsionfree subgroups)
of one of the following four free products with amalgamation

D2 ∗Z2 D3, D3 ∗Z3 A4, D4 ∗Z4 S4, D5 ∗Z5 A5.
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The maximal bounded surface groups are exactly the finite quotients of the
first group D2 ∗Z2 D3, isomorphic to the extended modular group PGL(2,Z)
(which is the only one of the four groups with cyclic and dihedral vertex groups).

The second largest Euler characteristic is −1/8, realized by the two admissible
graphs of groups

Γ(D2,Z2,D4), Γ(D3,Z3, S4) ,

with fundamental groups

D2 ∗Z2 D4, D3 ∗Z3 S4 ,

and consequently the second largest order is 8(g−1). After this, the next largest
orders are 20(g − 1)/3 and 6(g − 1) (see [8], p. 401, chart B). We note that, for
orientation-preserving actions on bounded surfaces of algebraic genus g > 1, the
largest possible order is 6(g− 1) and realized by the graph of groups Γ(Z2, 1,Z3)
whose fundamental group is isomorphic to the modular group PSL(2,Z) ∼= Z2 ∗
Z3. Hence the corresponding groups are exactly the finite admissible quotients of
the modular group or, equivalently, the finite groups which are (2, 3)-generated.

Suppose now that G is a finite simple group as in Theorem (1.1). We have
to prove that G is normal in the orientation-preserving isometry group H of V .
The crucial step of the proof is the following. Using the classification of the finite
simple groups, it is shown in [1] that every finite simple group is generated by
two elements. If G is generated by two elements of orders m and n then the
graph of groups Γ(Zm, 1,Zn) is G-admissible, and, by Proposition (2.1), G acts
on a handlebody of genus |G|(1− 1/m− 1/n)+ 1. Since, by hypothesis, g is the
least genus for a G-action, this implies

g − 1 < |G| ≤ |H | ≤ 12(g − 1).

It follows that the index |H |/|G| ofG inH is at most 11. By left multiplication
of left cosets of G in H with elements of H , we obtain a homomorphism φ : H →
S11 from H to the symmetric group S11 of degree 11. Since φ(G) fixes the coset
G of the unit element, φ restricts to a homomorphism φ : G → A10 from G to
the alternating group A10. Note that the image φ(G) is trivial if and only if G
is normal in H .

Assume, by contradiction, that G is not normal in H . Then φ(G) is a non-
trivial subgroup of A10, and the kernel of φ : G → A10 is trivial (because G is
simple). Thus G is isomorphic to a subgroup of the alternating group A10. By
[4] or [13], the simple subgroups of A10 are exactly the alternating groups A5 -
A10 and the linear fractional groups PSL(2, 7) and PSL(2, 8). It is well known
and easy to prove that all these groups are generated by an element of order two
and another element of some order n. As above, this implies that G acts on a
handlebody of genus |G|(1 − 1/2− 1/n) + 1, and that

2(g − 1) < |G| ≤ |H | ≤ 12(g − 1).

It follows that G has index at most five in H . Repeating the above argument
we find that G is isomorphic to a subgroup of the alternating group A4 which is
a contradiction because A4 is solvable.

Hence we have proved that G is a normal subgroup of H . Moreover, G
has index at most 11 in H and |G| > g − 1. If this index is at least 7 then
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|H | > 7(g−1) and H has order 8(g−1) or 12(g−1). The fundamental groups of
the corresponding 6 graphs of groups listed above are all generated by involutions.
It follows that H has no quotients of odd orders 7, 9 or 11, and in particular
the index of G in H is at most 10. Similarly, if G is (2, n)-generated then
|G| > 2(g − 1) and has index 1, 2 or 4 in H ; if G is (2, 3)-generated then
|G| ≥ 6(g − 1) and has index 1 or 2 in H .

Finally, we prove that the action of H on G by conjugation is faithful or,
equivalently, that the centralizer CHG of G in H is trivial. Suppose that CHG
is nontrivial. As the center of G is trivial this implies that H has a subgroup
G×Zn, for some n > 1. It is a consequence of the equivariant Dehn Lemma/Loop
Theorem that the quotient V̄ = V/Zn is again a handlebody (see [21], Proposi-
tion 1). The action of G on V projects to an action of G on V̄ . However, the
genus of V̄ is strictly smaller than the genus g of V (because g > 1; one may
apply, for example, the formula of Riemann-Hurwitz to the induced branched
covering between the boundaries of V and V̄ ). This is a contradiction because,
by hypothesis, g was the least genus for a G-action on a handlebody.

3. Proof of Proposition (1.2)

The maximal handlebody groups are exactly the finite admissible quotients
of the four free products with amalgamation associated to the four admissi-
ble graphs of groups of maximal negative Euler characteristic −1/12, and the
maximal bounded surface groups are the quotients of the first group D2 ∗Z2 D3

(isomorphic to the extended modular group). Each of these four free products
with amalgamation is a quotient, with torsionfree kernel, of the (quadrilateral)
Fuchsian group with signature (0; 2, 2, 2, 3) and presentation

〈x1, x2, x3, x4 | x2
1 = x2

2 = x2
3 = x3

4 = x1x2x3x4 = 1〉
(the image of x1x2 generates the amalgamated subgroups). This Fuchsian group
is generated by the two elements x1x2 and x2x3 (noting that (x1x2)(x3x2)(x2x1)
(x2x3) = (x1x2x3)

2 = x−2
4 = x4 and (x1x2)(x3x2) = x−1

4 x2). This quadrangle
group is in fact one of the exceptional Fuchsian groups for which the geometric
and the algebraic rank do not coincide, see [18], chapter 4.16. Noting that
the image of x1x2 in D2 ∗Z2 D3 has order two, this proves that every maximal
handlebody group is 2-generated, and that every maximal bounded surface group
is (2, n)-generated. Suppose that G is a maximal bounded surface group which
is simple (or perfect). The modular group Z2 ∗ Z3 is a subgroup of index two
in the extended modular group D2 ∗Z2 D3. Then G which is a surjective image
of the extended modular group is also a surjective image of the modular group,
and hence (2, 3)-generated.

An example of a maximal handlebody group which is not (2, n)-generated
is the central product (the direct product with identified centers) A

∗
5 ×Z2 A

∗
5

of two binary dodecahedral groups A∗
5, isomorphic to the orientation-preserving

symmetry group of the 4-dimensional 120-cell or to the orientation-preserving
subgroup of the Coxeter group [3,3,5]. Its quotient by the diagonal subgroup
(isomorphic to A5) is the binary dodecahedral group A

∗
5 which has a unique

(central) involution and hence is not (2, n)-generated. Then also A
∗
5 ×Z2 A

∗
5 is

not (2, n)-generated; in particular, it is not a maximal bounded suface group.
On the other hand, A∗

5 ×Z2 A
∗
5 is a maximal handlebody group because there
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is an admissible surjection φ : D5 ∗Z5 A5 → A
∗
5 ×Z2 A

∗
5, by mapping A5 to the

diagonal subgroup of A∗
5×Z2 A

∗
5, and an involution in D5 to a suitable element of

the form (a, b) such that a2 = b2 is the central element and ab−1 has order ten
in A

∗
5 (so a and b generate a binary dihedral subgroup D

∗
5 of A∗

5). The quotients
of D5 ∗Z5 A5 by characteristic subgroups of the kernel of φ (a free group) give
infinitely many maximal handlebody groups which are not maximal bounded
surface groups (see also section 2 of [22]).

4. Proof of Proposition (1.3)

Let G be a finite group of isometries of maximal possible order 12(g − 1)
of a connected orientable hyperbolic surface F of genus g > 1 which extends
to a handlebody of genus g. By [19], the G-action on F is of type (2, 2, 2, 3),
that is the quotient orbifold F/G has signature (0; 2, 2, 2, 3), i.e. is the 2-sphere
with four branch points of orders 2,2,2 and 3. The group of all lifts of elements
of G to the universal covering of F , the hyperbolic plane, is a Fuchsian group
G̃ = (2, 2, 2, 3) of signature (0; 2, 2, 2, 3) and characteristic −1/6 (see [18]); this

is a subgroup of finite index of the Fuchsian group H̃ consisting of all lifts of
elements of the orientation preserving isometry group H of F .

We can assume that H̃ is different from G̃. By the formula of Riemann-
Hurwitz, H̃ is a triangle group (p, q, r) (i.e., of signature (0; p, q, r)), of charac-
teristic −1/12, −1/24, −1/18 or −1/42 (there are no triangle groups of char-
acteristics −1/30 and −1/36). The triangle groups of characteristic −1/12 are
(2, 4, 6), (3, 3, 4) and (2, 3, 12), but only the first one has the quadrangle group
(2, 2, 2, 3) as a subgroup of index two. The only triangle group of charateris-
tic −1/18 is (2, 3, 9), containing (2, 2, 2, 3) as a subgroup, necessarily normal,
of index three (see [14] for the determination of the signature of a subgroup of
a Fuchsian group). The only triangle group of characteristic −1/24 is (2, 3, 8)
which does not have (2, 2, 2, 3) as a subgroup. The only remaining possibility is
the triangle group (2, 3, 7) which contains (2, 2, 2, 3) as a non-normal subgroup
of index seven; in this case H is a Hurwitz group of order 84(g − 1) containing
G as a subgroup of index seven.

Finally, suppose that H is a non-abelian simple Hurwitz group of order 84(g−
1). The subgroup G of index seven in H gives a homomorphism from H to the
symmetric group S7 (by permutation of the left cosets of G in H induced by left
multipication). As H is simple the kernel of this homomorphism is trivial and
H is isomorphic to a subgroup of S7. The simple Hurwitz groups of order at
most 7! are listed in [3] and are of linear fractional type PSL2(7), PSL2(8) or
PSL2(13); the only one among these groups with a subgroup of index seven is
PSL2(7), acting on Klein’s quartic of genus 3, with a subgroup S4 (see [15], p.
415).

5. Proof of Proposition (1.4)

Part a) of the Proposition follows from [11], Theorem 3.1 and Corollary 3.3
(we note that in the case k = 5 of Theorem 3.1 and in Corollary 3.3 of [11] the
condition q �= 11 has to be added).



542 BRUNO P. ZIMMERMANN

The only simple group which is a maximal handlebody group of genus 0 is the
alternating group A5

∼= PSL(2, 4) ∼= PSL(2, 5). A maximal handlebody group G
of genus g > 1 has order 12(g − 1). It follows that the handlebody genus g of G
is even if and only if the Sylow 2-subgroups of G have order 4. By [16], p. 582,
Theorem 11.1, the finite simple groups with abelian Sylow 2-subgroups of order
4 are the linear fractional group PSL(2, q), for a prime power q ≡ ±3 mod 8.
Part b) of Proposition (1.4) follows now from part a).

6. Proof of Proposition (1.5)

The first part of the Proposition follows from the fact that a finite nilpotent
group G is not an admissible quotient of one of the four extremal products
with amalgamation D2 ∗Z2 D3, D3 ∗Z3 A4, D4 ∗Z4 S4 and D5 ∗Z5 A5 in section 2
(because the factors D3, A4, S4 and A5 are not nilpotent). This implies that the
maximal order 12(g− 1) is not achieved for nilpotent groups of diffeomorphisms
of handlebodies and bounded surfaces of (algebraic) genus g > 1.

The groups G of the second largest order 8(g − 1) are exactly the admissible
quotients of one of the two groups D2∗Z2 D4 and D3∗Z3 S4, of Euler characteristic
−1/8 (see section 2). Note that the second group does not occur for nilpotent
groups G. The nilpotent 2-group D4 is an admissible quotient, with kernel the
free group F2 of rank two, of the first group D2∗Z2D4. It follows that 8(g−1) is an
upper bound for nilpotent groups of diffeomorphisms; moreover this upper bound
is attained for infinitely many different genera, by considering the quotients of
D2 ∗Z2 D4 by characteristic subgroups of F2 whose index is a power of two (so
the quotient is still a 2-group and hence nilpotent).

Finally, suppose that the nilpotent group G is an admissible quotient of D2∗Z2

D4. Then G is generated by the 2-groups D2 and D4 which are contained in the
unique normal Sylow 2-subgroup of G (a nilpotent group is the direct sum of
its Sylow subgroups). Hence G coincides with its Sylow 2-subgroup and is a
2-group.

Remark. By [23], the maximal possible order of a finite nilpotent group G
of orientation-preserving diffeomorphisms of a closed orientable surface of genus
g > 1 is 16(g − 1). This can be seen also as follows. A nilpotent group is
the direct sum of its Sylow subgroups. It follows that G is not an admissible
quotient of a triangle group of type (2, 3,m), for m > 6 (because the product of
two elements of orders two and three in G has order six). For a similar reason,
G is not an admissible quotient of the triangle groups (2, 4, 5), (2, 4, 6), (2, 4, 7)
and (2, 5, 5). Excluding all these triangle groups, the largest order remaining is
16(g − 1) and realized by the triangle group (2, 4, 8). In this maximal case, G
has to be again a 2-group because it is generated by elements of orders 2 and 4
and hence coincides with its Sylow 2-subgroup.
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SOME RESULTS ON ONE-RELATOR SURFACE GROUPS:
ERRATUM

JAMES HOWIE

In [1], a numbcr of results were proved about groups of the {'orm7Tl(S)/N(R),
where S is a closed orientable surface, and N(R) is the normal closure of a
single elcmcnt R e iri(S).

Unfortunately, one of the results of that paper, Theorem 4.1 (the Frei-
heitssatz), is not true in thc full generality statcd there. The purpose of the
present note is to explain the gap in the proof, give some exainples where the
statemcnt of the theorem is false, and to present a conjecture regarding the
additional hypotheses nccessary for the Freiheitssatz to hold.

The error in the proof of[lj, Theorem 4.1, does not affect an}' of the other
results stated in [1].

Elements of 77i(S) can be represented as closed curves a in the surface S
(usually with self-intersections). Any closed curve in S defines a homology
class in Hi(S). Given two closed curves a, (3 in S, we let (a, /3) 6 Z denote tbe
valué of the intersection form on Hi(S) x íf i(S), applied to the pair of homology
classes represented by ex and /3.

If Ií e 7T](S) is represented by thc closed curve a, then we also use thc
notation ir^S^/a for in(S)/N(R).

Given an embedded (that is, simple) closed curve /3 in S, I falscly stated in
[1|, Theorem 4.1, the folio wingassertion, intended as the analogue of Magnus1

Freiheitssatz for one-relator groups [3]:

ASSERTION (1). Let S be a closed oriented surface, a a closed curve in S, and
P a simple closed curve in S such that a is not homoíopic to a curve disjoint
from p. Then 7ri(S \) — > 7Ti(S)/a is injective.

The allcged proof of Asscrtion 1 in [11 is wrong. It seeks to apply Magnus'
Freiheitssatz [3] to show that a map -rr\(F) — > 7ri(F')/7 is injective, where F is
a certain non-compact surface, F' is obtained from F by adjoining an annulus
to a pair of circle components of OF, and 7 is a certain closed curve in F'. This
argument is not valid, for the following rcason. Although Tr^F) and TTi(F')
are both frce, and the inclusion-induced homomorphism TTi(F) — > ií\.(F') is
injective, the image of this homomorphism is not a free factor of'Tri(F'), so
Magnus' result does not apply.

Indeed there are some quite simple counterexamples to Assertion 1. as fol-
io ws:

Example (2). Let p be a non-separating, embedded closed curve in the closed
orientable surface S, and let a be any closed curve that intersects fí trans-
versely in a single point. Then

1 + [a, (3] 6 TTiGS -.13)^. N(a),

545
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Example (3). Let cv, fí be essential simple cjosed curves contained in a punc-
tured torus T c S, such that (a, f3} / 0. Then

These examples sharc the following common feature: in each case, thegeo-
metric intersection number a n /3\t is, thc mínimum number of points of
intersection of £f with any curve isotopic to a) is equal to thc absolute valué of
(a, (3}. In other words, a and (3 can be isotoped so as to intersect transverscly
in finitely many points, afl oí' the same sign. This suggests the following

Conjecture (4). Lct a, j3, S be as in Assertion 1. Supposc that a n /3i is strictly
greater than the absoluto valué of («,£). ThenTnfSx/ü) ~* TníS)/ ais injective.

Therc is some evidence in favour of Conjecture 4. Firstly, in fl], a special
case of Assertion 1 is proved, using a much simpler (and, more importantly,
correct) argument:

THEOREM (5) ([1], Proposition 3.10). Let S be a closed oriented sur face, aa
closed curve in S, and (3 a simple closed curve in S such that c¿ is not homotopic
to a curve disjoint [rom (3, and that (a, (3) = 0. Then 7T\(S \) — » Tr\(S)¡a is
injective.

The proof of this result uses thc fact that the infinite cyclic cover of S eor-
responding to the kcrnel of the homomorphism (—,(3) : iTi(S) — > 7, can be
constructed from a collection Fn, n e Z of copies ofF := S '-••.. /3, with Fn r\Fn^i
an annulus. See [1], Proposition 2.1.

Combiriing this fact with a result of Klyachko [21, we can also prove the
follomng special case of Conjecture 4:

THEOREM (6). Let S be a closed oriented surface, a a closed curve in S, and
¿8 a simple closed curve in S such that a is not homotopic to a curve that meets
P ai most once, and that (a, (3} — ±1. Then 77-1*8 x /?) — > 7Ti(S)/tx is injective.

The methods of [1] can also be used to prove the following:

TllEOREM (7). Let S be a closed oriented surface, a a closed curve in S, and
Pi, P¡2 two disjoint simple closed curves in S such that a is not homotopic to a
curve disjoint from /^ or from /32- Then iri(S -^.(fiíU fiz)) -* TT\(S){ ais injective.

The proofs of the last two results will appear in a sepárate article.
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