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REPRESENTATIONS OF RESIDUE CLASSES BY PRODUCT OF
FACTORIALS, BINOMIAL COEFFICIENTS AND SUM OF

HARMONIC SUMS MODULO A PRIME

VÍCTOR C. GARCÍA

Abstract. We study various problems on distribution properties of factorials,
binomial coefficients and harmonic sums modulo a large prime.

1. Introduction

It is not known much about the distribution properties of factorials modulo
a large prime p. In [8], F11; it is conjectured that about p/e of the residue
classes modulo p are missed by the sequence n!. If this conjecture were true,
the sequencen! modulo p should assume about (1−1/e)p distinct values, see [1]
for some results of this spirit. This in turn would imply the representability of
every residue class modulo p as a product of two factorials. Unconditionally,
the Wilson theorem implies that

λ! · (p − λ)! ≡ λ (mod p)

holds for any even λ ∈ {0, 2, . . . , p − 1}. From this one derives that every
nonzero residue class modulo p can be represented as a product of three facto-
rials modulo p.

However, this argument does not apply to proving the existence of repre-
sentations involving factorials of integers of restricted size and do not provide
with asymptotic formulas for the number of representations. Some progress in
this direction has been made in [4]–[7]. In particular, multiplicative character
sums and exponential sums involving these functions have been estimated.
These estimates have been then applied to study various additive and multi-
plicative congruences with factorials of integers in short intervals.

For example, in [4] it is shown that for any nonprincipal character χ modulo
p we have

L+N∑
n=L+1

χ(n!)� N3/4p1/8 log3/4 p,

where L,N denote nonnegative integer numbers. Combining this result with
upper bound estimates for the number of solutions of special congruences (see,
Lemma (2.2) below) in [4] it is shown that for a given λ 6≡ 0 (mod p) the number
of solutions of the congruence

(1.1)
7∏
i=1

ni! ≡ λ (mod p); L + 1 ≤ n1, · · · , n7 ≤ L + N,

2000 Mathematics Subject Classification: 11A07, 11B65, 11L40.
Keywords and phrases: residue classes, factorials, binomial coefficients, harmonic sums.

165
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asymptotically behaves like N7/p, for 0 < L + 1 ≤ L + N ≤ p and

Np−11/12 log−1/2 p → 0 when p →∞.

Moreover, Theorem 8 of [4] gives an asymptotic formula for the number of
solutions of the congruence

k∏
i=1

ni! ≡ λ (mod p); L + 1 ≤ n1, · · · , nk ≤ L + N.

The number 7 of factors in (1.1) is the smallest integer k for which this asymp-
totic formula is effective with N = o(p).

In [6] additive analogies of the above results have been obtained for har-
monic sums

Hs(n) =
n∑
i=1

1
is
,

where s is a fixed positive integer and Hs(n) is computed modulo p. That is, a
nontrivial upper bound for exponential sums with Hs(n) has been obtained; it
has been shown that for any integer λ the number of solutions of the congruence

7∑
i=1

Hs(ni) ≡ λ (mod p); L + 1 ≤ n1, · · · , n7 ≤ L + N,

asymptotically behaves like N7/p, for 0 ≤ L < L + N < p

Np−11/12 log−1/2 p → 0 when p →∞.

In [7] distribution properties of middle binomial coefficients

bn =
(

2n
n

)
, n = 0, 1, . . . ,

and Catalan numbers

cn =
1

n + 1

(
2n
n

)
, n = 0, 1, . . . ,

have also been investigated. It has been shown in [7] that for all sufficiently
large primesp and every integerλ there exist positive integers r, s� p13/2log6p
such that

br ≡ λ (mod p) and cs ≡ λ (mod p).

This substantially improved the previously known result from [2], requiring
r, s to be of the size pO(p).

Although the numbers that appear on the exponent of p in the above men-
tioned results seem to be the barrier points, the logarithmic factors in some
sense can be removed. The aim of the present paper is to study this question.

The method we use is the combination of methods of [4]–[7] with the argu-
ment described in [3].

Throughout the paper the letters L,N,M are used to denote integers.
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2. Lemmas

The following lemma is taken from [3]. It gives a sharp upper bound for the
average value of a product of modulus of two linear rational sums.

Lemma (2.1). Let L1, L2, A,B be any integers, 1 ≤ A,B ≤ p. Then the fol-
lowing estimate holds:

p−1∑
a=0

∣∣∣∣∣∣
L1+A∑
x=L1+1

e2πi axp

∣∣∣∣∣∣
∣∣∣∣∣∣
L2+B∑
y=L2+1

e2πi ayp

∣∣∣∣∣∣� pA log(BA−1 + 2).

The following result is obtained in [4].

Lemma (2.2). Let 0 ≤ L < L+N ≤ p and k be a fixed positive integer. Then
the number of solutions of the congruence

n1! · · ·nk! ≡ nk+1! · · ·n2k! (mod p); L < n1, . . . , n2k ≤ L + N

is� N2k−1+2−k

, where the implied constant may depend only on k.

An additive analogy of Lemma (2.2) also holds for harmonic sums

Hs(n) =
n∑
i=1

1
is
,

where s is a fixed positive integer and Hs(n) is computed modulo p.

Lemma (2.3). Let 0 ≤ L < L + N ≤ p and s, k be fixed positive integers.
The number of solutions of the congruence

k∑
i=1

Hs(ni) ≡
2k∑

i=k+1

Hs(ni) (mod p); L < n1, . . . , n2k ≤ L + N

is� N2k−1+2−k

, where the implied constant may depend only on k and s.

For the proof, see [6].

3. Theorems and corollaries

The following theorem extends one of the results from [4].

Theorem (3.1). Let

N ≥ 1, M ≥ 1, 0 ≤ L < L + N + M ≤ p.

Then for any nonprincipal character χ (mod p) the following inequality holds:
N∑
x=1

M∑
y=1

χ((x + y + L)!)�MN3/4p1/8 log1/4(NM−1 + 2).

Furthermore, if L−M ≥ 0, then we also have
N∑
x=1

M∑
y=1

χ((x − y + L)!)�MN3/4p1/8 log1/4(NM−1 + 2).

Combining Theorem (3.1) and Lemma (2.2) with the method of [3], we will
derive the following result.
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Theorem (3.2). Let 1 ≤ N ≤ p. Let λ be an integer, λ 6≡ 0 (mod p). If J
denotes the number of solutions of the congruence

n1! · · ·n7! ≡ λ (mod p); 1 ≤ n1, . . . , n7 ≤ N,

then

J =
N7

p − 1
+ O

(
N11/2p3/8 log3/4(Np−11/12 + 2)

)
.

¿From Theorem (3.2) we obtain the following consequence.

Corollary (3.3). For any residue class λ 6≡ 0 (mod p) the congruence

n1! · · ·n7! ≡ λ (mod p)

holds with some positive integers n1, n2, . . . , n7 satisfying

max
1≤i≤7

ni � p11/12.

Corollary (3.3) slightly relaxes the condition that has been posed on ni in [4].

Theorem (3.4). Let

N ≥ 1, M ≥ 1, 0 ≤ L < L + N + M < p.

Then the following inequality holds:

max
gcd(a,p)=1

∣∣∣∣∣∣
N∑
x=1

M∑
y=1

e2πiaHs(x+y+L)/p

∣∣∣∣∣∣�MN3/4p1/8 log1/4(NM−1 + 2).

Furthermore, if L−M ≥ 0, then we also have

max
gcd(a,p)=1

∣∣∣∣∣∣
N∑
x=1

M∑
y=1

e2πiaHs(x−y+L)/p

∣∣∣∣∣∣�MN3/4p1/8 log1/4(NM−1 + 2).

Theorem (3.5). Let 1 ≤ N ≤ p. Let λ be an integer, if J1 denotes the number
of solutions of the congruence

Hs(n1) + · · ·+ Hs(n7) ≡ λ (mod p); 1 ≤ n1, . . . , n7 ≤ N,

then

J1 =
N7

p
+ O

(
N11/2p3/8 log3/4(Np−11/12 + 2)

)
.

¿From Theorem (3.5) we obtain the following consequence:

Corollary (3.6). For any residue class λ 6≡ 0 (mod p) the congruence

Hs(n1) + · · ·+ Hs(n7) ≡ λ (mod p)

is solvable in positive integers n1, n2, . . . , n7 satisfying

max
1≤i≤7

ni � p11/12.
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Corollary (3.6) slightly relaxes the condition on n1, . . . , n7 given in [6].

Consider now the middle binomial coefficients

bn =
(

2n
n

)
, n = 0, 1, . . . ,

and Catalan numbers

cn =
1

n + 1

(
2n
n

)
, n = 0, 1, . . . ,

where as usual we define 0! = 1.

Theorem (3.7). For all sufficiently large primes p and every integer λ there
exist positive integers r, s� p13/2 such that br ≡ cs ≡ λ (mod p).

This result removes the logarithmic factor of the corresponding bound given
in [7].

In the next sections we prove Theorems (3.1) and (3.2). The proofs of
the other results we omit, since they follow the same lines as those of The-
orems (3.1) and (3.2).

4. Proof of Theorem (3.1)

Denote

F1 =
N∑
x=1

M∑
y=1

χ((x + y + L)!)

and

F2 =
N∑
x=1

M∑
y=1

χ((x − y + L)!).

The proofs of the required estimates for F1 and F2 are similar, so we deal only
with F1.

If
N1/2

p1/4 log1/2(NM−1 + 2)
< 10,

then the required inequality becomes trivial. Therefore, we can assume that

K :=

[
N1/2

p1/4 log1/2(NM−1 + 2)

]
> 9.

The shifting argument gives

F1 =
1
K

K∑
k=1

N∑
x=1

M∑
y=1

χ((x + y + k + L)!) + O(KM).(4.1)

Squaring the modulus and using the Cauchy-Schwartz inequality, we obtain

F 2
1 �

NM

K2

N∑
x=1

M∑
y=1

∣∣∣∣∣
K∑
k=1

χ
(
(x + y + k + L)!

)∣∣∣∣∣
2

+ K2M2.(4.2)
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Hence

F 2
1 �

NM

K2

K∑
k1=1

K∑
k2=1

W (k1, k2) + K2M2,(4.3)

where

W (k1, k2) =
N∑
x=1

M∑
y=1

χ
(
(x + y + k1 + L)!

)
χ
(
(x + y + k2 + L)!

)
.

Substituting z = x + y + L, we obtain

|W (k1, k2)| = 1
p

∣∣∣∣∣∣
p−1∑
z=0

χ((z + k1)!)χ((z + k2)!)
p−1∑
a=0

N∑
x=1

M∑
y=1

e2πi ap (z−(x+y+L))

∣∣∣∣∣∣
≤ 1

p

p−1∑
a=0

∣∣∣∣∣
N∑
x=1

e2πi ap x

∣∣∣∣∣
∣∣∣∣∣∣
M∑
y=1

e2πi ap y

∣∣∣∣∣∣
∣∣∣∣∣
p−1∑
z=0

χ((z + k1)!)χ((z + k2)!) e2πi ap z

∣∣∣∣∣ .
By definition of W (k1, k2) we have

|W (k, k)| ≤ NM.

If k1 6= k2, then according to the classical Weil estimate,∣∣∣∣∣
p−1∑
z=0

χ((z + k1)!)χ((z + k2)!) e2πi ap z

∣∣∣∣∣ ≤ Kp1/2.

Indeed, if k1 > k2, then we have∣∣∣∣∣
p−1∑
z=0

χ((z + k1)!)χ((z + k2)!) e2πi ap z

∣∣∣∣∣ ≤∣∣∣∣∣∣
p−k1∑
z=0

χ((z + k1)!)χ((z + k2)!) e2πi ap z

∣∣∣∣∣∣ ≤∣∣∣∣∣∣
p−k1∑
z=0

χ((z + k2 + 1) · · · (z + k1)) e2πi ap z

∣∣∣∣∣∣ ≤∣∣∣∣∣
p−1∑
z=0

χ((z + k2 + 1) · · · (z + k1)) e2πi ap z

∣∣∣∣∣+ K ≤ Kp1/2.

Therefore, when k1 6= k2 we have

|W (k1, k2)| ≤ Kp−1/2
p−1∑
a=0

∣∣∣∣∣
N∑
x=1

e2πi ap x

∣∣∣∣∣
∣∣∣∣∣∣
M∑
y=1

e2πi ap y

∣∣∣∣∣∣� Kp1/2M log(NM−1 + 2).
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Substituting the obtained inequalities for W (k1, k2) in (4.3), we deduce

F 2
1 �

NM

K2

 K∑
k=1

NM +
K∑

k1=1

K∑
k2=1

Kp1/2M log(NM−1 + 2)

+ K2M2 �

N2M2

K
+ Kp1/2NM2 log(NM−1 + 2) + K2M2.

Recalling the definition ofK and observing that the last term never dominates
and the first two terms are of the order that is needed, we conclude the proof.

5. Proof of Theorem (3.2)

We can assume that N ≤ p/2 since for N > p/2 the corresponding result
from [4] gives a better formula than Theorem (3.2).

Let λ 6≡ 0 (mod p) and let J = J (λ,N) be the number of solutions of the
congruence

n1! · · ·n7! ≡ λ (mod p); 1 ≤ n1, . . . , n7 ≤ N.

Denote r =
[

log N
log 2

]
. We divide the interval [1,N] into disjoint subintervals

[1,N] =
[
1,N/2r

]
∪
(
N/2r,N/2r−1] ∪ · · · ∪ (N/4,N/2

]
∪ (N/2,N].

Given 1 ≤ j1, j2, j3 ≤ r − 2, denote by J (j1, j2, j3) the number of solutions of
the congruence

n1! · · ·n7! ≡ λ (mod p)

subject to the conditions

N

2ji
< ni ≤

N

2ji−1 , i = 1, 2, 3; 1 ≤ n4, n5, n6, n7 ≤ N.

Then
J = J1 + O(J2),

where

(5.1) J1 =
r−2∑
j1=1

r−2∑
j2=1

r−2∑
j3=1

J (j1, j2, j3)

and J2 is the number of solutions of the congruence

n1! · · ·n7! ≡ λ (mod p); 1 ≤ n1 ≤ 8, 1 ≤ n2, . . . , n7 ≤ N.

Note that

J2 =
1

p − 1

∑
χ

∑
n1≤8

χ(n1!)

∑
n≤N

χ(n!)

6

χ(λ)

� 1
p − 1

∑
χ

∣∣∣∣∣∣
∑
n≤N

χ(n!)

∣∣∣∣∣∣
6

.

The last term is equal to the number of solutions of the congruence

n1!n2!n3! ≡ n4!n5!n6! (mod p); 1 ≤ n1, . . . , n6 ≤ N.
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Therefore, from Lemma (2.2) (taking with k = 3), we have

J2 � N5+1/8.

Thus,

J = J1 + O
(
N5+1/8

)
.(5.2)

Following the argument from [3], we will establish a suitable asymptotic
formula for J1. Let 1 ≤ j1, j2, j3 ≤ r− 2 be fixed and let

M1 = M1(j1, j2, j3), M2 = M2(j1, j2, j3), M3 = M3(j1, j2, j3)

be some positive integers to be chosen later with

2 ≤M1 < N2−j1 − 1, 2 ≤M2 < N2−j2 − 1, 2 ≤M3 < N2−j3 − 1.

Let J ′(j1, j2, j3) denote the number of solutions of the congruence

(n1 + m1)!(n2 + m2)!(n3 + m3)!n4!n5!n6!n7! ≡ λ (mod p)

subject to the conditions

1 ≤ mi ≤Mi,
N

2ji
−Mi < ni ≤

N

2ji−1 , i = 1, 2, 3; 1 ≤ n4, n5, n6, n7 ≤ N.

For fixed m1,m2,m3 the number of solutions of the preceding congruence is
≥ J (j1, j2, j3). Therefore,

J (j1, j2, j3) ≤ J ′(j1, j2, j3)
M1M2M3

.

Analogously, define J ′′(j1, j2, j3) to be the number of solutions of the congru-
ence

(n1 −m1)!(n2 −m2)!(n3 −m3)!n4!n5!n6!n7! ≡ λ (mod p)
subject to the conditions

1 ≤ mi ≤M,
N

2ji
+ Mi < ni ≤

N

2ji−1 , i = 1, 2, 3, 1 ≤ n4, n5, n6, n7 ≤ N.

For fixed m1,m2,m3 the number of solutions of the preceding congruence is
≤ J (j1, j2, j3). Hence,

J ′′(j1, j2, j3)
M1M2M3

≤ J (j1, j2, j3).

Thus,

(5.3)
J ′′(j1, j2, j3)
M1M2M3

≤ J (j1, j2, j3) ≤ J ′(j1, j2, j3)
M1M2M3

.

Our goal is to use this inequality to prove that

J (j1, j2, j3) =
N7

p − 1
2−(j1+j2+j3) + O

(
p3/8N11/2

23(j1+j2+j3)/4

(
log (Np−11/12 + 2)

)3/4
)
.

Let
Li = [N2−ji ]−Mi, Ni = [N2−ji+1]− Li, i = 1, 2, 3.

We express J ′(j1, j2, j3) in terms of character sums and obtain

J ′(j1, j2, j3) =
1

p − 1

∑
χ

(
3∏
i=1

F (χ;Mi,Ni, Li)

)(
N∑
n=1

χ(n!)

)4

χ(λ),
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where χ runs through the set of multiplicative characters modulo p and

F (χ;Mi,Ni, Li) =
Mi∑

mi=1

∑
Li<ni≤Li+Ni

χ((ni + mi)!).

Separating the term corresponding to the principal character χ = χ0,we obtain

J ′(j1, j2, j3) =
N4

p − 1

3∏
i=1

(
N

2ji
+ Mi + θi2

)
Mi +

+O

(( 3∏
i=1

max
χ 6=χ0

|F (χ;Mi,Ni, Li)|

)
1

p − 1

∑
χ

∣∣∣∣∣
N∑
n=1

χ(n!)

∣∣∣∣∣
4 )

,

where |θi| ≤ 1, i = 1, 2, 3. We observe that

1
p − 1

∑
χ

∣∣∣∣∣
N∑
n=1

χ(n!)

∣∣∣∣∣
4

is equal to the number of solutions of the congruence

n1!n2! ≡ n3!n4! (mod p); 1 ≤ n1, n2, n3, n4 ≤ N.

Hence, from Lemma (2.2) with k = 2, we have

1
p − 1

∑
χ

∣∣∣∣∣
N∑
n=1

χ(n!)

∣∣∣∣∣
4

� N3+1/4.

Therefore, using this estimation, Theorem (3.1) to estimate F (χ;Mi,Ni, Li)
and also taking into account that 2jiMi/N � 1 and Ni � N2−ji + Mi, we
deduce

J ′(j1, j2, j3)
M1M2M3

=
N4

p − 1

3∏
i=1

(
N

2ji
+ Mi + θi2

)

+ O

(
p3/8N13/4

3∏
i=1

N
3/4
i

(
log (NiM

−1
i + 2)

)1/4
)

=
N7

p − 1
2−(j1+j2+j3) + O

(
N7

p
2−(j1+j2+j3)

(
2j1

N
M1 +

2j2

N
M2 +

2j3

N
M3

)

+
p3/8N11/2

23(j1+j2+j3)/4

3∏
i=1

(
log (N2−jiM−1

i + 2)
)1/4

)
.

Next, we will prove that for a suitable choice of parameters M1, M2, M3 we
have the asymptotic formula

(5.4)
J ′(j1, j2, j3)
M1M2M3

=
N7

p − 1
2−(j1+j2+j3) +O

(
p3/8N11/2

23(j1+j2+j3)/4 log3/4(Np−11/12 +2)
)
.

If j1, j2, j3 are such that N2−(j1+j2+j3)/6 < 100p11/12 , then we choose

Mi = [N2−ji−1], i = 1, 2, 3
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to obtain
J ′(j1, j2, j3)
M1M2M3

= O(Np9/2 log3/4(Np−11/12 + 2)),

and the bound (5.4) is proved in this case because the error term in (5.4) dom-
inates.

If j1, j2, j3 are such that N2−(j1+j2+j3)/6 ≥ 100p11/12 , then define

V =

[(
N22−(j1+j2+j3)/3p−11/6

log(N2−(j1+j2+j3)/6p−11/12)

)3/4]
.

Clearly, V ≥ 2. Since max{2j1 , 2j2 , 2j3} < N < p, it is also verified that

V < 0.5N3/22−(j1+j2+j3)/4p−11/8 < 0.5 min{N2−j1 ,N2−j2 ,N2−j3}.
Hence, in this case we can choose

Mi =
[
N2−ji

V

]
, i = 1, 2, 3,

and obtain
J ′(j1, j2, j3)
M1M2M3

=
N7

p − 1
2−(j1+j2+j3) +

+ O
(

p3/8N11/2

23(j1+j2+j3)/4
log3/4(N2−(j1+j2+j3)/6p−11/12 + 2)

)
=

N7

p − 1
2−(j1+j2+j3) + O

(
p3/8N11/2 log3/4(Np−11/12 + 2)

23(j1+j2+j3)/4

)
.

Thus, the required bound (5.4) holds in both cases. Now combining this
with (5.3), we get

J (j1, j2, j3) ≤ N7

p − 1
2−(j1+j2+j3) + O

(
p3/8N11/2 log3/4(Np−11/12 + 2)

23(j1+j2+j3)/4

)
.

Analogously, we obtain the same asymptotic formula for J ′′(j1, j2, j3) and
using (5.3) deduce that

J (j1, j2, j3) ≥ N7

p − 1
2−(j1+j2+j3) + O

(
p3/8N11/2 log3/4(Np−11/12 + 2)

23(j1+j2+j3)/4

)
.

Therefore,

J (j1, j2, j3) =
N7

p − 1
2−(j1+j2+j3) + O

(
p3/8N11/2 log3/4(Np−11/12 + 2)

23(j1+j2+j3)/4

)
.

In view of (5.1) and (5.2), we obtain

J =
r−2∑
j1=1

r−2∑
j2=1

r−2∑
j3=1

J (j1, j2, j3) + O(N5+1/8)

=
N7

p − 1

 ∞∑
j=1

1
2j
−
∑
j>r−2

1
2j

3

+ R(N) + O(N5+1/8)

=
N7

p − 1
+ R(N) + O

(
1
p
N6 + N5+1/8

)
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where

R(N)� p3/8N11/2 log3/4(Np−11/12 + 2)
r−2∑
j1=1

r−2∑
j2=1

r−2∑
j3=1

1
23(j1+j2+j3)/4

� p3/8N11/2 log3/4(Np−11/12 + 2).

Since
1
p
N6 + N5+1/8 � p3/8N11/2 log3/4 (Np−11/12 + 2),

we conclude

J =
N7

p − 1
+ O

(
p3/8N11/2 log3/4(Np−11/12 + 2)

)
.
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DERIVED CLASSIFICATION OF GENTLE ALGEBRAS WITH TWO
CYCLES

DIANA AVELLA-ALAMINOS

ABSTRACT. We classify gentle algebras defined by quivers with two cycles
under derived equivalence in a non degenerate case, by using some combi-
natorial invariants constructed from the quiver with relations defining these
algebras. We also present a list of normal forms; any such algebra is derived
equivalent to one of the algebras in the list. The article includes an Appendix
presenting a slightly modified and extended versión of a technical result in
the unpublished manuscript [HSZ01J by Holm, Schróer and Zimmermann,
describing some essential elementary transformations over the quiver with
relations defining the algebra.

1. Introduction

Let A be a finite-dimensional connected k-algebra A over an algebraically
closed field k. Denote by Db(A) the bounded derived category of the mod-
ule category of finite-dimensional left A-modules, A-mod. It is an interesting
problem to classify such algebras up to derived equivalence.

In particular, the family of gentle algebras is closed under derived equiva-
lence LSZ03]. The problem of classifying gentle algebras up to derived equiva-
lence is well understood in the case where the associated quiver has one cycle,
see [AH81], [AS87J, [VbOl], IGP99] and [BGS04]. In this paper we focus our
attention on gentle algebras with two cycles.

We use combinatorial invariants tf>A: N2 —>• N defined in [AG08J in order to
classify them under derived equivalence. Roughly speaking tf>A ig obtained as
follows: Start with a maximal directed path in Q which contains no relations.
Then continué in opposite direction as long as possible with zero relations.
Repeat this until the first path appears again, say after n steps. Then we
obtain a pair (n, ni} where m is the number of arrows which appeared in a zero
relation. Repeat this procedure until all maximal paths without a zero relation
have been used; 4>A counts then how often each pair (n, m) e N2 occurred.
Recall 4>A has always a finite support. Let {(reí,mi),(n2, m<¿\ (n^, m^)} be
the support of <¡>A , denote tf»A by [(ni, mi), («2, m^),. ..,(nk, mk)] where each
(re/, ntj} is written ^(/i/, ntj) times and the order in which they are written is
arbitrary. Define also #<¿>¿ :— Xa< ¡<k 4>A(nj> m>X See [AG08, 3,51 for a precise
description.

We can show by induction over the number of vértices that:

2000 Mathematics Subject Classification: 16G20,16E30,18E30.
Keywords and phrases: Gentle algebras and derived equivalence.
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HYPERBOLIC WEIGHTED BERGMAN CLASSES

R. AULASKARI,1 L. F. RESÉNDIS O.2 AND L. M. TOVAR S.3

Abstract. In this paper we present hyperbolic weighted Bergman classes
in terms of the Green function of the unit complex disk as well as Möbius
transformations. We also study its different representations and inclusions

1. Introduction

Let r > 0. Define Dr(a) := {z ∈ C : |z− a| < r} and Dr = Dr(0). We denote
by D = D1 the open unit disk in the complex plane C and by T its boundary.
Let φa : C→ C be the Möbius transformation,

φa(z) =
a − z
1− az

, |a| < 1,

with pole at z = 1/a that satisfies φ−1
a = φa. Further, we denote the pseudo-

hyperbolic disk by U(a, r) = {z ∈ D : |φa(z)| < R}. We observe that

(1.1) 1− |φa(z)|2 =
(1− |a|2)(1− |z|2)

|1− az|2
= (1− |z|2)|φ′a(z)| .

For z, a ∈ D, we denote a Green’s function of D, with logarithmic singularity
at a, by

(1.2) g(z, a) = ln
|1− az|
|z− a|

= ln
1

|φa(z)|
.

In 2005 Xianon Li [Li] introduced, for 0 < s < ∞, the so called hyperbolic
Q∗s class as, the set of analytic functions f : D→ D such that

sup
a∈D

∫∫
D
f∗(z)2gs(z, a)dx dy <∞ ,

where

f∗(z) =
|f ′(z)|

1− |f (z)|2
is the hyperbolic derivative [Ya]. Recently Reséndis and Tovar [ReTo1] intro-
duced the weighted Bergman spaces for 0 < p <∞, −2 < q <∞, 0 ≤ s <∞,
as the set of analytic functions f : D→ C such that

sup
a∈D

∫∫
D
|f (z)|p(1− |z|2)qgs(z, a)dx dy <∞ .

Suppose that f : D→ C is an injective analytic function.

2000 Mathematics Subject Classification: 30C45.
Keywords and phrases: weighted function spaces, hyperbolic measure, Bergman spaces.
1 Partially supported by the Academy of Finland, 121281.
2 Partially supported by CONACyT.
3 Partially supported by CONACyT and COFAA-IPN.
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Then, by change of variable formula with z = f (w),∫∫
f (D)

wp

|f ′(f−1(w))|2
(1− |f−1(w)|2)qgs(f−1(w), a)dudv

=
∫∫

D
|f (z)|p(1− |z|2)qgs(z, a)dx dy .

Now let f : (D, | |e) → (D, | |hyp) where | |e and | |hyp means Euclidean and
hyperbolic measures, respectively. Again we suppose that f : D → D is an
injective analytic function. Then, by change of variable formula with z = f (w),∫∫

f (D)

wp

|f ′(f−1(w))|2
(1− |f−1(w)|2)qgs(f−1(w), a)

dudv

(1− |w|2)2

=
∫∫

D

|f (z)|p

(1− |f (z)|2)2 (1− |z|2)qgs(z, a)dx dy

With this motivation we introduce then the following classes.
We denote by B(D), the set of analytic functions f : D→ D. For 0 < p <∞,

−2 < q <∞ and 0 ≤ s <∞, consider those functions f ∈ B(D), that satisfy

h∗p,q,s(f )(a) =
∫∫

D

|f (z)|p

(1− |f (z)|2)2 (1− |z|2)qgs(z, a)dx dy <∞

We define the hyperbolic q, s-weighted p-Bergman class as

A∗(p, q, s) = {f ∈ B(D) : sup
a∈D

h∗p,q,s(f )(a) <∞}

and for 0 < s <∞, the little hyperbolic q, s-weighted p-Bergman class as

A∗0(p, q, s) = {f ∈ B(D) : lim
|a|→1−

h∗p,q,s(f )(a) = 0} .

In a similar way, for 0 < p <∞,−2 < q <∞ and 0 ≤ s <∞, consider those
functions f ∈ B(D), that satisfy

l∗p,q,s(f )(a) =
∫∫

D

|f (z)|p

(1− |f (z)|2)2 (1− |z|2)q(1− |φa(z)|2)sdx dy <∞ .

We will use l∗q,s to denote l∗0,q,s. Thus define

L∗(p, q, s) = {f ∈ B(D) : sup
a∈D

l∗p,q,s(f )(a) <∞}

and for 0 < s <∞,

L∗0(p, q, s) = {f ∈ B(D) : lim
|a|→1−

l∗p,q,s(f )(a) = 0} .

We write L∗p = L∗(p, 0, 0) and observe that A∗(2, 0, 0) = L∗(2, 0, 0) = L∗2, is
the hyperbolic Bergman class of analytic functions.

We say that f ∈ B(D) belongs to the hyperbolic Bloch Bergman class B∗(A)
if

sup
z∈D

(1− |z|2)
|f (z)|

1− |f (z)|2
<∞

and to the little hyperbolic Bloch Bergman class B∗0 (A) if

lim
|z|→1−

(1− |z|2)
|f (z)|

1− |f (z)|2
= 0.
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In a similar way, for −1 < q < ∞, we say that f ∈ B(D) belongs to the
hyperbolic q-Dirichlet p-Bergman class L∗(p, q, 0) if

l∗p,q,0(f ) =
∫∫

D

|f (z)|p

(1− |f (z)|2)2 (1− |z|2)q dx dy <∞ .

The aim of this paper is to obtain explicitely the basic properties of the
hyperbolic weighted Bergman classes.

The main references for this work are, R. Aulaskari et al [AuStXi], X. Li [Li],
Jie Xiao [Xi],[Xi1], Ruhan Zhao [Zha], [Zha1] and Reséndis, Tovar [ReTo1]. It
is remarkable the big differences in methods and results between the classes
introduced in this paper and -for instance- theQ∗ classes introduced by Xianon
Li, [Li]. In a forthcoming paper we will study the properties of the convex
metric space L∗(p, q, s) and its representations and characterizations in terms
of series expansions.

2. Properties of L∗(p, q, s)

In this part we clarify some elementary aspects of our function classes. We
require the next result.

Lemma (2.1) ([Zh], Chapter 4). Let t > −1, c ∈ R and define It,c : D→ R by

It,c(a) =
∫∫

D

(1− |z|2)t

|1− az|2+t+c dxdy.

Then
(a) If c < 0 then It,c(a) is bounded in a.
(b) If c = 0, then

It,c(a) ≈ ln
1

1− |a|2
, ( |a| → 1) .

(c) If c > 0, then

It,c(a) ≈ 1
(1− |a|2)c

, ( |a| → 1) .

From the following result we see that the parameter p does not have any
significant role.

Proposition (2.2). Let f ∈ B(D) and 0 < p <∞, −2 < q <∞, 0 ≤ s <∞,
satisfying q + s > −1 . Then f ∈ L∗(p, q, s) or L∗0(p, q, s) if and only if

(2.3) sup
a∈∆

∫∫
D

1
(1− |f (z)|2)2 (1− |z|2)q(1− |φa(z)|2)sdx dy <∞ ,

or

lim
|a|→1−

∫∫
D

1
(1− |f (z)|2)2 (1− |z|2)q(1− |φa(z)|2)sdx dy = 0 ,

respectively.

Proof. Let f ∈ B(D) and suppose that f satisfy (2.3). Since |f (z)| < 1, we
have f ∈ L∗(p, q, s). Conversely for f ∈ L∗(p, q, s) or L∗0(p, q, s), define

B = { z ∈ D : |f (z)| ≥ 1
2
} .
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Then∫∫
D

1
(1− |f (z)|2)2 (1− |z|2)q(1− |φa(z)|2)sdx dy

≤
∫∫

B

2p|f (z)|p

(1− |f (z)|2)2 (1− |z|2)q(1− |φa(z)|2)sdx dy

+
16

9 · 2p

∫∫
D−B

(1− |z|2)q(1− |φa(z)|2)sdx dy .

The result follows from the hypothesis and Lemma (2.1) (c).

Then, by Proposition (2.2),L∗(p, q, s) = L∗(0, q, s) := L∗(q, s) andL∗0(p, q, s) =
L∗0(0, q, s) := L∗0(q, s). Thus we will write l∗(0, q, s) = l∗(q, s). In a similar way,
we have

Proposition (2.4). For f ∈ B(D), f ∈ B∗(A) or B∗0 (A) if and only if

sup
z∈D

1− |z|2

1− |f (z)|2
<∞

or

lim
|z|→1−

1− |z|2

1− |f (z)|2
= 0 ,

respectively.

Lemma (2.5) (Yamashita, [Ya]). Let f ∈ B(D). Then the function g : D →
[0,∞) defined by

g(z) = ln[− ln(1− |f (z)|2)]

is subharmonic.

We need the following result.

Corollary (2.6). Let f ∈ B(D). Then the function g : D→ [0,∞) defined by

g(z) =
1

(1− |f (z)|2)2

is subharmonic.

Proof. The result follows from the convexity of ex.

By definition of hyperbolic Bergman classes, it is clear the usefulness of the
following result (See Exercise 1, pag. 128 of [Co]).

Theorem (2.7). If f ∈ B(D) then

|f (0)| − |z|
1− |f (0)||z|

≤ |f (z)| ≤ |f (0)|+ |z|
1 + |f (0)||z|

for all z ∈ D.

In particular,

(2.8)
1

1− |f (z)|
≤ 1 + |f (0)||z|

(1− |f (0)|)(1− |z|)
for all z ∈ D.

From the previous theorem it follows immediately

Corollary (2.9). B(D) = B∗(A).
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We study the region of values for which L∗(q, s) is not trivial or is different
from B(D).

Proposition (2.10). Let −2 < q < ∞ and 0 ≤ s < ∞, with q + s ≤ −1.
Then the class L∗(q, s) = {0}.

Proof. Let f ∈ A be different from the zero function.

Let 0 < b < 1 be fixed. Since
1

(1− |f (z)|2)2 is a subharmonic function

l∗q,s(f )(0) =
∫∫

D

(1− |z|2)q+s

(1− |f (z)|2)2 dx dy ≥
∫ 1

b

∫ 2π

0

(1− r2)q+sr

(1− |f (reiθ)|2)2 dθdr

≥
∫ 2π

0

1
(1− |f (beiθ)|2)2 dθ

∫ 1

b

(1− r2)q+sr dr =∞ ,

hence we get a contradiction.

Lemmas (2.1), (2.8) and the previous result permit us to continue our study
about the parameters q and s. Define

Ω1 = { (q, s) : 0 ≤ s ≤ 1, 1− s < q <∞ }∪{ (q, s) : 1 < s <∞, 0 < q <∞ } .

Theorem (2.11). Let (q, s) ∈ Ω1. Then L∗0(q, s) = B(D). Moreover,
L∗(0, s) = B(D) for 1 < s <∞.

Proof. Let f ∈ B(D). Then, by (2.8) and (1.1) there exists 0 < c such that∫∫
D

(1− |z|2)q

(1− |f (z)|2)2 (1− |φa(z)|2)sdx dy ≤ c(1− |a|2)s
∫∫

D

(1− |z|2)q+s−2

|1− az|2s
dx dy .

The case s = 0 is obvious. Suppose now s > 0.
Applying Lemma (2.1) with t = q + s − 2 and 2 + t + c = 2s, we obtain the

result.

We wish to include constant functions in our hyperbolic classes, but it is
equivalent to include bounded functions in the hyperbolic sense, that is, f ∈
B(D) such that f (D) ⊂ D. We denote this class by B(D).

Define

Ω2 ={ (q, s) : 0 < s ≤ 1, −1−s < q <∞}∪{ (q, s) : −2 < q <∞, 1 < s <∞} .

Theorem (2.12). B(D) ⊂ L∗(q, s) if and only if (q, s) ∈ Ω2.

Proof. By Proposition (2.10), we may suppose −1 < q + s. It is enough to
prove that B(D) ⊂ L∗(q, s). Let f ∈ B(D). Then f ∈ L∗(q, s) if and only if

(1− |a|2)s
∫∫

D

(1− |z|2)q+s

|1− az|2s
dx dy <∞ .

Applying Lemma (2.1) with t = q + s, 2 + t + c = 2s, we get c = s − q − 2.
In particular (c) of the same lemma implies that q > −2 if s− 2 > q.

Define

Ω={ (q, s) : 0 ≤ s < 1, −1−s < q ≤ 1−s }∪{ (q, s) : 1 ≤ s <∞, −2 < q ≤ 0 } .

We need the following elementary estimations.
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Lemma (2.13). Let q ∈ R and a ∈ D. Then, for all z ∈ D,

(2.14)
1

ρ(a, q)
(1− |z|2)q ≤ (1− |φa(z)|2)q ≤ ρ(a, q)(1− |z|2)q

where

ρ(a, q) =
(

1 + |a|
1− |a|

)|q|
.

Proof. For a ∈ D, we have

1− |a| ≤ |1− az| ≤ 1 + |a| .

Then (2.14) follows from (1.1) and the fact that x → xq is nondecreasing if
0 ≤ q and is nonincreasing if q < 0.

Corollary (2.15). Let q ∈ R and a ∈ D. Then, for all z ∈ D,

(2.16)
1

ρ(a, q)
≤ |φ′a(z)|q ≤ ρ(a, q) .

The hyperbolic Dirichlet Bergman class is included in the little hyperbolic
Bloch Bergman class.

Proposition (2.17). L∗(0, 0) ⊂ B∗0 (A).

Proof. Let f ∈ L∗(0, 0). By Corollary (2.6), we have

1
(1− |f (0)|2)2 ≤

1
2π

∫ 2π

0

1
(1− |f (reiθ)|2)2 dθ .

Multiplying by r and integrating from 0 to R < 1, we get

1
(1− |f (0)|2)2 ≤

1
πR2

∫∫
DR

1
(1− |f (z)|2)2 dx dy .

Because the composed mapping f ◦ φa is subharmonic under the change of
variable w = φa(z), we obtain by (2.16)

1
(1− |f (a)|2)2 ≤ 1

πR2

∫∫
U(a,R)

1
(1− |f (w)|2)2 |φ

′
a(w)|2 dudw

≤ 1
πR2

(1 + |a|)2

(1− |a|)2

∫∫
U(a,R)

1
(1− |f (w)|2)2 dudw

therefore

(1− |a|2)2 1
(1− |f (a)|2)2 ≤ (1 + |a|)4

πR2

∫∫
U(a,R)

1
(1− |f (w)|2)2 dudw .

If |a| → 1− then the Euclidean area |U(a,R)| → 0 and so we obtain that
f ∈ B∗(A).

We will need the following result.

Lemma (2.18). Let −2 < q <∞, 0 < s <∞ and |a| < 1. Then

1
ρ(a, |q|+ 2)

l∗q,s(f )(a) ≤ l∗q+s,0(f ◦ φa)(0) ≤ ρ(a, |q|+ 2)l∗q,s(f )(a) .
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Proof. Suppose that l∗q,s(f )(a) <∞. Then, by the change of variable formula
with z = φa(w) and ((2.14)), it is sufficient to consider∫∫

D

1
(1− |f (φa(z))|2)2 (1− |z|2)q+s dx dy

=
∫∫

D

1
(1− |f (w)|2)2 |φ

′
a(w)|2(1− |φa(w)|2)q+s dudv

≤ ρ(a, |q|+ 2)
∫∫

D

1
(1− |f (w)|2)2 (1− |w|2)q(1− |φa(w)|2)s dudv

We proceed in the similar way to prove the left hand inequality.

Let 0 < s < s′ <∞ and −1 < q < q′ <∞. It is immediate that

L∗(q, s) ⊂ L∗(q, s′), L∗0(q, s) ⊂ L∗0(q, s′), L∗(q, s) ⊂ L∗(q′, s)

and L∗0(q, s) ⊂ L∗0(q′, s) .

The following results clarify the relation between L∗0(q, s) and L∗(q, s).

Proposition (2.19). Let −2 < q < ∞, 0 ≤ s < ∞ and let l∗q,s(f ) : D → R be
well defined. Then l∗q,s(f ) is a continuous function on D.

Proof. If f = 0 on D, it is clear that l∗q,s(f ) is continuous. Therefore we
suppose that f 6= 0, in particular, l∗q,s(f )(0) 6= 0.

Let a ∈ D be fixed and let δ > 0 be such that D(a, δ) ⊂ D. The function
l : D× D(a, δ)→ R, defined by

(z, ζ)→ (1− |ζ|2)s

|1− ζz|2s
,

is uniformly continuous on D×D(a, δ). Then, for given ε > 0, there exists ρ > 0
such that if |z′ − z| < ρ and |ζ′ − ζ| < ρ then

|l(z′, ζ′)− l(z, ζ)| < ε

l∗q,s(f )(0)
,

and therefore
|l∗q,s(f )(a)− l∗q,s(f )(b)| ≤

≤
∫∫

D

1
(1− |f (z)|2)2

(
1− |z|2

)q+s |l(z, a)− l(z, b)|dx dy < ε .

Corollary (2.20). Let −2 < q < ∞ and 0 ≤ s < ∞. Then L∗0(q, s) ⊂
L∗(q, s).

Proof. The trivial case f = 0 is clear. Suppose f 6= 0 and f ∈ L∗0(q, s). Then
there exists 0 < R < 1 such that l∗q,s(f )(a) < l∗q,s(f )(0) for all R < |a| < 1.
By Proposition (2.19), l∗q,s(f ) attains its finite maximum on DR and therefore
f ∈ L∗(q, s).

Corollary (2.21). Let −2 < q < ∞ and 0 ≤ s < ∞. If f ∈ L∗0(q, s) then
l∗q,s(f ) : D→ [0,∞) is uniformly continuous.
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3. The equality A∗(p, q, s) = L∗(p, q, s) = L∗(q, s)

In this section we obtain basic properties of the hyperbolic Bergman classes
A∗(p, q, s), in particular, A∗(p, q, s) = A∗(0, q, s) := A∗(q, s) = L∗(q, s).

Theorem (3.1). Let −2 < q < ∞ and f ∈ B(D). If l∗q,s(f )(0) < ∞ then, for
0 < s <∞,

(3.2)
∫∫

D

(1− |z|2)q

(1− |f (z)|2)2 lns 1
|z|

dx dy ≤ t

∫∫
D

(1− |z|2)q+s

(1− |f (z)|2)2 dx dy

where t = t(q, s, R) for some fixed 0 < R < 1.
If lq,s(f )(0) <∞ then, for 0 < s < 1,

(3.3)
∫∫

D

(1− |z|2)q+s

(1− |f (z)|2)2 |z|
−2s dx dy ≤ t̃

∫∫
D

(1− |z|2)q+s

(1− |f (z)|2)2 dx dy

where t̃ = t̃(q, s, R) for some fixed 0 < R < 1.

Proof. Let c = . 0183403 . . . be the root of − ln x = 4(1− x2). Let R be fixed
with c < R < 1. Define

0 <
1

τ(q, s, R)
=
∫ R

c

(1− r2)q+sr dr =
1

2(1 + q + s)
((1− c2)1+q+s − (1− R2)1+q+s)

=
1

2(1 + q + s)
(.9996641+q+s − (1− R2)1+q+s) .

SinceR is fix τ(q, s, R) = τ(q, s). By Lemma (2.5),
1

(1− |f (z)|2)2 is subharmonic.

Then

1
τ(q, s, R)

∫ 2π

0

1
(1− |f (ceiθ)|2)2 dθ =

∫ R

c

(1− r2)q+sr dr

∫ 2π

0

1
(1− |f (ceiθ)|2)2 dθ

≤
∫ R

c

(1− r2)q+sr dr

∫ 2π

0

1
(1− |f (reiθ)|2)2 dθ

=
∫∫

DR−Dc

(1− |z|2)q+s

(1− |f (z)|2)2 dx dy .

Therefore

(3.4)
∫ 2π

0

1
(1− |f (ceiθ)|2)2 dθ ≤ τ(q, s, R)

∫∫
DR

(1− |z|2)q+s

(1− |f (z)|2)2 dx dy .

Define

0 < τ̃(q, s) =
∫ c

0
r(1− r2)q lns 1

r
dr .

By subharmonicity and (3.4) we have the estimation∫∫
Dc

(1− |z|2)q

(1− |f (z)|2)2 lns 1
|z|

dx dy =
∫ c

0

∫ 2π

0

(1− r2)q

(1− |f (reiθ)|2)2 r lns 1
r
dθdr
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≤
∫ c

0

∫ 2π

0

(1− r2)q

(1− |f (ceiθ)|2)2 r lns 1
r
dθdr

≤
∫ c

0
r(1− r2)q lns 1

r
dr

∫ 2π

0

1
(1− |f (ceiθ)|2)2 dθ

≤ τ(q, s, R)τ̃(q, s)
∫∫

DR

(1− |z|2)q+s

(1− |f (z)|2)2 dx dy

≤ τ(q, s, R)τ̃(q, s)
∫∫

D

(1− |z|2)q+s

(1− |f (z)|2)2 dx dy.(3.5)

From the inequality

− ln x ≤ 4(1− x2) for each x ∈ (c, 1]

we have∫∫
D−Dc

(1− |z|2)q

(1− |f (z)|2)2 lns 1
|z|

dx dy ≤ 4s
∫∫

D−Dc

(1− |z|2)q+s

(1− |f (z)|2)2 dx dy

≤ 4s
∫∫

D

(1− |z|2)q+s

(1− |f (z)|2)2 dx dy .(3.6)

Let t(q, s, R) = τ(q, s, R)τ̃(q, s) + 4s.
Combining (3.5) and (3.6) we have∫∫

D

(1− |z|2)q

(1− |f (z)|2)2 lns 1
|z|

dx dy ≤ t(q, s, R)
∫∫

D

(1− |z|2)q+s

(1− |f (z)|2)2 dx dy .

For 0 < s < 1 we need to consider instead of (3.16) the following equality

0 <
∫ c

0
r1−2s(1− r2)q+s dr =

1
2
B[c2, 1− s, 1 + q + s],

(where B denotes the incomplete Beta function) then we prove the formula
(3.3) in a similar way.

Theorem (3.7). Let −2 < q <∞ and 0 ≤ s <∞. Then

(3.8) sup
a∈D

∫∫
D

(1− |z|2)q

(1− |f (z)|2)2 g
s(z, a)dx dy <∞

if and only if

(3.9) sup
a∈D

∫∫
D

(1− |z|2)q

(1− |f (z)|2)2 (1− |φa(z)|2)s dx dy <∞ .

Proof. We have

1− x2 ≤ −2 ln x for each x ∈ (0, 1] .

Taking x = |φa(z)| we have 1− |φa(z)|2 ≤ 2g(z, a) hence

(3.10) l∗q,s(f )(a) ≤ 2h∗q,s(f )(a) for each a ∈ D .

Then (3.8) implies (3.9).
By hypothesis and Lemma (2.18), l∗q,s(f ◦ φ)a(0) <∞. Because

1
(1− |f (φa(z))|2)2
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is a subharmonic function, the formula (3.2) can be written in the following
form∫∫

D

(1− |z|2)q

(1− |f (φa(z))|2)2 lns 1
|z|

dx dy ≤ t(q, s, R)
∫∫

D

(1− |z|2)q+s

(1− |f (φa(z))|2)2dx dy .

Consider the change of variable z = φa(w) to obtain∫∫
D

(1− |φa(w)|2)q

(1− |f (w)|2)2 |φ
′
a(w)|2 lns 1

|φa(w)|
dudv

≤ t(q, s, R)
∫∫

D

(1− |φa(w)|2)q+s

(1− |f (w)|2)2 |φ
′
a(w)|2 dudv

or equivalently,

0 ≤
∫∫

D

(1− |φa(w)|2)q

(1− |f (w)|2)2 |φ
′
a(w)|2

(
t(q, s, R)(1− |φa(w)|2)s − lns 1

|φa(w)|

)
dudv

≤ ρ(a, |q|+ 2)
∫∫

D

(1− |w|2)q

(1− |f (w)|2)2

(
t(q, s, R)(1− |φa(w)|2)s − lns 1

|φa(w)|

)
dudv .

Since 0 < ρ(a, |q|+ 2), we obtain∫∫
D

(1− |w|2)q

(1− |f (w)|2)2 lns 1
|φa(w)|

dudv

≤ t(q, s, R)
∫∫

D

(1− |w|2)q

(1− |f (w)|2)2 (1− |φa(w)|2)s dudv(3.11)

and the result follows.

Corollary (3.12). Let −2 < q <∞ and 0 < s <∞. Then∫∫
D
(1− |z|2)q(1− |φa(z)|2)s dx dy ≤ 2

∫∫
D
(1− |z|2)qgs(z, a)dx dy

≤ 2t(q, s, R)
∫∫

D
(1− |z|2)q(1− |φa(z)|2)s dx dy

Proof. This is a consequence of the formulas (3.10), (3.11) and Lemma (2.1),
by taking f (z) = 0 for all z ∈ D.

From the previous corollary, we can reproduce the proof of Proposition 2.2
and obtain

Proposition (3.13). Let f ∈ B(D), 0 ≤ p <∞, −2 < q <∞ and 0 ≤ s <∞.
Then f ∈ A∗(p, q, s) or A∗0(p, q, s) if and only if

sup
a∈∆

∫∫
D

1
(1− |f (z)|2)2 (1− |z|2)qgs(z, a)dx dy <∞ ,

or

lim
|a|→1−

∫∫
D

1
(1− |f (z)|2)2 (1− |z|2)qgs(z, a)dx dy = 0 ,

respectively.

As before, we write only A∗(p, q, s) = A∗(q, s) and A∗0(p, q, s) = A∗0(q, s).
From Theorem (3.7) and Proposition (3.13) we have
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Corollary (3.14). Let−2 < q <∞and 0 ≤ s <∞. ThenA∗(q, s) = L∗(q, s)

Corollary (3.15). Let −2 < q < ∞ and 0 ≤ s < ∞. Then A∗0(q, s) =
L∗0(q, s).

Proof. This is a consequence from the formulas (3.10) and (3.11), since

l∗q,s(f )(a) ≤ 2h∗q,s(f )(a) ≤ 2t(q, s, R)l∗q,s(f )(a) .

From now, we will denote the hyperbolic Bergman classesA∗(q, s) byL∗(q, s)
instead of A∗(q, s).

It is possible to replace the weight (1−|φa(z)|2)s by its reflection (|φa(z)|−2−
1)s, as the following theorem shows.

Theorem (3.16). Let −2 < q <∞ and 0 < s < 1 . Then f ∈ L∗(q, s) if and
only if

sup
a∈D

∫∫
D

(1− |z|2)q

1− |f (z)|2)2 (|φa(z)|−2 − 1)s dx dy <∞ .

Proof. Imitate the proof of theorem (3.7) using (3.3) (See [ReTo]).

Recall that U(a, r) denotes the hyperbolic disk.
The little hyperbolic Bloch Bergman class has the following characteriza-

tions.

Theorem (3.17). Let 0 < R < 1 and 1 < s < ∞. For an analytic function
f ∈ B(D) the following properties are mutually equivalent:

(a)

lim
|z|→1−

1− |z|2

1− |f (z)|2
= 0 .

(b)

lim
|a|→1−

1

| U(a,R)| 12

∫∫
U(a,R)

1
1− |f (z)|2

dx dy = 0 .

(c)

lim
|a|→1−

∫∫
U(a,R)

1
(1− |z|2)(1− |f (z)|2)

dx dy = 0 .

(d)

lim
|a|→1−

∫∫
D

1
(1− |z|2)(1− |f (z)|2)

(1− |φa(z)|2)s dx dy = 0 .

(e)

lim
|a|→1−

∫∫
D

1
(1− |z|2)(1− |f (z)|2)

gs(z, a)dx dy = 0 .

(f)

lim
|a|→1−

∫∫
D

|φ′a(z)|2

1− |f (z)|2
ln

1
|z|

dx dy = 0 .

Proof. Again we use subharmonicity of 1
1−|f (z)|2 and continue exactly in the

same way as in the proof of Theorem 1 by R. Zhao in [Zh].
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Remark. Observe that after Corollary (2.9), the previous theorem has no
sense for the hyperbolic Bloch space.

Define for f ∈ B(D), a ∈ D and 0 < t < 1

Φ(f, a, t) =
∫∫

U(a,t)

(1− |z|2)q

(1− |f (z)|2)2 dx dy .

Theorem (3.18). Let f ∈ B(D), −2 < q < ∞ and 0 ≤ s < ∞. Then
f ∈ L∗(q, s) (or L∗0(q, s) ) if and only if

sup
a∈D

∫ 1

0
Φ(f, a, t)(1− t)s−1 dt <∞

(or, lim
|a|→1−

∫ 1

0
Φ(f, a, t)(1− t)s−1 dt = 0 ) .

Proof. By definition of Φ(f, a, t) and Fubini’s Theorem we have∫ 1

0
Φ(f, a, t)(1− t)s−1 dt =

∫ 1

0

(∫∫
U(a,t)

(1− |z|2)q

(1− |f (z)|2)2 dx dy

)
(1− t)s−1 dt

=
∫∫

D

(1− |z|2)q

(1− |f (z)|2)2

(∫ 1

|φa(z)|
(1− t)s−1dt

)
dx dy .

Since∫ 1

|φa(z)|
(1− t)s−1dt =

1
s

(1− |φa(z)|)s =
1
s

(1− |φa(z)|2)s

(1 + |φa(z)|)s
≥ 1

2ss
(1− |φa(z)|2)s ,

we have

1
2ss

∫∫
D

(1− |z|2)q

(1− |f (z)|2)2 (1− |φa(z)|2)s dx dy ≤
∫ 1

0
Φ(f, a, t)(1− t)s−1 dt

≤ 1
s

∫∫
D

(1− |z|2)q

(1− |f (z)|2)2 (1− |φa(z)|2)s dx dy

and the result follows from the previous estimation.

4. Some inclusions

In this section we will show several important inclusions among L∗(q, s)
classes for different cases of q and s and its relationships with the classical
Hardy Spaces.

Theorem (4.1). Let 0 ≤ s <∞. Then, for −2 < q <∞,

L∗(q, 0) ⊂
⋂
0<s

L∗0(q, s)

and for 0 < q <∞,

L∗(0, 0) ⊂
⋂
0<q

L∗(q, 0) .
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Proof. Since

(1− |z|2)q

(1− |f (z)|2)2 (1− |φa(z)|2)s ≤ (1− |z|2)q

(1− |f (z)|2)2

and f ∈ L∗(q, 0), it follows from the Lebesgue Dominated Convergence Theo-
rem

lim
|a|→1−

∫∫
D

(1− |z|2)q

(1− |f (z)|2)2 (1− |φa(z)|2)s dx dy =

=
∫∫

D
lim
|a|→1−

(1− |z|2)q

(1− |f (z)|2)2 (1− |φa(z)|2)s dx dy = 0 .

The second inclusion is obvious from the fact that (1− |z|2)q ≤ 1.

Li, in [Li], defined for f ∈ B(D),

λ(f )(z) = ln
1

1− |f (z)|2
.

We say that f ∈ Hλ if e2λ(f ) has an harmonic majorant.

Theorem (4.2). Let 0 ≤ s <∞. Then for −1 < q <∞

Hλ ⊂
⋂

−1<q, 0≤s

L∗0(q, s) .

Proof. Let 0 < r < 1 and f ∈ Hλ.
Then we have

l∗q,s(f )(a) =
∫∫

Dr

(1− |z|2)q+s

(1− |f (z)|2)2

(1− |a|2)s

|1− az|2s
dx dy

+
∫∫

D−Dr

(1− |z|2)q

(1− |f (z)|2)2 (1− |φa(z)|2)s dx dy

≤ 2q+s(1− |a|2)s
∫∫

Dr

1
(1− |f (z)|2)2

1
(1− |z|)s−q

dx dy

+
∫∫

D−Dr

(1− |z|2)q

(1− |f (z)|2)2 dx dy .

Let

M = sup
0≤r<1

∫ 2π

0

1
(1− |f (reiθ)|2)2dθ .

For the second integral we have∫∫
D−Dr

(1− |z|2)q

(1− |f (z)|2)2 dx dy =
∫ 1

r

(1− t2)qt
∫ 2π

0

1
(1− |f (teiθ)|2)2dθdt

≤ M

2
(1− r2)q+1

q + 1
.

Then, given ε > 0, there exists 0 < R < 1 such that for all R ≤ r < 1,∫∫
D−Dr

(1− |z|2)q

(1− |f (z)|2)2 dx dy <
ε

2
.
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Also, there exists δ > 0 such that, for all a ∈ D with 0 < 1− |a| < δ

2q+s(1− |a|2)s
∫∫

DR

1
(1− |f (z)|2)2

1
(1− |z|)s−q

dx dy <
ε

2
.

For 0 ≤ p <∞, −2 < q <∞ and 0 ≤ s <∞, we say that f ∈ F∗(p, q, s) if

sup
a∈D

∫∫
|f ′(z)|p

(1− |f (z)|2)2 (1− |z|2)q(1− |φa(z)|2)s dx dy <∞ .

It follows from the subharmonicity of

|f ′(z)|p

(1− |f (z)|2)2

that if we change (1− |φa(z)|2)s by gs(z, a), the hyperbolic class F∗(p, q, s) does
not change, see Theorem 5.2 in [ReTo2].

Theorem (4.3). Let 0 ≤ p <∞, −2 < q <∞ and 0 ≤ s <∞. Then

F∗(p, q, s) ⊂ L∗(p, q, s) = L∗(q, s)

and

F∗0 (p, q, s) ⊂ L∗0(p, q, s) = L∗0(q, s) .

Proof. Let f ∈ B(D) and 0 < k < 1 be such that 0 < |f (0)| + k = l < 1.
Define

A = { z ∈ D : k ≤ |f ′(z)| } .

Then
(4.4)∫∫

A

(1− |z|2)q

(1− |f (z)|2)2 (1− |φa(z)|2)sdx dy

≤ 1
kp

∫∫
A

|f ′(z)|p

(1− |f (z)|2)2 (1− |z|2)q(1− |φa(z)|2)s dx dy .

Now

|f (z)| ≤ |f (0)|+
∫ z

0
|f ′(ζ)||dζ| .

If we take now z ∈ D \A, we have

|f (z)| ≤ |f (0)|+ k|z| < |f (0)|+ k = l < 1 .

Hence∫∫
D\A

(1− |z|2)q

(1− |f (z)|2)2 (1− |φa(z)|2)sdx dy ≤ 1
(1− l2)2

∫∫
D\A

(1− |z|2)q(1− |φa(z)|2)sdx dy .

Then by (4.4) and Lemma (2.1), we have the result.

In particular the hyperbolic classes introduced by Li [Li], satisfy Q∗s =
F∗(2, 0, s) ⊂ L∗(2, 0, s) = L∗(0, s).
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5. Strict inclusions in the classes L∗(q, s)

Conjecture. Since f (z) = z /∈ L∗(q, s) for (q, s) ∈ Ω and the hyperbolic
bounded functions belongs to any class L∗(q, s) with −1 < q + s, it is possible
that for 0 < s < s′ < ∞, 0 < q < q′ < ∞, we have strict inclusions in the
following inclusions

L∗(q, s) ⊂ L∗(q, s′), L∗0(q, s) ⊂ L∗0(q, s′), L∗(q, s) ⊂ L∗(q′, s)

and L∗0(q, s) ⊂ L∗0(q′, s) .
However, in this case it is not possible to repeat the argument that Li [Li]

used in her dissertation.
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Universidad Autónoma Metropolitana
Unidad Azcapotzalco, C.B.I.
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TOPOLOGICAL GROUPS AND MACKEY FUNCTORS

MARCELO A. AGUILAR AND CARLOS PRIETO

Abstract. Let M be a Mackey functor for a finite group G and let X be

a pointed G-space. We define a topological group F
G

(X,M), whose homo-
topy groups are isomorphic to the Bredon-Illman equivariant homology of X
with coefficients in a coefficient system M∗ associated to M . When M is a
homological Mackey functor, we define another topological group FG(X,M),
whose homotopy groups are isomorphic to the Bredon-Illman equivariant ho-
mology of X with coefficients in the covariant part of M . These topological

groups are defined using simplicial groups F
G

(S(X),M) and FG(S(X),M),
which have the same underlying groups, namely the groups of G-fixed points
F (Sn(X),M)G, where S(X) is the singular simplicial set of X.

Furthermore, we study the transfer for finite covering G-maps and give
its pullback property. We also analyze the composite of the transfer with the
homomorphism induced by the projection map, in particular, in the case of
(G,Γ)-bundles.

1. Introduction

Let M be a Mackey functor for a finite group G and X a pointed G-space.
In [2] we defined an abelian group FG(X,M) with a topology that made it
into a topological group. This group is given as the geometric realization
of a simplicial group FG(S(X),M), where S(X) denotes the singular simpli-
cial set of X. This simplicial group is a quotient of another simplicial group
F (S(X),M), which has a simplicial action of G via isomorphisms. The nth
group FG(S(X),M)n is the fixed-point subgroup F (S(X),M)Gn . We can also de-
fine another simplicial group, which is a simplicial subgroup of F (S(X),M),

denoted by F
G

(S(X),M), whose nth group is also F (S(X),M)Gn .
Therefore, with the same groups of fixed points F (S(X),M)Gn we have de-

fined two different simplicial groups. Their geometric realizations, in turn,

define two different topological groups FG(X,M) (as above) and F
G

(X,M). In
[2] we showed that the homotopy groups of FG(X,M) are isomorphic to the
Bredon-Illman G-equivariant homology of X with coefficients in the covariant

part of M . In this paper we show that the homotopy groups of F
G

(X,M) are
isomorphic to the Bredon-IllmanG-equivariant homology ofXwith coefficients
in a covariant coefficient system M∗ associated to M .

2000 Mathematics Subject Classification: Primary 55N91, 55R91; secondary 14F43, 57M10.
Keywords and phrases: Equivariant homology, homotopy groups, Mackey functors, equivari-

ant covering maps, transfer.
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In [2] we also introduced a continuous transfer tGp : FG(X,M) −→ FG(E,M)
for an n-fold covering G-map p : E −→ X. In this paper we prove that this
transfer has the pullback property.

The elements of FG(X,M) are defined in terms of the singular simplexes of
X. However, when M is a homological Mackey functor, we can define another
topological abelian group FG(X,M), whose elements are given directly in terms
of the points ofX. We prove that ifX has the homotopy type of aG-CW-complex,
then this group is homotopy equivalent to FG(X,M), and thus its homotopy
groups also yield the same G-equivariant homology theory with coefficients
in M . The homological Mackey functors are precisely those for which the
composite of the transfer and the projection is given by the expected formula.

We also study the transfer for a class of covering G-maps, called (Γ, G)-
bundles.

The paper is organized as follows. In Section 2, for any pointed G-set C, we
recall the definition of the abelian group F (C,M), which is indeed a functor on
C. We show that G acts on this group by isomorphisms, and use it to define
the subgroup F (C,M)G of G-fixed elements and the two different functorial
structures on it. In Section 3, for any G-function p : A −→ C with finite fibers,
we define a transfer homomorphism tGp : F (X,M)G −→ F (E,M)G and study
its properties, especially the pullback property. In Section 4, if X is a pointed

G-space, we define topological groups FG(X,M) and F
G

(X,M) and we show
that the functorsF (−,M) andFG(−,M) are characterized by certain universal
properties. In Section 5, we construct a topological abelian group FG(X,M),
which has the abelian groupFG(Xδ,M) as underlying group, whereXδ denotes
the underlying pointed G-set of X. We prove also a universal property that
characterizes FG(X,M) as a topological group. In Section 6, when p : E −→ X
is a covering G-map, we study the continuity of the transfers tGp for the groups
FG(X,M) and FG(X,M).

The main part of the paper is Section 7, where we prove that the homotopy

groups of the (functorial) topological group F
G

(X,M) are isomorphic to the
(reduced) Bredon-Illman equivariant homology groups of X with coefficients
in the coefficient system M∗, given on orbits G/H by M∗(G/H) = M(G/H)
and on quotient functions q : G/H −→ G/K by M∗(q) = [K : H]M∗(q). We
also prove that, if M is homological, the homotopy groups of FG(X,M) realize
the Bredon-Illman homology with coefficients in the covariant part M∗ of M .

Finally, in Section 8 we study the transfers for some special examples of
covering G-maps p : E −→ X, namely for (G,Γ)-bundles. We show that for a
homological Mackey functor, the transfers have particularly nice properties.

The topological setting of this paper is the category of k-spaces (see e.g. [9],
[11]).

2. The equivariant function-group functors

Throughout the paperGwill denote a finite group and we shall writeH ⊂ G
for a subgroup H of G. Let G-Setfin denote the category of finite G-sets and
G-equivariant functions (G-functions). Recall that a Mackey functor (see [4],
for instance) consists of two functors, one covariant and one contravariant,
both with the same object function M : G-Setfin −→ Ab. If α : S −→ T is
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a G-function between G-sets, we denote the covariant part in morphisms by
M∗(α) : M(S) −→ M(T ) and the contravariant part by M∗(α) : M(T ) −→
M(S). The functor has to be additive in the sense that the two embeddings
S ↪→ S t T ←↩ T into the disjoint union of G-sets define an isomorphism
M(S t T ) ∼= M(S)⊕M(T ) and if one has a pullback diagram of G-sets

(2.1) U
β̃ //

α̃ ��

S
α��

T
β

// V ,

then

(2.2) M∗(β̃) ◦M∗(α̃) = M∗(α) ◦M∗(β)

(see [4] for details).
By the additivity property, the Mackey functor M is determined by its re-

strictionM : O(G) −→ Ab, whereO(G) is the full subcategory ofG-orbitsG/H,
H ⊂ G. A particular role will be played by the G-function Rg−1 : G/H −→
G/gHg−1, given by right translation by g−1 ∈ G, namely

Rg−1 (g ′H) = g ′Hg−1 = g ′g−1(gHg−1) .

We shall often denote the coset gH by [g]H or simply by [g], if there is no
danger of confusion. Observe that if C is a G-set and x ∈ C, then the canonical
bijection G/Gx −→ G/Ggx is precisely Rg−1 , where as usual Gx denotes the
isotropy subgroup of x, namely the maximal subgroup of G that leaves x fixed.

Definition (2.3). Let M be a Mackey functor. Define the set M̂ as the union

M̂ =
⋃
H⊂G

M(G/H).

If C is any pointed G-set (where the base point x0 is fixed under the action of
G), then we define the set

F (C,M) = {u : C −→ M̂ | u(x) ∈M(G/Gx), u(x0) = 0, and u(x) = 0

for almost all x ∈ C}.
One may write the elements u ∈ F (C,M) as u =

∑
x∈C lxx, where lx = u(x) ∈

M(G/Gx) (the sum is obviously finite). F (C,M) is again a G-set with the left
action of G on F (C,M) given by

(g · u)(x) = M∗(Rg−1 )(u(g−1x)).

For simplicity, if l∈M̂ and g ∈ G, we shall denote by gl the elementM∗(Rg−1 )(l).
Thus the action of G on F (C,M) can be written as

g

(∑
x

lxx

)
=
∑
x

(glx)(gx) =
∑
x

(glg−1x)x .

The G-set F (C,M) is indeed an abelian group with the sum u + v for u, v ∈
F (C,M) given by (u + v)(x) = u(x) + v(x) ∈ M(G/Gx). We shall denote by
F (C,M)G the subgroup of fixed points of F (C,M) under the action of G.
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In what follows, we shall define two functors from the category of arbitrary
pointed G-sets G-Set∗ to the category of abelian groups Ab

G-Set∗
FG(−,M) // Ab G-Set∗

F
G

(−,M) // Ab .

These two functors have the same value on objects, namely

FG(C,M) = F
G

(C,M) = F (C,M)G ,

as defined above, but on morphisms, they are different. In order to define these
functors on morphisms, we shall extend F (C,M) to a functor G-Set∗ −→ Ab
as follows.

Let γx : M(G/Gx) −→ F (C,M) be given by γx(l) = lx. Then we clearly have
the following.

Proposition (2.4). Let A be an abelian group and for each x ∈ C let ϕx :
M(G/Gx) −→ A be a homomorphism, such that ϕx0 = 0, where x0 ∈ X is the
base point. Then there exists a unique homomorphism ϕ : F (X,M) −→ A such
that ϕ ◦ γx = ϕx. In a diagram

M(G/Gx)
γx //

ϕx &&MMMMMMMMMMM F (C,M)

ϕ

��
A .

The previous proposition allows us to define a covariant functor structure
on F (−,M) and the functor F (−,M)G.

Definition (2.5). For any G-function f : C −→ D, we shall denote by f̂x :
G/Gx −→ G/Gf (x) the canonical quotient G-function. Let f be a pointed G-
function. Define the family

fx : M(G/Gx) −→ F (D,M) by fx(l) = M∗(f̂x)(l)f (x) .

By Proposition (2.4) this family determines a homomorphism

f∗ : F (C,M) −→ F (D,M)

given by

f∗

(∑
x

lxx

)
=
∑
x

M∗(f̂x)(lx)f (x) .

This turns F (−,M) into a covariant functor. Moreover, since

gM∗(f̂x)(l) = M∗(f̂gx)(gl) ,

f∗ is G-equivariant, and so, by restriction, it defines a homomorphism

f
G

∗ : F (C,M)G −→ F (D,M)G .

This defines the functor F
G

(−,M).

Remark (2.6). We denote by G-Ab the category whose objects are abelian
groups with a G-action by group isomorphisms, and whose morphisms are
G-equivariant homomorphisms. Notice that the functor F (−,M) is indeed a
functor G-Set∗ −→ G-Ab.
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To define the second covariant functor FG(−,M), take a pointed G-set C
and consider the abelian group F (C,M)G once more. Let x0 be the base point
of the G-set C which remains fixed under the action of G and for each x ∈ C,
let γGx : M(G/Gx) −→ F (C,M)G be given by γGx (l) =

∑n
i=1(gil)(gix), where

{[g1], . . . [gn]} = G/Gx. Then γGx0
= 0 and γGx = γGgx ◦M∗(Rg−1 ).

In order to define the functor FG(−M), we showed that the abelian group
F (X,M)G, together with the family {γGx }, is characterized by the following
property (see [2], 1.6).

Proposition (2.7). Let A be an abelian group and for each x ∈ C let ϕ′x :
M(G/Gx) −→ A be a homomorphism, such that ϕ′x0

= 0, where x0 ∈ C is the
base point, and such that ϕ′x = ϕ′gx ◦ M∗(Rg−1 ). Then there exists a unique
homomorphism ϕ′ : F (C,M)G −→ A such that ϕ′ ◦ γGx = ϕ′x. In a diagram

M(G/Gx)
γGx //

ϕ′x &&NNNNNNNNNNN F (C,M)G

ϕ′

��
A .

Notice that this proposition is a “coordinate-free” description of the fact that
algebraically

F (C,M)G ∼=
⊕

[x]∈C/G−{[x0]}

M(G/Gx) .

The previous proposition allows us to define the second covariant functor
FG(−,M).

Definition (2.8). Let f : C −→ D be a pointed G-function. Define the family

f ′x : M(G/Gx) −→ F (D,M)G by f ′x(l) = γGf (x)M∗(f̂x)(l) .

By Proposition (2.7) this family determines a homomorphism

fG∗ : F (C,M)G −→ F (D,M)G .

Then, for any u =
∑k

i=1 γ
G
xi

(li) ∈ F (C,M)G, one has

fG∗ (u) =
k∑
i=1

γGf (xi)M∗(f̂xi )(li) .

We denote this functor by FG(−,M).

The following result puts the definition of the functor structures f
G

∗ and fG∗
in a diagram.

Proposition (2.9). Let C be a pointed G-set and let βC : F (C,M) −→
F (C,M)G be the surjective homomorphism given on generators by βC(lx) =
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γGx (l). If f : C −→ D is a pointed G-function, then one has the following com-
mutative diagram.

(2.10) F
G

(C,M)
� � iC //

f
G

∗
��

F (C,M)
βC // //

f∗

��

FG(C,M)

fG∗

��
F
G

(D,M)
� �

iD

// F (D,M)
βD

// // FG(D,M) .

This means, in particular, that β : F (−,M) −→ FG(−,M) is a natural trans-
formation.

Notice that the horizontal composites in (2.10) are not the identity.

The following result measures the difference between fG∗ and f
G

∗ in the
canonical generators γGx (l) ∈ F (C,M)G.

Proposition (2.11). Let f : C −→ D be a pointed G-function. Then

f
G

∗ (γGx (l)) = [Gf (x) :Gx]fG∗ (γGx (l)) ∈ F (C,M)G .

Proof : Let G/Gf (x) = {[g1], . . . , [gm]} and Gf (x)/Gx = {[h1], . . . , [hk]}. Then
G/Gx = {[g1h1], [g1h2], . . . , [gmhk−1], [gmhk]}. First observe that by definition,
fG∗ (γGx (l)) = γGf (x)(M∗(f̂x)(l)). Therefore,

f
G

∗ (γGx (l)) = f
G

∗

 (m,k)∑
(i,j)=(1,1)

M∗(R(gihj )−1 )(l)gihjx


=

(m,k)∑
(i,j)=(1,1)

M∗(f̂gihjx)M∗(R(gihj )−1 )(l)gihjf (x)

=
(m,k)∑

(i,j)=(1,1)

M∗(f̂gix)M∗(Rg−1
i

)(l)gif (x)

=
k∑

j=1

m∑
i=1

M∗(Rg−1
i

)M∗(f̂x)(l)gif (x)

= [Gf (x) :Gx]γGf (x)(M∗(f̂x)(l))

= [Gf (x) :Gx]fG∗ (γGx (l)). �

Remark (2.12). From the previous result it follows that both homomor-

phisms f
G

∗ and fG∗ coincide if the G-map f is isovariant (i.e. if Gf (x) = Gx

for all x ∈ C), for instance if D is G-free or if C and D are G-trivial.

Definition (2.13). Let M be a Mackey functor for the finite group G. We
define the coefficient system M∗ : O(G) −→ Ab as follows. Put M∗(G/H) =
M(G/H). Moreover, let f : G/H −→ G/K be a G-function. If f = Rg :
G/H −→ G/g−1Hg, thenM∗(f ) = M∗(f ), and if f = q : G/H −→ G/K, where
H ⊂ K, is the quotient function, then M∗(f ) = [K :H]M∗(f ).



TOPOLOGICAL GROUPS AND MACKEY FUNCTORS 239

Theorem (2.14). The functors F
G

(−,M), FG(−,M) : G-Set∗ −→ Ab are
characterized by properties (a) and (b1), and (a) and (b2), respectively, where:

(a) Let A be an abelian group and for each x ∈ C let ϕ′x : M(G/Gx) −→ A be
a homomorphism, such that ϕ′x0

= 0, where x0 ∈ C is the base point, and
such that ϕ′x = ϕ′gx ◦M∗(Rg−1 ). Then there exists unique homomorphism
ϕ′ : F (C,M)G −→ A such that ϕ′ ◦ γGx = ϕ′x. In a diagram

M(G/Gx)
γGx //

ϕ′x &&NNNNNNNNNNN F (C,M)G

ϕ′

��
A .

Note here that F
G

(C,M) = F (C,M)G = FG(C,M).
(b) Given a pointedG-function f : C −→ D, the following diagrams commute:

(b1) M(G/Gx)
γGx //

M∗ (̂fx)
��

F
G

(C,M)

f
G

∗
��

M(G/Gf (x))
γGf (x)

//
F
G

(D,M) ,

(b2) M(G/Gx)
γGx //

M∗ (̂fx)
��

FG(C,M)

fG∗
��

M(G/Gf (x))
γGf (x)

// FG(D,M) .

Proof. Part (a) is Proposition (2.7). Part (b) follows from the definition and
from Proposition (2.11).

To see that (a) and (b1) characterize the functor F
G

(−,M), assume that we
have two functors F (−) and F ′(−) that satisfy (a) and (b1). Property (a) allows
us to construct αC : F (C) −→ F ′(C) and α′C : F ′(C) −→ F (C) that are inverse
to each other. Moreover, property (b1) allows us to show that α and α′ are
natural transformations. Similarly, one proves that (a) and (b2) characterize
the functor FG(−,M).

Remark (2.15). Notice that in the proof of the previous theorem one only
needs the covariant part ofM . Thus the result is equally valid for any covariant
coefficient system.

3. The transfer for the functor FG(−;M)

We use the property (2.4) to give the transfer. We start with the following
definition, that was given in [2], 1.10; we put it now in terms of the property
(2.4).

Definition (3.1). Let M be a Mackey functor and p : A −→ C a G-function
with finite fibers, that is, a G-function such that for each x ∈ C, the fiber
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p−1(x) ⊂ A is finite. For any x ∈ C, let tx : M(G/Gx) −→ F (A+,M) be given
by

tx(l) =
∑

a∈p−1(x)

M∗(p̂a)(l)a .

By (2.4) for F (C+,M), there is a unique homomorphism

tp : F (C+,M) −→ F (A+,M) ,

such that tp ◦ γx = tx. Explicitly, on generators,

tp
(
lx
)

=
∑

a∈p−1(x)

M∗(p̂a)(l)a .

Since p is a G-function, tp is also a G-function, as we show in the lemma below,
and thus it determines, by restriction, the transfer

tGp : F (C+,M)G −→ F (A+,M)G .

Remark (3.2). The homomorphism tp : F (C+,M) −→ F (A+,M) can also be
described as follows:

tp(u)(a) = M∗(p̂a)(u(p(a)))

(and tp(u)(∗) = 0).

Lemma (3.3). tp : F (C+,M) −→ F (A+,M) is a G-homomorphism.

Proof. We have on the one hand

tp(g · u)(a) = M∗(p̂a)(g · u(p(a))) = M∗(p̂a)M∗(Rg−1 )(u(g−1p(a))),

while on the other hand we have

(g · tp(u))(a) = M∗(Rg−1 )(tp(u)(g−1a)) = M∗(Rg−1 )M∗(p̂g−1a)(u(g−1p(a))).

Both terms are equal, sinceM∗(p̂a)◦M∗(Rg−1 ) = M∗(Rg−1 )◦M∗(p̂g−1a), and this
follows from the fact that the following square is clearly a pullback diagram of
G-sets:

G/Gg−1a

R
g−1

∼=
//

p̂
g−1a

��

G/Ga

p̂a
��

G/Gg−1p(a)
R
g−1

∼= // G/Gp(a). �

Remark (3.4). Assume that p : A −→ C and q : C −→ D are G-functions
with finite fibers. Then one has that (̂q ◦ p)a = q̂p(a) ◦ p̂a. Using this, one easily
verifies that the transfer is functorial in the sense that tGq◦p = tGp ◦ tGq .

Lemma (3.5). Let p : A −→ C be a G-function with finite fibers. Then

(3.6) tGp (γGx (l)) =
∑

[a]∈p−1(x)/Gx

γGa (M∗(p̂a)(l)) ,
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Proof. The isotropy group Gx acts on p−1(x) and the inclusion j : p−1(x) ↪→
p−1(Gx) clearly induces a bijection j : p−1(x)/Gx −→ p−1(Gx)/G. Let γGx (l)
be a generator of FG(C+,M). Since the value of the function γGx (l) on points
which do not belong to Gx is zero, and γGx (l)(x) = l, we have that

tGp (γGx (l)) =
∑

[a]∈p−1(x)/Gx

γGa (M∗(p̂a)(l)). �

We shall now prove that the transfer tGp has the pullback property. We start
with some preliminary results on groups. One can easily prove the following.

Lemma (3.7). LetH,H ′ ⊂ K ⊂ G be subgroups ofG and consider the fibered
product

G/H ×G/K G/H ′ = {([g]H , [g ′]H′ ) | g, g ′ ∈ G and g−1g ′ ∈ K} .

Consider the set of double cosets H\K/H ′ = {H [gr]H′ | r = 1, . . . , k}, where
g1, . . . , gk ∈ K are fixed representatives. If H ′′r = H ∩grH ′g−1

r , then there is an
isomorphism of G-sets

ϕ : tkr=1G/H
′′
r

∼=−→ G/H ×G/K G/H ′ ,

given by ϕ[g]H′′r = ([g]H , [ggr]H′ ).

Lemma (3.8). Let H,H ′ ⊂ K ⊂ G be subgroups of G and let M be a Mackey
functor. Consider the isomorphism

k⊕
r=1

M(G/H ′′r ) −→M(tkr=1G/H
′′
r )

given by the family M∗(κr), where κr : G/H ′′r ↪→ tkr=1G/H
′′
r is the inclusion.

Then its inverse is given by the homomorphism induced by the family M∗(κr).

Proof. The following are pullback digrams:

G/H ′′r
= //

=

��

G/H ′′r

κr

��
G/H ′′r κr

// tG/H ′′r

and ∅ //

��

G/H ′′s

κs

��
G/H ′′r κr

// tG/H ′′r

where r 6= s. Therefore

M∗(κr) ◦M∗(κr) = 1M(G/H′′r ) and M∗(κs) ◦M∗(κr) = 0 .

Thus the result follows.

Lemma (3.9). Let H,H ′ ⊂ K ⊂ G be subgroups of G and let M be a Mackey
functor. Take w ∈M(G/H ×G/K G/H ′); then

w =
k∑

r=1

M∗(ϕr)M∗(ϕr)(w) ,

where ϕr = ϕ ◦ κr.
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Proof. By the previous lemma, for any z ∈M(tG/H ′′r ) we have

(3.10) z =
k∑

r=1

M∗(κr)M∗(κr)(z) .

By Lemma (3.7), we have an isomorphism

M∗(ϕ) : M(tkr=1G/H
′′
r ) −→M(G/H ×G/K G/H ′) .

Then for some z ∈ M(tkr=1G/H
′′
r ), w = M∗(ϕ)(z). By (3.10), M∗(ϕ)(z) =

M∗(ϕ)(
∑k

r=1 M∗(κr)M
∗(κr)(z)) =

∑k
r=1 M∗(ϕr)M

∗(ϕr)(w). The last equality fol-
lows from the fact that M∗(ϕ)−1 = M∗(ϕ), as one easily sees.

Let p : A −→ C be a G-function with finite fibers and let f : D −→ C be any
G-function. Consider the pullback diagram

(3.11) A′
f ′ //

p′

��

A

p

��
D

f
// C ,

where A′ = D×CA = {(y, a) | f (y) = p(a)}. Consider the restriction of f ′ from
the fiber (p′)−1(y) to the fiber p−1(f (y)). This function induces a surjective
function

q : (p′)−1(y)/Gy −→ p−1(f (y))/Gf (y) .

In what follows we analyze the fibers of q.

Lemma (3.12). There is a bijection

δ : Gy\Gf (y)/Ga0 −→ q−1(Gf (y)a0) ,

where a0 ∈ p−1(f (y)), given by δ(Gy
[g]Ga0

) = Gy(y, ga0).

Proof. The function δ is induced by the surjection δ : Gf (y) −→ q−1(Gf (y)a0)
given by δ(g) = Gy(y, ga0). One easily checks that δ factors through the set of
double cosets and that δ is injective.

Theorem (3.13). Let p : A −→ C be a G-function with finite fibers, and let
f : D −→ C be a G-function. Then

tGp ◦ fG∗ = (f ′)G∗ ◦ tGp′ : FG(D+,M) −→ FG(A+,M) ,

where f ′ and p′ are as in the pullback diagram (3.11).

Proof. Take a generator γGy (l), y ∈ D and l ∈ M(G/Gy), and consider q :
(p′)−1(y)/Gy −→ p−1(f (y))/Gf (y) as in Lemma (3.12). Then, by Definition (2.8)
and the formula (3.6), we have

(3.14) tGp f
G
∗ (γGy (l)) =

∑
[aι]∈p−1(f (y))/Gf (y)

γGaιM
∗(p̂aι )M∗(f̂y)(l) .

On the other hand, we have

(3.15) (f ′)G∗ t
G
p′ (γ

G
y (l)) =

∑
[y,a]∈(p′)−1(y)/Gy

γGaM∗(f̂ ′(y,a))M
∗(p̂′(y,a))(l) .
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We can write (p′)−1(y)/Gy = tq−1(Gf (y)aι), where Gf (y)aι = [aι]. By Lemma
(3.12), p−1(f (y))/Gf (y) = {[y, graι]}, where the group-elements gr are such that
{Gy

[gr]Gaι
}kr=1 = Gy\Gf (y)/Gaι (notice that the set {gr}kr=1 depends on each ι).

Clearly we have

(3.16) γGgraιM∗(f̂
′
(y,graι))M

∗(p̂′(y,graι))(l) = γGaιM∗(Rgr ◦ f̂ ′(y,graι))M
∗(p̂′(y,graι))(l) .

Consider the following pullback diagram

G/Gy ∩Ggraι
Rgr◦f̂ ′ (y,graι )

**

ϕr

((QQQQQQQ

p̂′ (y,graι )

%%

Gy ×G/Gf (y)
G/Gaι

τ //

π

��

G/Gaι

p̂aι
��

G/Gy
f̂y

// G/Gf (y) .

Hence, M∗(p̂aι ) ◦M∗(f̂y) = M∗(τ) ◦M∗(π). Using Lemma (3.9), we can write

M∗(π)(l) =
k∑

r=1

M∗(ϕr)M∗(ϕr)M∗(π)(l) =
k∑

r=1

M∗(ϕr)M∗(p̂′(y,graι))(l) .

Composing with M∗(τ) on the left, we obtain

M∗(τ)M∗(π)(l) =
k∑

r=1

M∗(τ)M∗(ϕr)M∗(p̂′(y,graι))(l)

=
k∑

r=1

M∗(Rgr ◦ f̂ ′(y,graι))M
∗(p̂′(y,graι))(l) .

Hence

M∗(p̂aι )M∗(f̂y)(l) =
k∑

r=1

M∗(Rgr ◦ f̂ ′(y,graι))M
∗(p̂′(y,graι))(l) ,

and the result follows.

4. The topological function groups

We start this section extending the definitions given in the previous sections
in the case ofG-sets to the case of simplicialG-sets. We denote by ∆ the category
whose objects are the ordered sets n = {0, 1, . . . , n} and whose morphisms are
order-preserving functions between them. A simplicial pointed G-set is thus
a contravariant functor K : ∆ −→ G-Set∗. We denote by Kn the value of K
in n, and given a morphism µ : m −→ n, we denote by µK : Kn −→ Km the
corresponding pointed G-function.

Definition (4.1). LetK be a simplicial pointedG-set andM a Mackey funtor

for G. We define the simplicial abelian groups FG(K,M) and F
G

(K,M) as the
following composites:

∆
K // G-Set∗

FG(−,M) // Ab , ∆
K // G-Set∗

F
G

(−,M) // Ab .



244 MARCELO A. AGUILAR AND CARLOS PRIETO

Therefore, for each n, the value of the functors FG(K,M) and F
G

(K,M) at n
are given by FG(Kn,M) and F

G
(Kn,M), respectively.

Notice that by Remark (2.6), there is also a simplicial abelian G-group de-
fined by the composite

∆
K // G-Set∗

F (−,M) // G-Ab .

Proposition (4.2). Let K be a simplicial pointed G-set. Then

(a) F
G

(K,M) is a simplicial subgroup of F (K,M), and
(b) FG(K,M) is a simplicial quotient group of F (K,M).

Proof. This follows by applying Proposition (2.9) to µK : Kn −→ Km, where
µ : m −→ n is a morphism in ∆. The inclusion of (a) is given by the natural

transformation i : F
G

(−,M) ↪→ F (−,M), and the surjection of (b) is given by
the natural transformation β : F (−,M) � FG(−,M).

In what follows, we shall use the previous definitions to associate topological

abelian groups FG(X,M) and F
G

(X,M) to a pointedG-spaceX. We shall work
in the category of k-spaces. We understand by a k-space a topological space X
with the property that a set W ⊂ X is closed if and only if f−1W ⊂ Z is closed
for any continuous map f : Z −→ X, where Z is any compact Hausdorff space
(see [9], [11]).

If S is a simplicial set (G-set, group, etc.), we denote by |S| its geometric
realization. This is a quotient space of

tnSn × ∆n

(see [8] for details).

Lemma (4.3). Let S be a simplicial pointed G-set. Then there is a canonical
homeomorphism |SG| −→ |S|G.

Proof. Let i : SG ↪→ S be the inclusion. This morphism induces an embed-
ding |i| : |SG| −→ |S|. One easily sees that the image of |i| is a subset of |S|G. In
order to see that |S|G is indeed the image of |i|, let [σ, t] ∈ |S|G be represented
by a nondegenerate element (σ, t). Then g[σ, t] = [gσ, t] coincides with [σ, t].
Since σ is nondegenerate, so is also gσ. Therefore, gσ = σ and so [σ, t] is in
the image of |i|.

Definition (4.4). Let X be a pointed G-space and let S(X) be the associated
singular simplicial pointed G-set, where the base point in each Sn(X) is the
constant n-simplex with value x0. We define the following topological spaces:

FG(X,M) = |FG(S(X),M)| , F
G

(X,M) = |FG
(S(X),M)| .

Notice that these two spaces have the structure of regular CW-complexes.

Remark (4.5). One may also define F (X,M) = |F (S(X),M)| and by Lemma

(4.3), F
G

(X,M) = |F (S(X),M)|G = F (X,M)G.
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If X is a G-space, then the underlying groups of FG(X,M) and F
G

(X,M)
differ from the (discrete) group F (Xδ,M)G, as defined in section 2, where Xδ

denotes the underlying G-set of X. However, we have the following.

Proposition (4.6). If X is a discrete pointed G-space, then the topological

abelian groups FG(X,M) and F
G

(X,M) are discrete and both are isomorphic
to the abelian group F (Xδ,M)G.

Proof : Notice that if K is a simplicial set such that Kn = C for all n, and
fK = idC for all f in ∆, then |K| is a discrete space homeomorphic toC, because
|K| is a CW-complex with one n-cell for each nondegenerate n-simplex of K.
We call such a simplicial set trivial.

Now, ifX is discrete, then Sn(X) = Xδ for all n and fS(X) = idX for all f , thus

it is trivial. Therefore, the simplicial groupsFG(S(X),M) andF
G

(S(X),M) are
trivial too. Hence

|FG(S(X),M)| ∼= F (Xδ,M)G ∼= |F
G

(S(X),M)|. �

Remark (4.7). The functors FG(−,M) and F
G

(−,M), restricted to the cate-
gory of discrete pointed G-spaces, are indeed naturally isomorphic to the func-

tors FG((−)δ,M) and F
G

((−)δ,M), respectively.

Proposition (4.8). Let X be a pointed G-space. Then the spaces FG(X,M)

and F
G

(X,M) are topological abelian groups (in the category of k-spaces).

Proof. Since FG(S(X),M) and F
G

(S(X),M) are simplicial abelian groups,

their geometric realizations |FG(S(X),M)| and |FG
(S(X),M)| are topological

groups (in the category of k-spaces, see [9], [11]).

Remark (4.9). In a similar way to the previous proposition, we have that
F (X,M) is a topological abelian G-group. By Proposition (4.2) and [5], we
have that

(a) F
G

(X,M) is a topological subgroup of F (X,M), and
(b) FG(X,M) is a topological quotient group of F (X,M).

We have the following.

Definition (4.10). LetK be a simplicial pointedG-set andM a Mackey func-
tor for G. Let Λ be any simplicial abelian group. We shall say that a family of
homomorphisms {ϕσ : M(G/Gσ ) −→ Λn | σ ∈ Kn, n ≥ 0} is simplicial if the
following conditions are satisfied:

(a) If σ0 ∈ Kn is the base point, then ϕσ0 = 0, and
(b) for each morphism µ : m −→ n in ∆, the following diagram commutes:

M(G/Gσ )
ϕσ //

M∗(µ̂Kσ )
��

Λn

µΛ

��
M(G/GµK (σ)) ϕ

µK (σ)

// Λm .
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We say that the simplicial family is G-invariant if for all σ ∈ K and all g ∈ G,

ϕgσ = ϕσ ◦M∗(Rg ) ,

Corresponding to the property (2.4), we have the following.

Proposition (4.11). Let K be a simplicial pointed G-set and M a Mackey
functor for G. Then

(i) the family {γσ : M(G/Gσ ) −→ F (Kn,M) | σ ∈ Kn, n ≥ 0} is simplicial.
Moreover

(ii) if Λ is any simplicial abelian group and {ϕσ M(G/Gσ ) −→ Λn | σ ∈
Kn, n ≥ 0} is a simplicial family of homomorphisms, then there is a
unique simplicial homomorphism ϕ : F (K,M) −→ Λ , such that ϕn ◦γσ =
ϕσ , where σ ∈ Kn, n ≥ 0.

Proof. Let µ : m −→ n be a morphism in ∆. To see (i), take l ∈ M(G/Gσ ).
Then

µK∗ γσ (l) = µK∗ (lσ) = M∗(µ̂Kσ )(l)µK (σ) = γµK (σ)M∗(µ̂Kσ )(l).

We now prove (ii). By Proposition (2.4), for each n there is a unique homo-
morphism ϕn : F (Kn,M) −→ Λn such that ϕn ◦ γσ = ϕσ . To check that the
family {ϕn} is a morphism of simplicial groups, take a generator lσ ∈ F (Kn,M).
Then

ϕmµ
K
∗ (lσ) = ϕm(M∗(µ̂Kσ )(l)µK (σ)) = ϕµK (σ)(M∗(µ̂Kσ )(l))

= µΛϕσ (l) = µΛϕn(lσ). �

We now have the following result, which is similar to the previous proposi-
tion.

Proposition (4.12). Let K be a simplicial pointed G-set and M a Mackey
functor for G. Then

(i) the family {γGσ : M(G/Gσ ) −→ FG(Kn,M) | σ ∈ Kn, n ≥ 0} is simplicial
and G-invariant. Moreover

(ii) if Λ is any simplicial abelian group and {ϕσ M(G/Gσ ) −→ Λn | σ ∈
Kn, n ≥ 0} is a simplicial G-invariant family of homomorphisms, then
there is a unique simplicial homomorphism ϕG : FG(K,M) −→ Λ , such
that ϕGn ◦ γGσ = ϕσ , where σ ∈ Kn, n ≥ 0.

Before passing to the definition of the functorial structures of F (X;M),

FG(X;M), and F
G

(X;M), recall that a morphism of simplicial pointed G-sets
α : K −→ Q consists of a family of pointed G-functions αn : Kn −→ Qn such
that, if µ : m −→ n is a morphism in ∆, then one has a commutative diagram

Kn
αn //

µK

��

Qn

µQ

��
Km αm

// Qm .
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Since we have functors F (−,M), FG(−,M), F
G

(−,M) : G-Set∗ −→ Ab, they
yield commutative diagrams

F (Kn,M)
αn∗ //

µK∗
��

F (Qn,M)

µQ∗
��

F (Km,M) αm∗
// F (Qm,M) ,

FG(Kn,M)
αn

G
∗ //

µK
G
∗

��

FG(Qn,M)

µQ
G
∗

��
FG(Km,M)

αm
G
∗

// FG(Qm,M) ,

F
G

(Kn,M)
αn

G
∗ //

µK
G

∗
��

F
G

(Qn,M)

µQ
G

∗
��

F
G

(Km,M)
αm

G
∗

// F
G

(Qm,M) .

Hence the functors F (−,M), FG(−,M), and F
G

(−,M) extend to functors of
simplicial pointed G-sets.

Definition (4.13). Let f : X −→ Y be a continuous pointed G-map. The map
f induces a morphism of simplicial pointed G-sets S(f ) : S(X) −→ S(Y ), which
defines homomorphisms of simplicial groups

S(f )∗ : F (S(X),M) −→ F (S(Y ),M) ,

S(f )G∗ : FG(S(X),M) −→ FG(S(Y ),M) ,

S(f )
G

∗ : F
G

(S(X),M) −→ F
G

(S(Y ),M) .
Define the homomorphisms

f∗ : F (X,M) −→ F (Y,M) ,

fG∗ : FG(X,M) −→ FG(Y,M) ,

f
G

∗ : F
G

(X,M) −→ F
G

(Y,M) ,

by f∗ = |S(f )∗|, fG∗ = |S(f )G∗ |, and f
G

∗ = |S(f )
G

∗ |, respectively.

Remark (4.14). One may obtain the simplicial homomorphisms

S(f )∗ : F (S(X),M) −→ F (S(Y ),M) ,

S(f )G∗ : FG(S(X),M) −→ FG(S(Y ),M) ,
using the properties (4.11) and (4.12) for the families {ϕσ} and {ϕGσ } given by

ϕσ (l) = γS(f )(σ)(M∗(Ŝn(f )σ )(l)) ∈ F (Sn(X),M) ,

ϕGσ (l) = γGS(f )(σ)(M∗(Ŝn(f )σ )(l)) ∈ FG(Sn(X),M) .

They provide the following explicit expressions for them on generators:

S(f )∗(γσ (l)) = γS(f )(σ)(M∗(Ŝn(f )σ )(l)) ,

S(f )G∗ (γGσ (l)) = γGS(f )(σ)(M∗(Ŝn(f )σ )(l)) .

Since S(f )
G

∗ is the restriction of S(f )∗, the first gives also an explicit expression
in this case.
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Clearly, we have the following result.

Proposition (4.15). If f : X → Y is a continuous pointed G-map, then

f∗ : F (X,M) → F (Y,M), fG∗ : FG(X,M) → FG(Y,M), and f
G

∗ : F
G

(X,M) →
F
G

(Y,M) are continuous homomorphisms. Thus F (−,M), FG(−,M), and

F
G

(−,M) are covariant functors from the category of pointed G-spaces to the
category of topological abelian groups. In particular, F (X,M) is a topological
abelian G-group.

Remark (4.16). Let f : X −→ Y be a pointed G-map. By (2.9), it follows
that one has an epimorphism of simplicial groups βS(X) : F (S(X),M) −→
FG(S(X),M). Thus, by [5], its geometric realization

βX : F (X,M) −→ FG(X,M)

is an identification for any pointed G-space X. One can visualize both functor
structures in an analogous way to the commutative diagram (2.10), namely,

(4.17) F
G

(X,M)
� � //

f
G

∗
��

F (X,M)
βX // //

f∗

��

FG(X,M)

fG∗

��
F
G

(Y,M)
� � // F (Y,M)

βY
// // FG(Y,M) ,

where the groups are now topological and all the homomorphisms are contin-
uous.

To finish this section, we prove that the functors F (X,M), FG(X,M), and

F
G

(X,M) are homotopy invariant. For that, we need the following.

Lemma (4.18). Let K and Q be simplicial pointed G-sets and be α0, α1 :
K −→ Q be morphisms. If α0 and α1 are G-homotopic, then

(a) α0∗, α1∗ : F (K,M) −→ F (Q,M) are G-homotopic homomorphisms;
(b) αG0∗, α

G
1∗ : FG(K,M) −→ FG(Q,M) are homotopic homomorphisms;

(c) αG0∗, α
G
1∗ : F

G
(K,M) −→ F

G
(Q,M) are homotopic homomorphisms.

Proof. LetH : K ×∆[1] −→ Q be a G-homotopy between α0 and α1, sinceH
is G-equivariant (where ∆[1] has the trival action), it induces homomorphisms

H∗ : F (K × ∆[1],M) −→ F (Q,M) ,

HG
∗ : FG(K × ∆[1],M) −→ FG(Q,M) ,

HG
∗ : F

G
(K × ∆[1],M) −→ F

G
(Q,M) .

Let ι : F (K,M)× ∆[1] −→ F (K × ∆[1],M) be given by

ιn(u, a)(σ, b) =

{
u(σ) if b = a ,

0 if b 6= a ,

where (u, a) ∈ F (Kn,M) × ∆[1]n and (σ, b) ∈ Kn × ∆[1]n. We have that ιn(u +
u′, a) = ιn(u, a) + ιn(u′, a). Therefore

ιn(
∑
σ

lσσ, a) =
∑
σ

lσ (σ, a) .
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One can easily check that ι is a morphism of simplicial pointed sets, (where
the base point in ∆[1]n is the constant function with value 0). Then H∗ ◦ ι is a
homotopy between α0∗ and α1∗.

Since ι andH∗ areG-equivariant, the restriction ofH∗ ◦ ι to F
G

(K,M)×∆[1]
is a homotopy between αG0∗ and αG1∗.

Now let ιG : FG(K,M)× ∆[1] −→ FG(K × ∆[1],M) be given by

ιGn (u, a)(σ, b) =

{
u(σ) if b = a ,

0 if b 6= a ,

where (u, a) ∈ FG(Kn,M) × ∆[1]n and (σ, b) ∈ Kn × ∆[1]n. Since u is a G-
invariant element, it follows that ιGn (u, a) is alsoG-invariant. We also have that
ιGn (u + u′, a) = ιGn (u, a) + ιGn (u′, a). Therefore ιGn (

∑
σ γ

G
σ (lσ ), a) =

∑
σ γ

G
(σ,a)(lσ ).

One can easily see that ιG is a morphism of simplicial pointed sets. The com-
posite HG

∗ ◦ ιG is a homotopy between αG0∗ and αG1∗.

Proposition (4.19). If f0, f1 : X −→ Y are G-homotopic pointed maps, then

(a) f0∗, f1∗ : F (X,M) −→ F (Y,M) are G-homotopic homomorphisms,

(b) f
G

0∗, f
G

1∗ : F
G

(X,M) −→ F
G

(Y,M) are homotopic homomorphisms, and
(c) fG0∗, f

G
1∗ : FG(X,M) −→ FG(Y,M) are homotopic homomorphisms.

Proof. For convenience, we shall take the standard 1-simplex ∆1 instead of
the unit interval I . Thus let H : X × ∆1 −→ Y be a pointed G-homotopy from
f0 to f1. Consider the morphism of simplicial G-sets R : S(X)× ∆[1] −→ S(Y )
given as follows. If s ∈ ∆n, define Rn : Sn(X)× ∆[1]n −→ Sn(Y ) by

Rn(σ, a)(s) = H(σ(s), a#(s)) ,

where a# : ∆n −→ ∆1 is the affine map determined by a. Then R is a G-
equivariant homotopy between S(f0) and S(f1). Thus, by the previous lemma,
there is a homotopy T between the morphisms S(f0)∗ and S(f1)∗. Then

H ′ : |F (S(X),M)| × |∆[1]| ≈←− |F (S(X),M)× ∆[1]| |T |−→ |F (S(Y ),M)| ,

where the homeomorphism is canonical, is a homotopy between f0∗ = |S(f0)∗|
and f1∗ = |S(f1)∗|, and thus we have (a). Similarly, also using the previous
lemma, we obtain (b) and (c).

5. The topological function group FG(X,M)

In this section we shall define a new topological abelian group FG(X,M),
whose description is simpler than that ofFG(X,M). Here our pointedG-spaces
will be pointed k-spaces.

LetX be a pointedG-space and letS(X) be the associated singular simplicial
pointed G-set, where the base point in each Sn(X) is the constant n-simplex
with value x0. Denote byXδ the underlying pointedG-set ofX. We shall define
a topology on the abelian group F (Xδ,M)G as follows. Take the surjective
homomorphism

πG
X : |FG(S(X),M)|� F (Xδ,M)G
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defined by

πG
X

([∑
σ

γGσ (lσ ), t

])
=
∑
σ

γGσ(t)M∗(pσ,t)(lσ ) .

We give F (Xδ,M)G the identification topology, where pσ,t : G/Gσ −→ G/Gσ(t)

is the quotient map. We denote the resulting space by FG(X,M).

Proposition (5.1). Let X be a pointed G-space. Then FG(X,M) is a topo-
logical group (in the category of k-spaces).

Proof. Consider the following commutative diagram:

|FG(S(X),M)| × |FG(S(X),M)| //

πGX×π
G
X

��

|FG(S(X),M)|

πGX
��

FG(X,M)× FG(X,M) // FG(X,M) ,

since the product πG
X × πG

X in the category of k-spaces is an identification, the
result follows.

Let f : X −→ Y be a continuous pointed G-map. It induces a pointed G-
function f : Xδ −→ Y δ which defines a homomorphism fG∗ : F (Xδ,M)G −→
F (Y δ,M)G. We have the following result.

Proposition (5.2). If f : X −→ Y is a continuous pointed G-map, then

fG∗ : FG(X,M) −→ FG(Y,M)

is a continuous homomorphism. Thus FG(−,M) is a covariant functor from the
category of pointed G-spaces to the category of topological abelian groups.

Proof. TheG-map f induces a morphism of simplicialG-setsS(f ) : S(X) −→
S(Y ) which in turn defines a homomorphism of simplicial groups

S(f )G∗ : FG(S(X),M) −→ FG(S(Y ),M) .

Consider the following diagram, where the top map is continuous:

|FG(S(X),M)|
|S(f )G∗ | //

πGX
��

|FG(S(Y ),M)|

πGY
��

FG(X,M)
fG∗

// FG(Y,M) .

It is a straightforward verification that it is commutative. Therefore, fG∗ is
continuous.

Remark (5.3). Notice that in (4.13) we defined a continuous homomorphism

fG∗ : FG(X,M) −→ FG(Y,M) ,

which should not be confused with

fG∗ : FG(X,M) −→ FG(Y,M) .
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They are related by the commutativity of the diagram

FG(X,M)
fG∗ //

πGX
��

FG(Y,M)

πGY
��

FG(X,M)
fG∗

// FG(Y,M) ,

which is just the diagram in the proof of (5.2).

We shall now give a topological characterization of the group FG(X,M),
similar to Proposition (2.4). In order to do this, we need the following.

Definition (5.4). Let X be a pointed G-space. Let A be a topological abelian
group in the category of k-spaces, and for each x ∈ X let ϕx : M(G/Gx) −→ A
be a homomorphism, such that ϕx0 = 0, where x0 ∈ X is the base point. We
say that {ϕx} is a continuous family if the homomorphism

ϕ̃ : |F (S(X),M)| −→ A

given by

ϕ̃

 ∑
σ∈Sn(X)

lσσ, t

 =
∑

σ∈Sn(X)

ϕσ(t)M∗(pσ,t)(lσ ) ,

is continuous, where pσ,t : G/Gσ = G/G(σ,t) � G/Gσ(t) is the quotient map. We
say that the family is G-invariant, if ϕx = ϕgx ◦M∗(Rg−1 ) for all g ∈ G.

The universal property that characterizes the topological abelian group
FG(X,M), together with the family {γGx }, is the following.

Proposition (5.5). (i) {γGx } is an equivariant continuous family.
(ii) Let A be a topological abelian group and let {ϕx} be an equivariant con-

tinuous family. Then there exists a unique continuous homomorphism
ϕ : FG(X,M) −→ A such that ϕ ◦ γGx = ϕx.

Proof. By definition, the family {ϕx} induces a continuous homomorphism
ϕ̃ : |F (S(X),M)| −→ A and since the family is G-invariant, then by (2.7) there
exists a unique homomorphism ϕ : FG(X,M) −→ A such that ϕ◦γGx = ϕx which
satisfies ϕ ◦πG

X ◦ |βS(X)| = ϕ̃. The simplicial homomorphism βS(X) is surjective,
hence by [5], |βS(X)| is an identification, and since πG

X is also an identification,
ϕ is continuous.

Observe that the continuity of fG∗ shown above follows also from this uni-
versal property in a similar manner as that of (4.15).

We now show that the functor FG(−,M) is homotopy invariant.

Proposition (5.6). If f0, f1 : X −→ Y are G-homotopic pointed maps, then

fG0∗, f
G
1∗ : FG(X,M) −→ FG(Y,M)

are homotopic homomorphisms.
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Proof. By (4.19), we have a homotopy H ′ : FG(X,M) × ∆1 −→ FG(Y,M).
It is straightforward to verify that the map πG

Y ◦ H ′ is compatible with the
identification πG

X × 1, so that the following diagram commutes:

FG(X,M)× ∆1

πGX×1
����

H′ // FG(Y,M)

πGY����
FG(X,M)× ∆1

H′′
// FG(Y,M) .

Then H ′′ is the desired homotopy.

To finish this section we shall show that the group-functor FG(−,M) has the
same properties of FG(−,M), when M is a homological Mackey functor. Recall
the following.

Definition (5.7). A Mackey functorM forG is said to be homological if when-
ever K ⊂ H ⊂ G and q : G/H −→ G/K is the quotient function, one has
M∗(q)M∗(q) = [H :K], that is, multiplication by the index of K in H.

Example (5.8). Given aG-moduleL, one defines a homological Mackey func-
tor ML as follows. Put ML(G/H) = LH and define

ML∗(Rg−1 ) : LH −→ LgHg−1
, l 7−→ gl ,

M∗L(Rg−1 ) : LgHg−1
−→ LH , l 7−→ g−1l ,

and if H ⊂ K, K/H = {[ki]H}, and q : G/H −→ G/K is the quotient function,
then

ML∗(q) : LH −→ LK , l 7−→
∑

kil ,

M∗L(q) : LK −→ LH is the inclusion.

Definition (5.9). Given a G-module L, we define the functors F (−, L) and
FG(−, L) form the category of pointed G-sets to the category of abelian groups
as follows:

F (C,L) = {u : C −→ L | u(∗) = 0 and u(x) = 0 for almost all x ∈ C} ,

FG(C,L) = {u ∈ F (C,L) | u(gx) = gu(x) for all x ∈ X, g ∈ G} ,

(see [1], Def. 1.1). Moreover, if X is a topological pointed G-space, then we can
define a topology on F (X,L) and on FG(X,L) as follows. Take the surjection

µ : tq(L×X)q � F (X,L) ,

where µ(l1, x1, . . . , lq, xq) = l1x1 + · · ·+ lqxq, and give F (X,L) the identification
topology, then give FG(X,L) the relative topology. We now have that F (−, L)
andFG(−, L) are functors from the category of pointedG-spaces to the category
of abelian topological groups.

Lemma (5.10). The functors FG(−, L) and FG(−,ML) form the category of
pointed G-sets to the category of abelian groups are equal.
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Proof. Notice first that M̂L = L and if u ∈ FG(C,L), then u(x) ∈ LGx =
ML(G/Gx). Let f : C −→ D be a pointed G-function. Consider the projection
G/Gx � G/Gf (x) with fiber Gf (x)/Gx. One can describe the cosets in G/Gx as
products of the cosets in G/Gf (x) and those in Gf (x)/Gx, in a similar way as
in the proof of Lemma (5.16), below. Then we can write a generator γGx (l) as∑

(gihjl)(gihjx). Now we can easily check that the value of the homomorphisms
induced by the functors FG(−, L) and FG(−,ML) are equal on this generator.

Remark (5.11). Observe that when X is a topological pointed G-space and
L is a G-module, we have two different abelian groups, namely, FG(X,L) as
defined above, and FG(X,ML) = |FG(S(X),ML)| as defined in (4.4). However,
FG(X,L) and FG(X,ML) are equal as abelian groups. Furthermore, the iden-
tity FG(X,ML) −→ FG(X,L) is always continuous, as proved in [3]. We prove
below (5.17) that it is a homeomorphism if X = |K|.

The following result of Thevenaz and Webb [10], Thm. (16.5)(i), will be used
in what follows.

Theorem (5.12). Given a homological Mackey functor M , there exists a G-
module L and an epimorphism of Mackey functors ξ : ML � M .

Definition (5.13). We shall denote by ξ♦ : FG(−,ML) −→ FG(−,M) the
natural transformation determined by ξ : ML � M , namely, if u ∈ FG(C,ML),
then ξ♦(u)(x) = ξG/Gx

(u(x)), where x ∈ C.
Notice that for each C, ξ♦ is surjective, because if γGx (l′) is a generator of

FG(C,M) and ξG/Gx
(l) = l′, then ξ♦(γGx (l)) = γGx (l′).

Definition (5.14). For a simplicial pointed G-set K and a G-module L, we
gave in [1], Prop. 2.3, a G-isomorphism of topological groups ψ : |F (K,L)| −→
F (|K|, L) given on generators by ψ([lσ, t]) = l[σ, t]. We shall denote its restric-
tion to the fixed-point subgroup by

ψGL : |FG(K,L)| −→ FG(|K|, L) .

On the other hand, for any Mackey functor M for G we defined in [2], Prop.
2.6, an isomorphism

ψGM : |FG(K,M)| −→ FG(|K|,M)

as discrete groups, given by

ψGM ([γGσ (l), t]) = γG[σ,t]M∗(qσ,t)(l) ,

where qσ,t : G/Gσ −→ G/G[σ,t] is the quotient function.

Remark (5.15). Notice that the identification

πG
X : |FG(S(X),M)|� FG(X,M)

factors as the composite

ρGX∗ ◦ ψGM : |FG(S(X),M)| −→ FG(|S(X)|,M) −→ FG(X,M) .
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Lemma (5.16). The following is a commutative diagram

|FG(K,L)|

ψGL
��

id // |FG(K,ML)|

ψGML

��
FG(|K|, L)

id
// FG(|K|,ML) .

Proof. If we assume that G/G[σ,t] = {[gi] |, i = 1, . . . , r} and G[σ,t]/Gσ =
{[hj] | j = 1, . . . , s}, then G/Gσ = {[gihj] | (i, j) = (1, 1), . . . , (r, s)}. Thus we
can write

γGσ (l) =
(r,s)∑

(i,j)=(1,1)

(gihjl)(gihjσ) ∈ FG(K,L) .

Therefore, ψGL ([γGσ (l), t]) =
∑(r,s)

(i,j)=(1,1)(gihjl)[gihjσ, t].
On the other hand, ML∗(qσ,t)(l) =

∑s
j=1 hjl, hence

ψGML
([γGσ (l), t]) = γG[σ,t]

 s∑
j=1

hjl


=

r∑
i=1

gi

 s∑
j=1

(hjl)gi[σ, t]


=

r∑
i=1

gi

 s∑
j=1

(hjl)gihj[σ, t]


= ψGL ([γGσ (l), t]) , since hj ∈ G[σ,t] .

Proposition (5.17). If K is a simplicial pointed G-set, then

id : FG(|K|,ML) −→ FG(|K|, L)

is a homeomorphism.

Proof. To simplify the notation we put Y = |K|. Consider the following
diagram.

FG(|S(Y )|,ML)

ρGY∗
)) ))SSSSSSSSSS

oo
ψGML |FG(S(Y ),ML)|

πGY����

|FG(S(Y ), L)|
ψGL
∼=

//

π̃GY��

FG(|S(Y )|, L)

ρ̃GY∗
vvvvmmmmmmmmmm

FG(Y,ML)
id

// FG(Y,L) .

The triangles commute by Remark (5.15) and the commutativity of the square
follows from Lemma (5.10) and Lemma (5.16). On the other hand, by [2],
3.5, ρY : |S(Y )| −→ Y is a G-retraction and, therefore, ρ̃GY∗ is a retraction
too, moreover ψGL is a homeomorphism (see [1], Prop. 2.3) and hence π̃G

Y is an
identification. Since by definition πG

Y is an identification, it follows that the
identity on the bottom is a homeomorphism.

As a consequence, we have the following.
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Corollary (5.18). For any pointed G-space X,

id : FG(|S(X)|,ML) −→ FG(|S(X)|, L)

is a homeomorphism.

We have the next.

Proposition (5.19). Let M be a homological Mackey functor. Then

ψGM : |FG(S(X),M)| −→ FG(|S(X)|,M)

is an isomorphism of topological groups.

Proof. Consider the following diagram

|FG(S(|S(X)|),ML)
|ξ♦| // //

πG|S(X)| ����

|FG(S(|S(X)|),M)

πG|S(X)|����
FG(|S(X)|, L) FG(|S(X)|,ML)

id
∼=

oo ξ♦ // FG(|S(X)|,M)

|FG(S(X), L)|

ψGL
∼=

OO

|FG(S(X),ML)|

ψGML

OO

//
id

∼=oo
|ξ♦|

// // |FG(S(X),M)| .

ψGM

OO�
�
�

The subdiagram on the left commutes by Lemma (5.16), and the identity on
the top of it is a homeomorphism by Corollary (5.18). One easily verifies that
the other two subdiagrams commute too. Since ξ♦ is surjective, |ξ♦| on the top
is an identification (see [5]), hence ξ♦ in the middle is also an identification.
Since |ξ♦| on the bottom is an identification too and ψGL is a homeomorphism,
as mentioned in (5.14), ψGM is a homeomorphism as well.

Proposition (5.20). LetX be a pointedG-space of the homotopy type of aG-
CW-complex, and letM be a homological Mackey functor. ThenπG

X :FG(X;M)→
FG(X,M) is a natural homotopy equivalence of topological groups.

Proof. By [1], Prop. 2.12, ρX : |S(X)| −→ X is a G-homotopy equivalence.
On the other hand, by Proposition (5.19), ψGM is an isomorphism of topological
groups, and by (5.6) the functor FG(−,M) is homotopy invariant. Therefore,
by Remark (5.15),

πG
X : FG(X,M) = |FG(S(X),M)|

ψGM−→ FG(|S(X)|,M)
ρGX∗−→ FG(X,M)

is a homotopy equivalence of topological groups.
It is easy to see that the homormorphisms πG

X are natural, namely that if
f : X −→ Y is a pointed G-map, then the following diagram commutes:

|FG(S(X),M)|
|S(f )G∗ | //

πGX ����

|FG(S(Y ),M)|

πGY����
FG(X,M)

fG∗

// FG(Y,M) .
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6. Continuity of the transfers

In this section we study the continuity of the transfer for the topological-
group functors FG(−,M) and FG(−,M). The following is the topological coun-
terpart of Definition (3.1). Let p : E −→ X be an n-fold covering G-map,
i.e., an ordinary n-fold covering map, such that E and X are G-spaces and p
is equivariant. Hence S(p) : S(E) −→ S(X) has finite fibers. We have the
following.

Proposition (6.1). The transfers

tGSq(p) : FG(Sq(X)+,M) −→ FG(Sq(E)+,M)

determine a homomorphism of simplicial abelian groups

tGS(p) : FG(S(X)+,M) −→ FG(S(E)+,M) .

Proof. Let f : r −→ q be a morphism in ∆ and consider the diagram

Sq(E)
fS(E)

//

Sq(p)
��

Sr(E)

Sr(p)

��
Sq(X)

fS(X)
// Sr(X) .

Take σ ∈ Sq(X). If Sq(p)−1(σ) = {σ̃i | i = 1, . . . , n}, then Sr(p)−1(fS(X)(σ)) =
{σ̃i ◦ f# | i = 1, . . . , n}. Therefore this is a pullback diagram. By Theorem
(3.13), the following is a commutative diagram:

FG(Sq(E)+,M)
(fS(E)+ )G∗ //

OO
tGSq (p)

FG(Sr(E)+,M)OO

tGSr (p)

FG(Sq(X)+,M)
(fS(X)+ )G∗

// FG(Sr(X)+,M)

and thus tGS(p) : FG(S(X)+,M) −→ FG(S(E)+,M) is a homomorphism of sim-
plicial groups.

Hence we have the following.

Definition (6.2). Let p : E −→ X be an n-fold covering G-map. Define the
transfer tGp : FG(X+,M) −→ FG(E+,M) by

tGp = |tGS(p)| .

(Notice that for any space X, one has Sn(X+) = Sn(X)+.)

Thus we have the next result.

Theorem (6.3). The transfer tGp : FG(X+,M) −→ FG(E+,M) is a continuous
homomorphism.
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Let nowM be a homological Mackey functor. We shall now give a description
of the transfer for the functor FG(−,M).

Let p : E → X be an n-fold covering G-map. By (3.1), we have a transfer
tGp : FG((Xδ)+,M)→ FG((Eδ)+,M), which is a homomorphism tGp : FG(X+,M)→
FG(E+,M).

Theorem (6.4). The transfer tGp : FG(X+,M) −→ FG(E+,M) is continuous.

Proof. The continuity of tGp follows from the commutativity of the next dia-
gram:

|FG(S(X+),M)|

ψGM
��

|tGS(p)| //

πGX

%% %%

|FG(S(E+),M)|

ψGM
��

πGE

yyyy

FG(|S(X+)|,M)

ρG
X+∗

��

tG|S(p|) // FG(|S(E+)|,M)

ρG
E+∗

��
FG(X+,M)

tGp

// FG(E+,M) .

The square at the bottom commutes by the pullback property (3.13) applied to
the pullback diagram

|S(E)|
ρE //

S(p)
��

E

p

��
|S(X)| ρX

// X .

To see that this is indeed a pullback square, we shall show that for each
[τ, t] ∈ |S(X)|, the fiber |S(p)|−1([τ, t]) is mapped bijectively by ρE onto the
fiber p−1(τ(t)). So, assume first that (σ, t) is a nondegenerate representative
of [σ, t]. Since p is an n-fold covering map, the fiber S(p)−1(τ) has n elements,
namely {τ̃1, . . . , τ̃n}. We have a bijection S(p)−1(τ) ≈ |S(p)|−1([τ, t]) given by
τ̃j ↔ [τ̃j , t]. On the other hand, since p is a covering map, there is a bijection
S(p)−1(τ) ≈ p−1(τ(t)) given by τ̃j ↔ τ̃j(t).

To prove that the diagram at the top commutes, we consider the inverse
isomorphisms ϕGM of ψGM , given by ϕGM (γG[σ,t](l)) = [γGσ (l), t] provided that (σ, t) is
a nondegenerate representative. We shall show that

|tGS(p)| ◦ ϕ
G
M = ϕGM ◦ tG|S(p)| .

Take γG[σ,t](l) ∈ FG(|S(X+)|,M). Then

|tGS(p)|ϕ
G
M (γG[σ,t](l)) =

[
tGS(p)(γ

G
σ (l)), t

]
=

[
k∑
i=1

γG
σ̃i
M∗(Ŝ(p)

σ̃i
)(l), t

]
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and

ϕGM t
G
|S(p)|(γ

G
[σ,t](l)) = ϕGM

(
k∑
i=1

γG
[̃σi,t]

M∗(|̂S(p)|[̃σi,t])(l)

)

=

[
k∑
i=1

γG
σ̃i
M∗(|̂S(p)|[̃σi,t])(l), t

]
,

where {σ̃i | i = 1, . . . , k} is a set of representatives of S(p)−1(σ)/Gσ . To prove
that the sums are equal, observe that, as we already mentioned above, there is
a bijection between S(p)−1(σ) and |S(p)|−1([σ, t]). Since (σ, t) is nondegenerate,
by [2], Prop. 2.4, the isotropy groups Gσ and G[σ,t] are equal. Hence, {[σ̃i, t] |
i = 1, . . . , k} is a set of representatives of |S(p)|−1([σ, t])/G[σ,t]. Moreover,
since (σ̃i, t) is also nondegenerate, then G[̃σi,t]

= G
σ̃i

, and therefore |̂S(p)|[̃σi,t] =

Ŝ(p)
σ̃i

.

7. Homotopical homology theories

In the definition of the functors F (−,M), FG(−,M), and F
G

(−,M), given in
Section 2, the contravariant structure of the Mackey functor M was not used.
Therefore the same definitions are valid if instead of M , we take a covariant
coefficient system N∗ for the finite group G. Hence we have functors F (−,N∗),
FG(−,N∗), and F

G
(−,N∗). We shall prove the following.

Theorem (7.1). Let N∗ be a covariant coefficient system for G and let X be
a pointed G-space. Then the homotopy groups πq

(
FG(X,N∗)

)
are naturally

isomorphic to the (reduced) Bredon-Illman G-equivariant homology groups
H̃G

q (X;N∗).

For the proof of this theorem we need the following result.

Theorem (7.2). ([2], Thm. 4.5) There is an isomorphism between Illman’s
chain complex SG(X, ∗;N∗) (cf. [6], p. 15) and the chain complex FG(S(X),N∗).

Proof of Theorem (7.1). We shall give an isomorphism

H̃G
q (X;N∗) ∼= Hq

(
FG(S(X),N∗)

)
−→ πq

(
FG(X,N∗)

)
.

Here the left-hand side is the Bredon-Illman (reduced) homology of X with
coefficients in N∗, which by definition is the homology of the chain complex
SG(X, ∗;N∗), and the first isomorphism follows from the natural isomorphism
of Theorem (7.2).

To construct the arrow, we shall give several isomorphisms as depicted in
the following diagram.

Hq

(
FG(S(X),N∗)

)
oo i∗
∼=

))

πq
(
FG(S(X),N∗)

) Ψ
∼=

// πq
(
S(|FG(S(X),N∗)|)

)
Φ∼=

��
πq
(
FG(X,N∗)

)
πq
(
|FG(S(X),N∗)|

)
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By [2], Prop. 4.2, i∗ is an isomorphism. In particular, this shows that every
cycle in H̃G(X;N∗) is represented by a chain u, all of whose faces are zero. We
call this a special chain.

The homomorphism Ψ, which is given by Ψ(u)[t] = [u, t], where u is a special
q-chain and t ∈ ∆q, is an isomorphism, as follows from [8], 16.6.

In order to define Φ, we must express Ψ(u) as a map γ : (∆[q], ∆̇[q]) −→(
S
(
|FG(S(X),N∗)|

)
, ∗
)
. By the Yoneda lemma, γ is the unique map such that

γ(δq) = Ψ(u), where δq = id : q −→ q. The homomorphism Φ, defined by
Φ[γ][f, s] = γ(f )(s), for f ∈ ∆[q]n and s ∈ ∆n, is given by the adjunction
between the realization functor and the singular complex functor (see [8], 16.1).

ut

Proposition (7.3). The functors F
G

(−,M) and FG(−,M∗) from G-Set∗ to
Ab are the same.

Proof. Since the covariant functorsM∗ andM∗ are equal in objects, then the

groups F
G

(C,M) and FG(C,M∗) are equal. We shall see that on morphisms,
these functors are also equal. For this, let f : C −→ D be a pointed G-function
and take x ∈ C. Consider the canonical projectionG/Gx −→ G/Gf (x) with fiber
Gf (x)/Gx. Let us write G/Gf (x) = {[gi] | i = 1, . . . , r} and Gf (x)/Gx = {[hj] |
j = 1, . . . , k}. Therefore, G/Gx = {[gihj] | i = 1, . . . , r, j = 1, . . . , k}. Take a

generator γGx (l) ∈ FG
(C,M) = FG(C,M∗). Then on the one hand,

fG∗ (γGx (l)) = γGf (x)(M∗(f̂x)(l))

=
∑
i

giM∗(f̂x)(l)(gif (x))

=
∑
i

[Gf (x) :Gx]giM∗(f̂x)(l)(gif (x)) .

On the other hand,

f
G

∗ (γGx (l)) = f∗(γGx (l))

= f∗

∑
i,j

(gihjl)(gihjx)


=
∑
i,j

M∗(f̂gihjx)(gihjl)f (gihjx) .

Since hj ∈ Gf (x) and by the formula gM∗(f̂x)(l) = M∗(f̂gx)(gl) given in Definition
(2.5), we have

f
G

∗ (γGx (l)) =
∑
i,j

giM∗(f̂x)(l)gif (x) =
∑
i

[Gf (x) :Gx]giM∗(f̂x)(l)(gif (x)).

Corollary (7.4). F
G

(X,M) = FG(X,M∗) when X is a pointed G-space.

Proof. By the previous proposition, the simplicial groups F
G

(S(X),M) and
FG(S(X),M∗) are equal. Therefore their geometric realizations are equal as
topological groups, and thus the result follows.
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By Theorem (7.1) and the previous proposition, we have the following result.

Theorem (7.5). Let M be a Mackey functor and X a pointed G-space. Then

the homotopy groups πq
(
F
G

(X,M)
)

are naturally isomorphic to the (reduced)
Bredon-Illman G-equivariant homology groups H̃G

q (X;M∗) with coefficients in
the coefficient system M∗.

As a consequence of Proposition (5.20), the homotopy invariance (5.6), and
Theorem (7.1), we have the following.

Theorem (7.6). Let M be a homological Mackey functor and X a pointed
G-space of the homotopy type of a G-CW-complex. Then the homotopy groups
πq(FG(X,M)) are naturally isomorphic to the (reduced) Bredon-IllmanG-equiv-
ariant homology groups H̃G

q (X;M∗) with coefficients in the coefficient systemM∗.

8. Some applications

We shall consider in this section a special family of finite covering G-maps
and study the transfer homomorphism for this family.

Definition (8.1). Let G and Γ be two finite groups. A (G,Γ)-bundle is a prin-
cipal Γ-bundle p : E −→ X, such that E and X are G-spaces, p is equivariant,
and the actions satisfy

(8.2) g(aγ) = (ga)γ for all g ∈ G , a ∈ E , γ ∈ Γ .

Two (G,Γ)-bundles over X are (G,Γ)-equivalent if they are Γ-equivalent via a
G-equivariant bundle map.

Example (8.3). Let G and Γ be two finite groups, let ξ : G −→ Γ be a homo-
morphism, and let X be a G-space. Then we may consider the first projection
X × Γ −→ X. Define a G-action on X × Γ by g(x, γ) = (gx, ξ(g)γ). Then we
obtain a (G,Γ)-bundle, which we denote by pξ.

Observe that in this case the isotropy group G(x,γ) = Gx ∩ ker ξ for all γ ∈ Γ.
Note that for any finite coveringG-map p : E −→ X, the inclusion j : p−1(x) ↪→
p−1(Gx) clearly induces a bijection j : p−1(x)/Gx −→ p−1(Gx)/G.

Lemma (8.4). Let Nx be the cardinality of p−1
ξ (Gx)/G ≈ p−1(x)/Gx. Then

the index [Gx :Gx ∩ ker ξ] = |Γ|/Nx.

Proof. There is a G-bijection between p−1
ξ (Gx) and G/Gx × Γ given by the

correspondence (gx, γ) ↔ ([g], γ), where G acts on p−1
ξ (Gx) by g ′(gx, γ) =

(g ′gx, ξ(g ′)γ) and on G/Gx × Γ by g ′([g], γ) = ([g ′g], ξ(g ′)γ). Thus the orbit
of ([g], γ) has [G :Gx ∩ ker ξ] elements. Hence, the cardinality of G/Gx × Γ is

[G :Gx]|Γ| = Nx[G :Gx ∩ ker ξ] .

Therefore,

[Gx :Gx ∩ ker ξ] = [G :Gx ∩ ker ξ]/[G :Gx] = |Γ|/Nx .
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Definition (8.5). Let G and Γ be two finite groups. A (G,Γ)-bundle p : E −→
X is said to be a (G,Γ)-locally trivial bundle if for each x0 ∈ X there is a Gx0 -
invariant neighborhood Ux0 , such that the restricted bundle p−1Ux0 −→ Ux0

is (Gx0 ,Γ)-equivalent to pξx0
: Ux0 × Γ −→ Ux0 , for some homomorphism ξx0 :

Gx0 −→ Γ, as in Example (8.3).

Remark (8.6). Lashof [7] gave a different condition for (G,Γ)-local triviality.
However, he showed that his condition implies the definition above. He also
constructed a universal (G,Γ)-bundle to classify numerable (G,Γ)-locally trivial
bundles.

On the other hand, any principal (G,Γ)-bundle over a completely regular
base space is a (G,Γ)-locally trivial bundle (see [7]).

Example (8.7). Let G be a finite group and let X be a bi-G-space, namely a
space with a left and a right G-action such that for any x ∈ X and g, g ′ ∈ G,
(gx)g ′ = g(xg ′). Let K ⊂ H ⊂ G be subgroups such that K is normal in H,
and assume that the right action of H on X is free. Put Γ = H/K. Then we
can define a principal (G,Γ)-bundle as follows. Let p : X/K −→ X/H be the
canonical projection. One can easily verify that G acts on the left on both X/K
and X/H in the obvious way, and that there is a free right Γ-action on X/K
using the right action of G.

The bi-G-action on X implies that condition (8.2) is satisfied. Assume now
that X is completely regular (and Hausdorff). One can show that X/H is also
completely regular. Therefore we have that p : X/K −→ X/H is a (G,Γ)-
locally trivial bundle.

Lemma (8.8). Let p : E −→ X be a (G,Γ)-locally trivial bundle and take x0 ∈
X. Then the index [Gx0 :Gx0 ∩ ker ξx0 ] = |Γ|/Nx0 , where Nx0 is the cardinality
of p−1(x0)/Gx0 , as in Lemma (8.4).

Proof. Let Ux0 be a neighborhood of x0 as in Definition (8.5). Then the
restricted bundle p−1Ux0 −→ Ux0 is (Gx0 ,Γ)-equivalent to pξx0

: Ux0×Γ −→ Ux0 .
Thus the desired formula follows from Lemma (8.4).

Theorem (8.9). For any finite covering G-map p : E −→ X and a homolog-
ical Mackey functor M one has the following formula

(8.10) pG∗ t
G
p (γGx (l)) =

∑
κ∈K

[Gx :Gaκ ]γ
G
x (l) ∈ FG(X,M) ,

where p−1(x)/Gx = {[aκ] | κ ∈ K}.

Proof. By equation (3.6), we can write

pG∗ t
G
p (γGx (l)) =

∑
κ∈K

pG∗ γ
G
aκM

∗(p̂aκ )(l) =
∑
κ∈K

γGxM∗(p̂aκ )M
∗(p̂aκ )(l) .

Since the composite M∗(p̂aκ ) ◦M∗(p̂aκ ) is multiplication by [Gx :Gaκ ], the result
follows.

We now have the following consequence of Theorem (8.9) and Lemma (8.8).
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Theorem (8.11). Let p : E −→ X be a (G,Γ)-locally trivial bundle and let
M be a homological Mackey functor. Then one has that each of the composites

pG∗ ◦ tGp : FG(X+,M) −→ FG(X+,M) and

pG∗ ◦ tGp : HG
∗ (X,M) ∼= πq

(
FG(X+,M)

)
−→ πq

(
FG(X+,M)

) ∼= HG
∗ (X,M) ,

is multiplication by |Γ|.

Proof. We only have to prove the result for the composite on the top. By
(8.10), if v = γGx0

(l) ∈ FG(X+,M), then

pG∗ t
G
p (γGx0

(l)) =
∑
κ∈K

[Gx0 :Gx0 ∩ ker ξx0 ]γ
G
x (l) ,

where {[aκ] | κ ∈ K} = p−1(x0)/Gx0 . By Lemma (8.8), [Gx0 :Gx0 ∩ ker ξx0 ] =
|Γ|/Nx0 , and since Nx0 is the cardinality of K, pG∗ t

G
p (γGx0

(l)) = |Γ|γGx0
(l). Since

any element v ∈ FG(X+,M) is a sum of terms of the form γGx0
(l), the result

follows.
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THREE MANIFOLDS AS GEOMETRIC BRANCHED COVERINGS
OF THE THREE SPHERE

G. BRUMFIEL, H. HILDEN, M. T. LOZANO∗, J. M. MONTESINOS-AMILIBIA∗,
E. RAMIREZ-LOSADA, H. SHORT, D. TEJADA∗∗, AND M. TORO∗∗

Abstract. One method for obtaining every closed orientable 3-manifold is as
a branched covering of S3 branched over a link. There are topological results
along these lines that cannot be improved upon in two respects: (A), The
minimum possible number of sheets in the covering is three; (B), There are
individual knots and links (universal knots and links) that can serve as branch
set for every 3-manifold, M3. Given the growing importance of geometry in
3-manifold theory it is of interest to obtain geometrical versions of topological
results (A) and (B). Twenty years ago a geometric version of result (B) was
obtained using universal groups. In this paper we obtain a geometric version
of result (A), also by means of universal groups.

1. Introduction

Some time ago it was established that all closed orientable 3-manifolds are
threefold irregular simple branched coverings of S3 with branch set a knot or a
link. ([3],[11],[14]). Both the statement and proof of this theorem were purely
topological in character. Geometry played no role.

The central purpose of this paper is to introduce the idea of a geometric
branched covering and then to show that every closed orientable 3-manifold
M3 is a threefold irregular simple branched covering of S3 that is “geometric”
in the following sense:

There is a universal groupU; the orbifold group of the Borromean rings with
singular angle ninety degrees. Thus U is a finite covolume Kleinian group of
hyperbolic isometries of H3.

There are finite index subgroups of U, G, and G1, such that M3 = H3/G,
S3 = H3/G1, and G is a non normal index three subgroup of G1.

The groups U, G, and G1 induce hyperbolic orbifold structures on S3, M3,
and S3 respectively and the maps induced by group inclusions,

M3 = H3/G −→ S3 = H3/G1 −→ S3 = H3/U ,

are branched covering space maps with M3 −→ S3 being three to one.
The new theorem, Theorem (2.9) of this paper, can be considered to be the

“geometrization” of the old theorem.

2000 Mathematics Subject Classification: Primary: 57M12; Secondary: 57N10, 57M50,
57M25.

Keywords and phrases: 3-manifold, branched covering, universal link, universal group.
∗This research was supported by grants MTM2004088080, MTM2007-67908-C02-01 and
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∗∗This research was supported by COLCIENCIAS grant CT 436-2007.
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This work is closely related to the concepts of universal group and universal
link.

A knot or link is said to be universal if every closed orientable 3-manifold
occurs as a finite branched covering space ofS3 with branch set the knot or link.
W. Thurston introduced this concept in his paper [17], where he also exhibited
some universal links, and asked if the Whitehead link and the Figure eight knot
were universal. In [6], [7] we ansewed Thurston’s questions in the affirmative
and proved that every non toroidal rational knot or link is universal, and that
the Borromean rings are universal. Subsequently many other universal knots
and links were found: [18], [19], [16], [8], [4], [12], [9].

In a branched covering p : M −→ N of 3-manifold branched over a link L
the preimage of a meridian disk D is a set of meridian disks D1, ..., Dk. For
1 ≤ j ≤ k the disk Dj is mapped in nj to 1 fashion to D. If A is a set of positive
integers we say that the branched covering p is of type A if nj belongs to A
for 1 ≤ j ≤ k. In particular, in the sequel branched coverings of type 1, 2 and
1, 2, 4 will be particularly important.

Closely related to the concept of universal knot or link is that of universal
group. A finite covolume, discrete group of hyperbolic isometries U, acting on
H3, is said to be universal if every closed orientable 3-manifold M3 occurs as
a quotient space, M3 = H3/G, where G is a finite index subgroup of U. Such
groups U must contain rotations, else all 3-manifolds including S3 would have
hyperbolic structure.

Also, given M3, there are infinitely many finite index G’s with M3 = H3/G
so that this doesn’t give anything like a classification of 3-manifolds. It can be
considered analogous to Heegaard splittings or Kirby calculus presentations.
We know that S3 = H3/U so that S3 inherits a hyperbolic orbifold structure
from U.

The existence of a universal group was demonstrated in ([5]). The group
defined in ([5]), which from now on we denote by U, is a orbifold group of the
Borromean rings. This groupU thus induces a hyperbolic orbifold structure on
S3 with singular set the Borromean rings, and singular angle ninety degrees.
Unfortunately the proof of the universality of U in ([5]) cannot be adapted to
prove the geometric branched covering space theorem referred to earlier.

There is a new proof that serves our purposes. It starts out following ([5]),
then follows ideas in ([6]), then follows section 5 of ([12]) in which infinitely
many 2-universal links are defined, and then uses a branched covering of
S3 by S3 with branch set the Borromean rings and branching indexes {1, 2}
(branching of type {1, 2} for short) such that the “doubled” Borromean rings
(2-universal) occur as a sublink of the preimage of the Borromean rings.

Rather than put the reader through the difficult task of actually finding
these references in some library we prefer to give a new, relatively self-con-
tained proof of the universality of U.

In the next section we state and prove the geometric branched covering
space theorem.

2. Geometric branched covering space theorem

Our point of departure is the following theorem ([3],[11],[14]).
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Theorem (2.1). Let M3 be a closed orientable 3-manifold. Then M3 is a 3
to 1 irregular simple branched cover of S3 with branch set a knot or link (as
opposed to a graph).

Such 3 to 1 coverings with branch set a linkL correspond to transitive repre-
sentations ρ : π1(S3−L) −→ Σ3 in which meridians are sent to transpositions.
Years ago Ralph Fox ([2]) had the genial idea of representing transpositions
by colours. Throughout the paper we shall follow this idea; Red = R = (12),
Yellow = Y = (23), Blue = B = (13).

Then, given a classical knot or link diagram, simple transitive represen-
tations to Σ3 (Simple means meridians go to transpositions), correspond to
colourings of the bridges such that at each crossing either all three bridges
are the same colour or all three have different colours and at least two colours
are used. (This itself is equivalent to the Wirtinger relations, which have form
xy = yz, being satisfied.)

Given a 3-1 simple branched covering p : M3 → S3 branched over the
coloured link L, there is a move, illustrated in Figure 1 and called a Mon-
tesinos move [15], which changes the coloured link L to a different coloured
link L′. The change takes place inside a ball. Although L is changed, the
topological type of M3 is not. The reason is that the 3-fold simple cover of
a ball branched over two unknotted, unlinked arcs is a ball. Thus doing a
Montesinos move on a link in S3 is equivalent to removing a ball from M3 and
sewing it in differently. We call a sequence of Montesinos moves a Montesinos
transformation.

Y

B

RY

Y

Montesinos Move

Y

R

B

L Ĺ

Figure 1

We give several examples of transformations of links using Montesinos
moves and isotopies which will be useful to us in the new proof of the uni-
versality of U.

B

R

R R B

B

R

Y

Y

BR

Y RY

Figure 2
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Now we are ready to prove the universality of U. Let M3 be a closed ori-
entable 3-manifold and let p : M3 −→ S3 be a simple 3-fold covering branched
over the link L. We shall apply a Montesinos transformation to L to obtain a
link L′ which suits our purposes. For definitiveness we shall think of S3 as
E3 ∪ {∞}, assume L is contained in E3 and use cylindrical coordinates in E3.

As every link is a closed braid we can assumeL is a closed braid. This means
that each component of L has a parametrization (r(t), θ(t), z(t)) in which θ(t) is
strictly increasing and the projection on the plane z = 0 is “nice”. (i.e., there
are no triple points.)

Using an isotopy of the type illustrated in Figure 7 we can assume every
crossing has 3 colours.

Then, using Montesinos moves as in Figure 1, we can assume all crossings
are “positive”. (See Figure 8.)

We replace each crossing with a new small circle component, as in the left
hand side of Figure 2. After an isotopy we can assume that our link L has two
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types of components; “braid” or “horizontal” components that lie in the plane
z = 0 and have equations r = constant; θ = arbitrary, z = 0, and “small circle”
components, whose projection on the plane z = 0 appears as in the left side of
Figure 2.

Next, using the Montesinos transformation of Figure 4, (which is validated
by using the Montesinos transformation of Figure 3.), we replace each small
circle component by three components as in the right hand side of Figure 4.
Now our link L has three types of components; horizontal components, big
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Figure 8

circle components and small circle components as illustrated in the right hand
side of Figure 4. Each small circle component links two big circle components.

We isotope out link L so that each big circle component appears as in the
left hand side of Figure 9, that is, it extends over the top and bottom of all the
horizontal components.

c

c

Figure 9

Then we isotope the small circle components, one at a time, so that they
become braid or horizontal components. As we do this to a particular small
circle component “c” as in the left hand side of Figure 9 it becomes, briefly, the
topmost braid component.

Now our link L has two types of components, horizontal components which
lie in the plane z = 0 and have equation of form r = constant, θ = arbitrary,
and z = 0 and large circle components, which we now call vertical components,
whose projections on the plane z = 0 are rectangles in the (r, θ) coordinate
system. Crossings are called horizontal or vertical as indicated in Figure 10.

We observe, and this is crucial in what follows, that every horizontal crossing
is 3-coloured. (The vertical crossings may not be.) Also, a particular vertical
component links a particular horizontal component if and only if the left cross-
ing on the right hand side of Figure 9 is horizontal. The next step will be to
eliminate horizontal crossings. We refer the reader to Figures 5 and 6.

We use the Montesinos transformations illustrated in either Figures 5 or
6 (both are useful) to replace each horizontal crossing by a vertical crossing.
In the course of doing this, new components, as indicated in the left sides of
Figures 5 and 6, are introduced. These are contained in the “peanut shaped”
balls indicated by a “P ” or “Q” in Figures 5 and 6.
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Figure 10

After a slight isotopy our link L has three types of components; horizontal
(with equation r = constant, z = 0, θ = arbitrary); vertical (lying in the
plane z = ε > 0, whose projection in the plane z = 0 is a rectangle in (r, θ)
coordinates); and “special”. Each special component is contained in a “peanut
shaped” topological ball lying in the region −ε 5 z 5 2ε and having projection
on the z = 0 plane as indicated in either the left or right hand sides of Figure
11. (We can use one or the other but never both in the same proof.)

P Q

Figure 11

Thus we have shown that every closed orientable 3-manifold M3 is a 3-fold
simple branched covering of a link of very special type. We shall isotope the
link some more and then state a theorem. We shall use cylindrical coordinates
in S3 = E3 ∪ {∞} to better describe the link. At the moment our link is
contained in the region [−ε 5 z 5 2ε, 0 < r0 < r 5 R0, θ = arbitrary]

We isotope the region −ε 5 z 5 2ε, r0 5 r 5 R0 without changing the θ
coordinate, so that the link lies in the thickened toroidal region 1−δ 5 z2 +(r−
2)2 5 1+δ and so that the horizontal components lie in the torus z2+(r−2)2 = 1,
have equations of form [r = constant, z = constant, θ = arbitrary], and are
“evenly spaced”. (This means that after the isotopy the images of the horizontal
components intersect the circle z2 + (r − 2)2 = 1, θ = θ0, in n evenly spaced
points on the circle.)

Next we isotope the vertical components so that their images lie on the torus
z2 + (r − 2)2 = 1 − δ, have equations θ = constant, z2 + (r − 2)2 = 1 − δ, and
are “evenly spaced” which means that if there are m vertical components the
constants referred to are {2πj/m; 0 5 j 5 m− 1}.
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It is convenient to introduce new “toroidal” coordinates (ρ, θ, ϕ) which are
well defined in a neighborhood of the torus z2 +(r−2)2 = 1−δ. These are given
by equations θ = θ; ρ =

√
z2 + (r− 2)2 = distance of a point from the circle

[z = 0, r = 2, θ = arbitrary]; sin ϕ = z/ρ and cosϕ = r − 2/ρ. Using these
“toroidal” coordinates we can define projections of E3 − {(z axis) ∪ (circle [r =
2; z = 0]} onto the torus z2 + (r − 2)2 = 1 or the torus z2 + (r − 2)2 = 1− δ by
(ρ, θ, ϕ) −→ (θ, ϕ).

We summarize the results of the preceding isotopies in a theorem.

Theorem (2.2). Let M3 be a closed oriented 3-manifold. Then there is a
3-fold simple branched covering p : M3 −→ S3 branched over a link L.

The link L has three types of components.
a. Horizontal. These lie in the torus ρ = 1 or z2 + (r − 2)2 = 1 and have

equations [θ = arbitrary;ϕ = 2πj/n, 0 5 j 5 n− 1, ρ = 1]
b. Vertical. These lie in the torus ρ = .99 or z2 + (r − 1)2 = (.99)2 and have

equations ϕ = arbitrary, θ = 2πj/m, 0 5 j 5 m− 1, ρ = .99
c. Special. These have local projections on the torus ρ = 1 as in either the

left or right hand side of Figure 11. The vertical coordinate is ϕ, the horizontal
coordinate is θ.

In this proof we will use all left hand side or all right hand side of Figure
11. Both are useful.

Now we find it useful to define two rotations T1 and T2 of S3 = E3 ∪
{∞}. The rotation T1 is simply the m-fold rotation about the z-axis given
by T1 : (r, θ, z) −→ (r, θ + 2π/m, z) the rotation T1 leaves invariant the set of
horizontal and the set of vertical components of the link L. The rotation T2

is more difficult to describe in coordinates and we shall not attempt to do so.
Instead we indicate its important properties. The rotation T2 has as its axis
the circle z = 0, r = 2, θ = arbitrary; it has order n and leaves the θ coordinate
unchanged. It leaves the set of horizontal and the set of vertical components
of L invariant. It cyclically permutes the horizontal components and it sends
each vertical component to itself. Its restriction to a vertical component is just
the usual n-fold rotation of a circle.

At this point we must decide whether to use the branch set in the left or
right hand side of Figure 11. We choose the left for purposes of illustration.

Using the projection (ρ, θ, ϕ) −→ (θ, ϕ) a portion of the image of the link
L appears as in Figure 12. Some of the “peanut shaped” balls contain two
component links and arcs from a vertical and horizontal component, others
contain only arcs from a vertical and horizontal component.

We can and shall assume that both rotations T1 and T2 leave the “expanded”
link L invariant.

Now consider the map f1 : S3 −→ S3/T1 = S3 which is an m-fold cyclic
branched covering S3 −→ S3 with branch set the trivial knot or z-axis. The
branch set for the composite map f1 ◦p : M3 −→ S3 consists of the union of the
branch set for f1 and the image f1 (branch set for p) = z-axis

⋃
f1(L).

The branching is of type {1, 2} on f1(L) and of type {m} on the z–axis∪{∞}.
This means that any disc which belongs to the preimage of a meridian disk D
for f1(L) is either mapped homeomorphically (1 − 1) to D or mapped to D as
a 2 − 1 branched covering. The preimage of a meridian disk D for the z-axis
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Figure 12

is mapped to D as an m-fold branched covering. The overall branching is of
type {1, 2,m} for the map f1 ◦ p and the “m” is bad for our purposes. Shortly
we shall show how to change the map f1 to a map f so that the branching for
f ◦ p is of type {1, 2} but first we observe that the part of the branch set f1(L)
for f1 ◦ p contains n horizontal components, n “peanut” components but only
one vertical component.

Consider the connected k-fold branched coverings of a disk D2 with two
branch points A and B in the interior of D2. These are determined by transi-
tive representations ρ of π1(D2 − {A,B}) (which is free on the two meridian
generators, call them x and y, pictured in Figure 13) into Σk.

A B

y
x

D
2

. .

Figure 13

We are interested in a particular dihedral representation. LetP be a regular
k-gon with its vertices labeled 1 through k as in Figure 14. We map x to the
reflection in the axis l1 and y to the reflection in the axis l2 of Figure 14.

The reflections induce permutations of vertices and elements of Σk. Then
ρ(x) = (1, 2)(3, k)(4, k − 1) · · · and ρ(y) = (2, k)(3, k − 1)(4, k − 2) · · · are both
products of disjoint transpositions and as xy is a counterclockwise rotation by
2π/k, ρ(xy) is the k–cycle (1, k, k − 1, · · · , 3, 2).

Let q : X −→ D2 be the branched covering induced by ρ. Then xy is a
generator ofπ1(S1) = Z whereS1 = boundaryD2 and restricting q to boundary
X we see that q : @X −→ S1 is just the usual k–fold unbranched cover of S1.
Using the branching data we compute the Euler characteristic of X which is
one. Thus ρ induces a k–fold branched cover q : D2 −→ D2 with branch set
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k-1

k

l2
l1

1

2

3

Figure 14

two points in interior D2 and branching type {1, 2}. The restriction of q to
S1 = @X = @D2 is the usual k–fold unbranched covering of S1 by S1. It is
convenient to summarize the preceding in a proposition.

Proposition (2.3). Let q1 : D2 −→ D2 be the usual k–fold cyclic covering of
D2; the one given by q1 : z −→ zn in complex coordinates if D2 is the unit disc
in C. Then there is another k–fold branched covering q : D2 −→ D2 such that
the branch set is two points in interior D2, the branching is of type {1, 2} and
q = q1 on S1 = boundaryD2.

By “crossing” with S1 the next proposition follows easily.

Proposition (2.4). Let q1 : S1 ×D2 −→ S1 ×D2 be the usual k–fold cyclic
covering of S1 × D2 by S1 × D2; the one given by q1 : (eiθ, z) −→ (eiθ, zn) in
natural coordinates forS1×D2. Then there is another k–fold branched covering
q : S1 × D2 −→ S1 × D2 such that the branch set equals S1 × {A,B} where
A and B are points in the interior of D2; the branching is of type {1, 2}, and
q = q1 on boundary (S1 ×D2).

We return to our map f1 which is an m–fold cyclic covering of S3 by S3 with
branch set and preimage of branched set the z–axis. We choose a natural solid
torus neighborhood of the z–axis in S3 and its preimage and we coordinatize
this neighborhood so that f1 is the usual m–fold cyclic covering of S1 ×D2 by
S1 ×D2 as in Proposition (2.4). This neighborhood should be small enough so
that it doesn’t intersect the linkLwhich is the branch set of the map p : M3 −→
S3 defined earlier. Then we use Proposition (2.4) to define a new map f : S3 −→
S3 where outside the solid torus neighborhood f = f1 and within the solid torus
neighborhood f is like q of Proposition (2.4). Thus f ◦ p is a 3m to 1 branched
covering of S3 by M3 with branch set S1 × {A,B} ∪ f (L).

The part of the branch set f (L) = f1(L) has one vertical component and
n-horizontal components and n-“peanut” components. Via an isotopy, if nec-
essary, we may assume that the rotation T2 leaves S1 × {A} and S1 × {B}
invariant and that its restriction to either component is just the usual n–fold
rotation. The relevant part of the branch set for f ◦ p is depicted in Figure 15.
The branching is type {1, 2}.

Next we let g1 be the map S3 −→ S3/T2 = S3. Then g1 ◦ f ◦ p is a branched
covering of S3 by M3 which is 3mn to 1 and has branch set equal to g1(branch
set (f ◦p))∪{the circle [z = 0, r = 2, θ = any]}. The branching is of type {1, 2}
on g1(branch set (f ◦ p)) and of type {m} on the circle [z = 0, r = z, θ = any].
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S x
1

{ }A,B

Figure 15

We choose a solid torus neighborhood of the circle z = 0, r = z, θ = any,
small enough so that it does not intersect g1(branch set (f ◦ p)), and so that it
can be coordinatized as S1 ×D2 with g1 = q1 as in Proposition (2.4).

Then we define g : S3 −→ S3 so that g = g1 outside the torus neighbor-
hood and g behaves like q of Proposition (2.4) inside the torus neighborhood.
The 3mn to 1 branched covering g ◦ f ◦ p : M3 −→ S3 has branch set with
three vertical components and three horizontal components and one “peanut”
component as pictured in Figure 16. All branching is of type {1, 2}.

Figure 16

The link in Figure 16 can be isotoped to the link in Figure 17. To help the
reader see this we have labeled the corresponding components in Figures 16
and 17. There are two obvious annuli in Figures 16 and 17 labeled A and B.
The other components are labeled γ, δ, ε, and ζ.

We may add four components, γ1, δ1, ε1, ζ1, to the link of Figure 17 so that
there are annuli C,D,E, and F with boundaries γ∪ γ1, δ∪ δ1, ε∪ ε1 and ζ ∪ ζ1

respectively in such a way that the new link has a 3–fold rational symmetry.
Let T3 be this 3–fold rotation and let h1 : S3 −→ S3 = S3/T3 be the resulting
branched covering. The map h1 ◦g ◦f ◦p is a 9mn to 1 branched covering of S3
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Figure 17

by M3 with branching of type {1, 2} on the part of the branch set h1 (branch
set g ◦ f ◦ p) and branching of type {3} on h1(axisT3).

This branch set is depicted in Figure 18.

~
~

Figure 18

As before we replaced f1 by f and g1 by g we now replace h1 by h using
Proposition (2.4) where h1 = h except in solid torus neighbourhood of the axis
of rotation of h but the branching of the map h : S3 −→ S3 is of type {1, 2}.
The new branch set is displayed in Figure 19.

Figure 19

We call the branch set of Figure 19 the “doubled Borromean rings”. We
summarize this result in the form of a theorem [12].
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Theorem (2.5). Let M3 be a closed orientable 3–manifold. Then M3 is a
branched covering of S3 with branch set the doubled Borromean rings, and
with branching of type {1, 2}. That is, the doubled Borromean rings are 2-
universal.

If we use the right hand side of Figure 11 instead of the left hand side we
obtain the following theorem [12].

Theorem (2.6). Let M3 be a closed orientable 3–manifold. Then M3 is a
branched covering of S3 with branch set the doubled Whitehead link and with
all branching of type {1, 2}. That is, the doubled Whitehead link is 2-universal.

The doubled Whitehead link is depicted in Figure 20.

Figure 20

Theorem (2.5) and Theorem (2.6) show that the doubled Borromean rings
and doubled Whitehead link are 2-universal. In ([12]) two co–authors of this
paper prove this result and additionally give infinitely many examples of 2-
universal links. The three component link in the right bottom part of Figure
5.10 of [12] is a minimal hyperbolic 2-universal link. In fact any proper sublink
of it is either a split link or a toroidal link.

We note, in passing, that 2-universal knots are known to exist ([9]) but so
far there are no easy examples.

Our next task, which is the new idea of this paper, will be to define a
branched covering k : S3 −→ S3 with branch set the Borromean rings for
which the doubled Borromean rings occur as a sublink of the preimage of the
branch set.

We begin by tessellating E3 by 2 × 2 × 2 cubes all of whose vertices have
odd integer coordinates. Let Û be the group generated by 180◦ rotations in
the axes a, b, and c displayed in Figure 21. The cube there is centered at the
origin.

The group Û is a well known Euclidean crystallographic group that pre-
serves the tessellation. A fundamental domain for Û is the 2 × 2 × 2 cube of
Figure 21 centered at the origin. The map E3 −→ E3/Û ≈ S3 is a branched
cover of S3 by E3 with branch set the Borromean rings. This gives S3 the
structure of a Euclidean orbifold with singular set the Borromean rings and
singular angle 180◦. We can see that E3/Û equals S3 with singular set the
Borromean rings by making face identifications in the fundamental domain of
Figure 21. We do this in Figure 22.

Next we consider a tessellation of E3 by 6 × 6 × 6 cubes with integer co-
ordinates that are odd multiples of three. Let Ũ be the group generated
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a

c

b

Figure 21

Figure 22

by 180◦ rotations in the axes a′, b′, c′ where a′ = (t, 0, 3), b′ = (3, t, 0) and
c′ = (0, 3, t);−∞ < t < ∞. We can envision a fundamental domain for Ũ by
looking at Figure 21 and imagining prime accents over a, b, and c. Of course
E3/Ũ = S3 and the map E3 −→ E3/Ũ is a branched covering of S3 by E3.
As the rotations about a′, b′ and c′ belong to Û we see that Ũ ⊂ Û and we
see that

[
Û : Ũ

]
= 27 by comparing the size of fundamental domains. Ũ

is not a normal subgroup of Û. We are in fact really interested in the map
t : S3 = E3/Ũ −→ E3/Û = S3 induced by the inclusion of Ũ in U.

Consider the following commutative diagram

E3 id−−−−→ E3y y
S3 = E3/Ũ −−−−→ E3/Û = S3 .



THREE MANIFOLDS AS GEOMETRIC BRANCHED COVERINGS 277

The maps E3 −→ E3/Ũ and E3 −→ E3/Û are both branched covers of S3

by E3 with all branching of type {2}. (The map E3 −→ S3 is infinite to one but
the notion of branched covering generalizes naturally from finite to one maps
to infinite to one maps, at least in this special case.) We see, by considering
images of meridian discs in E3, that the map S3 = E3/Ũ −→ E3/Û = S3 is
also a branched covering space map with branching of type {1, 2}.

The set of points in S3 = E3/Ũ in the preimage of the Borromean rings
branch set in E3/Û = S3 for which the branching of type {2} is called the
upper branch set. The set of points in S3 = E3/Ũ in the preimage of the
Borromean rings branch set in E3/Û = S3 for which the branching is of type
{1} is called the upper pseudo branch set.

We can compute the preimage of the branch set in S3 = E3/Ũ from a fun-
damental domain for Ũ, which consists of 27 2× 2× 2 cubes.

A point in this fundamental domain belongs to the upper branch set if and
only if it belongs to an axis of rotation for Û but does not belong to an axis
of rotation for Ũ. A point in this fundamental domain belongs to the upper
pseudo branch set if and only if it belongs to an axis of rotation for Ũ. We do
not need to compute the full preimage of the Borromean rings in S3 = E3/Ũ,
(which turns out to be a 15 component link), but only a certain sublink.

In Figure 23 we give a 6×6×6 cube fundamental domain for Ũ and display
only those axes of rotation of Û that lie in the faces of the cube.

The axes a′, b′ and c′ (and their analogues on the invisible faces) are axes
for Ũ and so give rise to the upper pseudo branch set. The axes ã, b̃, and c̃

(and their analogues on the invisible faces) are axes for Û, but not Ũ, and so
give rise to a sublink of the upper branch set.

~
'

~

b
~

b'

b
~

aaa

c
c~

c~

AA

B

B

C
C

'

Figure 23

Also, axes a′ and ã (resp. b′ and b̃; c′ and c̃ ) lie on the boundary of a
rectangle A (resp. B; C). Something similar occurs on the invisible faces.
After identifications are made in the faces of the cubes these rectangles become
annuli. In Figure 24 we make the identifications and show that the doubled
Borromean rings appear.

We summarize all this in the next proposition.

Proposition (2.7). The map t : S3 = E3/Ũ −→ E3/Û = S3 is a 27 to 1
irregular branched covering of S3 by S3 with branch set the Borromean rings.
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The doubled Borromean rings occur as a sublink of the preimage of the
branch set.

The doubled Borromean rings consist of three pairs of components. Each
pair bounds an annulus disjoint from the other pairs. Each pair is mapped
to the same component of the Borromean rings. And each pair contains one
component of the upper branch set and one component of the upper pseudo
branch set.
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The 27 to 1 map t of Proposition 2.7 can be decomposed into a composition
of three 3 to 1 branched coverings of S3 by S3 with branch set a trivial 2-
component link. Each of these maps is easier to understand than t. We thank
the referee for pointing this out to us.

Thus far, starting with an arbitrary closed orientable 3–manifold we have
defined a series of branched covering space maps.

(1) M3 3−1−→
p

S3 m−1−→
f

S3 n−1−→
g

S3 3−1−→
h

S3 27−1−→
t

S3 .

The maps f and g only depend on M3 in a superficial way; i.e. they depend
on the number of vertical and horizontal components in the link that is the
branch set for p, but not on the branching itself and the maps h and t don’t
depend on M3 at all.

In general, when one composes branched covering space maps a : X3 −→ Y 3,
b : Y 3 −→ Z3 one obtains a branched covering space map b ◦ a : X3 −→ Z3.

In the sequel we abbreviate branch set by BS. Thus BS(b ◦ a) = BS(b) ∪
b(BS(a)). In our case BS(f ) ∩ f (BS)(p) = ∅; BS(g) ∩ g(BS(f ◦ p)) = ∅; BS(h) ∩
h(BS(g ◦ f ◦ p)) = ∅. And h ◦ g ◦ f ◦ p is a branched covering space map of S3

by M3, of branching type {1, 2} with branch set the doubled Borromean rings.
Unlike the previous three compositions BS(t) = t(BS(h ◦ g ◦ f ◦ p)) and the
map t ◦h ◦g ◦ f ◦p is a branched covering space map of S3 by M3 of branching
type {1, 2, 4}.

We summarize this as the next theorem

Theorem (2.8). Let M3 be a closed orientable 3-manifold. There is a
branched covering space map q : M3 → S3 with branching type {1, 2, 4} and
branch set the Borromean rings.

There is a 3–fold simple branched covering space map p : M3 −→ S3

branched over a link, and there is a branched covering space map φ : S3 −→ S3

with branch set the Borromean rings such that q = φ ◦ p.

We remark that Theorem (2.8) implies that the Borromean rings are 4-
universal. That is, that every closed orientable 3-manifold is a branched cov-
ering of S3 with branch set the Borromean rings. This was shown for the first
time in [6]. The proof here refines the proof of [6] in the sense that bounds are
given on the branching indices. The branching is of type {1, 2, 4}. The refine-
ment consists in introducing the map t : S3 → S3 whose definition is based on
the Euclidean orbifold structure of S3 with singular set the Borromean rings.

Part of Theorem (2.8), the first two sentences, was first proven in ([5]). But
the branched covering space map q : M3 −→ S3 whose existence was proven
there did not factor as in the rest of the statement in Theorem (2.8). This fac-
torization is crucial to the coming proof of Theorem (2.9), the principal result
of this paper. Observe that Theorem (2.8) is totally topological in character;
hyperbolic geometry appears nowhere in its statement. On the other hand,
hyperbolic geometry in the form of the group of hyperbolic isometries U dom-
inates the statement of Theorem (2.9) below.

The sphere S3 has a hyperbolic orbifold structure with singular set the
Borromean rings and singular angle 90◦. The maps t, h, g, f , and p are
used to pull back the hyperbolic orbifold structure on S3 to hyperbolic orbifold
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structures on S3, S3, S3, S3, and M3 respectively. Thus there is a sequence of
groups, orbifold groups, G ⊂ G1 ⊂ G2 ⊂ G3 ⊂ G4 ⊂ U such that M3 = H3/G,
S3 = H3/G1, S3 = H3/G2, S3 = H3/G3, S3 = H3/G4, S3 = H3/U and the
following diagram is commutative. The vertical arrows are homeomorphisms.

H3/G−−−−→H3/G1−−−−→H3/G2−−−−→H3/G3−−−−→H3/G4−−−−→H3/Uy y y y y y
M3 −−−−→

p
S3 −−−−→

f
S3 −−−−→

g
S3 −−−−→

h
S3 −−−−→

t
S3

In particular we see that [G1 : G] = 3.
If T is any rotation contained inG1 but not contained inG thenG1 = 〈G, T 〉,

as [G1 : G] = 3 and 3 is prime. We summarize these remarks in the main
theorem of this paper.

Theorem (2.9). (Geometric branched covering space theorem.) Let M3 be
a closed orientable 3–manifold. Then there are subgroups G and G1 of the
universal group U such that [G1 : G] = 3 and [U : G] < ∞ and M3 = H3/G
and S3 = H3/G1.

The map induced by the inclusion of groups H3/G −→ H3/G1 is a 3–fold
simple branched covering of S3 by M3.

We recall ([5]) that if M3 is as in the statement of Theorem (2.9) then
π1(M3) ∼= G/TOR(G) where TOR(G) is the subgroup of G generated by ro-
tations. In particular M3 is simply connected if and only if G = TOR(G). Then
G1 is generated by G and any one rotation not in G.

An interesting problem is to classify the finite index subgroups of U that
are generated by rotations. We begin this classification in [10].

Applying the theory of associated regular coverings to the above situation
we obtain an interesting property on the involved groups that restricts their
study to a subclass of the class of subgroups of the universal group U defining
the same variety. Next we explain this.

In general, given a covering p : M −→ N branched overL, with monodromy
ω : π1(N − L) −→ Σn, the associated regular covering q : X −→ N is the
branched covering determined by the monodromy η◦ω : π1(N−L) −→ Σ]Im(ω),
where η is the regular representation of the group Im(ω). Recall that q = u◦p
where u : X −→ M is a regular (branched or unbranched) covering. Actually
(q|X−q−1(L))?(π1(X − q−1(L)) = Ker(ω).

The monodromy of p : M = H3/G −→ S3 = H3/G1 is a homomorphism
ω : π1(S3 − L) −→ Σ3 where the image of every meridian element of L is a
transposition (i, j), 1 ≤ i < j ≤ 3. Therefore, Im(ω) = Σ6, and the monodromy
η ◦ ω : π1(S3 − L) −→ Σ6 sends every meridian element of L to the product of
three different transpositions. Thus, u : X −→M is a 2-fold covering branched
over the upper pseudobranch set of p : M = H3/G −→ S3 = H3/G1. The
covering q = u ◦ p : X −→ S3 = H3/G1 is a regular 6-fold covering branched
over L with all branching indexes equal to 2. Actually, the map u can be used to
pull back the hyperbolic orbifold structure on M , so that there exist a normal
subgroup G0 / G, such that [G : G0] = 2 and

u : X = H3/G0 −→M = H3/G
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is an orbifold covering. Observe that G0 is a normal subgroup of G1.
The following diagram of orbifold coverings is commutative, where G0 ⊂

G′ ⊂ G1 and [G1 : G′] = 2, [G′ : G0] = 3.

H3/G0
u−−−−→

2:1
M = H3/G

3:1

yp′ p

y3:1

H3/G′
u′−−−−→
2:1

S3 = H3/G1

The covering p′ is unbranched and u′ is the cyclic 2-fold covering branched
over L. Observe that G0 is a normal subgroup of G1. We summarize these
remarks in the following theorem.

Theorem (2.10). Let M3 be a closed orientable 3–manifold. Let G and G1

be the subgroups of the universal group U given in Theorem (2.9). Then there
exist a subgroup G0 of index 2 of G such that G0 is a normal subgroup of G1.

Recall that every finite index subgroup G of the universal group U gives
rise to a 3-manifold M = H3/G, but infinitely many finite index G’s produce
the same manifold. The above theorem restricts the class of subgroups of U to
consider in order to construct all closed 3-manifolds.
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ON FINITE INDEX SUBGROUPS OF A UNIVERSAL GROUP

G. BRUMFIEL, H. HILDEN, M. T. LOZANO*, J. M. MONTESINOS-AMILIBIA*,
E. RAMIREZ-LOSADA, H. SHORT, D. TEJADA**, AND M. TORO**

Abstract. The orbifold group of the Borromean rings with singular angle 90
degrees,U, is a universal group, because every closed oriented 3–manifoldM3

occurs as a quotient space M3 = H3/G, where G is a finite index subgroup
of U. Therefore, an interesting, but quite difficult problem, is to classify the
finite index subgroups of the universal group U. One of the purposes of this
paper is to begin this classification. In particular we analyze the classification
of the finite index subgroups of U that are generated by rotations.

1. Introduction

A finite covolume discrete group of isometries of hyperbolic 3–space, H3, is
said to be universal if every closed oriented 3-manifoldM3 occurs as a quotient
space M3 = H3/G, where G is a finite index subgroup of the universal group.
It was originally shown in [4] thatU, the orbifold group of the Borromean rings
with singular angle 90 degrees is universal. (See [2] for a simpler proof.)

Although there appear to be infinite families of universal groups, the group
U is the only one so far known that is associated to a tessellation of H3 by
regular hyperbolic polyhedra in that there is a tessellation of H3 by regular
dodecahedra with dihedral angles 90 degrees any one of which is a fundamental
domain for U.

An interesting, important, but quite difficult problem, is to classify the finite
index subgroups of U. A theorem of Armstrong [1] shows that π1(M3) ∼=
G/TOR(G) where TOR(G) is the subgroup of G generated by rotations. In
particular M3 is simply connected if and only if G is generated by rotations.
One of the purposes of this paper is to begin the classification of the finite index
subgroups of U that are generated by rotations. Our main result is Theorem
(5.2).

Theorem (5.2) For any integer n there is an index n subgroup ofU generated
by rotations.

In Theorem (5.3) we illustrate the essential differences between the cases n
is odd and n is even.

The organization of the paper is as follows: In Section 2 we define the group
U, a closely related Euclidean crystallographic group Û, and a homomorphism
ϕ : U −→ Û. In Section 3 we show there are tessellations of H3 by regular
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Keywords and phrases: 3-manifold, branched covering, universal link, universal group.
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dodecahedra and E3 by cubes and we exploit the homomorphism ϕ : U −→ Û
to define a branched covering space map p : H3 −→ E3 that respects the two
tessellations in the sense that the restriction of p to any one dodecahedron of
the tessellation of H3 is a homeomorphism onto a cube of the tessellation of
E3. In Section 4 we prove the rectangle theorem and we use it to classify the
finite index subgroups of Û that are generated by rotations. In the final section
we use this classification together with the homomorphism defined in Section
2 to prove the main theorem of the paper, Theorem (5.2), and some existence
theorems about finite index subgroups of U generated by rotations.

2. Definitions of U, Û and the homomorphism ϕ : U −→ Û

Let C0 be the cube in E3 with vertices (±1,±1,±1). We obtain a tessellation
of E3 by applying compositions of even integer translations in the x, y, and z
directions to C0. In this paper we do not consider any other tessellations of E3

and we refer to this tessellation as “the” tessellation of E3. The intersection
of C0 with the positive octant, together with the lines ã = (t, 0, 1), b̃ = (1, t, 0),
and c̃ = (0, 1, t); −∞ < t <∞, is depicted in Figure 1.

a

b

c

z

y

x

Figure 1

The group Û is the Euclidean crystallographic group generated by 180
degree rotations a, b, and c with axes ã, b̃, and c̃, respectively. We see
that Û preserves the tessellation and contains the translations tx = b(cbc−1),
ty = c(aca−1), tz = a(bab−1), by distances of four, in the x, y, and z directions,
respectively.

The cube C0 is easily seen to be a fundamental domain for Û, and the axes
of rotation in Û divide each face of each cube in the tessellation into two
rectangles. The quotient space E3/Û is topologically S3 as can be seen by
identifying faces of C0 using a, b, c and other rotations. The group Û is the
orbifold group of S3 as Euclidean orbifold with singular set the Borromean
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rings B and singular angle 180 degrees. This construction is due to Thurston.
For more details see ([6], [2]). The Borromean rings are depicted in Figure 2.

Figure 2. Borromean rings

The induced map p : E3 − preimage B −→ (E3 − preimage B)/Û ≈ S3 − B
is a regular covering space map so by the theory of covering spaces

Û ∼= π1(S3 − B)/p∗π1(E3 − preimage B) .

This gives rise to a presentation for Û:
(2.1)
Û = 〈a, b, c|a bcbc = bcbc a, b caca = caca b, c abab = abab c , a2, b2, c2 〉 .

The presentation comes from the usual Wirtinger presentation of the group
of the Borromean rings with additional relations a2, b2, and c2 arising from
p∗π1(E3–preimage B) which is normally generated by squares of meridians
about the axes ã, b̃, c̃ of Figure 1.

There is a construction of S3 as hyperbolic orbifold (also due to Thurston)
with singular set the Borromean rings analogous to the previous construction.
To describe it we shall work in the Klein model for H3.

In the Klein model hyperbolic points are Euclidean points inside a ball of
radius R centered at the origin in E3 and hyperbolic lines and planes are
the intersections of Euclidean lines and planes with the interior of the ball of
radius R. Let D0 be a regular Euclidean dodecahedron that is symmetric with
respect to reflection in the xy, yz, and xz planes. The intersection of D0 with
the positive octant is depicted in Figure 2.

If R is chosen correctly, (Details are in [5]), then D0 can be considered
as a regular hyperbolic dodecahedron with 90 degree dihedral angles. Each
pentagonal face contains one edge that lies in either the xy, xz, or yz plane.
Reflection in this plane, restricted to the pentagon, defines an identification in
pairs on the pentagonal faces of D0. As in the construction with the cube C0,
the resulting topological space is S3. A hyperbolic orbifold structure is thus
induced on S3 with singular set the Borromean rings, B, and singular angle
90 degrees. The Borromean rings are the image, after identification of the
pentagonal edges that lie in the xy, xz, and yz planes.
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a
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Figure 3

There is a 4-fold regular branched cyclic covering q1 : X3 −→ S3 with branch
set the Borromean rings induced by the natural group homomorphisms

π1(S3 − B) −→ H1(S3 − B;Z) ∼= Z ⊕ Z ⊕ Z −→ Z mod4.

The hyperbolic orbifold structure on S3 with singular set the Borromean rings
pulls back to a hyperbolic manifold (not orbifold) structure on X3 as meridians
are sent to 1 in the above homomorphism.

The hyperbolic manifoldX3 has a tessellation consisting of four dodecahedra
each of which is sent homeomorphically to D0 by the map p. The universal
covering space map q2 : H3 −→ X3 is used to pull back the tessellation of X3

by dodecahedra to a tessellation of H3 by dodecahedra. The composition of
covering space maps q1 ◦ q2 : H3 −→ S3 is a regular branched covering space
map H3 −→ S3 induced by the group of hyperbolic isometries U. That is
to say there is a quotient branched covering map H3 −→ H3/U ≈ S3 and
an associated unbranched covering space map p : H3 − axes of rotation =
H3 − preimage B −→ (H3 − preimage B)/U ≈ S3 − B. As in the Euclidean
case this covering space map gives rise to a presentation for U via covering
space theory:
(2.2)
U = 〈a, b, c|a bcbc = bcbc a, b caca = caca b, c abab = abab c , a4, b4, c4 〉 .

As before the presentation comes from the usual Wirtinger presentation of
the group of the Borromean rings with additional relations a4, b4, c4 arising
from p∗π1(H3 − preimageB) which is normally generated by fourth powers of
meridians about the axes ã, b̃ and c̃.

Examining the presentations for U and Û we see that they are the same
except for the relations a4, b4, and c4 inU and a2, b2, and c2 in Û. Nonetheless
the map a → a, b → b, and c → c, mapping generators of U to generators of
Û, defines a homomorphism ϕ : U −→ Û and an exact sequence.

(2.3) 1 −→ K −→ U
ϕ−→ Û −→ 1 .
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Polyhedral Type Euclidean dihedral angle Hyperbolic dihedral angle
vertices at∞

Tetrahedron ArcCos[1/3] ≈ 70.5288◦ 60◦

Cube ArcCos[0]= 90◦ 60◦

Octahedron ArcCos[−1/3] ≈ 109.471◦ 90◦

Dodecahedron ArcCos[−1/
√

5] ≈ 116.565◦ 60◦

Icosahedron ArcCos[−
√

5/3] ≈ 138.19◦ 108◦

Table 1.

In this exact sequence K is defined to be the kernel of homomorphism ϕ.
We say that a group of isometries of H3 or E3 is associated to a tessellation

of H3 or E3 by regular compact polyhedra if there is a tessellation of H3 or
E3 by regular compact polyhedra any one of which is a fundamental domain
for the group. Thus the groups U and Û are associated to the tessellations
of H3 and E3 by regular dodecahedra and cubes, respectively. This is not
a common occurrence. For example, of the regular polyhedra only cubes
can tessellate E3. In the table below, we have listed the cosines of the
dihedral angles of the Euclidean regular polyhedra and also the dihedral
angles of the hyperbolic regular polyhedra with vertices on the sphere at
infinity. Tetrahedra, octahedra, dodecahedra and icosahedra cannot tessellate
E3 because their dihedral angles are not submultiples of 360 degrees so they
don’t “fit around an edge”.

There are five regular Euclidean polyhedra but the corresponding hyperbolic
polyhedra occur in one parameter families. One can construct the family of
hyperbolic cubes, for example, by starting with C0, the cube with vertices
(±1,±1,±1), in the Klein model with the sphere at infinity having Euclidean
radius R =

√
3 and let R increase from

√
3 to ∞. There is an isometry from

the Klein model using the Euclidean ball of radius R to the Poincaré model
using the same Euclidean ball (as Thurston has explained), that is the identity
on the sphere at infinity. Since the Poincaré model is conformal and Poincaré
hyperbolic planes are Euclidean spheres perpendicular to the sphere at infinity,
the dihedral angle between two Poincaré planes is the same as the Euclidean
angle between the two circles in which the Poincaré planes intersect the sphere
at infinity. Thus the dihedral angle between two Klein planes is the same as
the angle between the two circles in which they intersect the sphere at infinity.
As R increases, in the case of the cube, for example, from

√
3 to infinity, the

dihedral angle increases from 60 degrees to 90 degrees. There exists a compact
hyperbolic cube with dihedral angle θ if and only if 0 < cos θ < 1/2. Thus, if
it is possible to tessellate H3 with compact hyperbolic cubes they must have
dihedral angle 72 degrees as that is the only submultiple of 360 degrees in
the range of possible dihedral angles. A glance at the table 1 indicates that
it is impossible to tessellate H3 with compact regular octahedra or tetrahedra
and if it is possible to tessellate H3 with icosahedra the dihedral angle must
be 120 degrees. In the dodecahedral case we have shown that there is a
tessellation of H3 by regular compact hyperbolic dodecahedra with dihedral
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angle 90 degrees. If there were a different tessellation by compact regular
dodecahedra the dihedral angle would have to be 72 degrees.

All the above is part of standard 3–dimensional hyperbolic geometry and
we explain it mainly so as to highlight the singular nature of the groupsU and
Û and the tessellations with which they are associated and as background for
the following conjecture.

Conjecture (2.4). The group U is the only universal group associated to a
tessellation of H3 by regular hyperbolic polyhedra.

In the next section we study the groups U and Û and the tessellations to
which they are associated to produce a branched covering of E3 by H3.

3. H3 as a branched covering of E3

Let D0 and C0 be the regular dodecahedron and cube in the Klein model
for H3 and in E3 respectively, as defined in the previous section. We know
that D0 is a fundamental domain for the group U and is also an element of
the tessellation of H3 by regular dodecahedra. For any other dodecahedron
D in the tessellation there is a unique element u of U such that u(D0) = D.
Analogously, C0 is a fundamental domain for the group Û and is part of the
tessellation of E3 by cubes. For any other cube C in the tessellation there is a
unique element û of Û such that û(C0) = C.

Let α0 : D0 −→ C0 be a homeomorphism that is as nice as possible. Thus
α0 should commute with reflections in the xy, xz, and yz planes and also with
the 3–fold rotations about the axes {(t, t, t)} in the Klein model for H3 and in
E3. The cube C0 becomes a dodecahedron when each of its faces is split in half
by an axis of rotation of Û. Then α0, viewed as a map between dodecahedra
takes vertices, edges, and faces to vertices, edges, and faces, respectively.

Now we define a map p : H3 −→ E3. Let p = α0 on D0. Any other point A in
H3 belongs to a dodecahedron D of the tessellation. There is a unique u ∈ U
such that u(D0) = D. Let û = ϕ(u) where ϕ : U −→ Û is the homomorphism
defined in the previous section. Define the map p by p(A) = û ◦ α0 ◦ u−1(A).
The map p is well defined for points in the interior of dodecahedra in the
tessellation but we must show that p is well defined for the other points. LetA
belong to the interior of a pentagonal face P belonging to each of two adjacent
dodecahedra D1 and D2.

Then there are unique elements u1 and u2 of U such that u1(D0) = D1

and u2(D0) = D2. Then u−1
1 (D2) is a dodecahedron, call it D̂, that intersects

D0 exactly in a pentagonal face P0. The pentagonal face P0 of D0 intersects
exactly one of the six axes of rotation, call it ax, that intersect D0 and this
axis lies in the xy, xz, or yz plane of the Klein model. There is a 90 degree
rotation about ax, call if rot, that sends D0 to D̂. Thus u1 ◦rot(D0) = D2 which
implies u1 ◦ rot = u2, which further implies û1 ◦ r̂ot = û2 in group Û. Then
û2 ◦ α0 ◦ u−1

2 = û2 ◦ α0 ◦ rot−1 ◦ u−1
1 = û1 ◦ r̂ot ◦ α0 ◦ rot−1 ◦ u1 so that to show

that the map p is well defined on the interior of pentagon P it suffices to show
that r̂ot ◦ α0 ◦ rot−1 = α0 when restricted to pentagonal face P0.
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The homomorphism ϕ : U −→ Û takes a, b, and c to â, b̂, ĉ, respectively
where a, b, and c are 90 degree rotations about axes ã, b̃, and c̃, respectively of
Figure 2 and â, b̂, ĉ are 180 degree rotations about axes ã, b̃, and c̃, respectively
of Figure 1. The rotation rot is one of a, b, c, a−1, b−1, c−1, bab−1, cbc−1, aca−1,
ba−1b−1, cb−1c−1, ac−1a−1. The rotation rot, when restricted to pentagon P0

equals reflection in the xy, yz, or xz plane depending on which plane axis rot
lies in. Similarly, the rotation r̂ot is one of â, b̂, ĉ, b̂âb̂−1, ĉb̂ĉ−1, âĉâ−1 and the
rotation r̂ot when restricted to the half square that is the image of P0 under
α equals reflection in the xy, xz, or yz plane depending on which plane axis
r̂ot lies in. But α0 commutes with reflections in the xy, xz, or yz planes so
that r̂ot ◦ α0 ◦ rot−1 = α0 and the map p is well defined on the interiors of
dodecahedra in the tessellation and on the interiors of their pentagonal faces.
That p is also well defined on edges and vertices of the tessellating dodecahedra
now follows by a continuity argument.

We summarize all this in a theorem.

Theorem (3.1). There exists a tessellation of H3 by regular hyperbolic
dodecahedra with 90 degrees dihedral angle and a tessellation of E3 by cubes
and a map p : H3 −→ E3 such that the following holds.

1. Any dodecahedron in the tessellation of H3 is a fundamental domain for
the universal group U.

2. Any cube in the tessellation of E3 is a fundamental domain for the
Euclidean crystallographic group Û.

3. The axes of rotation in Û divide each face of each cube in the tessellation
of E3 into two rectangles so that the cube may be viewed as a dodecahedron.

4. The restriction of p to any one dodecahedron is a homeomorphism of that
dodecahedron onto a cube in the tessellation of E3. When the cube is viewed
as a dodecahedron as in 3 above, the map p sends vertices, edges, and faces to
vertices edges and faces respectively. The map p also sends axes of rotation for
U homeomorphically, even isometrically, to axes of rotation for Û.

5. The map p is a branched covering space map with all branching of order
two.

In effect, parts 1 through 4 of the theorem have already been proven in the
remarks preceding the statement of the theorem. To see that 5 is true, it is
only necessary to examine p near an axis of rotation for U. The branching is
of order two because four dodecahedra fit around every axis of rotation in U

while only two cubes fit around an axis of rotation of Û.
It is clear from the definition of the mappwhen restricted to a dodecahedron,

p = û◦α0 ◦u−1, that the group of covering transformations is the kernel of the
homomorphism ϕ : U −→ Û. On the other hand p when restricted to (H3–axes
of rotation for U) is an unbranched covering of (E3 – axes of rotation for Û)
so that K = ker ϕ : U −→ Û is isomorphic to π1(E3 – axes of rotation for Û)
modulo p∗π1(H3 – axes of rotation for U), by standard covering space theory.

As π1(E3 – axes of rotation for Û) is a free group generated by meridians,
one meridian for each axis of rotation, and π1(H3 – axes of rotation for U)
is also generated by meridians it follows that p∗π1(H3 – axes of rotation) is
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normally generated by squares of meridians, one for each axis of rotation in
Û. We also summarize all this in a theorem.

Theorem (3.2). The group of covering transformations for the branched
covering p : H3 −→ E3 is isomorphic to the group K that is the kernel of
ϕ : U −→ Û. The group K is naturally isomorphic to a countable free product
of Z mod 2’s, one generator for each axis of rotation in Û. In particular the
group K is generated by 180 degree rotations.

As before, the proof of the theorem is in effect given by the remarks imme-
diately prior to the statement of the theorem.

Theorems (3.1) and (3.2) enable us to “label” each axis of rotation in U with
an algebraic integer in the field Q(

√
−3 ). Note that each axis of rotation for

Û is a line of parametric equation (t, even, odd) or (odd, t, even) or (even, odd,
t), −∞ < t < ∞. Any such axis intersects the plane x + y + z = 0 in a point
(odd, odd, even) or (even, odd, odd) or (odd, even, odd) as zero is even. One can
verify that the intersection of the tessellation by cubes of E3 with the plane
x + y + z = 0 induces a tessellation of the plane π : x + y + z = 0 by (regular)
hexagons and (equilateral) triangles and that cube C0 intersects the plane
x + y + z = 0 in a hexagon with vertices {(±1,∓1, 0), (±1, 0,∓1), (0,±1,∓1)}.
Using a similarity of the plane x+y+z = 0 with center the origin and expansion
ratio 1/

√
2 we can recoordinatize the plane x+y+z = 0 by the complex numbers

C so that the six vertices of this hexagon have coordinates equal to the six roots
of unity in C. Then every axis of rotation of Û intersects the plane x+y+z = 0
in a point whose coordinate is an algebraic integer in the field Q(

√
−3 ). We

label each axis d of rotation of U with the coordinate of p(d) ∩ π. Again we
summarize these results in a theorem.

Theorem (3.3). In the branched covering p : H3 −→ E3 each axis of rotation
for U is labeled by an algebraic integer of the field Q(

√
−3 ). The group of

covering transformations K preserves labeling. For any two axes of rotation a
and b of U with the same label, there is an element k of K such that k(a) = b.

In the next section we classify the subgroups of finite index in Û that are
generated by rotations.

4. Finite index subgroups of Û generated by rotations

The group Û is the crystallographic group I212121, number 24 of the
International Tables of Crystallography [3] . In this section we describe two
families of subgroups of Û (defined in Section 2) generated by rotations. And we
show that any finite index subgroup of Û generated by rotations is equivalent
(in a sense we make precise) to exactly one member of one of the two families.

The axes of rotation of Û have parametric equations of form (t, even, odd),
(odd, t, even) or (even, odd, t); −∞ < t < ∞ according as to whether they
are parallel to the x, y, or z axes. The distance between axes lying in a plane
parallel to the xy, xz, or yz planes is an even integer.

Let (m,n, o) be a triple of positive integers where o is odd and m and n are
arbitrary. We shall define a group Ĝ(m,n, o) associated to the triple (m,n, o)
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and belonging to the first family by defining a rectangular parallelepiped that
will turn out to be a fundamental domain for Ĝ(m,n, o).

Let Box(Ĝ(m,n, o)) be the rectangular parallelepiped defined by the follow-
ing conditions.

a. The front and back faces of Box(Ĝ(m,n, o)) lie in the planes x = 2m + 1
and x = −2m + 1, respectively.

b. The right and left faces of Box(Ĝ(m,n, o)) lie in the planes y = 2n and
y = −2n, respectively.

c. The top and bottom of Box(Ĝ(m,n, o)) lie in the planes z = o and z = 0,
respectively. Box(Ĝ(m,n, o)) together with certain axes of rotation is pictured
in Figure 4.

x
y

z

2n

2m
b1

a0 1a

0b
o

Figure 4. Box(Ĥ(m,n, o)).

Axes a0, a1, b0 and b1 have parametric equations (t,−2n, o), (t, 0, o), (−2m+
1, t, 0) and (1, t, 0), respectively. Then Ĝ(m,n, o) is defined to be the subgroup
of Û generated by A0, A1, B0, and B1, the rotations in the axes a0, a1, b0, and
b1, respectively.

Observe that Tx = B1B0, Ty = A1A0, and Tz = (A0B1)2 are translations by
4m, 4n, and 4o in the x y, and z directions, respectively. Another generating
set of Ĝ(m,n, o) is A1, B1, Tx, and Ty. Conjugating a translation Tx, Ty, or Tz
by a rotation A1, B1 either results in the translation itself or its inverse, so
there are commutation relations such as B1Tx = T−1

x B1. Thus any element
of Ĝ(m,n, o) has form T , A1T , B1T or A1B1T where T is a translation that
is some product of Tx, Ty, and Tz. With these observations we can see that
Box(Ĝ(m,n, o)) is a fundamental domain for the group Ĝ(m,n, o). The volume
of Box(Ĝ(m,n, o)) equals 4m × 4n × o and the volume of cube C0, which is
a fundamental domain for Û equals 8. Thus dividing one by the other, the
index of Ĝ(m,n, o) in Û equals 2mno, an even integer. The group Ĝ(m,n, o)
is the crystallographic group P2221, number 17 in the International Tables of
Crystallography [3].

Let (p, q, r) be a triple of odd positive integers such that p 5 q and p 5 r and
if p, q, and r are not all different then p 5 q 5 r. (The idea here is that any
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triple of odd positive integers can be cyclicly permuted to a triple satisfying
these conditions.) We shall define a group Ĥ(p, q, r) in the second family by first
defining a rectangular parallelepiped that will turn out to be its fundamental
domain. Let Box(Ĥ(p, q, r)) be the rectangular parallelepiped defined by the
following conditions.

The front and back, left and right, top and bottom faces of Box(Ĥ(p, q, r))
lie in the planes x = p, x = −p; y = q, y = −q; z = r, z = −r, respectively.
Box(Ĥ(p, q, r)) is pictured in Figure 5 along with axes of rotation a = (t, 0, r),
b = (p, t, 0), and c = (0, q, t).

a

b

c

Figure 5. Box(Ĥ(p, q, r)).

The group Ĥ(p, q, r) is defined to be the subgroup of Û generated by rotations
A, B, and C in axes a, b, and c, respectively. Observe that Tx = BCBC,
Ty = CACA, and Tz = ABAB are translations by 2p, 2q, and 2r in the x,
y, and z directions, respectively. Also note that conjugating Tx, Ty, or Tz by
(A or B or C) results in Tx or T−1

x , Ty or T−1
y , Tz or T−1

z , respectively. These

observations imply that any element of group Ĥ(p, q, r) equals exactly one of
T , AT , BT or CT where T is a product of Tx, Ty and Tz. As before, we can see
that Box(H(p, q, r)) is a fundamental domain for group Ĥ(p, q, r). The group
Ĥ(p, q, r) is again the crystallographic group I212121, number 24 in [3].

The volume of Box(Ĥ(p, q, r)) equals 8pqr and volume C0 = 8 so, reasoning
as before, the index of Ĥ(p, q, r) in Û is pqr which is an odd integer.

We wish to define an equivalence relation on finite index subgroups of Û.
Let D be the 120 degree rotation about the axis (t, t, t); −∞ < t < ∞, which
is a main diagonal of cube C0 and let Ŝ be the group generated by D and
Û. As D has order three and normalizes Û we see that [Ŝ : Û] = 3. We
define two subgroups of Û to be equivalent if they are conjugate as subgroups
of Ŝ. This equivalence relation when applied to the finite index subgroups
of Û generated by rotations leads to the least messy classification. We shall
show that any finite index subgroup of Û generated by rotations is equivalent
to exactly one Ĝ(m,n, o) or Ĥ(p, q, r). We observe that rotation D cyclically
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permutes the x, y, and z axes but that there is no element of Ŝ that fixes one
of these three axes while interchanging the other two.

For each finite index subgroup Ĝ of Û we define an “integer triple”
(d1, d2, d3). The integer d1 is the minimal distance between distinct axes of
rotation in Ĝ that are parallel to the x axis and d2 and d3 are similarly defined
for rotations about axes parallel to the y and z axis. If Ĝ contains no rotations
the “integer triple” is (none, none, none). Thus the “integer triple” assigned
to Ĝ(m,n, o) is (2n, 2m,none) and the integer triple assigned to Ĥ(p, q, r) is
(2r, 2p, 2q). (Recall, the cubes in the tessellation are 2× 2× 2.)

Conjugating a Ĝ(m,n, o) or an Ĥ(p, q, r) by an element of Ŝ at most changes
a triple by cyclically permuting it. Thus the fact that Ĝ contains no axes
of rotation parallel to the z–axis implies that if Ĝ(m,n, o) ∼ Ĝ(m̃, ñ, õ) then
(m,n, o) = (m̃, ñ, õ) and the conditions p 5 q and p 5 r, etc., imply that if
Ĥ(p, q, r) ∼ Ĥ(p̃, q̃ r̃) then (p, q, r) = (p̃, q̃, r̃). Also as the index of a Ĝ in Û is
even and the index of an Ĥ in Û is odd no G̃ can be equivalent to an Ĥ. The
rest of the classification consists of showing that any finite index subgroup of
Û generated by rotations is either equivalent to an Ĥ(p, q, r) or a Ĝ(m,n, o).

Suppose that Ĝ is a finite index subgroup of Û that is generated by rotations.
If Ĝ contained only rotations parallel to one of the three axes, it would leave
planes perpendicular to this axis invariant and thus have infinite index in Û.
So Ĝ either contains rotations about axes parallel to two of the three axes x,
y, and z or it contains rotations about axes parallel to all three. In the former
case, we can assume Ĝ contains rotations with axes parallel to the x and y axes
but doesn’t contain rotations with axes parallel to the z–axis by conjugating
by an element of Ŝ if need be. In either case let P be a plane parallel to the
yz plane in which an axis of Ĝ parallel to the y–axis lies. The set of axes of
rotation of Ĝ parallel to the x–axis intersects P in a set of points we call axis
points.

Proposition (4.1) (The rectangle theorem). There is a tessellation of P by
congruent rectangles with sides parallel to the y and z axes such that the set of
axis points equals the set of vertices of the rectangles. Each rectangle is divided
in half by an axis of rotation for Ĝ parallel to the y–axis.

The proof of Proposition (4.1) rests on three facts.
1. If A is a rotation in Ĝ with axis ` and S ∈ Ĝ then SAS−1 is a rotation in

Ĝ with axis S(`). In particular if X is an axis point and S(P) = P , then S(X)
is an axis point.

2. If A is a rotation in Ĝ with axis ` and T is a translation in Ĝ such that
T (P) = P and ` ∩ P = X then TA is also a rotation in Ĝ and axis (TA) ∩ P is
the midpoint of the line segment XT (X).

3. Group Ĝ contains translations in the x, y, and z directions. (Because Û
does and [Û : Ĝ ] <∞.)

Proof of Proposition (4.1). Let Ty and Tz be translations by minimal distance
in the y and z directions respectively, belonging to Ĝ. (Refer to Figure 6.)
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j+1k
a
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Figure 6. The plane P .

Let a00 be an axis point. Then by 1 and 2 above, a20 = Ty(a00) and a10 =
midpoint a00a20 are axis points as are a02 = Tz(a00), a01 = midpoint a00a02 and
a11 = midpoint a01Ty(a01). The set of vertices of the tessellation by rectangles
referred to in Proposition (4.1) equals {T i

yT
j
z ak` | i, j ∈ Z k, ` ∈ {0, 1}}.

Suppose ` is the axis of rotation of B and ` lies in plane P , is parallel to the
y–axis and intersects the rectangle R = {ajk, aj+1k, ajk+1, aj+1k+1}, where axis
point ajk corresponds to rotation Ajk, etc. Then ` cannot contain the vertices
of R as axes of rotation of distinct elements of Û don’t intersect. And ` must
divide R exactly in half for if ` lay closer to ajk than to aj+1k the element
Ajk(BAjkB

−1) of Ĝ would be a translation in the y–direction by a distance
less than ajkajk+2 contradicting the minimality in the choice of Ty. The set of
translates of the axes ` and Ajk(`) divide every rectangle of the tessellation
in half. We must show there are no axis points in P not of the form ajk.
Suppose x was such a point corresponding to rotation X and lying in rectangle
R = {ajk, ajk+1, aj+1k, aj+1k+1}. Then x cannot lie on the sides of the rectangle.
(For example, if x lay on ajkajk+1, XAykX

−1Ajk would be a translation in the
y direction by less than length ajkajk+2 contradicting the minimality in the
choice of Ty.) And x cannot lie on `. As x belongs to the interior of the rectangle
and not on `, X(BXB−1) is a translation in the y–direction by a distance less
than ajkajk+2 which is impossible.

The next problem is to construct a fundamental domain for Ĝ. With this in
mind select a plane P parallel to the yz plane containing an axis ` in Ĝ that is
parallel to the y–axis. Recall that axes in Ĝ parallel to the x, y, or z axis have
parametric equations (t, even, odd), (odd, t, even) or (even, odd, t) respectively.
Thus plane P has equation x = O where O is odd. Define the rectangle R1 in
P , as pictured in Figure 7, bounded on one side by ` with parametric equation
(O, t, e1) with e1 even and having the opposite two vertices be axis points for P
with coordinates (O,E, o1) and (O,E + 4n, o1) with o1 odd.

There is a rectangle theorem analogous to Proposition (4.1) but with x

substituted for y. Let Q be the plane y = E which contains the x axis from Ĝ
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Figure 7

with equation (t, E, o1). Then Q also is tesselated by rectangles and we define
R2 to be the rectangle pictured in Figure 8. Like R1, the rectangle R2 is not
part of the tessellation but is formed by gluing two half–rectangles from the
tessellation. R2 is bounded on one side by axis (t, E, o1) and the two vertices of
R2 opposite the axis have coordinates (O,E, e1) and (O + 4m,E, e1).

z

x

(t,E,o  )1

(O+4m,E,e  )1(O+2m,E,e  )1(O,E,e  )1

R2

Figure 8

Let BOX be that parallelepiped whose projection on planes P and Q is
rectangles R1 and R2, respectively; i.e.,

BOX = {(x, y, z) | O 5 x 5 O + 4m,E 5 y 5 E + 4n, e1 5 z 5 o1}.
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So the dimensions of BOX are 4m×4n× o where o = e1− o1 is odd. We assert
BOX is a fundamental domain for Ĝ.

There is a tessellation of E3 obtained by translating BOX around using
translations by 4m, 4n, and o in the x, y, and z directions, respectively. One
observes, from the rectangle theorems, that the rotations in Ĝ, which generate
Ĝ, leave this tessellation invariant. Also Ĝ contains translations by 4m, 4n,
and 4o in the x, y, and z directions, respectively. Using these translations
and the rotations which split the faces of BOX we see that any point in E3 is
equivalent to a point in BOX. If two points in interior of BOX are equivalent
then there is a non–trivial element ĝ of Ĝ that leaves BOX invariant. By the
Brouwer fixed point theorem, ĝ has a fixed point in BOX and therefore must
be a rotation whose axis intersects BOX. Inspecting rectangles R1 and R2 we
see that this is impossible. Thus BOX is a fundamental domain for Ĝ.

We can conjugate Ĝ by an element û of Û and obtain an equivalent subgroup
of Û. This has the effect of replacing BOX by û(BOX). As Û contains
translations by 4 in the x, y, and z directions we may assume without loss
of generality that BOX = {(x, y, z) | Ô − 2m 5 x 5 Ô + 2m, Ê − 2n 5 y 5

Ê+2n, ê1 5 z 5 ô1}where Ô = ±1, Ê = 0 or 2, ê1 = 0 or 2 and o = ô1− ê1. The
rotations â, b̂, and ĉ of Û are given by equations (x, y, z) −→ (x,−y,−z + 2),
(x, y, z) −→ (−x+2, y,−z), (x, y, z) −→ (−x,−y+2, z) respectively. So applying
â, b̂, or ĉ if need be we can assume Ô = 1, Ê = 0 and ê1 = 0. But then
BOX = Box(G(m,n, o)) which implies Ĝ = Ĝ(m,n, o). We have shown that any
finite index subgroup of Û generated by rotations that contains rotations with
axes in only two of the three possible directions is equivalent to a Ĝ(m,n, o).

Now suppose Ĝ contains rotations with axes parallel to the x, y, and z
directions. For each choice of an ordered pair from the set {x-axis, y-axis, z-
axis} to play the role of y–axis and z-axis in Proposition (4.1) we get a rectangle
theorem. We don’t formally state each of the six propositions but we use
the results to get tessellations of planes by rectangles in order to construct
a parallelepiped, again called BOX, which will turn out to be a fundamental
domain for Ĝ.

LetP (resp. Q ,R) be a plane parallel to the xy (resp. xz, yz) plane containing
an axis ax = (t, even, odd) (resp. az =(even, odd,t), ay =(odd, t, even)) parallel
to the x (resp. z, y) axis. Then planes P , Q , and R intersect in a point
X = (o1, o2, o3) with all odd coordinates. (For example, plane P contains axis
ax = (t,even, odd) and P is parallel to the xy plane and so has equation z =
odd.) No point with all odd coordinates belongs to an axis of rotation in Û.

Consider the tessellation of planeP by rectangles. PlanesP andQ intersect
in a line ` (see Figure 9) parallel to the x–axis and planes P and R intersect
in a line m parallel to the y–axis. As Q contains axes from Ĝ parallel to the
z–axis line ` contains z–axis points that are vertices of the tessellation by
rectangles. We already know that the axes in P parallel to the x–axis evenly
divide the rectangles but the line m which is parallel to the y–axis also evenly
divides rectangles. To see this translate P in the z–direction to a plane P̃ that
contains an axis from Ĝ that is parallel to the y–axis. This translation, in the
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z–direction, takes vertices of the tessellation of P by rectangles to vertices of
the tessellation of P̃ by rectangles, leaves plane R invariant and sends line
m to an axis in Ĝ parallel to the y–axis that evenly divides a rectangle in P̃ .
Therefore m evenly divides a rectangle of the tessellation of P .

The tessellations of planes Q and R by rectangles is also displayed in
Figure 9. Planes Q and R intersect in line n parallel to the z–axis.

y

z

x

y

x

z

p

q

r

R1

R2

R3

m

n

m

n

Figure 9

The distance from point X = (o1, o2, o3) to the nearest axis in Ĝ parallel to
the x (resp. y, z) axis is q (resp. r, p) as displayed in Figure 9. That p, q, and
r are odd integers can be seen from the parameterizations of the axes in Û.
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Then BOX is defined to be {(x, y, z) | o1 5 x 5 o1 +2p; o2 5 y 5 o2 +2q; o3 5
z 5 o3 + 2r}. The projections of BOX on planes P ,Q ,R are the rectangles R1,
R2, R3 displayed in Figure 9. We assert that BOX is a fundamental domain
for Ĝ. Using translations by 4p, 4q, 4r in the x, y, and z directions, which
are contained in Ĝ together with rotations, giving rise to the vertices of the
rectangles displayed in Figure 9, we see that any point in E3 can be moved
to a point in BOX. There is a tessellation of E3 obtained by translating BOX
around using translations of 2p, 2q, and 2r in the x, y, and z directions. From
Figure 9 we see that the rotations in Ĝ preserve this tessellation so that Ĝ
preserves this tessellation. If two points in the interior ofBOX are equivalent,
say g(m1) = m2, then g preserves BOX, has a fixed point by the Brouwer
Theorem and so must be a rotation in Ĝ which is impossible.

Therefore BOX is a fundamental domain for Ĝ. As before we can conjugate
by an element of û of Û or Ŝ which has the effect of replacing Ĝ by an equivalent
group and BOX by the new fundamental domain û(BOX). Since the center of
BOX has all even coordinates (o1 + p, o2 + q, o3 + r) we can find an element û
which is a product of translations by 4 in the x, y, and z directions and rotations
â and/or b̂ and/or ĉ such that û(BOX) is centered at the origin. Finally we
can use the 120 degree rotation D in Ŝ to cyclically permute p, q, r so that
p 5 max{q, r} and in the case where p, q, and r are not all different p 5 q 5 r.
Thus the group to which Ĝ is equivalent is Ĥ(p, q, r) which has û(BOX) as its
fundamental domain. We summarize all this as a theorem.

Theorem (4.2). 1. Let Ĝ be an even index subgroup of Û generated by
rotations. Then Ĝ is equivalent to a unique group in the family Ĝ(m,n, o) and[
Û : Ĝ

]
= 2mno. Ĝ contains axes of rotation in two of the three directions x,

y, and z. The integers 2m (resp. 2n) represents the distance between adjacent
axes of Ĝ(m,n, o) that lie in a plane parallel to the xy plane and are parallel
to the y–axis (resp. x axis). The odd integer o represents this distance between
axes of Ĝ that are not parallel but are as close as possible.

2. Let Ĝ be an odd index subgroup of Û generated by rotations. Then Ĝ is
equivalent to a unique group in the family Ĥ(p, q, r) and

[
Û : Ĝ

]
= pqr. Group

Ĝ contains rotations with axes parallel to each of the three possible directions
x, y, and z.

For each pair of directions x and y, x and z, y and z there is a distance
between a pair of axes in these directions that are not parallel but are as close
as possible giving rise to a triple of integers. This triple of integers is p, q, and
r, not necessarily in that order.

In the next section, we begin the study of finite index subgroups of U that
are generated by rotations.

5. Finite index subgroups of U generated by rotations

Proposition (5.1). Let Ĝ be a finite index subgroup of Û generated by
rotations and letG = ϕ−1(Ĝ) be the full preimage ofG under the homomorphism
ϕ : U → Û defined in Section 2. Then G is generated by rotations.
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Proof. The homomorphism ϕ : G → Ĝ defined in Section 2 is surjective,
and sends 90 degree rotations in U to 180 degree rotations in Û. By the
classification of the Ĝ in Section 4, Ĝ is generated by 3 or 4 rotations. Let S be
a set of 90 degree rotations in U that is sent to a set of generators for Ĝ and
let G1 be the subgroup of U generated by S. Then ϕ−1(Ĝ) = G1K. Since K is
generated by rotations (Theorem (3.2)), so is G1K.

The main theorem now follows easily from Proposition (5.1).

Theorem (5.2). Given any positive integer n there is a subgroup G of U of
index n that is generated by rotations.

Proof. Let Ĝ be a subgroup of Û generated by rotations of index n in Û,
which exists by the classification of such subgroups of Section 4. And let
G = ϕ−1(Ĝ). Then G is generated by rotations by Proposition (5.1) and
[U : G] = [Û : Ĝ] = n.

Any axis of rotation ` in U is the image of the axis of rotation of one of the
generators a, b, c of U under the action of an element u of U. This follows
from the fact that D0, a dodecahedral fundamental domain of U, intersects six
axes of rotation in U, those of a, b, c, c−1ac, a−1ba, and b−1cb, and if D is any
dodecahedron of the tessellation of H3 intersecting ` there is an element u1 of
U such that u1(D0) = D. Then u = u1x−1 where x is one of a, b, c. Letting U
act on the axes of rotation, we get exactly three orbits. (At most three by the
argument above and at least three because ϕ : U −→ Û preserves orbits and
there are three orbits in Û, those parallel to the x, y and z axes.) Thus there
are nine conjugacy classes of rotations in U represented by a, a2, a3, b, b2, b3,
c, c2, and c3. (This can also be seen by computing U/[U,U] ∼= Z4 ⊕ Z4 ⊕ Z4

from the presentation of U in Section 2. For example a is sent to (1, 0, 0), etc.)
Similarly there are three conjugacy classes of rotations in Û represented by â,
b̂, and ĉ.

Theorem (5.3). Let G be a subgroup of U of odd index and generated by
rotations. Then G contains a member of each of the nine conjugacy classes of
rotations in U.

Proof. Let Ĝ = ϕ(G) where ϕ : U −→ Û is the homomorphism of Section 2
and K = ker ϕ. Then G ⊂ GK ⊂ U so that [U : G] = [U : GK][GK : G].
But ϕ : U −→ Û induces ϕ : GK −→ Ĝ so that [U : GK] = [Û : Ĝ] and
[U : G] = [Û : Ĝ] · [GK : G]. Since [U : G] is odd it follows that [Û : Ĝ] is
odd and thus Ĝ contains a member of each of the three conjugacy classes of
rotations in Û from the classification in Section 4.

We shall show that G contains a member of the conjugacy class of c. Let ĉ1

be a rotation in Ĝwith axis parallel to the z–axis. Suppose ϕ(g) = ĉ1. Then g is

a product of rotations, g =
n∏
i=1

ri, as G is generated by rotations. If {r1, . . . , rn}

contains a rotation conjugate to c or c3 we are done. Suppose this is not the

case. Then ĉ1 =
n∏
i=1

r̂i where r̂i is either the identity or a rotation about an axis
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parallel to the x or y axes. Each r̂i belongs to the group Ĝ(1, 1, 1) defined in
Section 4 as that group contains every rotation in Û about an axis parallel to
the x or y axis. Thus ĉ1 ∈ Ĝ(1, 1, 1) but this is impossible as Ĝ(1, 1, 1) contains
no rotations with axis parallel to the z–axis. Therefore G contains a member
of the conjugacy class of c.

The two conjugates DĜ(1, 1, 1)D−1 and D2Ĝ(1, 1, 1)D−2, where D is 120
degree rotation about axis (t, t, t) introduced in Section 4, contain all rotations
parallel to the x and z axis and no rotation parallel to the y axis or all rotations
parallel to the y and z axes and no rotations parallel to the x axis. We can show
that G contains rotations in the conjugacy class of a and b by duplicating the
argument for c by replacing Ĝ(1, 1, 1) byDĜ(1, 1, 1)D−1 orD2Ĝ(1, 1, 1)D−2.

If G is a finite index subgroup of U that is generated by rotations it is
clear that information about the precise placement of Ĝ in the classification
of Section 4 implies much about group G itself. There are other theorems
analogous to Theorems (5.2) and (5.3), but clumsier to state or prove that we
could present. We refrain from doing so, so as not to lengthen this paper.

We close by posing a question. If G is a subgroup of U of index n, either
generated by rotations or not, it is clear that G has a fundamental domain
that is a union of n of the dodecahedra in the tessellation associated to U.
Does G have a fundamental domain that is convex and also the union of n
dodecahedra?
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CLASSIFYING COMBINATORIAL 4–MANIFOLDS UP TO
COMPLEXITY

ALBERTO CAVICCHIOLI AND FULVIA SPAGGIARI

Abstract. The goal of this paper is to give some theorems which relate to
the problem of classifying smooth 4–manifolds up to piecewise -linear (PL)
homeomorphism. For this, we use the combinatorial approach to the topology
of PL manifolds by means of a special kind of edge–colored graphs, called
crystallizations. Within this representation theory, Bracho and Montejano
introduced in 1987 a nonnegative numerical invariant, called the reduced
complexity, for any closed n–dimensional PL manifold. Here we obtain the
complete classification of all closed connected smooth 4–manifolds of reduced
complexity less than or equal to 14.

1. Definitions and statements

All spaces and maps will be considered in thePL category, for which we refer
to [24]. The main definitions and results of graph theory can be found in [15].
Survey papers on the representation of PL manifolds by means of edge–colored
graphs and crystallizations are, for example, [1], [6], [7], and [26]. Here we
briefly recall the necessary definitions to explain the statements of our theo-
rems. An (n+1)–colored graph (G, c) is a multigraphG = (V (G), E(G)), regular
of degree n+1 (possibly with multiple edges, but without loops), together with
a proper edge-coloring c : E(G) → ∆n = {i ∈ Z : 0 ≤ i ≤ n} by n + 1 colors.
This means that any two adjacent edges in G are differently colored. As usual,
V (G) and E(G) denote the vertex set and the edge set of G, respectively; ∆n will
be called the color set, and its elements the colors. The cellular complex K(G)
associated to G is constructed as follows. For each vertex v of G, consider a
standard n–simplex σn(v), and label its n + 1 vertices by the colors of ∆n. If v
and w are joined in G by an i–colored edge, then identify the (n − 1)–faces of
σn(v) and σn(w) opposite to the vertex labelled by i ∈ ∆n, so that equally la-
belled vertices coincide. The complexK(G) is not a classical simplicial complex
for two simplexes may meet in more than a single face. On the other hand, it
is a pseudocomplex in the sense of [16], p.49. This means that any simplex of
K(G) is canonically isomorphic to a standard one, and the intersection of two
simplexes can be either empty or a union of common faces. By construction,
the graph G can be thought as the 1–skeleton of the dual cellular complex of
K(G). Let now Mn be a closed connected PL n–manifold. We say that (G, c)
represents M if M is PL homeomorphic to the space underlying K(G). A crys-
tallization of M is an (n + 1)–colored graph (G, c) representing M such that
K(G) has exactly n+1 vertices (which we shall always assume to be colored by
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∆n). In this case, K(G) is called a contracted triangulation of M . A theorem of
Pezzana [22], [23] states that every closed connected PL n–manifold admits a
crystallization (hence, it can be triangulated by a contracted pseudocomplex).
Following [1], we define the complexity c(M) of M as the minimum number of
n–simplexes which a contracted triangulation ofM must have. In other words,
c(M) is the minimum order of a crystallization of M , that is,

c(M) = min{card V (G) : (G, c) is a crystallization of M}.

Since one always has at least two n–simplexes (i.e., any crystallization has at
least two vertices), it was defined in [1] the reduced complexity of M as

c̃(M) = c(M)− 2.

The manifold invariant c̃ gives a finite-to-one map from the class of closed
connected PL n-manifolds to the set of nonnegative even integers.

Theorem (1.1). The only n-manifold of reduced complexity zero is the stan-
dard n-sphere Sn.

Proof. The n-sphere Sn can be represented by the simplest (n + 1)-colored
graph which consists of two vertices joined by n + 1 differently colored edges.

Theorem 3.13 of [1] says that c̃(M) = 4− 2χ(M), for every closed connected
surfaceM . Thus the reduced complexity can be regarded as a generalization of
the Euler characteristic, preserving its nice property of classifying manifolds
up to a finite ambiguity. Some results on the complexity of closed connected
3-manifolds can be found in [5]. The classification of all closed 3–manifolds
with complexity ≤ 28 was given in [19], Chapter 5, by using a computer algo-
rithm. In the present paper we obtain the complete classification of all closed
connected PL 4-manifolds with reduced complexity ≤ 14. This gives new com-
binatorial characterizations of S1×S3, S1×

∼
S3 (the twisted S3–bundle over S1),

CP 2, S2 × S2, and RP 4 among closed 4-manifolds (compare with other charac-
terizations obtained in [3] and [4] by using the concept of regular genus).

Main Theorem. (a) There are no closed connected 4-manifoldsM of reduced
complexity 0 < c̃(M) < 6. The unique closed connected 4–manifold of reduced
complexity 6 is the complex projective plane CP 2.

(b) Let M4 be a closed connected 4–manifold. If c̃(M) = 8, then M is (PL)
homeomorphic to either S1 × S3 or S1 ×

∼
S3. There are no closed connected 4-

manifolds of reduced complexity 10.
(c) The unique closed connected prime 4–manifold of reduced complexity 12

is the topological product S2 × S2.
(d) The unique closed connected prime 4–manifold of reduced complexity 14

is the real projective 4–space RP 4.

The formulae, used in the proof of the main theorem, imply the following
result.
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Theorem (1.2). Let M4 be a closed connected PL 4–manifold of reduced
complexity c̃(M). Then we have

c̃(M) ≥ 6χ(M) + 20 rk(M)− 12

where rk(M) denotes the rank of the fundamental group of M .
If M is simply–connected, then

c̃(M) ≥ 6b2(M)

where b2(M) denotes the second Betti number of M .

For example, if Tg is the orientable connected surface of genus g ≥ 0, then
c̃(Tg × S2) ≥ 12 + 16g and c̃(Tg × Th) ≥ 24gh + 16(g + h) + 12. We conjecture
that the equalities hold for such cases (this is true, for example, for g = h = 0).

Using Theorem (1.2) and the subadditivity of the reduced complexity (see
[1], Theorem 3.9) we get the following consequence.

Proposition (1.3). For every nonnegative integers h, k, `, we have

c̃(h(S2 × S2)#k(±CP 2)#`(S1 ⊗ S3)) = 12h + 6k + 8`

where pM denotes the connected sum of p copies of the manifold M , and the
symbol S1 ⊗ S3 means either S1 × S3 or S1 ×

∼
S3.

Applying the Freedman classification [9] of simply-connected PL 4-man-
ifolds, up to topological homeomorphism, we obtain another consequence of
Theorem (1.2)

Proposition (1.4). If M4 is a closed simply-connected PL 4-manifold of
reduced complexity c̃(M) ≤ 90, then M is topologically homeomorphic to either
r(±CP 2) or r(S2 × S2), where r = b2(M).

Other applications of these results and some new conjectures, which are
related with the 4–dimensional PL Poincaré Conjecture, complete the paper.

2. The combinatorics of contracted triangulations

This section is devoted to present some combinatorial relations arising from
a contracted triangulation (and a crystallization) of a closed 4-manifold. Some
of these formulae were first obtained in [3], [4] and [11], but we prefer to include
them (in some cases, with slightly different proofs) to make the reading of the
paper self-contained. First we fix some notations which will be used here and
in the next sections. Let M be a closed connected 4–manifold, (G, c) a crystal-
lization of M (with color set ∆4 = {0, 1, 2, 3, 4}), and K = K(G) the associated
contracted triangulation of M . If Γ = {i, j} ⊂ ∆4 (resp. Γ = {r, s, t} ⊂ ∆4),
then gij (resp. grst) represents the number of connected components of the
partial subgraph GΓ = (V (G), c−1(Γ)). Let p denote the order of G, i.e., the
number of vertices in the graph. We always assume that {vi : i ∈ ∆4} is the
vertex set of K, and that vi corresponds to Ĝ

i
, where î = ∆4 \ {i}. Let qh(K)

denote the number of h–simplexes in K. If {i, j} = ∆4 \ {r, s, t}, then K(i, j)
(resp. K(r, s, t)) denotes the subcomplex of K generated by the vertices vi and
vj (resp. vr, vs and vt). Furthermore, let qh(i, j) (resp. qh(r, s, t)) be the number
of h–simplexes of K containing vi and vj (resp. vr, vs and vt) as their vertices.
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Let N = N(i, j) and N ′ = N(r, s, t) be regular neighborhoods (in M) of the
polyhedrons underlying K(i, j) and K(r, s, t), respectively, such that M decom-
poses as M = N ∪N ′ and @N = @N ′ = N ∩N ′. Of course, N is a handlebody
(hence @N is a connected sum of copies of S1 ⊗ S2), and N ′ collapses onto a
2–dimensional complex.

Lemma (2.1). Let (G, c) be a crystallization of a closed connected 4–manifold
M , and K = K(G) the associated contracted triangulation. With the above
notation, we have:

(a) q0(K) = 5 q1(K) =
∑
r<s<t

grst q2(K) =
∑
i<j

gij

q3(K) =
5
2
p q4(K) = p

(b)

q1(i, j) = grst q2(r, s, t) = gij

q2(i, j) = grs + grt + gst q3(r, s, t) = p

q3(i, j) =
3
2
p q4(r, s, t) = p

q4(i, j) = p

where {i, j} = ∆4 \ {r, s, t}.
(c) rk(M) ≤ min{grst − 1: {r, s, t} ⊂ ∆4}

χ(M) = 5−
∑
r<s<t

grst +
∑
i<j

gij −
3
2
p

Here the summations are taken over all pairs (i, j) (resp. triples (r, s, t)) of
distinct elements in the color set ∆4 = {0, 1, 2, 3, 4}.

Proof. For each subset Γ ⊂ ∆4 with cardinality h ≤ 4, there is a bijection
between the set of connected components of the partial subgraph GΓ and the
set of (4−h)–simplexes of K whose vertices are labelled by the colors of ∆4 \Γ.
This bijection reverses inclusion. So the number of edges (resp. triangles) in
K equals the number of 3–colored (resp. 2–colored) connected components in
G. Furthermore, we have

q2(i, j) = q2(i, j, r) + q2(i, j, s) + q2(i, j, t) = gst + grt + grs

q3(i, j) = q3(i, j, r, s) + q3(i, j, r, t) + q3(i, j, s, t) =
3
2
p

and
q3(r, s, t) = q3(r, s, t, i) + q3(r, s, t, j) = p.

The upper bound for the rank ofπ1(M) follows from [10], where it was described
how to deduce a finite presentation of π1(M) from a crystallization of M . The
procedure can be synthetized as follows. Choose two colors in ∆4, i and j say,
and let X = {x1, . . . , xn} be the set of all connected components, but one, of the
partial subgraph ofG obtained by deleting them (the missing component can be
chosen arbitrarily). Then X is a set of generators for π1(M), where n = grst−1
and {r, s, t} = ∆4 \ {i, j}. The connected components of the complementary 2–
subgraph are simple cycles, whose edges are alternatively colored by i and j.
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From these components, one can read off the relators (expressed as products of
the generators inX and of their inverses) for a finite presentation ofπ1(M).

Lemma (2.2). Let (G, c) be a crystallization of a closed connected 4–manifold
M . For each triple (r, s, t) of distinct elements of ∆4, we have

2grst = gst + grt + grs −
p

2
As a consequence, we obtain

2
∑
r<s<t

grst = 3
∑
i<j

gij − 5p

and

χ(M) = 5− 1
2

∑
i<j

gij + p = 5− 1
3

∑
r<s<t

grst +
p

6

where the summations are taken over all pairs (i, j) (resp. triples (r, s, t)) of
distinct elements of ∆4.

Proof. Let K be the contracted triangulation of M represented by G. If σ is
a simplex ofK, then the disjoined star std(σ,K) is defined as the disjoint union
of the 4–simplexes of K containing σ with re-identification of the tetrahedra
containing σ and of their faces. The disjoined link lkd(σ,K) is the subcomplex
of std(σ,K) formed by all simplexes which do not intersect σ. Let e be an
arbitrary edge ofK(i, j). Then the Euler characteristic χ(e) of lkd(e,K) is given
by 2 = χ(e) = q2(e) − q3(e) + q4(e), where qh(e) is the number of h–simplexes
of K containing e as their face. Lemma (2.1) and summation over the edges of
K(i, j) give

2q1(i, j) = q2(i, j)− q3(i, j) + q4(i, j)

= gst + grt + grs −
p

2
.

The proofs of the two consequences in the statement are immediate.

Lemma (2.3). Let (G, c) be a crystallization of a closed connected 4–manifold
M . For every color i ∈ ∆4, we have∑

h,k 6=i

ghk =
∑
r,s,t 6=i

grst + p

where the first (second) summation is taken over all pairs (triples) of distinct
elements of î = ∆4 \{i}. A further summation over i ∈ ∆4 gives again the second
formula in Lemma (2.2).

Proof. Let K be the contracted triangulation of M represented by G, and v0

a vertex of K (fix, for example, i = 0 ∈ ∆4). Then the Euler characteristic χ(v0)
of lkd(v0, K) is given by

0 = χ(v0) = q1(v0)− q2(v0) + q3(v0)− q4(v0)

where qh(v0) is the number of h–simplexes of K containing v0 as their vertex.
Now we have (use Lemma (2.1)):

q1(v0) = q1(0, 1) + q1(0, 2) + q1(0, 3) + q1(0, 4) = g234 + g134 + g124 + g123
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q2(v0) = q2(0, 1, 2) + q2(0, 1, 3) + q2(0, 1, 4) + q2(0, 2, 3) + q2(0, 2, 4) + q2(0, 3, 4)

= g34 + g24 + g23 + g14 + g13 + g12

and
q3(v0) = 2p q4(v0) = p.

Substituting these relations in the above expression of χ(v0) gives

g12 + g13 + g14 + g23 + g24 + g34 = g123 + g124 + g134 + g234 + p

which is the formula of the statement for i = 0.

Proof of Theorem (1.2). Let (G, c) be a crystallization of M with minimum
order, i.e., p = c̃(M) + 2. For every triple (r, s, t) of distinct elements of ∆4, we
have grst ≥ rk(M) + 1 by Lemma (2.1)c, hence

∑
r<s<t

grst ≥ 10 rk(M) + 10. From

Lemma (2.2), it follows that

6χ(M) = 30− 2
∑
r<s<t

grst + p

hence

c̃(M) = p − 2 = 6χ(M) + 2
∑
r<s<t

grst − 32 ≥ 6χ(M) + 20 rk(M)− 12

as claimed. If M is simply–connected, then rk(M) = 0 and χ(M) = 2 + b2(M),
so we obtain c̃(M) ≥ 6b2(M).

Proposition (1.4) follows immediately from the Freedman classification (up
to topological homeomorphism) of the simply–connected closed 4–manifoldsM
with b2(M) ≤ 15.

3. Four-manifolds of reduced complexity ≤ 6

The following result, which we are going to prove, implies statement (a) of
the main theorem in Section 1.

Theorem (3.1). Let (G, c) be a crystallization of a closed connected 4-man-
ifold M . If the order of G is ≤ 8, then M is PL homeomorphic to either S4 or
±CP 2. In particular, c̃(S4) = 0, c̃(±CP 2) = 6, and there are no closed connected
4-manifolds M of reduced complexity 0 < c̃(M) < 6.

Proof. If p ≤ 6, thenM is PL homeomorphic to S4, as proved in [11], Lemma
1 (only for the orientable case). First we give an alternative proof of that
result in the general case. If p ≤ 4, then the statement is obvious since the
unique possible crystallizations, up to colored isomorphism, are those depicted
in Figure 1, a and b. But they both represent S4. So let p = 6. Since gij ≤
p

2
= 3, Lemma (2.2) gives 2grst = gst + grt + grs − 3 ≤ 6, hence grst ≤ 3 for

every three colors r, s, t ∈ ∆4. If grst = 3 for some r 6= s 6= t, the condition p = 6
implies that G must be as in Figure 1c, so it cannot be a crystallization. Thus
grst ≤ 2 for all r, s, t ∈ ∆4. We prove that at least one of grst’s must be equal to
1. Otherwise, if grst = 2 for all three colors r, s, t ∈ ∆4, then

∑
r<s<t

grst = 20, and

Lemma (2.2) gives (p = 6) χ(M) = 5 − 1
3

(20) + 1 = −2
3

, which is impossible.

So we can always assume g012 = 1, hence π1(M) ∼= 0 by Lemma (2.1)c, that
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is, M is orientable and simply–connected. Now we prove that G must have
two vertices joined by three parallel (differently colored) edges. Suppose that
no such a configuration exists. This implies that, for every distinct colors
r, s, t ∈ ∆4, the partial subgraph G{r,s,t} = (V (G), c−1{r, s, t}) is connected, i.e.,
grst = 1. As a consequence,

∑
r<s<t

grst = 10, and Lemma (2.2) gives (p = 6)

χ(M) = 5 − 1
3

(10) + 1 =
8
3

, which is impossible. Thus G must admit either a

3–dipole or a handle, i.e., by [2] and [12] M must be homeomorphic to either
S4#M ′ or (S1 ⊗ S3)#M ′, where c̃(M ′) ≤ 4, and hence M ′ ∼= S4. In the second
case, π1(M) ∼= Z against the fact that M is simply–connected. Thus, if p ≤ 6,
then M is the genuine 4–sphere. In particular, c̃(S4) = 0, and there are no
closed connected 4–manifolds M of reduced complexity 0 < c̃(M) ≤ 4.

Let p = 8. We divide the proof in two steps.
(I) Suppose that G has no vertices joined by three parallel edges. This

implies that for every three colors r, s, t ∈ ∆4, the partial subgraph G{r,s,t} has
at most two components, that is, grst ≤ 2. If grst = 2 for every triple (r, s, t), then

Lemma (2.2) gives (p = 8) χ(M) = 5 − 1
3

(20) +
4
3

= −1
3

, which is impossible.

So there is at least one of grst’s equals to one, say g024 = 1. Then π1(M) = 0
and M is orientable and simply–connected by Lemma (2.1)c. In particular, we
have χ(M) = 2 + b2(M) ≥ 2.
(I1) Assume χ(M) > 2. Then we prove that

∑
r<s<t

grst ≤ 10, hence grst = 1 for

every distinct colors r, s, t ∈ ∆4. Otherwise, if
∑

r<s<t
grst > 10, Lemma (2.2) gives

(p = 8)

χ(M) = 5− 1
3

∑
r<s<t

grst +
4
3
< 5− 1

3
(10) +

4
3

= 3

which contradicts χ(M) > 2. Suppose that there exists gij = 1 for some distinct
colors i, j ∈ ∆4, say g13 = 1. The subcomplexK(1, 3) has exactly one edge since
q1(1, 3) = g024 = 1. Then N(1, 3) is a 4–ball. The subcomplex K(0, 2, 4) is
formed by exactly one triangle since q1(0, 2) = g134 = 1, q1(2, 4) = g013 = 1,
q1(0, 4) = g123 = 1, and q2(0, 2, 4) = g13 = 1. Then N(0, 2, 4) is a 4–ball, and
M is PL homeomorphic to S4. But this contradicts χ(M) > 2. Hence we can
assume gij ≥ 2 for every distinct colors i, j ∈ ∆4. We prove that

∑
i<j

gij ≤ 20,

and hence gij = 2 for every i, j. Otherwise, if
∑
i<j

gij > 20, then Lemma (2.2)

gives

χ(M) = 5− 1
2

∑
i<j

gij + 8 < 5− 10 + 8 = 3,

which contradicts χ(M) > 2. Reassuming we have grst = 1 and gij = 2 for
every triple (r, s, t) and pair (i, j) of distinct colors in ∆4. This implies that
N(1, 3) is a 4–ball, and that K(0, 2, 4) is formed by exactly two triangles T1 and
T2 with common boundary. The Mayer-Vietoris exact sequence of the triple
(M,N,N ′), whereN = N(1, 3) andN ′ = N(0, 2, 4), givesH0(N ′) ∼= H2(N ′) ∼= Z
and H1(N ′) ∼= H3(N ′) ∼= 0. By isotopy we can always suppose that T1 is the
standard 2–simplex in M . Let T̂1 be the barycenter of T1 and Sd2 K the second
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barycentric subdivision of K. Then N ′ is the orientable bordered 4–manifold
obtained by adding a 2–handle (a regular neighborhood of T̂1 in Sd2 K) onto
the boundary of a 4–ball (a small regular neighborhood of T2 in M) along a
knot L. Since the surgery [17] is given by attaching 2–handles in dimension 4,
the surgery coefficient associated to L must be an integer and by homological
reasons equal to ±1. Since @N = @N ′ = S3, by [14], Theorem 2, L is the trivial
knot (see also [26]). Thus N ′ is PL homeomorphic to ±CP 2\(open 4–ball), and
M = N ∪N ′ is the complex projective plane (see, for example, [20], p.47). Now
the proof is complete because a crystallization of CP 2 with order 8 was really
constructed in [11], Figure 7, p.138 (for convenience, we report it in Figure 1d).
(I2) Assume χ(M) = 2 (and hence b2(M) = 0). Since M is simply-connected,
H2(M) is free, and therefore it is trivial. Since @N = @N ′ = S3, the Mayer-
Vietoris exact sequence of the triple (M,N,N ′) gives H2(N ′) = 0. This means
thatK(0, 2, 4) cannot have two triangles with common boundary. So it collapses
onto a graph. Since @N ′ = S3, this graph has no loops. Thus N and N ′ are
4–balls, and M is the genuine 4–sphere.
(II) Suppose that G has two vertices joined by three parallel edges, i.e., G has
either a 3–dipole or a handle. By [2] and [12], M must be homeomorphic to
either S4#M ′ or (S1 ⊗ S3)#M ′, where M ′ is a closed connected 4-manifold with
c̃(M ′) ≤ 4, i.e., M ′ ∼= S4. We prove that G cannot admit a handle. Otherwise,
the second case yields χ(M) = 0. Then at least one of grst’s must be equal
to 1. On the contrary, if grst ≥ 2 for every distinct colors r, s, t ∈ ∆4, then∑
r<s<t

grst ≥ 20, and Lemma (2.2) gives χ(M) ≤ 5 − 1
3

(20) +
4
3

= −1
3

, which

contradicts χ(M) = 0. If, for example, g024 = 1, then M is simply–connected,
so it cannot be S1 ⊗ S3. This completes the proof.

4. Four-manifolds M of reduced complexity 6 < c̃(M) ≤ 10

We now prove statement (b) of the main theorem in Section 1.

Theorem (4.1). Let (G, c) be a crystallization of a closed connected 4-mani-
fold M . If the order of G is≤ 12, then M is PL homeomorphic to either S4, CP 2,
S1 × S3, or S1 ×

∼
S3. In particular, the unique closed connected 4-manifolds of

reduced complexity 8 are S1×S3 and S1×
∼

S3, and there are no closed connected

4-manifolds of reduced complexity 10.

Proof. Let p = 10. First suppose that G does not admit two vertices joined
by three parallel edges. This implies that grst ≤ 2 for all three colors r, s, t ∈ ∆4.
Suppose that there exists one of grst’s equal to 1, so that π1(M) = 0 and M is
orientable and simply–connected. In particular, χ(M) ≥ 2 and H2(M) is free.
Since

∑
r<s<t

grst ≥ 10, Lemma (2.2) gives (p = 10)

χ(M) = 5− 1
3

∑
r<s<t

grst +
5
3
≤ 5− 10

3
+

5
3

=
10
3

hence 2 ≤ χ(M) ≤ 3. Furthermore, N = N(1, 3) is a 4–ball since, for example,
g024 = 1. If χ(M) = 2, then H2(M) ∼= 0, and the Mayer-Vietoris exact sequence
of the triple (M,N,N ′), where N ′ = N(0, 2, 4), gives H2(N ′) ∼= 0. Thus N ′
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collapses onto a graph. Since @N = @N ′ = S3, we obtainN ′ ∼=
PL

B4 andM ∼=
PL

S4.

If χ(M) = 3, then H2(M) ∼= Z ∼= H2(N ′). So K(0, 2, 4) has two triangles with
common boundary. From the Mayer-Vietoris sequence of the triple (M,N,N ′)
we also get H1(N ′) ∼= 0, hence g134 = g013 = g123 = 1. By Section 2 we obtain
M ∼=

PL
CP 2. Suppose that grst = 2 for every three colors r, s, t ∈ ∆4. Then∑

r<s<t
grst = 20 and Lemma (2.2) (p = 10) gives

χ(M) = 5− 1
3

∑
r<s<t

grst +
5
3

= 5− 20
3

+
5
3

= 0.

Since rank π1(M) ≤ 1 and χ(M) = 0, we have π1(M) ∼= Z and b2(M) = 0.
The manifold N = N(1, 3) is PL homeomorphic to either S1 × B3 or S1 ×

∼
B3

as g024 = 2. Since H2(M) ∼= 0, the Mayer-Vietoris sequence of the triple
(M,N,N ′), where N ′ = N(0, 2, 4), gives H2(N ′) ∼= 0 and H1(N ′) ∼= Z. Thus N ′

collapses onto a graph. Since @N = @N ′ = S1 ⊗ S2, we obtain N ′ ∼=
PL

S1 ⊗ B3.

Then M = N ∪N ′ is PL homeomorphic to S1 ⊗ S3 by Theorem 2 of [21] (see
also [18]).

Suppose now that G has two vertices joined by three parallel edges. Then
G has either a 3-dipole or a handle. If G has a 3-dipole, then M admits a
crystallization of order p ≤ 8, hence M is either S4 or CP 2. If G has a handle,
then M is PL homeomorphic to M ′#(S1 ⊗ S3), where M ′ is represented by the
graph obtained from G by cancelling the handle (see [2] and [12]). Then M ′

is either S4 or CP 2 as c̃(M ′) ≤ 6. But only the case M ′ ∼= S4 is allowed. In
fact, π1(M) 6= 0 implies that grst ≥ 2 for every three colors r, s, t ∈ ∆4. Then

Lemma (2.2) gives χ(M) ≤ 5 − 20
3

+
5
3

= 0. Now χ(M) ≤ 0 and χ(M) =

χ(M ′) +χ(S1⊗S3)−2 = χ(M ′)−2 imply χ(M ′) ≤ 2, hence M ′ ∼= S4. In Figures
2a and 2b we show two crystallizations of minimum order 10 for S1 × S3 and
S1 ×
∼

S3, respectively.

Let p = 12. First suppose that G does not admit two vertices joined by
three parallel edges. This implies that grst ≤ 3 for all three colors r, s, t ∈ ∆4. If

grst = 3 for every r, s, t ∈ ∆4, then Lemma (2.2) gives χ(M) = 5−1
3

(30)+2 = −3.

This is impossible since rank π1(M) ≤ grst − 1 = 2 and χ(M) = 2− 2b1 + b2 ≥
−2 + b2 ≥ −2 (use homology with Z2–coefficients in the nonorientable case).
So there is at least one of grst’s less than or equal to 2, say g024 ≤ 2. If grst ≥ 2

for every r, s, t ∈ ∆4, then Lemma (2.2) gives χ(M) ≤ 5 − 1
3

(20) + 2 =
1
3

,

hence χ(M) ≤ 0, and M cannot be simply–connected (otherwise, χ(M) ≥ 2).
Suppose that M is orientable; the argument for the nonorientable case is the
same by using homology with Z2–coefficients. Then we have b1(M) = 1 and
b2(M) = 0, hence the free part of H2(M) is trivial. The manifold N = N(1, 3)
is PL homeomorphic to S1 × B3 as g024 = 2. The Mayer-Vietoris sequence of
the triple (M,N,N ′), where N ′ = N(0, 2, 4), gives H2(N ′) ∼= 0 since H2(N ′)
is free, FH2(M) ∼= 0, and H3(M) ∼= H1(N ′) ∼= H2(@N) ∼= Z. Thus there are
no triangles in K(0, 2, 4) with common boundary. This means that K(0, 2, 4)
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Figure 1. Colored graphs and crystallizations of S4 and CP 2

collapses onto the one–dimensional complex formed by two vertices joined by
two edges. Thus N ′ is PL homeomorphic to S1 × B3, and M is S1 × S3 by [21].
Suppose now that there exists one of grst’s equal to 1, say g024 = 1. Then
M is simply–connected (hence orientable) and χ(M) ≥ 2. By Lemma (2.2)

we cannot have
∑

r<s<t
grst = 10 (resp. 11) because χ(M) =

11
3

(resp.
10
3

),

which is impossible. Thus
∑

r<s<t
grst ≥ 12, and Lemma (2.2) gives χ(M) ≤

5 − 1
3

(12) + 2 = 3. Since χ(M) = 2 + b2(M) ≤ 3, we obtain b2(M) ≤ 1. If

b2(M) = 0, then H2(M) ∼= 0. The manifold N = N(1, 3) is a 4–ball as g024 = 1.
The Mayer-Vietoris sequence of the triple (M,N,N ′), where N ′ = N(0, 2, 4),
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gives H2(N ′) ∼= 0, hence N ′ collapses onto a graph. Then @N = @N ′ = S3, and
N ′ is a 4–ball. This implies that M ∼= S4. If b2(M) = 1, then H2(M) ∼= Z. From
the Mayer-Vietoris sequence, we get H2(N ′) ∼= Z. Then K(0, 2, 4) has exactly
two triangles with common boundary. So we have M ∼= CP 2.
Suppose now that G admits two vertices joined by three parallel edges. This
means that G has either a dipole or a handle. In the first case, M has a
crystallization of order ≤ 10, hence M is either S4, S1 ⊗ S3, or CP 2. In the
second case, M must be homeomorphic to M ′#(S1 ⊗ S3), where c̃(M ′) ≤ 8,
hence M ′ is either S4, S1 ⊗ S3, or CP 2. We can immediately exclude the case
M ′ = S1 ⊗ S3 as rk(M) ≤ 1. Furthermore, π1(M) 6= 0 implies that grst ≥ 2
for every three colors r, s, t ∈ ∆4, hence χ(M) ≤ 0, as above. This inequality
plus χ(M) = χ(M ′) − 2 give χ(M ′) ≤ 2, hence M ′ ∼= S4. Thus the proof is
complete.

Figure 2. Crystallizations of minimum order for S1 × S3, S1×
∼

S3, S2 × S2
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5. Four-manifolds M of reduced complexity 10 < c̃(M) ≤ 14

Here we prove statements (c) and (d) of the main theorem.
Let p = 14. We shall divide the proof in two steps.
(I) Suppose that G has no two vertices joined by three parallel edges. This
implies that for every three colors r, s, t ∈ ∆4, the partial subgraph G{r,s,t} has
at most 3 components, that is, grst ≤ 3. If grst = 3 for every distinct colors in ∆4,

then Lemma (2.2) gives χ(M) = 5− 1
3

(30) +
7
3

= −8
3

, which is impossible. So

there is at least one of grst’s less than or equal to 2, hence rk(M) ≤ 1. Suppose
that all grst ≥ 2 for every three colors r, s, t ∈ ∆4. Then

∑
r<s<t

grst ≥ 20 and

Lemma (2.2) gives

χ(M) = 5− 1
3

∑
r<s<t

grst +
7
3
≤ 5− 20

3
+

7
3

=
2
3
,

hence χ(M) ≤ 0. This gives π1(M) ∼= Z, and we can conclude that M is PL
homeomorphic to S1 ⊗ S3 as in Section 4. Therefore we can assume that there
is at least one of grst’s equal to 1, say g024 = 1. Hence π1(M) ∼= 0, i.e., M is
simply–connected (hence orientable), and χ(M) = 2 + b2(M). If

∑
r<s<t

grst > 10,

then we obtain (use Lemma (2.2) and p = 14) χ(M) < 5− 1
3

(10) +
7
3

= 4. Thus

χ(M) ≤ 3 and b2(M) ≤ 1. Reasoning as in Section 3 we obtain that M is PL
homeomorphic to either S4 or CP 2. So we can assume M simply–connected
and

∑
r<s<t

grst ≤ 10, hence grst = 1 for every three colors r, s, t ∈ ∆4. By Lemma

(2.2), we get χ(M) = 4, b2(M) = 2, H1(M) ∼= H3(M) ∼= 0, and H2(M) ∼= Z⊕ Z.
The manifold N = N(1, 3) is a 4–ball since g024 = 1. The 1–skeleton of the
complex K(0, 2, 4) is formed by exactly three edges as g013 = g123 = g134 = 1,
i.e., it is the boundary of a triangle. The Mayer-Vietoris sequence of the triple
(M,N,N ′), where N ′ = N(0, 2, 4), gives H0(N ′) ∼= Z, H1(N ′) ∼= H3(N ′) ∼= 0
and H2(N ′) ∼= Z ⊕ Z. Then K(0, 2, 4) has exactly three triangles T1, T2 and
T3 with common boundary. By isotopy we can always suppose the T1 is the
standard 2–simplex in M . Let T̂i, i = 2, 3, be the barycenter of Ti and Sd2 K
the second barycentric subdivision of K. Then N ′ is the orientable bordered
4–manifold obtained by adding two 2–handles (the regular neighborhoods of T̂i
in Sd2 K, i = 2, 3) onto the boundary of a 4–ball (a small regular neighborhood
of T1 inM) along knotsLi, i = 2, 3. Since the surgery [17] is given by attaching
2–handles in dimension 4, the surgery coefficient associated to Li must be an
integer, and by homological reasons equal to either±1 or 0. In fact, the integral
intersection form λM : H2(M)×H2(M)→ Z is isomorphic to either (±1)⊕ (1) or(0 1

1 0

)
. Since @N = @N ′ = S3, by Theorem 2 of [14] (see also [25]) Li is the trivial

knot. Thus N ′ is PL homeomorphic to one of the surgery manifolds described
in Figure 3. In the case on the right side of Figure 3 the linking number is 1
from the matrix

(0 1
1 0

)
.

From [20], p.47, we get thatN ′ is PL homeomorphic to either (±CP 2)#CP 2\(open
4–ball) or S2 × S2\ (open 4–ball). Thus M is PL homeomorphic to either
S2×
∼

S2 = CP 2#(−CP 2), CP 2#CP 2 or S2×S2. ButM is prime, henceM ∼= S2×S2
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Figure 3. The two possible surgery descriptions of the 4-manifold N ′

as claimed. To complete the proof we have constructed a crystallization of min-
imum order 14 for S2 × S2 as shown in Figure 2c. It is obtained by cancelling
a 2–dipole from the crystallization of order 16 given in [8], p.343.
(II) If G has two vertices joined by three parallel edges, then G has a 3–dipole
or a handle. In the first case,M admits a crystallization of order≤ 12, so we re-
obtain one of the known manifolds. In the second case, M is PL homeomorphic
to (S1 ⊗ S3)#M ′ by [2] and [12]. Since M is prime, we get M ∼= S1 ⊗ S3.

Let p = 16. Suppose that G has no two vertices joined by three parallel
edges. This implies that for every three colors r, s, t ∈ ∆4, the subgraph G{r,s,t}
has at most 4 components, that is, grst ≤ 4. If grst = 4 for every distinct

colors r, s, t ∈ ∆4, then Lemma (2.2) gives χ(M) = 5 − 1
3

(40) +
8
3

= −17
3

,

which is impossible. So there is at least one of grst’s less than or equal to 3,
hence rk(M) ≤ 2. We cannot have all grst ≥ 3 for all r, s, t ∈ ∆4. Otherwise,∑
r<s<t

grst ≥ 30, and Lemma (2.2) gives χ(M) ≤ 5− 10 +
8
3

= −7
3

, hence χ(M) ≤

−3. Since rk(M) ≤ 2, in the orientable case (otherwise, use homology with
Z2–coefficients) we get −3 ≥ χ(M) = 2 − 2b1 + b2 ≥ −2 + b2, which is a
contradiction. So there is at least one of grst’s less than or equal to 2, hence
rk(M) ≤ 1. We divide the proof into two steps A and B.

A) Suppose that there is at least one grst = 1. Then π1(M) ∼= 0, and M is
simply–connected (hence orientable) with χ(M) ≥ 2. The condition

∑
r<s<t

grst =

10 and Lemma (2.2) imply χ(M) = 5 − 1
3

(10) +
8
3

=
13
3

, which is impossible.

Then we have
∑

r<s<t
grst > 10, hence χ(M) ≤ 4 by Lemma (2.2). If χ(M) = 4,

then
∑

r<s<t
grst = 11, π1(M) ∼= 0, and b2(M) = 2. Reasoning as in the previous

case, we obtain that M is PL homeomorphic to S2 × S2. If χ(M) = 3, then∑
r<s<t

grst = 14, π1(M) ∼= 0, and b2(M) = 1. From above, M ∼= CP 2. If χ(M) = 2,

then
∑

r<s<t
grst = 17, π1(M) ∼= 0, and b2(M) = 0. Thus M is the genuine 4–

sphere.
B) Suppose that all grst ≥ 2, and at least one of them is 2, hence rk(M) ≤

1. If
∑

r<s<t
grst = 20, by Lemma (2.2) χ(M) = 1, hence M is not simply–

connected. If π1(M) ∼= Z, then H2(M) ∼= Z. Hence M is PL homeomorphic to
(S1⊗S3)#(±CP 2), against the fact thatM is prime. Ifπ1 is finite cyclic, we must
have π1(M) ∼= Z2n as χ(M) = 1. Then H1(M ; Z2) ∼= H2(M ; Z2) ∼= Z2. Since
grst = 2 for all three colors r, s, t ∈ ∆4, the formula 2g123 = g12 + g23 + g13 −

p

2
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gives g12 + g23 + g13 = 12, hence at least one of gij ’s, say g13, is ≤ 4. The
manifold N = N(1, 3) is PL homeomorphic to S1⊗B3 as g024 = 2. The complex
K(0, 2, 4) has at most four triangles as g13 ≤ 4, and its 1–skeleton is homo-
topy equivalent to the wedge S1 ∨ S1 ∨ S1 since g013 = g134 = g123 = 2. If
g13 = 1, then N ′ collapses to a graph. Since @N = @N ′ = S1 ⊗ S2, we get
M ∼= S1 ⊗ S3, which contradicts χ(M) = 1. The Mayer-Vietoris sequence (with
Z2–coefficients) of the triple (M,N,N ′) gives H1(N ′; Z2) ∼= H2(N ′; Z2) ∼= Z2. If
g13 = 2 and the triangles have no common boundary, we obtain a contadiction
as above. If the two triangles have common boundary, then N ′ is homotopy
equivalent to the wedge S1 ∨ S1 ∨ S1 ∨ S2, which contradicts H1(N ′; Z2) ∼= Z2.
If g13 = 3 and the triangles have no common boundary, we are in the previ-
ous cases. If the three triangles have common boundary, then N ′ is homotopy
equivalent to a wedge with some 1–spheres and two 2–spheres, which contra-
dicts H1(N ′; Z2) ∼= Z2. Thus we can assume grst = 2 for every three colors
r, s, t ∈ ∆4, and gij = 4 for every two colors i, j ∈ ∆4. Furthermore, N ′ is
homotopy equivalent to e0 ∪ e1 ∪ e2, where @e2 = 2e1 (the real projective plane
RP 2). In fact, e2 is formed by exactly two triangles of K(0, 2, 4) with common
boundary, hence @e2 = 2e1, and π1(M) ∼= Z2. The universal covering M̃ of M is
a simply–connected 4–manifold with χ(M̃) = 2χ(M) = 2. Then M̃ is homotopy
equivalent to S4. Thus M̃ is topologically homeomorphic to S4 by a celebrated
theorem of Freedman [9]. Therefore the only possibilities for M are the finite
quotients of S4. It is well-known that Z2 is the only nontrivial finite group
that can act freely on S4. So M must be topologically homeomorphic to RP 4 or
the unique nonsmoothable homotopy RP 4. But Freedman proved that every
smooth fake RP 4 is topologically homeomorphic to the standard RP 4. Really,
M is PL homeomorphic to RP 4. In fact, attaching a 3–handle from N onto
N ′ yields a bordered 4–manifold M\(open 4–ball)= N ′+ (3–handle) which col-
lapses onto RP 3. Finally, a crystallization of minimum order 16 is depicted in
Figure 4.

Assume now that
∑

r<s<t
grst > 20. We cannot have

∑
r<s<t

grst = 21 (resp. 22)

because from Lemma (2.2) χ(M) =
2
3

(resp.
1
3

), which is impossible. Then∑
r<s<t

grst ≥ 23, and hence χ(M) ≤ 0 by Lemma (2.2). Since rk(M) ≤ 1 (and

M is not simply–connected), we obtain π1(M) ∼= Z. Reasoning as above, we
conclude that M is PL homeomorphic to S1 ⊗ S3 (recall that M is prime).

Proof of Proposition (1.3). Since c̃(S2 × S2) = 12, the subadditivity of the
reduced complexity gives c̃(h(S2 × S2)) ≤ 12h. By Theorem (1.2) we have
c̃(h(S2 × S2)) ≥ 6(2h + 2) − 12 = 12h as χ(h(S2 × S2)) = 2h + 2 and rk(h(S2 ×
S2)) = 0. Since c̃(CP 2) = 6, we have c̃(k(±CP 2)) ≤ 6k. Theorem (1.2) implies
c̃(k(±CP 2)) ≥ 6(k+ 2)− 12 = 6k as χ(k(±CP 2)) = k+ 2 and rk(k(±CP 2)) = 0.
Since c̃(S1 ⊗ S3) = 8, we obtain c̃(`(S1 ⊗ S3)) ≤ 8`. By Theorem (1.2) we
have c̃(`(S1 ⊗ S3)) ≤ 6(2 − 2`) + 20` − 12 = 8` as χ(`(S1 ⊗ S3)) = 2 − 2` and
rk(`(S1 ⊗ S3)) = `. Putting these formulae together yields the result of the
statement.
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Figure 4. Crystallization of minimum order for RP 4

6. Relations with the Poincaré Conjecture

Let P (4) be the Poincaré conjecture in the PL 4-dimensional category. Now
we state some conjectures which are related with P (4).

Conjecture (6.1) (Additivity of the reduced complexity). Let M1 and M2

be two closed connected orientable PL n–manifolds. Then

c̃(M1#M2) = c̃(M1) + c̃(M2).

By Theorem 3.13 of [1] Conjecture (6.1) is true in dimension 2.
We prove that Conjecture (6.1) implies P (4). For this, let M be a homotopy

PL 4–sphere. Then there exists a nonnegative integer h such thatM#h(S2×S2)
is diffeomorphic to h(S2 × S2). Assuming Conjecture (6.1), we get c̃(M#h(S2 ×
S2)) = c̃(M) + c̃(h(S2 × S2)) = c̃(h(S2 × S2)), hence c̃(M) = 0. This implies that
M ∼=

PL
S4.

Conjecture (6.2). If M is a closed PL simply–connected 4–manifold, then

c̃(M) = 6χ(M)− 12 = 6b2(M).

Conjecture (6.2) is equivalent to Conjecture (6.1) for the class of simply–
connected closed PL 4–manifolds. Indeed, for sufficiently large k, the closed
manifold M#kCP 2#k(−CP 2) is diffeomorphic to aCP 2#b(−CP 2), where a =
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b+
2 (M) + k and b = b−2 (M) + k (see, for example, [13], p.161). Assuming Con-

jecture (6.1), we get

c̃(M#k(CP 2)#k(−CP 2)) = c̃(M) + 12k = 6(a + b) = 12k + 6b2(M)

hence c̃(M) = 6b2(M). The converse is immediate.

Proposition (6.3). (1) Let Sd be an algebraic nonsingular hypersurface of
degree d in CP 3, then

c̃(Sd) ≥ 6(d3 − 4d2 + 6d − 2)

(2) Let V (n) denote the set of points x ∈ CP 1×CP 2 such that Pn(x) = 0, for a
bihomogeneous polynomialPn of bidegree (n, 3) in the variables (y0, y1; z0, z1, z2).
Then we have

c̃(V (n)) ≥ 12(6n− 1)
(3) If Σ is an Enriques surface, then c̃(Σ) ≥ 80.

We conjecture that equalities hold in cases (1) and (2) (this follows also from
Conjecture (6.2)). For small values of d, the statement is true as S1 = CP 2,
S2 = S2 × S2, and S3 = CP 2#6(−CP 2) (see [13], p.23). Furthermore, S4 is the
K3–surface and we have c̃(S4) ≥ 132.

For n = 1, V (n) is diffeomorphic to CP 2#9(−CP 2), so the equality holds in
case (2). For n = 2, V (n) is the K3–surface.

Proof. By [13], Theorem 1.3.8, p.21, Sd is a smooth simply–connected com-
plex surface. Hence (1) follows from Theorem (1.2) and the formula b2(Sd) =
d3 − 4d2 + 6d − 2 (see, for example, [13], Lemma 1.3.9, p.21). By [13], Propo-
sition 3.1.11, p.74, V (n) is simply–connected and b2(V (n)) = 12n − 2. So the
result in (2) is a consequence of Theorem (1.2). An Enriques surface Σ has
π1(Σ) ∼= Z2 and χ(Σ) = 12 (see [13], p.93). So c̃(Σ) ≥ 80 by Theorem (1.2).

Conjecture (6.4). If M is a PL homotopy 4–sphere, then

c̃(M#h(S2 × S2)) = c̃(M) + 12h.

This conjecture is equivalent to P (4). In fact, if M is a smooth homotopy
4–sphere, then there exists a nonnegative integer h such that M#h(S2× S2) is
diffeomorphic to h(S2×S2). Thus we have c̃(M#h(S2×S2)) = c̃(M)+12h = 12h,
and so c̃(M) = 0. Then M ∼=

PL
S4.
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