Boletín de la

SOCIEDAD matematica MEXICANA

Contenido

Tercera Serie

Volumen 16
Número 2

Octubre de 2010

ARTÍCULOS DE INVESTIGACIÓN

When do two planted graphs have the same cotransversal matroid?
F. Ardila and A. Ruiz

On bounds for some graph invariants
I. Gitler and C. E. Valencia

Some remarks on Robin's inequality
A. Grytczuk

Onthecharacterization of the kneading sequences associated to Lorenz maps of the interval and to orientation preserving homeomorphisms of the circle
R. Labarca and L. Vásquez

Spacelike hypersurfaces with constant k-th mean curvature in $S_{1}^{n+1}(c)$
S. Shu and S. Liu

119

WHEN DO TWO PLANTED GRAPHS HAVE THE SAME COTRANSVERSAL MATROID?

FEDERICO ARDILA AND AMANDA RUIZ

Abstract

Cotransversal matroids are a family of matroids that arise from planted graphs. We prove that two planted graphs give the same cotransversal matroid if and only if they can be obtained from each other by a series of local moves.

1. Introduction

Cotransversal matroids are a family of matroids that arise from planted graphs. The goal of this short note is to describe when two planted graphs give rise to the same cotransversal matroid.

The paper is organized as follows. In Section 2 we recall some basic definitions and facts in matroid theory, including the notions of cotransversal and transversal matroids. In Sections 3 and 4 we introduce the operations of swapping and saturating on a planted graph, and prove that they preserve the cotransversal matroid (Theorems (3.2) and (4.2.1)). In Section 5 we prove a crucial lemma on transversal matroids. Finally in Section 6 we prove our main result: two planted graphs give rise to the same cotransversal matroid if and only if their saturations can be obtained from each other by a series of swaps (Theorem (6.1)).

This paper is inspired by an analogous work of Whitney on presentations of graphical matroids. He showed in [10] that two graphs give rise to the same graphical matroid if and only if they can be obtained from each other by repeatedly applying three operations. Our main theorem is also analogous to Bondy [3] and Mason's [5] elegant theorem that a transversal matroid has a unique maximal presentation. In Sections 4 and 5 we will explain how our theorem and theirs are connected by matroid duality, and we will see the need to resolve several subtleties that do not arise in that dual setting.

2. Preliminaries

Matroids can be thought of as a notion of independence, which generalizes various notions of independence occuring in linear algebra, field theory, graph theory, and matching theory, among others. We begin by recalling some basic notions of the theory of matroids. For a more thorough introduction, we refer the reader to [2], [7], [9].

[^0]Definition (2.1). A matroid (E, \mathcal{B}) consists of a finite set E and a nonempty family \mathcal{B} of subsets of E, called bases, with the following property: If $B_{a}, B_{b} \in \mathcal{B}$ and $x \in B_{a}-B_{b}$, then there exists $y \in B_{b}-B_{a}$ such that $\left(B_{a}-x\right) \cup y \in \mathcal{B}$.

A prototypical example of a matroid consists of a finite collection of vectors E spanning a vector space V, and the collection \mathcal{B} of subsets of E which are bases of V.

Matroids have a useful notion of duality, as follows.
Definition (2.2). If $M=(E, \mathcal{B})$ is a matroid then $\mathcal{B}^{*}=\{E-B \mid B \in \mathcal{B}\}$ is also the collection of bases for a matroid $M^{*}=\left(E, \mathcal{B}^{*}\right)$, called the dual of M .

Note that $\left(M^{*}\right)^{*}=M$. This allows us to talk about pairs of dual matroids.
Duality behaves beautifully with respect to many of the natural concepts on matroids. In particular, the general theory makes it straighforward to translate many notions and results (e.g. definitions, constructions, and theorems) about M into "dual" notions and results about M^{*}.
(2.1) Cotransversal and transversal matroids. We are particularly interested in two families of matroids arising in graph theory and matching theory. First we define cotransversal matroids, which are the main object of study of this paper. A vertex of a directed graph G is called a sink if it has no outgoing edges. A routing is a set of vertex-disjoint directed paths in G.

Definition (2.1.1). A planted graph (G, B) is a directed graph G with vertex set V having no loops or parallel edges, together with a specified set of sinks $B \subseteq V$.

Theorem (2.1.2). ([6], [7]). Given a planted graph (G, B) on V, there is a matroid $L(G, B)$ on V whose bases are the sets of $|B|$ vertices that can be routed to B through vertex-disjoint directed paths.

Any matroid M that arises in this way is called cotransversal, and a planted graph giving rise to it is called a presentation of M.

Example (2.1.3). Figure 1 shows a planted graph G with a specified set of sinks, $B=\{4,5,6\}$. The bases of the cotransversal matroid $M=L(G, B)$ are all 3 -subsets of $\{1,2,3,4,5,6\}$ except 245 and 356 .

Figure I. A planted graph (G, B) with $B=\{4,5,6\}$.

Now we define transversal matroids, another important family.
Definition (2.1.4). Let S be a finite set. Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{r}\right\}$ be a family of subsets of S. A system of distinct representatives $(S D R)$ of \mathcal{A} is a choice of an element $a_{i} \in A_{i}$ for each i such that $a_{i} \neq a_{j}$ for $i \neq j$. A transversal is a set which can be ordered to obtain an SDR.

Theorem (2.1.5). ([7]). Given a family $\mathcal{A}=\left\{A_{1}, \ldots, A_{r}\right\}$ of subsets of S, there is a matroid on S whose bases are the transversals of \mathcal{A}.

A matroid that arises in this way is called a transversal matroid, and \mathcal{A} is called a presentation of it. We can also view $\mathcal{A}=\left\{A_{1}, \ldots, A_{r}\right\}$ as a bipartite graph between the "top" vertex set $[r]=\{1, \ldots, r\}$ and the "bottom" vertex set S, where top vertex i is connected to the elements of A_{i} for $1 \leq i \leq r$. The SDRs of \mathcal{A} become maximal matchings of $[r]$ into S in this bipartite graph. We will use these two points of view interchangeably.

Example (2.1.6). Let $S=\{1, \ldots, 6\}$ and $\mathcal{A}=\{\{1,2,3,4,5,6\},\{2,4,5\}$, $\{3,5,6\}\}$. The bases of the resulting transversal matroid M^{*} are all 3 -subsets of $\{1,2,3,4,5,6\}$ except 124 and 136.

Note that the cotransversal matroid M of Example (2.1.3) is dual to the transversal matroid M^{*} of Example (2.1.6). This is a special case of a general phenomenon:

THEOREM (2.1.7). ([1], [4], [7]). Cotransversal matroids are precisely the duals of transversal matroids.

Cotransversal matroids were originally called strict gammoids. Ingleton and Piff's discovery of Theorem (2.1.7) prompted their newer, widely adopted name.

3. Swapping

In this section we introduce the swap operation on planted graphs, and show that it preserves the cotransversal matroid.

In a planted graph, denote the edge from vertex i to vertex j by $e_{i j}$.
Definition (3.1). Let (G, B) be a planted graph, and let $i \notin B, j \in B$ be such that $e_{i j} \in G$. The swap operation $\mathbf{\operatorname { s w a p }}(\mathbf{i}, \mathbf{j})$ turns (G, B) into the planted graph $(G, B)_{i \rightarrow j}=\left(G^{\prime}, B^{\prime}\right)$ by

- replacing $e_{i j} \in G$ with $e_{j i} \in G^{\prime}$,
- replacing every other edge of the form $e_{i k}$ in G with $e_{j k} \in G^{\prime}$, and
- replacing the $\operatorname{sink} j \in B$ with the new $\operatorname{sink} i \in B^{\prime}$.

Figure 2 illustrates the operation $\operatorname{swap}(\mathbf{i}, \mathbf{j})$; the set B is represented by large, black vertices. Note that $\operatorname{swap}(\mathbf{j}, \mathbf{i})$ is a two-sided inverse of $\operatorname{swap}(\mathbf{i}, \mathbf{j})$.

Theorem (3.2). Swaps preserve the cotransversal matroid: If (G, B) is a planted graph, and $i \notin B, j \in B$ are such that $e_{i j} \in G$, then $L\left((G, B)_{i \rightarrow j}\right)=$ $L(G, B)$.

Figure 2. The operation $\operatorname{swap}(\mathbf{i}, \mathbf{j})$; sinks are drawn as large black vertices.
Proof. Since $\operatorname{swap}(\mathbf{i}, \mathbf{j})$ is invertible, it suffices to show that any set of vertices which could be routed to B in (G, B) can be routed to B^{\prime} in $(G, B)_{i \rightarrow j}=$ (G^{\prime}, B^{\prime}).

Let A be a basis of $L(G, B)$, and consider a routing R from A to B. Let $p_{a b}$ be the path in R which goes from a to b, and let v be the vertex of A which gets routed to j. We consider three cases: (i) v is routed through i to get to j, (ii) v is routed to j without going through i, and i is not in any other route of R, and (iii) v is routed to j without going through i, and i is in some other route of R.
(i) Since $e_{i j}$ is in G, we can assume that R uses the path $p_{v j}=(v, \ldots, i, j)$ from v to j. As a result of the operation $\operatorname{swap}(\mathbf{i}, \mathbf{j})$ we have $B^{\prime}=B-j \cup i$. The operation $\operatorname{swap}(\mathbf{i}, \mathbf{j})$ does not affect the path from v to i, or any other paths in R. We can replace the path $p_{v j}$ in R with the path $p_{v i}^{\prime}=p_{v j}-e_{i j}$ of G^{\prime}, and let the other paths of the routing stay the same. Therefore A is a basis of $L\left(G^{\prime}, B^{\prime}\right)$.
(ii) Since i is not on the route from v to j, no edges along the path $p_{v j}$ are affected by the swap, so v still has this path to j in G^{\prime}. Also $e_{j i} \in G^{\prime}$, so the path $p_{v i}^{\prime}=p_{v j} \cup e_{j i}$ in $\left(G^{\prime}, B^{\prime}\right)$ routes v to i and doesn't intersect the other paths of the routing. We obtain that A is a basis of $L\left(G^{\prime}, B^{\prime}\right)$.
(iii) Let w be the vertex of A which is routed through i to some $\operatorname{sink} b \in B$, $b \neq j$, as shown in Figure 3. As a result of $\operatorname{swap}(\mathbf{i}, \mathbf{j})$, the path $p_{w b}$ in (G, B) gets blocked at the edge $e_{i k}$. We can use the truncated path $p_{w i}^{\prime}=(w, \ldots, i)$ in $\left(G^{\prime}, B^{\prime}\right)$ as a route from w to $i \in B^{\prime}$. To complete a routing we need a path leaving $v \in A$ and arriving at $b \in B^{\prime}$. The path $p_{v j}$ in G is unaffected in G^{\prime}, and $e_{j k} \in G^{\prime}$ since $e_{i k} \in G$. So we can use the old path $p_{v j}$ and the new edge $e_{j k} \in G^{\prime}$ to pick up the old path from k to b; this does not intersect any other path in the routing R. It follows that A is a basis of $L\left(G^{\prime}, B^{\prime}\right)$.

4. Saturation for cotransversal matroids

In this section we will see that every presentation (G, B) of a cotransversal matroid $M=L(G, B)$ can be "saturated" in a unique way into a maximal planted graph $\overline{(G, B)} \supseteq(G, B)$ such that $M=L \overline{(G, B)}$. This is done by adding to (G, B) all missing edges that will not affect the cotransversal matroid. This was essentially proved in $[3,5]$; to explain it, we need to take a closer look at the duality between cotransversal and transversal matroids.

Figure 3. Case (iii): Rerouting v and w.
(4.1) Duality between transversal and cotransversal matroids revis-
ited. In Theorem (2.1.7) we saw that transversal matroids and cotransversal matroids are dual to each other. We will need a slightly stronger version of this statement.

Theorem (4.1.1). ([4]). Let M and M^{*} be a pair of dual cotransversal and transversal matroids on V. Then there is a bijection that maps a planted graph presentation of M to a presentation of M^{*} together with an SDR.

The previous theorem is implicit in [4]. For that reason we omit its proof, but we describe the bijection.

Given a planted graph presentation (G, B) of M, let $A_{i}:=\{i\} \cup\left\{u \mid e_{i u} \in G\right\}$ for each $i \in V-B$. The sets A_{i} with $i \in V-B$ make up a presentation of M^{*}, and the matching of i with A_{i} is an SDR for those sets.

In the opposite direction, consider a presentation $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ of M^{*} and an $\operatorname{SDR} a_{1}, \ldots, a_{k}$. For each $x \in A_{j}$ with $x \neq a_{j}$, draw the directed edge from a_{j} to x in G. Let B be the complement of $\left\{a_{1}, \ldots, a_{k}\right\}$. This will give a presentation of M.

The reader may find it instructive to check that the planted graph presentation of M in Example (2.1.3) is dual to the presentation of M^{*} in Example (2.1.6) with $\operatorname{SDR}(1,2,3)$.
(4.2) Saturating a graph. As mentioned in Section 2, theorems about a matroid M can often be translated automatically into "dual" theorems about the dual matroid M^{*}. This is very useful for our purposes. In their foundational work on transversal matroids, Bondy [3] and Mason [5] explained how the different presentations of a transversal matroid are related to each other. Using Theorem (4.1.1), we will now "dualize" their work, to obtain for free several useful results about the presentations of a cotransversal matroid.

The statements in this section are not difficult to show directly. Since they are dual to results in [3] and [5], we omit their proofs.

Theorem (4.2.1). ([3], [5]). For any planted graph (G, B) there exists a unique maximal planted graph $\overline{(G, B)}$ containing (G, B) such that $\overline{L(G, B)}=$ $L(G, B)$. We call $\overline{(G, B)}$ the saturation of (G, B).

Theorem (4.2.1) is all that we need to prove our main result, Theorem (6.1). In the rest of this section, which is logically independent from the remainder
of the paper, we describe how one constructs the saturation $\overline{(G, B)}$ of (G, B). First we need some definitions.

Definition (4.2.2). Let $M=(E, \mathcal{B})$ be a matroid. Let $K \subseteq E$ and let B_{K} be a basis of K. The contraction of M by K, denoted M / K, is the matroid on $E-K$ whose bases are the sets $B^{\prime} \subseteq E-K$ such that $B^{\prime} \cup B_{K}$ is a basis of M.

It is known ([9] Chapter 5); that any contraction $L(G, B) / K$ of a cotransversal matroid is also cotransversal. To obtain an explicit presentation of it, we first need a presentation (G^{\prime}, B^{\prime}) of $L(G, B)$ with $\left|K \cap B^{\prime}\right|=r(K)$, where $r(K)$ is the maximum number of paths in a routing from K to B in (G, B). To construct it, start with the planted graph (G, B). If $|K \cap B|<r(K)$, there must be a path from some $k \in K$ to some $b \in B-K$. Performing successive swaps on the edges along this path, one obtains a new presentation (G_{1}, B_{1}) where $B_{1}=B-b \cup k$ satisfies $\left|K \cap B_{1}\right|>|K \cap B|$. By repeating this procedure, we will eventually reach a presentation $\left(G^{\prime}, B^{\prime}\right)$ of the matroid with $\left|K \cap B^{\prime}\right|=r(K)$.

Finally, delete from $\left(G^{\prime}, B^{\prime}\right)$ the vertices in K and all the edges incident to them. It is easy to check that the resulting planted graph is a presentation of the contraction $L(G, B) / K$.

Definition (4.2.3). Let v be a vertex of a planted graph (G, B). The claw of v in (G, B) is $K_{v}=v \cup\left\{i \mid e_{v i} \in G\right\}$.

Recall that a loop in a matroid is an element that does not occur in any basis of the matroid. In a cotransversal matroid $L(G, B)$, a loop is a vertex of G from which there is no path to B. The following proposition tells us which edges we can add to (G, B) without changing the cotransversal matroid.

Proposition (4.2.4). ([3], [5]). Let (G, B) be a planted graph and let v and w be two vertices of G with $v \notin B$. Then $L\left(G \cup e_{v w}, B\right)=L(G, B)$ if and only if w is a loop in $L(G, B) / K_{v}$.

Therefore, to construct the saturation $\overline{(G, B)}$ of a planted graph (G, B), one successively saturates each vertex $v \notin B$ as follows: one contracts the matroid by the claw K_{v}, finds the loops in the resulting planted graph, and connects v to those loops. In Proposition (4.2.4), the condition for adding the edge $e_{v w}$ depends only on the matroid $L(G, B)$ and the claw K_{v}, neither of which is affected by the saturation of a different vertex $v^{\prime} \neq v$. It follows that one can saturate the vertices in any order, and one will always end up with the same $\operatorname{graph} \overline{(G, B)}$.

5. An exchange lemma for transversal matroids

Theorem (5.1). ([3], [5]). A transversal matroid has a unique maximal presentation: For every family $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ of subsets of a set S there is a unique family $\overline{\mathcal{A}}=\left\{\overline{A_{1}}, \ldots, \overline{A_{n}}\right\}$ of inclusion-maximal subsets of S such that $A_{i} \subseteq \overline{A_{i}}$ for $1 \leq i \leq n$, and \mathcal{A} and $\overline{\mathcal{A}}$ give rise to the same transversal matroid.

The following lemma on SDRs will be crucial later on.

Lemma (5.2) (SDR exchange lemma). Suppose that $\mathcal{A}=\left\{A_{1}, \ldots, A_{r}\right\}$ satisfies the dragon marriage condition: ${ }^{1}$ for all nonempty sets $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq[r]$ we have $\left|A_{i_{1}} \cup A_{i_{2}} \cup \cdots \cup A_{i_{k}}\right| \geq k+1$. Then for any two $S D R s M$ and M^{\prime} of \mathcal{A}, there is a sequence $M=M_{1}, \ldots, M_{s}=M^{\prime}$ of $S D R s$ of \mathcal{A} such that M_{i} and M_{i+1} differ in exactly one position for $1 \leq i \leq s-1$.

Proof. Construct a graph H in which the vertices are the SDRs of \mathcal{A} and two SDRs are connected by an edge if they differ in only one position. We need to prove that H is connected.

Suppose H is not connected. Consider two SDRs $M_{b}=\left(b_{1}, \ldots, b_{r}\right)$ and $M_{c}=\left(c_{1}, \ldots, c_{r}\right)$ in distinct components of H. Assume M_{b} and M_{c} are chosen so that the Hamming distance $\left|M_{b}-M_{c}\right|$, i.e. the number of positions where M_{b} and M_{c} differ, is minimal. We consider the following two cases.
(i) If $\left\{b_{1}, \ldots, b_{r}\right\} \neq\left\{c_{1}, \ldots, c_{r}\right\}$, then for some i we have $b_{i} \notin\left\{c_{1}, \ldots, c_{r}\right\}$. Then $M_{c}^{\prime}=\left(c_{1}, \ldots, b_{i}, \ldots, c_{r}\right)$ is an SDR in the connected component of M_{c}, and satisfies $\left|M_{b}-M_{c}^{\prime}\right|<\left|M_{b}-M_{c}\right|$.

Figure 4. Case (ii): T is partitioned into three parts according to the dark and light SDRs M_{b} and M_{c}.
(ii) Suppose $\left\{b_{1}, \ldots, b_{r}\right\}=\left\{c_{1}, \ldots, c_{r}\right\}$. We can partition the vertices of our bipartite graph T into three parts based on the matchings M_{b} and M_{c}, as shown in Figure 4. (The dotted edges will be explained later.) Part I consists of the vertices of T that are neither in M_{b} nor in M_{c}. Part II consists of the top vertices i such that $b_{i}=c_{i}$, and the bottom vertices matched to them. Part III consists of the remaining vertices.

The dragon marriage condition gives $|S| \geq r+1$, so there is some $d_{i} \in$ A_{i} such that $d_{i} \notin\left\{b_{1}, \ldots, b_{r}\right\}$. Therefore $M_{b}^{\prime}=\left(b_{1}, \ldots, d_{i}, \ldots, b_{r}\right)$ and $M_{c}^{\prime}=$ $\left(c_{1}, \ldots, d_{i}, \ldots, c_{r}\right)$ are SDRs which are in the connected components of M_{b} and M_{c}. We must have $b_{i}=c_{i}$, or else $\left|M_{b}^{\prime}-M_{c}^{\prime}\right|<\left|M_{b}-M_{c}\right|$. In Figure 4, this means that there are no edges from the top of Part III to Part I.

[^1]By the dragon marriage condition, the top of Part III must be connected to the bottom of Part II. Define a zigzag path to be a path such that:

- its starting point is a vertex in the top of Part III,
- this is the only vertex of Part III it contains, and
- every second edge is a common edge of the matchings M_{b} and M_{c}.

We claim that there is at least one zigzag path that ends in Part I. To verify this, consider the set U of vertices in the top that can be reached by a zigzag path starting from the top of Part III. Note that every top vertex in Part III is in U. By the dragon marriage condition, some vertex in U must be connected to a vertex d in the bottom of the graph that is not matched to U in M_{b} and M_{c}. If d was in Part II, it would be matched in M_{b} and M_{c} to a top vertex $A \notin U$; the edge from d to A would complete a zigzag path that contains A, contradicting our definition of the set U. Therefore d is in Part I.

Consider a zigzag path to d starting at A_{j}, as shown in Figure 4. Now construct new SDRs M_{b}^{\prime} and M_{c}^{\prime} by unlinking b_{j} and c_{j} from A_{j} in M_{b} and M_{c} respectively, as well as all the edges of M_{b} and M_{c} along the zigzag path P. Instead, in both M_{b} and M_{c}, rematch the vertices along the edges of path P which were not used by M_{b} and M_{c}; these are dotted in Figure 4. Figure 5 shows the resulting new matchings M_{b}^{\prime} and M_{c}^{\prime} in this example. Now note that

Figure 5. The new matchings M_{b}^{\prime} and M_{c}^{\prime}.
$\left|M_{b}^{\prime}-M_{c}^{\prime}\right|<\left|M_{b}-M_{c}\right|$, and M_{b}^{\prime} and M_{c}^{\prime} are in the same connected components of H as M_{b} and M_{c}, respectively. This is a contradiction, and we conclude that H is connected.

6. The main result

We have now laid all the necessary groundwork to present our main theorem.

Theorem (6.1). Two planted graphs (G, B) and (H, C) have the same cotransversal matroid if and only if their saturations $\overline{(G, B)}$ and $\overline{(H, C)}$ can be obtained from each other by a series of swaps.

Proof. The backward direction follows from Theorems (3.2) and (4.2.1). Now suppose (G, B) and (H, C) are presentations of the same cotransversal matroid M. When we apply the bijection of Theorem (4.1.1) to them, both saturations
$\overline{(G, B)}$ and $\overline{(H, C)}$ must give rise to the unique maximal presentation \mathcal{A} of the dual transversal matroid M^{*}. They correspond to different matchings M_{1} and M_{2} of \mathcal{A}.

Since \mathcal{A} has at least one matching, we have $\left|A_{i_{1}} \cup \cdots \cup A_{i_{k}}\right| \geq k$ for all $\left\{i_{1}, \ldots, i_{k}\right\}$ by Hall's theorem. If we have $\left|A_{i_{1}} \cup \cdots \cup A_{i_{k}}\right|=k$ for some $\left\{i_{1}, \ldots, i_{k}\right\}$, then all the elements of $A_{i_{1}} \cup \cdots \cup A_{i_{k}}$ are in every basis of M^{*}. Such elements are called coloops of M^{*} and they correspond to loops in M. By maximality, the loops of M form a complete subgraph in both $\overline{(G, B)}$ and $\overline{(H, C)}$. This is because loops have no path to the sinks; so they cannot be connected to vertices having paths to the sinks, but they can have any possible connection among themselves. We can then restrict our attention to the non-loops of M, where the dragon marriage condition is satisfied.

Applying Lemma (5.2), we can get from M_{1} to M_{2} by exchanging one element of the matching at a time. One easily checks that these matching exchanges in the bipartite graph correspond exactly to swaps in the corresponding planted graphs under the bijection of Theorem (4.1.1). It follows that one can get from $\overline{(G, B)}$ to $\overline{(H, C)}$ by a series of swaps, as desired.

We end by illustrating Theorem (6.1) with two examples.

Figure 6. The planted graphs given by $\mathcal{A}=\{\{1,2,3,4,5,6\},\{2,4,5\}$, $\{3,5,6\}\}$ with SDRs $(1,2,3),(1,2,5)$, and $(3,2,5)$, respectively.

Example (6.2). Figure 6 shows three saturated planted graph presentations of the cotransversal matroid of Example (2.1.3). They correspond to the dual maximal presentation $\mathcal{A}=\{\{1,2,3,4,5,6\},\{2,4,5\},\{3,5,6\}\}$ of the transversal matroid of Example (2.1.6), with SDRs (1, 2, 3), (1, 2, 5), and (3, 2, 5), respectively. Note how one-position exchanges in the SDRs correspond to swaps in the planted graphs.

Example (6.3). Let M be the cotransversal matroid on $\{1,2,3,4,5\}$ with bases $\{14,15,24,25,34,35,45\}$. Figure 7 shows the graph of saturated planted graph presentations of M, where two planted graphs are joined by an edge labelled $i j$ if they can be obtained from one another by $\operatorname{swap}(\mathbf{i}, \mathbf{j})$. There are nine saturated presentations in two isomorphism classes. We have drawn one representative from each isomorphism class; every other saturated presentation is obtained from one of these two planted graphs by relabelling the vertices.

Acknowledgments

We would like to thank the referee for a thorough report and helpful suggestions to improve the presentation.

Figure 7. The graph of saturated presentations of a cotransversal matroid.

Received November 19, 2009
Final version received February 20, 2010

Department of Mathematics
 San Francisco State University
 USA

federico@math.sfsu.edu
alruiz@sfsu.edu

References

[1] F. Ardila, Transversal and cotransversal matroids via their representations, Electron. J. Combin. 14 (6), (2007).
[2] F. Ardila. SFSU-Los Andes lecture notes and videos on Matroid Theory, 2007. Available at http://math.sfsu.edu/federico/matroids.html.
[3] J.A.Bondy, Presentations of transversal matroids, J. London Math. Soc. 5 (1972), 289-292.
[4] A. Ingleton and M. Piff, Gammoids and transversal matroids, J. Comb. Theory, Ser. B 15 (1973), 51-68.
[5] J. H. Mason, Representations of independence spaces, University of Wisconsin PhD thesis, (1970).
[6] J. H. Mason, On a class of matroids arising from paths in graphs, Proc. London Math. Soc. (3) 25 (1972), 55-74.
[7] J. Oxley, Matroid Theory, Oxford University Press. New York, 1992.
[8] A. Postnikov, Permutohedra, associahedra, and beyond, arXiv:math. C0/0507163, Int. Math. Res. Not. IMRN 2009, No. 6, 1020-1106.
[9] N. White (ed.), Combinatorial geometries, Cambridge University Press, Cambridge, 1987.
[10] H. Whitney, 2-isomorphic graphs, Amer. J. Math. 55 (1933), 245-254.

ON BOUNDS FOR SOME GRAPH INVARIANTS

ISIDORO GITLER AND CARLOS E. VALENCIA

Abstract

Let G be a graph without isolated vertices, $\alpha(G)$ and $\tau(G)$ be the stability number and the covering number of G, respectively.

The paper is divided in two parts: In the first part we study the minimum number of edges that a k-connected graph can have as a function of $\alpha(G)$ and $\tau(G)$. In particular, we obtain the following lower bound:

$$
q(G) \geq \alpha(G)-c(G)+\Gamma(\alpha(G), \tau(G))
$$

where $q(G)$ is the number of edges of $G, c(G)$ is the number of connected components of G and

$$
\Gamma(\alpha(G), \tau(G))=(\alpha(G)-s)\binom{r}{2}+s\binom{r+1}{2}
$$

where $\alpha(G)+\tau(G)=r \alpha(G)+s$ with $0 \leq s<\alpha(G)$.
This is a solution to an open question posed by Ore in his book [11], pag. 216; which indeed is a variant for connected graphs of a celebrated theorem of Turán [12].

In the second part of this paper, we study the relations between $\alpha(G), \tau(G)$ and $\delta(G)=\alpha(G)-\sigma_{\nu}(G)$, where the σ_{v}-cover number of a graph, denoted by $\sigma_{v}(G)$, is the maximum natural number m, such that every vertex of G belongs to a maximal independent set with at least m vertices. The main theorem of this part states that

$$
\alpha(G) \leq \tau(G)[1+\delta(G)] .
$$

In the last section, we discuss some conjectures related to this theorem.

1. Introduction

Given a graph $G=(V(G), E(G))$, a subset $M \subseteq V(G)$ is a stable set if no two vertices in M are adjacent. We say that M is a maximal stable set if it is maximal with respect to inclusion. The stability number of G is given by

$$
\alpha(G)=\max \{|M| \mid M \subset V(G) \text { is a stable set in } G\} .
$$

Also, $C \subseteq V(G)$ is a vertex cover for a graph G if every edge of G is incident with at least one vertex in C. Moreover, the vertex cover C is called a minimal vertex cover if there is no proper subset of C which is a vertex cover. It is convenient to regard the empty set as a minimal vertex cover for a graph with all its vertices isolated.

The vertex covering number of G, denoted by $\tau(G)$, is the number of vertices in a minimum vertex cover in G, that is, the size of any smallest vertex cover in G. Note that a set of vertices in G is a maximal stable set if and only if its complement is a minimal vertex cover for G, thus $\alpha(G)+\tau(G)=|V(G)|$.

[^2]This paper has two main parts. In the first part we solve a problem posed by Ore in his book [11], pag. 216, research prob. 1; whose statement is:

Determine the connected graphs satisfying $\alpha(G)<k(3 \leq k \leq|V(G)|)$ and having a minimal number of edges.

This question was completely solved by Turán [12] (see also [11], pages 214216) when the word connected is removed. In the connected case, we completely solve the question by giving a tight lower bound on the number of edges of a graph of a given order and with given stability number (Theorem (2.2) for connected graphs). This result was independently proved by J. Christophe et al. in [3]. We include the full classification of all optimal graphs (those achieving the bound). A preliminary version of Theorems (2.2) and (3.1) and Lemma (2.8) appear by first time in [5] and [6]. The corresponding result for 2 -connected graphs together with a full classification of the optimal graphs is also included (Theorem (2.1.1)). The classification of the connected and 2connected optimal graphs was obtained independently in [2].

In the second part of the paper we prove the inequality $\alpha(G) \leq \tau(G)(1+\delta(G))$ where $\delta(G)=\alpha(G)-\sigma_{v}(G)$ and $\sigma_{v}(G)$ is the largest m, such that every vertex of G belongs to an independent set of size m. As a corollary we obtain $\alpha(G)-$ $\left|\alpha_{\text {core }}\right| \leq \tau(G)-\left|\tau_{\text {core }}\right|$, where the $\alpha_{\text {core }}$ and the $\tau_{\text {core }}$ are defined as the intersection of all maximum-size stable sets and the intersection of all minimum-size vertex coverings, respectively.

The origin of our interest in the study of these relations comes from monomial algebras. More precisely, the stability number $\alpha(G)$ of a graph G, is equal to the dimension of the Stanley-Reisner ring associated to the graph G, and the covering number $\tau(G)$ of G is equal to the height of the ideal associated to the graph G. Finally, $\sigma_{v}(G)$ is an upper bound to the depth of this ring.

From the algebraic point of view, an important class of rings is given by those rings R such that their dimension is equal to their depth. The rings in this class are called Cohen-Macaulay rings. A graph is Cohen-Macaulay if the Stanley-Reisner ring associated to it is Cohen-Macaulay. If a graph G is Cohen-Macaulay, then $\delta(G)=0$ ([14], Proposition 6.1.21). Note that this is a necessary, but not a sufficient condition. The family of graphs with $\delta(G) \geq 1$ corresponds to the Stanley-Reisner rings that have a large depth. Moreover, the dimension minus the depth is bounded below by $\delta(G)$, and hence $\delta(G)$ is a measure of how far these rings are from being Cohen-Macaulay.

The outline of the article is as follows: We begin with Section 2, where we solve the low connectivity (one and two connected) versions of Turán's theorem as thoroughly explained above. In this section we give a lower bound for the number of edges of a graph as a function of its stability and covering numbers (Theorem (2.2)) together with a characterization of q-minimal (Lemma (2.8)) and $\{q, 2\}$-minimal (2 -connected) graphs (Theorem (2.1.1)).

In section 3 we study some relations between the stability and covering numbers of a graph. Specifically, we prove the main result (Theorem (3.1)) of this section, which is an inequality that gives an upper bound for the stability number of a graph with respect to the covering number and $\delta(G)=\alpha(G)-\sigma_{v}(G)$.

This result generalizes an inequality given in [4] which was only valid for B graphs. Then we introduce the $\alpha_{\text {core }}$ and the $\tau_{\text {core }}$ of a graph and relate them by an inequality with the stability and covering numbers of the graph. Finally, we give a series of conjectures that relate several invariants of graphs for B-graph and hypergraphs.

In this article all graphs are supposed to be finite and simple (i.e., without loops and multiple edges). Let $G=(V, E)$ be a graph with $|V|=n$ vertices and $|E|=q$ edges. Given a subset $U \subset V$, the neighbour set of U, denoted by $N(U)$, is defined as $N(U)=\{v \in V \mid v$ is adjacent to some vertex in $U\}$.

A subset W of V is called a clique if any two vertices in W are adjacent. We call W maximal if it is maximal with respect to inclusion. The clique number of a graph G is given by

$$
\omega(G)=\max \{|W| \mid W \subset V(G) \text { is a clique in } G\} .
$$

The complement of a graph G, denoted by \bar{G}, is the graph with the same vertex set as G, and edges all pairs of distinct vertices that are nonadjacent in G. Clearly, W is a clique of G if and only if W is a stable set of \bar{G}, and thus $\omega(G)=\alpha(\bar{G})$.

A subgraph H is called an induced subgraph of G, denoted by $G[V(H)]$, if H contains all the edges $\left\{v_{i}, v_{j}\right\} \in E(G)$ with $v_{i}, v_{j} \in V(H)$.

A non-empty graph G is called connected if any two of its vertices are linked by a path in G. A graph G is called k-connected (for $k \in \mathbb{N}$) if $|V(G)|>k$ and $G \backslash X$ is connected for every set $X \subseteq V(G)$ with $|X|<k$.

2. Low connectivity versions of Turán's theorem

In this section, we study the minimal number of edges in k-connected graphs. Theorem (2.2) establishes a lower bound for the number of edges of a graph G as a function of $\alpha(G), \tau(G)$ and its number of connected components, $c(G)$. As a byproduct of the proof of Theorem (2.2), we find a bound for 2-connected graphs and determine the graphs for which these bounds are sharp.

A Turán graph, denoted by $T(a, t)$, is a graph of order $a+t$ consisting of the disjoint union of $a-s$ cliques of order $r=\left\lfloor\frac{a+t}{a}\right\rfloor$ and s cliques of order $r+1$, where $a+t=r a+s$ with $0 \leq s<a$.

For a graph $G=(V, E)$, we denote by $q(G)$ the cardinality of its edge set $E(G)$. We say that a k-connected graph G is $\{q, k\}$-minimal, if there is no graph G^{\prime} such that
(i) G^{\prime} is k-connected,
(ii) $\alpha\left(G^{\prime}\right)=\alpha(G)$,
(iii) $\tau\left(G^{\prime}\right)=\tau(G)$, and
(iv) $q\left(G^{\prime}\right)<q(G)$.

We say that an edge e of a graph G is an α-critical edge if $\alpha(G-e)=\alpha(G)+1$. A vertex v of a graph G is a τ-critical vertex if $\tau(G-v)=\tau(G)-1$. A connected graph G is called α-critical (τ-critical) if all its edges (vertices) are α-critical (τ-critical). In Chapter 12 of the book of Lovasz and Plummer [10] some of the basic properties of α-critical graphs can be found. For instance, Corollary 12.1 .8 in [10] says that every α-critical graph is 2 -connected. Also, by Lemma
12.1.2 in [10], if G is an α-critical graph without isolated vertices, then $\alpha(G)=$ $\alpha(G-v)$ for all $v \in V(G)$. Using the previous observation and the fact that $\alpha(G)+\tau(G)=|V(G)|$ we can conclude that if G is an α-critical graph, then G is a τ-critical graph.

For simplicity a $\{q, 1\}$-minimal graph will be called a q-minimal graph. Hence, if G is q-minimal, then either $\alpha(G)<\alpha(G-e)$ or $c(G)<c(G-e)$ for all the edges e of G (note that $\alpha(G)<\alpha(G-e)$ if and only if $\tau(G)>\tau(G-e)$). That is, an edge of a q-minimal graph is either α-critical or a bridge. Therefore the blocks (a maximal connected subgraph without a cutvertex) of a q-minimal graph are α-critical graphs.

In order to bound the number of edges of a graph we introduce the following numerical function. For any natural numbers a and t, let

$$
\Gamma(a, t)=(a-s)\binom{r}{2}+s\binom{r+1}{2},
$$

where $a+t=r a+s$ with $0 \leq s<a$. In other words, $r=1+\left\lfloor\frac{t}{a}\right\rfloor$ and $s=t-a\left\lfloor\frac{t}{a}\right\rfloor$.

Lemma (2.1). Let a and t be natural numbers, then
(i) $\Gamma(a, t)=\min \left\{\sum_{\mathrm{i}=1}^{\mathrm{a}}\binom{z_{i}}{2}: \mathrm{z}_{1}+\cdots+\mathrm{z}_{\mathrm{a}}=\mathrm{a}+\mathrm{t}\right.$ and $z_{i} \geq 0$ for all $\left.1 \leq i \leq a\right\}$.
(ii) $\Gamma(a-1, t)-\Gamma(a, t) \geq \frac{1}{2}\left(\left\lfloor\frac{t}{a}\right\rfloor^{2}-\left\lfloor\frac{t}{a}\right\rfloor\right)=\binom{\left\lfloor\frac{t}{a}\right\rfloor+1}{2} \geq 0$ for all $a \geq 2$ and $t \geq 1$.
Moreover, $\Gamma(a-1, t)-\Gamma(a, t)=\binom{\left\lfloor\frac{t}{a}\right\rfloor+1}{2}$ if and only if $1+\left\lfloor\frac{t}{a}\right\rfloor \geq \frac{t}{a-1}$ and $\binom{\left\lfloor\frac{t}{a}\right\rfloor+1}{2}=0$ if and only if $0 \leq t<a$.
(iii) $\Gamma(a, t)-\Gamma(a, t-1)=1+\left\lfloor\frac{t-1}{a}\right\rfloor=\left\lceil\frac{t}{a}\right\rceil$ for all $a \geq 1$ and $t \geq 2$.
(iv) $\sum_{i=1}^{k} \Gamma\left(a_{i}, t_{i}\right) \geq \Gamma\left(\sum_{i=1}^{k} a_{i}, \sum_{i=1}^{k} t_{i}\right)$ for all $a_{i} \geq 1$ and $t_{i} \geq 1$.

Furthermore, if $a_{1}, a_{2} \geq 2$, then

$$
\Gamma\left(a_{1}, t_{1}\right)+\Gamma\left(a_{2}, t_{2}\right)=\Gamma\left(a_{1}+a_{2}, t_{1}+t_{2}\right)
$$

if and only if either $\left\lfloor\frac{t_{1}}{a_{1}}\right\rfloor=\left\lfloor\frac{t_{2}}{a_{2}}\right\rfloor,\left\lfloor\frac{t_{1}}{a_{1}}\right\rfloor-\left\lfloor\frac{t_{2}}{a_{2}}\right\rfloor=1$ and $t_{1}=r_{1} a_{1}$ or $\left\lfloor\frac{t_{2}}{a_{2}}\right\rfloor-\left\lfloor\frac{t_{1}}{a_{1}}\right\rfloor=1$ and $t_{2}=r_{2} a_{2}$.
(v) $\left\lceil\frac{2(a-1+\Gamma(a, t))}{a+t}\right\rceil=1+\left\lfloor\frac{t}{a}\right\rfloor+L$, where $-1 \leq L \leq 1$.

Moreover, $L=-1$ if and only if $a=1$.
Proof. (i) For $a=1$ the result is trivial. For $a \geq 2$ we use the next observation: Let $n, m \geq 1$ be natural numbers with $n>m+1$, then

$$
\binom{n}{2}+\binom{m}{2}>\binom{n-1}{2}+\binom{m+1}{2}
$$

Let $a \geq 2$ and $t \geq 1$ be fixed natural numbers, $\left(z_{1}, \ldots, z_{a}\right) \in \mathbb{N}^{a}$ such that $\sum_{i=1}^{a} z_{i}=a+t$ and let $L\left(z_{1}, \ldots, z_{a}\right)=\sum_{i=1}^{a}\binom{z_{i}}{2}$. Now, if

$$
\left\{z_{1}, \ldots, z_{a}\right\} \neq\{\underbrace{r, \ldots, r}_{a-s}, \underbrace{r+1, \ldots, r+1}_{s}\}
$$

where $a+t=r a+s$ with $0 \leq s<a$, then there exist $z_{i_{1}}$ and $z_{i_{2}}$ with $z_{i_{1}}>z_{i_{2}}+1$. Applying the previous observation we obtain that

$$
L\left(z_{1}, \ldots z_{a}\right)>L\left(z_{1}, \ldots, z_{i_{1}}-1, \ldots, z_{i_{2}}+1, \ldots, z_{a}\right) \geq \Gamma(a, t),
$$

and therefore we obtain the result.
(ii) Let $a+t=a r+s$ with $0 \leq s<a$, then

$$
a+t-1=(a-1)(r+l)+s^{\prime}
$$

where $r+s-1=(a-1) l+s^{\prime}$ with $l \geq 0$ and $0 \leq s^{\prime}<a-1$.
After some algebraic manipulations we obtain that

$$
2(\Gamma(a-1, t)-\Gamma(a, t))=\left(r^{2}-r\right)+\left(l^{2}-l\right)(a-1)+2 l s^{\prime} .
$$

Therefore $\Gamma(a-1, t)-\Gamma(a, t) \geq \frac{1}{2}\left(\left\lfloor\frac{t}{a}\right\rfloor^{2}+\left\lfloor\frac{t}{a}\right\rfloor\right)=\binom{\left\lfloor\frac{t}{a}\right\rfloor+1}{2} \geq 0$, since $r, l, s^{\prime} \geq 0$ and $u^{2}-u \geq 0$ for all $u \geq 0$. Moreover, $\Gamma(a-1, t)-\Gamma(a, t)=\binom{\left\lfloor\frac{t}{a}\right\rfloor+1}{2}$ if and only if

$$
\left(l, s^{\prime}\right)=\left\{\begin{array}{l}
\left(0, s^{\prime}\right) \\
(1,0)
\end{array}\right.
$$

These two possibilities imply that $r+s<a$ and $r+s=a$, respectively. Finally, it is clear that $\binom{\left\lfloor\frac{t}{a}\right\rfloor+1}{2}=0$ if and only if $0 \leq t<a$.
(iii) Let $a+t-1=a r+s$ with $0 \leq s<a$, then

$$
a+t= \begin{cases}a r+(s+1) & \text { if } 0 \leq s<a-1 \\ a(r+1) & \text { if } s=a-1\end{cases}
$$

Hence

$$
\begin{aligned}
\Gamma(a, t)-\Gamma(a, t-1) & =\left\{\begin{array}{c}
(a-s-1)\binom{r}{2}+(s+1)\binom{r+1}{2}-(a-s)\binom{r}{2}-s\binom{r+1}{2} \\
a\binom{r+1}{2}-\binom{r}{2}-(a-1)\binom{r+1}{2}
\end{array}\right. \\
& =\binom{r+1}{2}-\binom{r}{2}=r=\left\lfloor\frac{a+t-1}{a}\right\rfloor .
\end{aligned}
$$

(iv) Let $a=a_{1}+a_{2}$ and $t=t_{1}+t_{2}$, then by (i)

$$
\begin{aligned}
\Gamma(a, t) & =\min \left\{\sum_{i=1}^{a}\binom{z_{i}}{2}: \sum_{j=1}^{a} z_{j}=a+t \text { and } z_{j} \geq 0 \text { for all } 1 \leq j \leq a\right\} \\
& \leq\left(a_{1}-s_{1}\right)\binom{r_{1}}{2}+s_{1}\binom{r_{1}+1}{2}+\left(a_{2}-s_{2}\right)\binom{r_{2}}{2}+s_{2}\binom{r_{2}+1}{2} \\
& =\Gamma\left(a_{1}, t_{1}\right)+\Gamma\left(a_{2}, t_{2}\right),
\end{aligned}
$$

where $a_{i}+t_{i}=r_{i} a_{i}+s_{i}$ with $0 \leq s_{i}<a_{i}$ for all $i=1,2$.
In order to have the equality in the previous inequality we need that either $r_{1}=r_{2}, r_{1}=r_{2}+1$ and $s_{1}=0$ or $r_{2}=r_{1}+1$ and $s_{2}=0$.
(v) Let $a+t=a r+s$ with $r \geq 1$ and $0 \leq s<a$. Thus

$$
\begin{aligned}
\left\lceil\frac{2(a-1+\Gamma(a, t))}{a+t}\right\rceil & =\left\lceil\frac{2\left(a-1+(a-s)\binom{r}{2}+s\binom{r+1}{2}\right)}{a+t}\right\rceil \\
& =\left\lceil\frac{2(a-1)+r(a r+s)-r(a-s)}{a r+s}\right\rceil \\
& =r+\left\lceil\frac{2(a-1)-r(a-s)}{a r+s}\right\rceil \\
& =1+\left\lfloor\frac{t}{a}\right\rfloor+\left\lceil\frac{2(a-1)-r(a-s)}{a r+s}\right\rceil=1+\left\lfloor\frac{t}{a}\right\rfloor+L
\end{aligned}
$$

Since $a, r \geq 1$ and $0 \leq s<a$, then $-1 \leq L \leq 1$ because

$$
\begin{aligned}
2<(a+s)(2+r) & \Leftrightarrow-2(a r+s)<r(s-a)+2(a-1) \\
& \Leftrightarrow-1 \leq L
\end{aligned}
$$

and

$$
\begin{aligned}
2 a+r s \leq 2 a r+s+2 & \Leftrightarrow 2(a-1)-r(a-s) \leq a r+s \\
& \Leftrightarrow L \leq 1 .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
L=-1 & \Leftrightarrow 2(a-1)-r(a-s) \leq-(a r+s) \Leftrightarrow 2 a+s(r+1) \leq 2 \\
& \Leftrightarrow a=1 \text { and } s=0 .
\end{aligned}
$$

Theorem (2.2) ([5], Theorem 3.3). Let G be a graph, then

$$
q(G) \geq \alpha(G)-c(G)+\Gamma(\alpha(G), \tau(G))
$$

Proof. We will use induction on $\tau(G)$. The stars $\mathcal{K}_{1, n}\left(\alpha\left(\mathcal{K}_{1, n}\right)=n-1\right)$ are the unique connected graphs with $\tau(G)=1$. Since

$$
q\left(\mathcal{K}_{1, n}\right)=n-1=(n-1)-1+1=\alpha\left(\mathcal{K}_{1, n}\right)-c\left(\mathcal{K}_{1, n}\right)+\Gamma(n-1,1),
$$

then the result clearly follows. Moreover, the stars $\mathcal{K}_{1, n}$ are q-minimal graphs.

So we can assume that the result is true for $\tau(G) \leq k$ and $k>1$. Let G be a q-minimal graph with $\tau(G)=k+1$. Now, we will use induction on $\alpha(G)$. If $\alpha(G)=1$, then G is a complete graph $\mathcal{K}_{n}\left(\tau\left(\mathcal{K}_{n}\right)=n-1\right)$. Since

$$
q\left(\mathcal{K}_{n}\right)=\binom{n}{2}=1-1+\binom{n}{2}=\alpha\left(\mathcal{K}_{n}\right)-c\left(\mathcal{K}_{n}\right)+\Gamma(1, n-1),
$$

it follows that all the complete graphs satisfy the result.
Hence, we can assume that $\alpha(G) \geq 2$. Furthermore, by Lemma (2.1)(iv), $q(G)=\sum_{i=1}^{s} q\left(G_{i}\right), \alpha(G)=\sum_{i=1}^{s} \alpha\left(G_{i}\right)$ and $\tau(G)=\sum_{i=1}^{s} \tau\left(G_{i}\right)$ where G_{1}, \ldots, G_{s} are the connected components of G. Then by the induction hypothesis we can assume that G is a connected graph.

Let e be an edge of G and consider the graph $G^{\prime}=G-e$. We have two possibilities

$$
\tau\left(G^{\prime}\right)=\left\{\begin{array}{l}
\tau(G) \\
\tau(G)-1
\end{array}\right.
$$

That is, an edge of G is either a bridge or critical.
Case 1. First, assume that G has no bridges, that is, G is an α-critical graph.
Claim (2.3). Let v be a vertex of G of maximum degree, then

$$
\operatorname{deg}(v) \geq 1+\left\lfloor\frac{\tau(G)-1}{\alpha(G)}\right\rfloor
$$

Proof. Since any α-critical graph is τ-critical, then $\tau(G-v)=\tau(G)-1$ and $\alpha(G-v)=\alpha(G)$. Moreover, since the α-critical graphs are 2-connected, then $G-v$ is connected. Now, by the induction hypothesis we have that

$$
q(G-v) \geq \alpha(G)-1+\Gamma(\alpha(G), \tau(G)-1)
$$

Using the formula

$$
\sum_{v_{i} \in V(G-v)} \operatorname{deg}\left(v_{i}\right)=2 q(G-v)
$$

and Lemma (2.1)(v), we conclude that there must exist a vertex $v^{\prime} \in V(G-v)$ with

$$
\begin{align*}
\operatorname{deg}\left(v^{\prime}\right) \geq\left\lceil\frac{2 q(G-v)}{|V(G-v)|}\right\rceil & \geq\left\lceil\frac{2(\alpha(G)-1+\Gamma(\alpha(G), \tau(G)-1))}{n-1}\right\rceil \\
& \geq 1+\left\lfloor\frac{\tau(G)-1}{\alpha(G)}\right\rfloor+L \geq 1+\left\lfloor\frac{\tau(G)-1}{\alpha(G)}\right\rfloor . \tag{2.4}
\end{align*}
$$

By Lemma (2.1)(iii)
$q(G)=q(G-v)+\operatorname{deg}(v) \geq \alpha(G)-1+\Gamma(\alpha(G), \tau(G)-1)+\operatorname{deg}\left(v^{\prime}\right)$

$$
\begin{aligned}
& \stackrel{(2.4)}{\geq} \alpha(G)-1+\Gamma(\alpha(G), \tau(G)-1)+1+\left\lfloor\frac{\tau(G)-1}{\alpha(G)}\right\rfloor \\
& \stackrel{\text { (iii) }}{=} \alpha(G)-1+\Gamma(\alpha(G), \tau(G)) .
\end{aligned}
$$

So, if the graph G has an edge that is a bridge, then $c\left(G^{\prime}\right)=c(G)+1=2$. Let us denote by G_{1} and G_{2} the connected components of $G-e$. We need to considerer another two cases:

Case 2. Assume that $\tau\left(G_{1}\right)>0$ or $\tau\left(G_{2}\right)>0$, then $\tau\left(G_{1}\right) \leq k, \tau\left(G_{2}\right) \leq k$, and by the induction hypothesis
$q\left(G_{1}\right) \geq \alpha\left(G_{1}\right)-1+\Gamma\left(\alpha\left(G_{1}\right), \tau\left(G_{1}\right)\right)$ and $q\left(G_{2}\right) \geq \alpha\left(G_{2}\right)-1+\Gamma\left(\alpha\left(G_{2}\right), \tau\left(G_{2}\right)\right)$.
Using the above formulas, the fact that $\alpha(G)=\alpha\left(G_{1}\right)+\alpha\left(G_{2}\right)$ and $\tau(G)=$ $\tau\left(G_{1}\right)+\tau\left(G_{2}\right)$, and Lemma (2.1)(iv), we get

$$
\begin{aligned}
q(G) & =q\left(G_{1}\right)+q\left(G_{2}\right)+1 \\
& \geq \alpha\left(G_{1}\right)-1+\alpha\left(G_{2}\right)-1+\Gamma\left(\alpha\left(G_{1}\right), \tau\left(G_{1}\right)\right)+\Gamma\left(\alpha\left(G_{2}\right), \tau\left(G_{2}\right)\right)+1 \\
& =\alpha(G)-1+\Gamma\left(\alpha\left(G_{1}\right), \tau\left(G_{1}\right)\right)+\Gamma\left(\alpha\left(G_{2}\right), \tau\left(G_{2}\right)\right) \\
& \stackrel{\text { (iv) }}{\geq} \alpha(G)-1+\Gamma(\alpha(G), \tau(G)) .
\end{aligned}
$$

Case 3. Assume that there does not exist a bridge satisfying the above conditions: for all the bridges of G we have that $\tau\left(G_{1}\right)=0$ or $\tau\left(G_{2}\right)=0$. That is, each bridge connects an isolated vertex with the rest of G. In this case, we must have that G is equal to an α-critical graph G_{1} with a vertex of G_{1} being the center of a star $\mathcal{K}_{1, l}$. Moreover, $\tau(G)=\tau\left(G_{1}\right)$ and $\alpha(G)=l+\alpha\left(G_{1}\right)$ because G_{1} is vertex-critical and therefore each vertex belongs to a minimum vertex cover. Using Case 1 and Lemma (2.1)(ii) we obtain

$$
\begin{aligned}
q(G)=l+q\left(G_{1}\right) & \geq l+\alpha\left(G_{1}\right)-1+\Gamma\left(\alpha\left(G_{1}\right), \tau\left(G_{1}\right)\right) \\
& =\alpha(G)-1+\Gamma\left(\alpha\left(G_{1}\right), \tau(G)\right) \stackrel{(\mathrm{ii})}{\geq} \alpha(G)-1+\Gamma(\alpha(G), \tau(G))
\end{aligned}
$$

The k-connexion of a graph. A k-connexion of a graph G is a k-connected graph G^{\prime} on the same vertex set as G, with the minimum possible number of edges, and such that G is a subgraph of G^{\prime}. The graph G is called the subjacent graph of the k-connexion graph G^{\prime} and the edges of G^{\prime} that are not edges of G are called the connexion edges.

Clearly a 1-connexion graph G^{\prime} of a disconnected graph G can be obtained by adding $c(G)-1$ edges, where $c(G)$ is the number of connected components of G. This definition is equivalent to the one given in [2] of a tree-linking of a graph. In fact, 2-connexions as defined here, are equivalent to cycle-linkings as defined in [2].

Example (2.6). In order to illustrate the concept of 1-connexion consider the following graphs:

G^{\prime} is the 1 -connexion of G, the edges e_{1}, e_{2}, e_{3} are the 1 -connexion edges of G^{\prime}, and G_{1}, G_{2}, G_{4} are the leaves of G^{\prime}.

A leaf of a 1-connexion G^{\prime} of a graph G is a connected component G_{i} of G with the property that there exists a unique vertex v of G_{i}, such that all connexion edges with one end in G_{i} are incident to v. If G is a connected graph, then we
say that G is a leaf of G^{\prime}. Note that a 1-connexion G^{\prime} of a graph G has at least one leaf.

Polygon transformed Turán graph. A graph G with covering number $\tau(G)=$ t and stability number $\alpha(G)=a$ is said to be a polygon transformed Turán graph or PTT graph if either G is isomorphic to $T(a, t)$, or $a \leq t<2 a$ and G can be obtained from $T(a, t)$ by the following construction:

Let k_{2} and k_{3} be the number of copies of K_{2} and K_{3} in $T(a, t)$ respectively. Let k be a positive integer with $k \leq \min \left\{\mathrm{k}_{2}, \mathrm{k}_{3}\right\}$ and for all $1 \leq i \leq k$ take positive integers j_{i} such that $j_{1}+\cdots+j_{k} \leq k_{2}$. Finally, for all $i=1, \ldots, k$ replace one copy of K_{3} and j_{i} copies of K_{2} by a cycle $C_{2 j_{i}+3}$.

In this way a PTT graph is the disjoint union of complete graphs and possibly odd cycles.

Example (2.7). In order to illustrate the previous concept consider the following graphs:

in the left side it can be seen the Turán graph $T(4,6)$ and in the right side there are two of the three possible polygon transformed graph of $T(4,6)$. Note that G_{1} and G_{2} are obtained when we take $1=k<\min \left\{\mathrm{k}_{2}, \mathrm{k}_{3}\right\}=2$, and $j_{1}=1$ and $j_{1}=2$ respectively.

Lemma (2.8). A graph G is q-minimal if and only if G is a 1-connexion of a polygon transformed Turán graph.

Proof. (\Leftarrow) Let H be a PTT graph with H_{1}, \ldots, H_{a} connected components and let L be a 1-connexion of H. Since \mathcal{K}_{r} and $C_{2 s+1}$ are q-minimal, $\alpha(L)=$ $\sum_{i=1}^{a} \alpha\left(H_{i}\right), \alpha\left(C_{2 s+1}\right)=s, q(L)=a-1+\sum_{i=1}^{a} q\left(H_{i}\right)$, then L is q-minimal.
$(\Rightarrow$) We use double induction on the stability and covering numbers of the graph. For $\alpha(G)=1, G$ must be a complete graph and the result is clear.

Let G be a q-minimal graph with $\alpha(G) \geq 2$. We can assume that G is an α-critical graph, since if G is not α-critical, then using the arguments used in cases 2 and 3 (in the proof of Theorem (2.2)) and the induction hypothesis, the result follows readily. Since connexion edges of a 1-connexion of a disconnected PTT graph are not α-critical edges $\left(\alpha(L)=\sum_{i=1}^{k} \alpha\left(H_{i}\right)\right.$, where L is a 1-connexion of a disconnected PTT graph H with connected components H_{1}, \ldots, H_{k}), then the result follows if we prove that G is either an odd cycle or a complete graph.

Claim (2.9). If v is a vertex of G of maximal degree, then $G-v$ is q-minimal.

Proof. Assume that $G-v$ is not q-minimal. Then, by Claim (2.3) and Lemma (2.1),

$$
\begin{align*}
& q(G)=q(G-v)+\operatorname{deg}(v) \stackrel{(\mathrm{v})}{\geq} \alpha(G)+\Gamma(\alpha(G), \tau(G)-1)+\left\lfloor\frac{\alpha(G)+\tau(G)-1}{\alpha(G)}\right\rfloor \\
& \tag{2.10}\\
& \quad \stackrel{(\text { (iii) }}{=} \alpha(G)+\Gamma(\alpha(G), \tau(G)),
\end{align*}
$$

which is a contradiction to the q-minimality of G.
Since $G-v$ is q-minimal, by the induction hypothesis $G-v$ is a 1-connexion of a PTT graph. Moreover, since G is α-critical, then $G \backslash N[v]$ (where $N[v]=$ $N(v) \cup\{v\})$ is a maximal induced subgraph of G with $\alpha(G \backslash N[v])=\alpha(G)-1$. Therefore, we need to determine the maximal induced subgraphs L^{\prime} of a 1connexion of a PTT graph L with $\alpha\left(L^{\prime}\right)=\alpha(L)-1$.

Claim (2.11). Let H be a PTT graph with H_{1}, \ldots, H_{a} connected components and L be a 1-connexion of H. If L^{\prime} is a maximal induced subgraph of L with $\alpha\left(L^{\prime}\right)=\alpha(L)-1$, then
(i) L^{\prime} is induced by the set of vertices $V(L) \backslash V\left(H_{i}\right)$, for some H_{i} with $\alpha\left(H_{i}\right)=1$, or
(ii) L^{\prime} is induced by the set of vertices in $V(L) \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$, where $\left\{v_{1}, v_{2}, v_{3}\right\}$ are vertices of an odd cycle H_{j} such that $H_{j} \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ is a disjoint union of paths with an even number of vertices, or
(iii) L^{\prime} satisfies the following conditions: (1) $V\left(H_{i}\right) \cap V\left(L^{\prime}\right) \neq \emptyset$ for all H_{i}, (2) if H_{i} is an odd cycle, then $V\left(H_{i}\right) \subset V\left(L^{\prime}\right)$, (3) if H_{i} is a complete graph such that $V\left(H_{i}\right) \not \subset V\left(L^{\prime}\right)$, then for all $v \in V\left(H_{i}\right) \cap V\left(L^{\prime}\right)$ there exists at least one connexion edge e_{v} of L incident to v.

Proof. If $V\left(L^{\prime}\right) \cap V\left(H_{i}\right)=\emptyset$ for some $1 \leq i \leq a$ with $\alpha\left(H_{i}\right)=1$, then $L^{\prime}=$ $L\left[V(L) \backslash V\left(H_{i}\right)\right]$, since $V\left(L^{\prime}\right) \subseteq V(L) \backslash V\left(H_{i}\right)$ and $\alpha\left(L\left[V(L) \backslash V\left(H_{i}\right)\right]\right)=\alpha(L)-1$.

Therefore we can assume that $V\left(H_{i}\right) \cap V\left(L^{\prime}\right) \neq \emptyset$ for all H_{i} with $\alpha\left(H_{i}\right)=1$. Let us assume that $V\left(H_{j}\right) \not \subset V\left(L^{\prime}\right)$ for some $H_{j}=C_{2 m+1}$. Since all the proper induced graphs of a cycle are paths P_{n} with $\alpha\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$, then $\alpha\left(H_{j} \backslash C\right)=$ $\alpha\left(H_{j}\right)-1=m-1$ for some $C \subset V\left(H_{j}\right)$ if and only if $H_{j}\left[V\left(H_{j}\right) \backslash C\right]$ is a disjoint union of three paths $P_{m_{1}}, P_{m_{2}}, P_{m_{3}}$ for some even numbers $m_{1}, m_{2}, m_{3} \geq 0$ such that $m_{1}+m_{2}+m_{3}=2(m-1)$. Since L^{\prime} is a maximal induced subgraph of L with $\alpha\left(L^{\prime}\right)=\alpha(L)-1$, then $V\left(H_{j}\right) \not \subset V\left(L^{\prime}\right)$ for only one $H_{j}=C_{2 m+1}$, therefore L^{\prime} is given by (ii).

In order to conclude the proof we can assume that $V\left(L^{\prime}\right) \cap V\left(H_{i}\right) \neq \emptyset$ for all $1 \leq i \leq a$ and $V\left(H_{j}\right) \subset V\left(L^{\prime}\right)$ for all H_{j} with $\alpha\left(H_{j}\right) \geq 2$. Clearly, if $v \in V\left(H_{i}\right) \cap V\left(L^{\prime}\right)$ such that v is not incident to any connexion edge of L, then $V\left(H_{i}\right) \subset V\left(L^{\prime}\right)$ because $\alpha\left(L^{\prime}\right)=\alpha\left(L\left[V\left(L^{\prime}\right) \cup V\left(H_{i}\right)\right]\right)$.

Take $L=G \backslash v$ and $L^{\prime}=G \backslash N[v]$. If $G \backslash N[v]$ satisfies (i), then G must be a complete graph. If $G \backslash N[v]$ satisfies (ii), then G must be an odd subdivision of the complete graph \mathcal{K}_{4} and it fails in one edge in order to be a q-minimal graph.

Finally, assume that $G \backslash N[v]$ satisfies (iii). Let $H_{i_{0}}$ be a connected component of H such that $H_{i_{0}}$ is a complete graph and $V\left(H_{i_{0}}\right) \not \subset V(G \backslash N[v])$. Take $P=V\left(H_{i_{0}}\right) \cap V(G \backslash N[v])$ and $Q=V\left(H_{i_{0}}\right) \backslash P$. Since $G-v$ is q-minimal, then for all $u \in P$, the graph $(G-v) \backslash u$ is disconnected. For all $u \in P$, let G_{u} be the disjoint union of the connected components $C_{1}, \ldots, C_{s}\left(C_{i}\right.$ is a 1-connexion of some PTT graph) of $(G-v) \backslash u$ with $V\left(C_{j}\right) \cap V\left(H_{i_{0}}\right)=\emptyset$. Note that, G_{u} is an induced subgraph of $G-v$ and its connected components are joined to u by some connexion edges.

Let C be a connected component of G_{u} and S be a leaf of C not joined to u by a connexion edge. Since G is a 2 -connected graph, then v must be incident with at least one vertex of S. If G_{u} is either a complete graph or an odd cycle, then v must be incident with at least one vertex of G_{u} not incident with a connexion edge of $G-v$. Moreover, if v_{s} is the unique vertex of a leaf S of C such that all the connexion edges with one end in S are incident to v_{s}, then by Claim (2.11) (iii), v must be incident with all the vertices of $S \backslash v_{s}$. Since v is incident with all the vertices of Q, then

$$
\begin{equation*}
\operatorname{deg}(v) \geq|Q|+\sum_{u \in P} \sum_{H_{j} \in L\left(G_{u}\right)}\left(\left|H_{j}\right|-1\right) \stackrel{(*)}{\geq}\left|H_{i_{0}}\right|, \tag{2.12}
\end{equation*}
$$

where $L\left(G_{u}\right)$ is either the set of leaves of G_{u} not joined to u or if G_{u} is a 2connected graph, then $L\left(G_{u}\right)$ is $\left\{G_{u}\right\}$. Furthermore, (*) is an equality if and only if G_{u} is connected, all the leaves of G_{u} are isomorphic to \mathcal{K}_{2}, and if G_{u} has at most two leaves.

Using the first inequality in the equation (2.12), it is not difficult to prove that
(2.13) $\operatorname{deg}(v) \geq s+(k-s)(k-1) \geq 2 k-2$, where $k=\left\lfloor\frac{|V(G-v)|}{\alpha(G)}\right\rfloor \leq\left|V\left(H_{i_{0}}\right)\right|$.

On the other hand, since G and $G-v$ are q-minimal graphs, then

$$
\begin{aligned}
\operatorname{deg}(v) & =q(G)-q(G-v)=\Gamma(\alpha(G), \tau(G))-\Gamma(\alpha(G), \tau(G)-1) \\
& =\left\lfloor\frac{|V(G-v)|}{\alpha(G)}\right\rfloor=\left\lceil\left.\frac{|V(G)|}{\alpha(G)} \right\rvert\,-1 \leq k .\right.
\end{aligned}
$$

Therefore, $k=2, H_{i_{0}}=\mathcal{K}_{2}, \operatorname{deg}(v)=2,\left\lceil\frac{|V(G-v)|}{\alpha(G)}\right\rceil \leq 3,|P|=1$, and G_{u} has only two leaves, that is, G is an odd cycle.

(2.1) The 2-connected case.

Theorem (2.1.1). Let G be a 2 -connected graph with $\tau(G) \geq 2$, then

$$
q(G) \geq \begin{cases}2 \alpha(G) & \text { if } \tau(G) \leq \alpha(G) \\ \alpha(G)-1+\Gamma(\alpha(G), \tau(G)) & \text { if } \alpha(G)=1 \text { or } \tau(G)-\alpha(G)=1 \\ \alpha(G)+\Gamma(\alpha(G), \tau(G)) & \text { otherwise }\end{cases}
$$

Furthermore, G is $\{q, 2\}$-minimal with $\tau(G) \geq \alpha(G)$ if and only if one of the following conditions is satisfied:
(i) G is an even cycle,
(ii) G is the complete graph with at least three vertices,
(iii) G is an odd cycle,
(iv) G is a 2-connexion of a polygon transformed Turán graph,
(v) G is an odd subdivision of the complete graph \mathcal{K}_{4},
(vi) G is isomorphic to the following graph:

Proof. Let H be a 2-connected graph and G be a $\{q, 2\}$-minimal graph. We will divide the proof in three cases:

Case $1(\tau(G)=\alpha(G)>1)$. Let H with $\tau(H)=\alpha(H)>1$, then $\operatorname{deg}(v) \geq 2$ for all $v \in V(H)$. Therefore

$$
q(H)=\frac{\sum_{v \in V(H)} \operatorname{deg}(v)}{2} \geq|V(H)|=2 \alpha(H)
$$

Since the even cycle $C_{2 a}$ is a 2-connected graph with $\alpha\left(C_{2 a}\right)=\tau\left(C_{2 a}\right)$, then $2 \alpha(G) \leq q(G) \leq 2 \alpha(G)$ and $\operatorname{deg}(v)=2$ for all $v \in V(G)$. Furthermore, since a graph H with all its vertices of degree two is a disjoint union of cycles, then G is a $\{q, 2\}$-minimal graph with $\alpha(G)=\tau(G)$ if and only if G is an even cycle.

Case $2(\tau(G)<\alpha(G)$ and $\alpha(G)>1)$. Since $\operatorname{deg}(v) \geq 2$ for all $v \in V(H)$ (H is 2 -connected), then $q(H) \geq 2 \alpha(H)$. Let $s\left(\mathcal{K}_{a, t}\right)$ be an odd subdivision of the complete bipartite graph $\mathcal{K}_{a, t}$. Since $s\left(\mathcal{K}_{a, t}\right)$ is a 2 -connected graph with $\alpha\left(s\left(\mathcal{K}_{a, t}\right)\right)=\tau\left(s\left(\mathcal{K}_{a, t}\right)\right)+(a-t)$ and $q\left(\mathcal{K}_{a, t}\right)=2 \alpha\left(\mathcal{K}_{a, t}\right)$, then $q(G)=2 \alpha(G)$ for all the $\{q, 2\}$-minimal graphs G with $\tau(G)<\alpha(G)>1$.

This finishes the proof of the lower bound for the number of edges whenever $\tau(G) \leq \alpha(G)$ and $\alpha(G)>1$ and the characterization of the $\{q, 2\}$-minimal graphs (case (i)) whenever $\alpha(G)=\tau(G)$ and $\alpha(G)>1$.

Case $3(\alpha(G)=1$ or $\tau(G) \geq \alpha(G)+1)$. We use double induction on the stability and covering numbers of the graph.

If $\alpha(G)=1$, then G is a complete graph and clearly G is a $\{q, 2\}$-minimal graph. If $\tau(H)-\alpha(H)=1$, then by Lemma (2.8), $q(H) \geq \alpha(H)-1+\Gamma(\alpha(H), \tau(H))$ and H is a q-minimal graph with $\tau(H)-\alpha(H)=1$ if and only if H is an odd cycle. Since the odd cycles are 2-connected, then $q(H) \geq \alpha(H)-1+\Gamma(\alpha(H), \tau(H))$ whenever $\tau(H)=\alpha(H)+1$ and G is $\{q, 2\}$-minimal with $\tau(G)=\alpha(G)+1$ if and only if G is an odd cycle.

By Lemma (2.8) we have that $q(H) \geq \alpha(H)-1+\Gamma(\alpha(H), \tau(H))$ whenever H is a connected graph with $\tau(H)>\alpha(H)+1>2$. On the other hand, it is not difficult to see that if H is a graph as in (iv), (v) or (vi), then H is a 2 -connected graph with $q(H)=\alpha(H)+\Gamma(\alpha(H), \tau(H))$. Furthermore, since all that q-minimal graphs with $\tau(H)>\alpha(H)+1>2$ are not 2-connected, then $q(H) \geq \alpha(H)+\Gamma(\alpha(H), \tau(H))$ whenever H is a 2-connected graph with $\tau(H)>\alpha(H)+1>2$.

Therefore, to finish the proof we only need to show that G is a $\{q, 2\}$-minimal graph with $\tau(G) \geq \alpha(G)+2$ if and only if G is as in (iv), (v) or (vi). In order to do so, we follow the same sequence of arguments as in the proof of Lemma (2.8).

Let $e \in E(G)$, if e is not an α-critical edge of G, then $G \backslash e$ is a q-minimal graph and G is 2-connexion of a PTT graph. Therefore we can assume that G is an α-critical graph.

Claim (2.1.2). If v is a vertex of G of maximal degree, then either $G-v$ is q-minimal or $\{q, 2\}$-minimal.

Proof. If $G \backslash v$ is neither q-minimal nor $\{q, 2\}$-minimal, then $q(G \backslash v) \geq$ $\alpha(G)+\Gamma(\alpha(G), \tau(G)-1)+1$. Therefore, the result follows using the same arguments that in Claim (2.9).

Since $G-v$ is either a q-minimal or a $\{q, 2\}$-minimal graph, then by the induction hypothesis

$$
q(G-v)= \begin{cases}\alpha(G-v)-1+\Gamma(\alpha(G-v), \tau(G-v)) & \text { if } G \text { is } q \text {-minimal } \\ \alpha(G-v)+\Gamma(\alpha(G-v), \tau(G-v)) & \text { if } G \text { is }\{q, 2\} \text {-minimal. }\end{cases}
$$

Since $\operatorname{deg}(v)=q(G)-q(G-v)$ and $\Gamma(\alpha(G), \tau(G))-\Gamma(\alpha(G), \tau(G)-1)=\left\lfloor\frac{|V(G)|-1}{\alpha(G)}\right\rfloor$ (Lemma (2.1) (iii)), then

$$
\operatorname{deg}(v)= \begin{cases}\left\lfloor\frac{|V(G)|-1}{\alpha(G)}\right\rfloor+1 & \text { if } G \text { is } q \text {-minimal } \tag{2.14}\\ \left\lfloor\frac{|V(G)|-1}{\alpha(G)}\right\rfloor & \text { if } G \text { is }\{q, 2\} \text {-minimal. }\end{cases}
$$

Claim (2.1.3). Let H be a PTT graph with H_{1}, \ldots, H_{a} connected components and let L be a 2 -connexion of H. If L^{\prime} is a maximal induced subgraph of L with $\alpha\left(L^{\prime}\right)=\alpha(L)-1$, then L^{\prime} is given as in (i), (ii), and (iii) in Claim (2.11).

Proof. Let e be a connexion edge of L. Since L is a $\{q, 2\}$-minimal graph, then $L \backslash e$ is a 1-connexion of H. Hence, applying Claim (2.11) to $L \backslash e$ we get the result.

Now we will consider the cases when $G-v$ is either q-minimal or $\{q, 2\}$ minimal:

Case ($G-v$ is q-minimal). Take $L=G \backslash v$ and $L^{\prime}=G \backslash N[v]$. If $G \backslash N[v]$ is as in Claim (2.11) (i), then G must be a complete graph. If $G \backslash N[v]$ is as in Claim (2.11) (ii), then G must be an odd subdivision of the complete graph \mathcal{K}_{4}.

Now assume that $G \backslash N[v]$ is as in Claim (2.11) (iii). Using equations (2.12) and (2.14), we get that $k+1=\operatorname{deg}(v) \geq 2 k-2$, where $k=\left\lfloor\frac{|V(G)|-1}{\alpha(G)}\right\rfloor$, that is, $k \leq 3$. If $k=2$, then G is either an odd cycle or an odd subdivision of \mathcal{K}_{4} and if $k=3$, then G is \mathcal{H}.

Case $\left(G-v\right.$ is $\{q, 2\}$-minimal). Take $L=G \backslash v$ and $L^{\prime}=G \backslash N[v]$. If L^{\prime} is as in Claim (2.1.3) (i), then G is a 2-connexion of a PTT graph, but it is not an α-critical graph. If $G \backslash N[v]$ is as in Claim (2.11) (ii), then G is an odd subdivision of \mathcal{K}_{4}.

Now assume that $G \backslash N[v]$ is as in Claim (2.1.3) (iii). Using equations (2.12) and (2.14), we get that $k=\operatorname{deg}(v) \geq 2 k-2$, where $k=\left\lfloor\frac{|V(G)|-1}{\alpha(G)}\right\rfloor$, that is, $k \leq 2$. If $k=2$, then G is an odd cycle.

Finally, $G-v$ is not an odd subdivision of $\mathcal{K}_{4} \operatorname{because} \operatorname{deg}(v) \stackrel{(2.14)}{=} 2$ and if \mathcal{O} is an odd subdivision of \mathcal{K}_{4}, then $\alpha(\mathcal{O} \backslash\{a, b\})=\alpha(\mathcal{O})$ for all $a, b \in V(\mathcal{O})$. If $G-v$ is \mathcal{H}, then $\alpha(\mathcal{H})=2, \omega(\mathcal{H})=3$, and $\operatorname{deg}(v) \stackrel{(2.14)}{=} 3 \geq|V(G)|-\omega(\mathcal{H})=4$; a contradiction.

Remark (2.1.4). After this paper was first submitted in 2006, the authors realized that Theorem 2.2 was also obtained independently in [3].

Remark (2.1.5). It can be proved that for any fixed $\delta_{-}(G)=\alpha(G)-\tau(G)=$ $k>0$ there exist a finite number of "basic" graphs such that if G is $\{q, 2\}$ minimal graph with $\delta_{-}(G)=k$, then G is an odd subdivision of some of this basic graphs. For instance, if G is a $\{q, 2\}$-minimal graph with $\delta_{-}(G)=1$, then G is an odd subdivision of the complete bipartite graph $\mathcal{K}_{2,3}$.

3. Some bounds for the stability and covering number of a graph

The following results are in the spirit of [4], where the authors were motivated in bounding invariants for edge rings. In this paper, we concentrate mainly on the combinatorial aspects of these bounds.

The theorem below gives an idea of the class of graphs that are CohenMacaulay and of those graphs that are far from being Cohen-Macaulay. We thank N. Alon (private communication) for some useful suggestions for making the proof of this result simpler and more readable.

Theorem (3.1). Let G be a graph without isolated vertices, then

$$
\alpha(G) \leq \tau(G)[1+\delta(G)] .
$$

Proof. First, let fix a minimal vertex cover C with $\tau(G)$ vertices. Label the vertices of C from 1 to $\tau(G)$. For each $i \in C$, let T_{i} be a maximal stable set containing i, with $\left|T_{i}\right| \geq \sigma_{v}(G)$. Let k be the minimal natural number such that

$$
C \subseteq \bigcup_{i=1}^{k} T_{i}
$$

Clearly $0<k \leq \tau(G)$. Let $M=V(G) \backslash C$ and take $C_{i}=C \cap T_{i}$ and $M_{i}=M \cap T_{i}$ for all $i=1, \ldots, \tau(G)$. Since M is a maximal stable set and G does not have isolated vertices, then for each vertex $v \in M$ there is an edge $e=\left\{v, v^{\prime}\right\}$ with $v^{\prime} \in C$. That is,

$$
\begin{equation*}
M=\bigcup_{i=1}^{k}\left(M \cap N\left(C_{i}\right)\right) . \tag{3.2}
\end{equation*}
$$

Since $S_{i}=V(G) \backslash T_{i}=\left(C \backslash C_{i}\right) \cup\left(M \backslash M_{i}\right)$ is a minimal vertex cover with $\left|S_{i}\right| \leq n-\sigma_{v}(G)$ for all $i=1, \ldots, k$, then

$$
\left|C \backslash C_{i}\right|+\left|M \backslash M_{i}\right|=\left|\left(C \backslash C_{i}\right) \cup\left(M \backslash M_{i}\right)\right|=\left|S_{i}\right| \leq n-\sigma_{v}(G) .
$$

Hence, as $M \cap N\left(C_{i}\right)=M \backslash M_{i}$, then

$$
\begin{align*}
\left|M \cap N\left(C_{i}\right)\right|=\left|M \backslash M_{i}\right| & \leq n-\sigma_{v}(G)-\left|C \backslash C_{i}\right| \\
& =|C|+|M|-\sigma_{v}(G)-\left|C \backslash C_{i}\right| \tag{3.3}\\
& =\left|C_{i}\right|+\alpha(G)-\sigma_{v}(G)=\left|C_{i}\right|+\delta(G) .
\end{align*}
$$

Taking

$$
A_{i}=C_{i} \backslash\left(\bigcup_{j=1}^{i-1} C_{j}\right) \text { and } B_{i}=\left(M \cap N\left(C_{i}\right)\right) \backslash\left(\bigcup_{j=1}^{i-1} M \cap N\left(C_{j}\right)\right),
$$

we have that

$$
\begin{equation*}
\left|C_{i} \backslash A_{i}\right| \leq\left|M \cap N\left(C_{i} \backslash A_{i}\right)\right| . \tag{3.4}
\end{equation*}
$$

Indeed, if $\left|C_{i} \backslash A_{i}\right|>\left|M \cap N\left(C_{i} \backslash A_{i}\right)\right|$, then $C \backslash\left(C_{i} \backslash A_{i}\right) \cup\left(M \cap N\left(C_{i} \backslash A_{i}\right)\right)$ would be a vertex cover of cardinality $\left|C \backslash\left(C_{i} \backslash A_{i}\right)\right|+\left|M \cap N\left(C \backslash A_{i}\right)\right|<|C|$; a contradiction.

To finish the proof, we use the inequalities (3.3) and (3.4) to conclude that

$$
\begin{align*}
\left|B_{i}\right| & =\left|M \cap N\left(C_{i}\right)\right|-\left|\left(M \cap N\left(C_{i}\right)\right) \cap\left(\bigcup_{j=1}^{i-1}\left(M \cap N\left(C_{j}\right)\right)\right)\right| \\
& =\left|M \cap N\left(C_{i}\right)\right|-\left|M \cap N\left(C_{i}\right) \cap N\left(\bigcup_{j=1}^{i-1} C_{j}\right)\right| \tag{3.5}\\
& \stackrel{(3.3)}{\leq}\left|C_{i}\right|+\delta(G)-\left|M \cap N\left(C_{i} \cap \bigcup_{j=1}^{i-1} C_{j}\right)\right| \\
& \stackrel{(3.4)}{\leq}\left|C_{i}\right|+\delta(G)-\left|C_{i} \backslash A_{i}\right|=\left|A_{i}\right|+\delta(G) .
\end{align*}
$$

Therefore

$$
\begin{align*}
\alpha(G)=|M| & \stackrel{(3.2)}{=}\left|\bigcup_{i=1}^{k}\left(M \cap N\left(C_{i}\right)\right)\right|=\sum_{i=1}^{k}\left|B_{i}\right| \stackrel{(3.5)}{\leq} \sum_{i=1}^{k}\left(\left|A_{i}\right|+\delta(G)\right) \tag{3.6}\\
& =\sum_{i=1}^{k}\left|A_{i}\right|+\sum_{i=1}^{k} \delta(G) \leq|C|+\tau(G) \delta(G)=\tau(G)[1+\delta(G)]
\end{align*}
$$

When $\delta(G)>0$ it is not difficult to characterize the graphs G such that $\alpha(G)=\tau(G)[1+\delta(G)]$. Let τ and δ be positive numbers and let $H^{-}(\tau, \delta)$ and $H^{+}(\tau, \delta)$ be the graphs

on the vertex set $V\left(H^{-}(\tau, \delta)\right)=V\left(H^{+}(\tau, \delta)\right)=V_{0} \cup V_{1} \cup \cdots \cup V_{\tau}$ where $V_{0}=$ $\left\{v_{1}, v_{2}, \ldots, v_{\tau}\right\}, V_{i}=\left\{v_{1}^{i}, \ldots, v_{\delta+1}^{i}\right\}$ for all $i=1, \ldots, \tau$ and edge sets

$$
E\left(H^{-}(\tau, \delta)\right)=\left(\bigcup_{i=1}^{\tau}\left\{\left\{v_{i}, v_{j}^{i}\right\} \mid 1 \leq j \leq \delta+1\right\}\right)
$$

and

$$
E\left(H^{+}(\tau, \delta)\right)=E\left(H^{-}(\tau, \delta)\right) \cup\left\{\left\{v_{i}, v_{j}\right\} \mid 1 \leq i \neq j \leq \tau\right\} .
$$

A set of edges in a graph G is called independent or a matching if no two of them have a vertex in common. A pairing by an independent set of edges of all the vertices of a graph G is called a perfect matching.

Corollary (3.7). Let G be a graph without isolated vertices.
(i) If $\delta(G)>0$, then $\alpha(G)=\tau(G)[1+\delta(G)]$ if and only if

$$
E\left(H^{-}(\tau, \delta)\right) \subseteq E(G) \subseteq E\left(H^{+}(\tau, \delta)\right)
$$

where $\tau=\tau(G)$ and $\delta=\delta(G)$.
(ii) If $\delta(G)=0$ and $\alpha(G)=\tau(G)$, then G has a perfect matching.

Proof. We use the same notation as in the proof of Theorem (3.1).
(i) Since $\delta(G)>0$ and $\alpha(G)=\tau(G)[1+\delta(G)]$, then using equation (3.6) we can conclude that $k=\tau(G)$.

Following the proof of Theorem (3.1), we have that $\left|C \cap M^{\prime}\right| \leq 1$ for all M^{\prime} maximal stable sets. Moreover, for all $u \in C$ there exists a M^{\prime} maximal stable set with $C \cap M^{\prime}=\{u\}$. Thus, the equation (3.3) reduces to $|M \cap N(u)| \leq 1+\delta(G)$ for all $u \in C$, where $M=V(G) \backslash C$. On the other hand, since $M=\cup_{u \in C}(M \cap$
$N(u))$ and $\alpha(G)=\tau(G)[1+\delta(G)]$, then $|M \cap N(u)|=1+\delta(G)$ for all $u \in C$ and $(M \cap N(v)) \cap(M \cap N(u))=\emptyset$ for all $u \neq v \in C$. Furthermore, since M is a stable set, then $E\left(H^{-}(\tau(G), \delta(G))\right) \subseteq E(G) \subseteq E\left(H^{+}(\tau(G), \delta(G))\right)$.

Finally, note that if $E\left(H^{-}(\tau, \delta)\right) \subseteq E(G) \subseteq E\left(H^{+}(\tau, \delta)\right)$ for some $\tau>0$ and $\delta>0$, then clearly $\alpha(G)=\tau(G)[1+\delta(G)]$.
(ii) Following the proof of Theorem (3.1) we have that (ii) reduces to prove that for all $i=1, \ldots, k$ the induced subgraph $G_{i}=G\left[A_{i} \cup B_{i}\right]$ has a perfect matching, that is, $\nu\left(G_{i}\right)=\left|A_{i}\right|=\left|B_{i}\right|$ for all $i=1, \ldots, k$.

Since G_{i} is a bipartite graph (A_{i} and B_{i} are stable sets of G), then by Konig's theorem $\nu\left(G_{i}\right)=\tau\left(G_{i}\right)$. Hence, we only need to prove that $\left|A_{i}\right|=\left|B_{i}\right|$ and $\tau\left(G_{i}\right)=\left|A_{i}\right|$ for all $i=1, \ldots, k$.

First, since $C=\sqcup_{i=1}^{k} A_{i}$ and $M=\sqcup_{i=1}^{k} B_{i}$, then $\sum_{i=1}^{k}\left|A_{i}\right|=\tau(G)=\alpha(G)=$ $\sum_{i=1}^{k}\left|B_{i}\right|$. On the other hand, since $\delta(G)=0$, then the equation (3.5) reduces to $\left|A_{i}\right| \leq\left|B_{i}\right|$ and therefore $\left|A_{i}\right|=\left|B_{i}\right|$ for all $i=1, \ldots, k$.

Finally, we will prove that $\tau\left(G_{i}\right)=\left|A_{i}\right|$ for all $i=1, \ldots, k$. Since A_{i} is a vertex cover of G_{i}, then $\tau\left(G_{i}\right) \leq\left|A_{i}\right|$. Furthermore, if $\tau\left(G_{i}\right)<\left|A_{i}\right|$, then there exist a stable set N of G_{i} with $|N|>\left|A_{i}\right|$. Since $M \cap N\left(\cup_{j=1}^{i} C_{j}\right)=\cup_{j=1}^{i}\left(M \cap N\left(C_{i}\right)\right)=$ $\cup_{j=1}^{i} M \backslash M_{j}$, then $N \cup\left(T_{i} \backslash A_{i}\right)=\left(N \cap A_{i}\right) \cup M_{i} \cup\left(C_{i} \backslash A_{i}\right) \cup\left(N \cap B_{i}\right) \subset T_{i} \cup\left(N \cap B_{i}\right)$ is a stable set of $\left(N\left(C_{i} \backslash A_{i}\right) \cap B_{i}=\emptyset\right)$ of G with $\left|T_{i}\right|-\left|A_{i}\right|+|N|>\left|T_{i}\right|=\alpha(G)$ vertices; a contradiction.
(3.1) B-graphs. A graph is called a B-graph if every vertex belongs to a maximum stable set (that is, to a stable set of largest size). This concept was introduced by Berge in [1].

The σ_{v}-cover number of a graph, denoted by $\sigma_{v}(G)$, is the maximum natural number m, such that every vertex of G belongs to a maximal independent set with at least m vertices. Clearly, G is a B-graph if and only if $\alpha(G)=\sigma_{v}(G)$ if and only if $\delta(G)=0$, where $\delta(G)=\alpha(G)-\sigma_{v}(G)$.

Now we define two invariants that measure when a graph is a B-graph or a τ-critical graph. Let

$$
\alpha_{\text {core }}(G)=\bigcap_{\left|\mathcal{M}_{i}\right|=\alpha(G)}^{\text {stable set }} \mathcal{M}_{i} \text { and } \tau_{\text {core }}(G)=\bigcap_{\left|\mathcal{C}_{i}\right|=\tau(G)}^{\text {vertex cover }} \mathcal{C}_{i}
$$

be the intersection of all the maximum stable sets and of all the minimum vertex covers of G, respectively. Also, let $B_{\alpha \cap \tau}=V(G) \backslash\left(\alpha_{\text {core }}(G) \cup \tau_{\text {core }}(G)\right)$.

Example (3.1.1). To illustrate the concepts of $\alpha_{\text {core }}(G), \tau_{\text {core }}(G)$ and $B_{\alpha \cap \tau}$ consider the following graph:

since $\alpha(G)=4, \tau(G)=4$ and $\left\{v_{2}, v_{5}, v_{7}, v_{8}\right\},\left\{v_{2}, v_{6}, v_{7}, v_{8}\right\},\left\{v_{3}, v_{5}, v_{7}, v_{8}\right\}$, $\left\{v_{3}, v_{6}, v_{7}, v_{8}\right\}$ are the maximum stable sets of G, then

- $\alpha_{\text {core }}(G)=\left\{v_{7}, v_{8}\right\}$,
- $\tau_{\text {core }}(G)=\left\{v_{1}, v_{4}\right\}$, and
- $B_{\alpha \cap \tau}=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}$.

Since M is a maximum stable set of G if and only if $C=V(G) \backslash M$ is a minimum vertex cover of G, then G is a B-graph if and only if $V(G)=$ $\bigcup_{\left|\mathcal{M}_{i}\right|=\alpha(G)}^{\text {stable set }} \mathcal{M}_{i}$ if and only if $\tau_{\text {core }}(G)=\bigcap_{\left|\mathcal{C}_{i}\right|=\tau(G)}^{\text {vertex cover }} \mathcal{C}_{i}=\emptyset$. Similarly, since a graph is τ-critical if and only if $\tau(G-v)<\tau(G)$ for all $v \in V(G)$ if and only if there exists a maximum stable set M_{v} of G such that $v \notin M_{v}$ for all $v \in v(G)$, then G is a τ-critical graph if and only if $\alpha_{\text {core }}(G)=\emptyset$.

Proposition (3.1.2). Let G be a graph, then

$$
V(G)=\alpha_{\text {core }}(G) \sqcup \tau_{\text {core }}(G) \sqcup B_{\alpha \cap \tau},
$$

furthermore

(i) $G\left[\alpha_{\text {core }}(G)\right]$ is a trivial graph,
(ii) $N\left(\alpha_{\text {core }}(G)\right) \subseteq \tau_{\text {core }}(G)$,
(iii) $G\left[B_{\alpha \cap \tau}\right]$ is both a τ-critical graph as well as a B-graph without isolated vertices, and
(iv) $\alpha(G)-\left|\alpha_{\text {core }}(G)\right| \leq \tau(G)-\left|\tau_{\text {core }}(G)\right|$.

Proof. Firstly, is clear that $\alpha_{\text {core }}(G) \cap \tau_{\text {core }}(G)=\emptyset$. Also, by the definition of $B_{\alpha \cap \tau}$ it is clear that $\alpha_{\text {core }}(G) \cap B_{\alpha \cap \tau}=\emptyset$ and $\tau_{\text {core }}(G) \cap B_{\alpha \cap \tau}=\emptyset$.
(i) Since $\alpha_{\text {core }}(G)$ is the intersection of stable sets, then $\alpha_{\text {core }}(G)$ is a stable set and therefore $G\left[\alpha_{\text {core }}(G)\right]$ is a trivial graph.
(ii) Since $\tau_{\text {core }}(G)=V(G) \backslash \bigcup_{\left|\mathcal{M}_{i}\right|=\alpha(G)}^{\text {stable set }} \mathcal{M}_{i}$ and $\alpha_{\text {core }}(G) \subset V(G) \backslash \tau_{\text {core }}(G)$, then $\alpha_{\text {core }}(G)$ is the set of isolated vertices of $G\left[V(G) \backslash \tau_{\text {core }}(G)\right]$. Therefore $N\left(\alpha_{\text {core }}(G)\right) \subseteq \tau_{\text {core }}(G)$.
(iii) Since $\alpha\left(G\left[B_{\alpha \cap \tau}\right]\right)=\alpha(G)-\left|\alpha_{\text {core }}(G)\right|, \tau\left(G\left[B_{\alpha \cap \tau}\right]\right)=\tau(G)-\left|\tau_{\text {core }}(G)\right|$ and $B_{\alpha \cap \tau}=V(G) \backslash\left(\alpha_{\text {core }}(G) \cup \tau_{\text {core }}(G)\right)$, then $\alpha_{\text {core }}\left(B_{\alpha \cap \tau}\right)=\emptyset$ and $\tau_{\text {core }}\left(B_{\alpha \cap \tau}\right)=\emptyset$. Therefore $G\left[B_{\alpha \cap \tau}\right]$ is a τ-critical graph and a B-graph without isolated vertices.
(iv) Since $G\left[B_{\alpha \cap \tau}\right]$ is a B-graph, then $\delta\left(G\left[B_{\alpha \cap \tau}\right]\right)=0$. Therefore, applying Theorem (3.1) to $G\left[B_{\alpha \cap \tau}\right]$,

$$
\alpha(G)-\left|\alpha_{\text {core }}(G)\right|=\alpha\left(G\left[B_{\alpha \cap \tau}\right]\right) \leq \tau\left(G\left[B_{\alpha \cap \tau}\right]\right)=\tau(G)-\left|\tau_{\text {core }}(G)\right| .
$$

Remark (3.1.3). If v is an isolated vertex, then $v \in \alpha_{\text {core }}(G)$, and if $\operatorname{deg}(v)>$ $\tau(G)$, then v does not belong to any stable set with $\alpha(G)$ vertices and therefore $v \in \tau_{\text {core }}(G)$. Note that in general the induced graph $G\left[B_{\alpha \cap \tau}\right]$ is not necessarily connected.

Corollary (3.1.4). ([1], Proposition 7) If G is a B-graph without isolated vertices, then G is a τ-critical graph.

Proof. Since G is a B-graph, then $\tau_{\text {core }}(G)=\emptyset$. Thus, by Proposition (3.1.2) (ii), $N\left(\alpha_{\text {core }}(G)\right)=\tau_{\text {core }}(G)=\emptyset$. Moreover, since G has no isolated vertices, then $\alpha_{\text {core }}(G)=\emptyset$. Therefore G is a τ-critical graph.

Remark (3.1.5). The bound of Proposition (3.1.2) (iv) improves the bound given in [9], Theorem 2.11, for the number of vertices in $\alpha_{\text {core }}(G)$.

Their result states that if G is a graph of order n and

$$
\alpha(G)>\frac{n+k-\min \left\{1,\left|N\left(\alpha_{\text {core }}(G)\right)\right|\right\}}{2}, \text { for some } k \geq 1
$$

then $\left|\alpha_{\text {core }}(G)\right| \geq k+1$. Moreover, if $n+k-\min \left\{1,\left|N\left(\alpha_{\text {core }}(G)\right)\right|\right\}$ is even, then $\left|\alpha_{\text {core }}(G)\right| \geq k+2$. Our result states that if G is a graph of order n and $\alpha(G) \geq \frac{n+k^{\prime}}{2}$ for some $k^{\prime} \geq 0$, then

$$
\left|\alpha_{\text {core }}(G)\right| \stackrel{(\mathrm{iv})}{\geq} \alpha(G)-\tau(G)+\left|\tau_{\text {core }}(G)\right|=2 \alpha(G)-n+\left|\tau_{\text {core }}(G)\right| \geq k^{\prime}+\left|\tau_{\text {core }}(G)\right|
$$

In order to compare both bounds we can write their bound in the following equivalent way: If G is a graph of order $n,\left|N\left(\alpha_{\text {core }}(G)\right)\right|=0\left(\left|N\left(\alpha_{\text {core }}(G)\right)\right| \geq 1\right)$ and

$$
\alpha(G) \geq\left\{\begin{array}{l}
\frac{n+(k+1)}{2}\left(\frac{n+(k+1)}{2}\right) \text { if } n+k \text { is odd } \\
\frac{n+(k+2)}{2}\left(\frac{n+k}{2}\right) \text { if } n+k \text { is even. }
\end{array}\right.
$$

for some $k \geq 1$, then

$$
\left|\alpha_{\text {core }}(G)\right| \geq\left\{\begin{array}{l}
k+1(k+2) \text { if } n+k \text { is odd } \\
k+2(k+1) \text { if } n+k \text { is even }
\end{array}\right.
$$

Since $\left|N\left(\alpha_{\text {core }}(G)\right)\right| \leq\left|\tau_{\text {core }}(G)\right|$ (Proposition (3.1.2) (ii)), then our bound improves their bound. Furthermore, the bounds are equivalent if and only if $\left|N\left(\alpha_{\text {core }}(G)\right)\right|=\left|\tau_{\text {core }}(G)\right|=0,1$.
3.1.6. Conjectures. In this section we present a conjecture that generalizes the result obtained from Theorem 3.1 when G is a B-graph. Before stating the conjecture we will introduce a new graph invariant.

Definition (3.1.7). The ω_{e}-clique covering number of G, denoted by $\omega_{e}(G)$, is the greatest natural number m so that every edge in G belongs to a clique of size at least m.

Example (3.1.8). In order to illustrate the previous concept consider the following graph:

For this graph we have that:

- $\omega(G)=\alpha(\bar{G})=4$ because $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a clique of G,
- $\omega_{e}(G)=2$ because the edge $\left\{v_{5}, v_{6}\right\}$ is not in any induced \mathcal{K}_{3} of G,
- $\alpha(G)=\omega_{e}(\bar{G})=4$ because $\left\{v_{1}, v_{6}, v_{8}, v_{9}\right\},\left\{v_{2}, v_{6}, v_{7}, v_{9}\right\},\left\{v_{3}, v_{5}, v_{7}, v_{10}\right\}$, and $\left\{v_{4}, v_{5}, v_{8}, v_{10}\right\}$ are stable sets of G, and
- $\sigma_{v}(\bar{G})=3$ because $\left\{v_{i-1}, v_{i}, v_{10-2 i}\right\}$ for $i=1,2,3$ and $\left\{v_{1}, v_{2}, v_{5}\right\},\left\{v_{1}, v_{4}, v_{7}\right\}$, $\left\{v_{3}, v_{4}, v_{9}\right\}$ are cliques of G.

The ω_{e}-clique covering and the σ_{v}-cover numbers of G satisfy the following two identities:

$$
\omega_{e}(G) \leq \sigma_{v}(\bar{G}) \leq \omega(G) \text { and } \omega_{e}(\bar{G}) \leq \sigma_{v}(G) \leq \alpha(G)
$$

Conjecture (3.1.9). Let G be a B-graph $\left(\sigma_{v}(G)=\alpha(G)\right)$ without isolated vertices, then

$$
\omega_{e}(G) \sigma_{v}(G) \leq|V(G)| .
$$

Furthermore, for all maximum stable sets M, there exist disjoint sets

$$
A_{j} \subset V(G) \text { for all } j=1, \ldots,|M|
$$

such that
(i) $\left|M \cap A_{j}\right|=1$ for all $j=1, \ldots,|M|$,
(ii) $G\left[A_{j}\right]$ is a clique of order $\omega_{e}(G)$ for all $i=1, \ldots,|M|$.

Remark (3.1.10). If G is a graph without isolated vertices, then $\omega_{e}(G) \geq 2$. Thus, if Conjecture (3.1.9) holds, then $2 \alpha(G) \leq|V(G)|$ when G is a B-graph without isolated vertices. On the other hand, Theorem (3.1) implies that if G is a B-graph without isolated vertices, then $\alpha(G) \leq \tau(G)$. Since $\tau(G)=$ $|V(G)|-\alpha(G)$, then Conjecture (3.1.9) implies the bound given in Theorem (3.1) when G is a B-graph.

Remark (3.1.11). A weaker version of Conjecture (3.1.9) is given in [7] and [8]. In these papers the authors prove that, if G is a graph with n vertices such that every vertex belongs to a clique of cardinality $q+1$ and a stable set of cardinality $p+1$, then $|V(G)| \geq p+q+\sqrt{4 p q}$. Using our terminology, this bound can be writen as

$$
\sigma_{v}(G)+\sigma_{v}(\bar{G})-2+2 \sqrt{\left(\sigma_{v}(G)-1\right)\left(\sigma_{v}(\bar{G})-1\right)} \leq|V(G)|
$$

Since $\sigma_{v}(G)+\sigma_{v}(\bar{G})-2+2 \sqrt{\left(\sigma_{v}(G)-1\right)\left(\sigma_{v}(\bar{G})-1\right)} \leq \max \left\{4\left(\sigma_{v}(G)-1\right), 4\left(\sigma_{v}(\bar{G})-\right.\right.$ $1)\}$, then in comparison with our bound, this bound is a bad lower bound for the number of vertices of a B-graph G.

Remark (3.1.12). If we do not assume that G is a B-graph, then Conjecture (3.1.9) is false. To see this fact, consider the following graph:

For this graph we have,

- $\alpha(G)=4$ because $\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}$ is a stable set,
- $\sigma_{v}(G)=3$ because $\left\{v_{1}, v_{6}, v_{7}\right\},\left\{v_{2}, v_{7}, v_{8}\right\},\left\{v_{3}, v_{5}, v_{8}\right\}$, and $\left\{v_{4}, v_{5}, v_{6}\right\}$ are stable sets,
- $\omega_{e}(G)=3$ because all the edges are in an induced \mathcal{K}_{3},
- $\omega(G)=4, \sigma_{e}(G)=3$ and $\omega_{v}(G)=3$ because $\bar{G} \cong G$, and
- G is not a B-graph because $\sigma_{v}(G)=3 \neq 4=\alpha(G)$.

However,

$$
\omega_{e}(G) \sigma_{v}(G)=(3)(3)=9>8=n .
$$

Hypergraphs. A hypergraph \mathcal{H} is a pair $\mathcal{H}=(V, \mathcal{E})$ where V is a set of elements, called vertices, and \mathcal{E} is a set of non-empty subsets of V called hyperedges. We say that a hypergraph $\mathcal{H}=(V, \mathcal{E})$ is a r-uniform hypergraph if $|E|=r$ for all $E \in \mathcal{E}$. A vertex $v \in V$ of a hypergraph $\mathcal{H}=(V, \mathcal{E})$ is called isolated if $v \notin E$ for all $E \in \mathcal{E}$.

A subset M of vertices of \mathcal{H} is called a stable set if no two vertices in M belong to a hyperedge of \mathcal{H}. We say that M is a maximal stable set if it is maximal with respect to inclusion. The stability number of a hypergraph \mathcal{H} is given by

$$
\alpha(\mathcal{H})=\max \{|M| \mid M \subset V(\mathcal{H}) \text { is a stable set in } \mathcal{H}\} .
$$

The σ_{v}-cover number of a hypergraph \mathcal{H}, denoted by $\sigma_{v}(\mathcal{H})$, is the maximum natural number m such that every vertex of \mathcal{H} belongs to a maximal independent set of \mathcal{H} with at least m vertices.

The next conjecture was stated in [13], Conjecture 3.2.12.
Conjecture (3.1.13). Let $\mathcal{H}=(V, \mathcal{E})$ be a r-uniform hypergraph without isolated vertices. If $\sigma_{v}(\mathcal{H})=\alpha(\mathcal{H})$, then

$$
r \sigma_{v}(\mathcal{H}) \leq|V| .
$$

The last conjecture follows from Conjecture (3.1.9) by the following argument: Let \mathcal{H} be a hypergraph and consider the graph $G(\mathcal{H})$ defined on the same vertex set of \mathcal{H} and for which $v_{1}, v_{2} \in G(\mathcal{H})$ are adjacent if and only if they are adjacent in \mathcal{H}.

Clearly $G(\mathcal{H})$ has the same stability number as \mathcal{H}. Also, observe that $G(\mathcal{H})$ and \mathcal{H} have the same σ_{v}-cover number. Moreover, if \mathcal{H} is a r-uniform hypergraph, then $r \leq \omega_{e}(G(\mathcal{H}))$. Applying Conjecture (3.1.9) to the graph $G(\mathcal{H})$, we have that

$$
r \sigma_{v}(\mathcal{H}) \leq \omega_{e}(G(\mathcal{H})) \sigma_{v}(G(\mathcal{H})) \leq|V| .
$$

Acknowledgment

The authors gratefully acknowledge the valuable and helpful comments pointed out by the anonymous referee.

Received January 26, 2007
Final version received May 21, 2010

Departamento de Matemáticas
Centro de Investigación y de Estudios Avanzados del IPN
Apartado Postal 14-740
07000 México City, D.F.
Mexico
igitler@math.cinvestav.mx,
cvalencia75@gmail.com

References

[1] C. Berge, Some common properties for regularizable graphs, edge-critical graphs and Bgraphs, Ann. Discrete Math. 12 (1982), 31-44.
[2] N. Bougard and G. Joret, Turán's Theorem and k-connected graphs, J. Graph Theory, 58 (1), (2008), 1-13.
[3] J. Christophe, S. Dewez, J.-P. Doignon, S. Elloumi, G. Fasbender, P. Grégoire, D. Huygens, M. Labbé, H. Mélot and H. Yaman, Linear Inequalities among Graph Invariants: using GraPHedron to uncover optimal relationships, Networks 52 (4) (2008), 287-298.
[4] I. Gitler, C. E. Valencia, Bounds for invariants of edge-rings, Comm. Algebra, 33 (2005) 1603-1616.
[5] I. Gitler, C.E. Valencia, Bounds for graph invariants, arXiv:math.CO/0510387.
[6] I. Gitler, C. E. Valencia, On bounds for the stability number of graphs, Morfismos 10 (2) (2006), 41-58.
[7] F. Galvin, Another note on cliques and independent sets, J. Graph Theory 35 (3), (2000), 173-175.
[8] R. C. Entringer, W. Goddard, M. A. Henning, A note on cliques and independent sets, J. Graph Theory 24 (1), (1997), 21-23.
[9] V. E. Levit, E. Mandrescu, Combinatorial properties of the family of maximum stable sets of a graph, Discrete Applied Math. 117 (2002), 149-161.
[10] L. Lovász and M. D. Plummer, Matching Theory, North-Holland Math. Studies, Vol. 121, North-Holland Publishing Co., Amsterdam, 1986, Ann. Discrete Math. 29.
[11] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Pub. Vol. XXXVIII, Amer. Math. Soc, Providence, R. I., 1962.
[12] P. Turân, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436452.
[13] C. E. Valencia, Studies on graded rings associated to graphs, Ph.D. Thesis, (2003) cinvestav-ipn, México, D. F.
[14] R. Villarreal, Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics 238, Marcel Dekker, Inc., New York, 2001.
[15] K. Zarankiewicz, Sur les rélations symétriques dans l'ensemble fini, Colloq. Math. 1 (1948), 10-14.

SOME REMARKS ON ROBIN'S INEQUALITY

ALEKSANDER GRYTCZUK

Abstract

In this paper we give an elementary and short proof that the Robin inequality (R : $\sigma(n)<e^{\gamma} n \log \log n$ is true under some condition. Namely, we prove that for every positive integers $n=2^{\alpha} m, \alpha \geq 2,(2, m)=1$ and $m=m_{1} M>\frac{1}{2} e^{e^{9}}$ the inequality (R) is true if the integer m_{1} of the form $m_{1}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$, satisfies the inequality $I\left(m_{1}\right)=\prod_{j=1}^{2}\left(1-1 / p_{j}^{1+\alpha_{j}}\right)<\frac{49}{50}$. For $n=2 m,(2, m)=1$ where $m>\frac{3^{9}}{2}$ and for such m inequality (R) has been proved in our paper [4]. The Robin inequality (R) for all positive integers $n \geq$ 5041 implies Riemann Hypothesis. The positive integers $n \in\left[5041, e^{e^{9}}\right)$ also satisfy the inequality (R). This fact has been checked by computer calculation.

1. Introduction

The Riemann zeta function $\zeta(s)$ for $s=\sigma+i t$ is defined by the Dirichlet series

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}},
$$

which converges for $\sigma>1$ and it has analytic continuation to the complex plane with one singularity, a simple pole with residue 1. In 1859 Riemann [11] conjectured that the nonreal zeros of the Riemann zeta function $\zeta(s)$ all lie on the line $s=\frac{1}{2}+i t$.

The connection of the Riemann hypothesis with prime numbers has been considered by Gauss. Let

$$
\Pi(x)=\sum_{1<p \leq x} 1
$$

then it is well-known that the Riemann hypothesis is equivalent to the assertion that for each $\varepsilon>0$ there is a positive constant $C=c(\varepsilon)$ such that

$$
|\Pi(x)-L i(x)| \leq c(\varepsilon) x^{\frac{1}{2}+\varepsilon}
$$

where

$$
L i(x)=\int_{2}^{x} \frac{d t}{\log t}
$$

The Riemann zeta-function is a special case of an L-function. These L functions are connected with many important and difficult problems in number theory, algebraic geometry, topology, representation theory and modern physics, see: Berry and Keating [1], Katz and Sarnak [7], Murty [9]. It is known that the Riemann hypothesis is related to estimates of error terms

[^3]associated with the Farey sequence of reduced fractions in the unit interval. Important examples connected with these problem have been given by Yoshimoto in the papers [14], [15], [16] and Kanemitsu and Yoshimoto [5], [6].

In 1984 Robin [12] proved a very interesting and important criterion:
Criterion (1.1) (Robin). The Riemann Hypothesis is true if and only if

$$
\begin{equation*}
\sigma(n)<e^{\gamma} n \log \log n, \tag{R}
\end{equation*}
$$

for all positive integers $n \geq 5041$, where

$$
\sigma(n)=\sum_{d \mid n} d,
$$

and $\gamma \approx 0.57728$ is Euler's constant.
In 2002 Lagarias [8] proved the following criterion:
Criterion (1.2) (Lagarias). Let $H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$. The Riemann Hypothesis is true if and only if

$$
\begin{equation*}
\sigma(n) \leq H_{n}+\exp H_{n} \log H_{n}, \tag{L}
\end{equation*}
$$

for each positive integer $n \geq 1$, and with equality in (L) only for $n=1$.
In the same paper Lagarias proved that for all positive integers $n \geq 3$ we have
(L_{1}) $\quad e^{\gamma} n \log \log n \leq \exp H_{n} \log H_{n}$.
From (L), (L_{1}) and (R) follows that Lagarias' criterion is an extension of the Robin criterion. Many others criterions and important results connected with the Riemann hypothesis have been proved and these results have been described by Conrey in [2].

In our paper [4] we gave an elementary proof that the Robin inequality (R) is true for all even positive integers $n=2 m,(2, m)=1$ such that $m>\frac{3^{9}}{2}$ is odd. Namely, the following result has been proved in [4]:

Theorem (1.3) ([4]). Let $n=2 m,(2, m)=1$. Then for all odd positive integers $m>\frac{3^{9}}{2}$ we have

$$
\begin{equation*}
\sigma(2 m)<\frac{39}{40} e^{\gamma} 2 m \log \log 2 m, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma(m)<e^{\gamma} m \log \log m . \tag{1.5}
\end{equation*}
$$

In the proof of this result use was made of the following Rosser-Schoenfeld's inequality ([13], [10], p. 169):

$$
\begin{equation*}
\frac{n}{\varphi(n)} \leq e^{\gamma}\left(\log \log n+\frac{2.5}{e^{\gamma} \log \log n}\right) \tag{1.6}
\end{equation*}
$$

where φ is the Euler totient function and Theorem (1.3) is true for all positive integers $n \geq 3$ except $n=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 19 \times 23$. In this case the constant $c=2.5$ must be replaced by the constant $c_{1}=2.50637<2.51$. Hence, for all positive integers $n \geq 3$ we have

$$
\begin{equation*}
\frac{n}{\varphi(n)}<e^{\gamma} \log \log n\left(1+\frac{2.51}{e^{\gamma}(\log \log n)^{2}}\right) \tag{1.7}
\end{equation*}
$$

Let $n=\prod_{j=1}^{k} p_{j}^{\alpha_{j}}, p_{j} \in P$, where P is the set of prime numbers and $\alpha_{j} \geq 1$ are integers for each $j=1,2, \ldots, k$.

The following identity has been used in the proof of the Theorem (1.3):

$$
\begin{equation*}
\frac{\sigma(n)}{n}=\prod_{j=1}^{k}\left(1-\frac{1}{p_{j}^{1+\alpha_{j}}}\right) \frac{n}{\varphi(n)}, \tag{1.8}
\end{equation*}
$$

where σ is the sum divisors function and φ is the Euler totient function.
We note that in a recently published paper [3] by Choie, Lichardopol, Moree and Solé has been proved that if $n \geq 37$ does not satisfy Robin's criterion it must be even and is neither squarefree nor squarefull, moreover that n must be divisible by a fifth power >1. As a consequence they proved that the Riemann Hypothesis holds true iff every natural number divisible by a fifth power >1 satisfies Robin's inequality.

In this paper under some condition we give a short proof of the Robin inequality (R) for the remains case. Namely, we prove the following theorem:

Theorem (1.9). The Robin inequality (R) is true for all positive integers $n=2^{\alpha} m$, where $(2, m)=1, \alpha \geq 2$ and $m=m_{1} M>\frac{1}{2} e^{e^{9}}$, if for odd positive integer m_{1}, such that $\omega\left(m_{1}\right)=2$, where $\omega\left(m_{1}\right)$ is the number of all distinct primes of m_{1}, the inequality

$$
I\left(m_{1}\right)=\prod_{j=1}^{2}\left(1-\frac{1}{p_{j}^{1+\alpha_{j}}}\right)<\frac{49}{50}
$$

is satisfied.

2. Basic lemmas

In the proof of the Theorem (1.9) we use of the following Lemmas:
Lemma (2.1). Let $n=2^{\alpha} m,(2, m)=1$, and $\omega(m)$ is the number of distinct primes of m. If $\omega(m)=1$, then for every odd positive integer $m>\frac{1}{4} e^{e^{2}}$ and each fixed integer $\alpha \geq 2$, we have

$$
\begin{equation*}
\sigma\left(2^{\alpha} m\right)<e^{\gamma} 2^{\alpha} m \log \log 2^{\alpha} m . \tag{2.2}
\end{equation*}
$$

Lemma (2.3) ([4], Thm. 2). If for each odd positive integer $m>m_{0}$ the following inequality

$$
\begin{equation*}
\sigma(2 m)<\frac{3}{4} e^{\gamma} 2 m \log \log 2 m \tag{2.4}
\end{equation*}
$$

is true, then for all integers $n=2^{\alpha} m,(2, m)=1, m>m_{0}$ and every fixed integer $\alpha \geq 2$ we have

$$
\begin{equation*}
\sigma\left(2^{\alpha} m\right)<e^{\gamma} 2^{\alpha} m \log \log 2^{\alpha} m . \tag{2.5}
\end{equation*}
$$

Proof of Lemma (2.1). First we note that if $n=2^{\alpha} m,(2, m)=1$ and $\omega(m)=$ 1, $m>\frac{1}{4} e^{e^{2}}$ then we have

$$
\begin{equation*}
m=p_{1}^{\alpha_{1}}, \alpha \geq 2 \quad \text { and } \quad p_{1}^{\alpha_{1}}>\frac{1}{4} e^{e^{2}} \tag{2.6}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sigma\left(2^{\alpha} m\right)=\sigma\left(2^{\alpha}\right) \sigma(m)=\left(2^{\alpha+1}-1\right) \sigma\left(p_{1}^{\alpha_{1}}\right)=\left(2^{\alpha+1}-1\right) \frac{p_{1}^{1+\alpha_{1}}-1}{p_{1}-1} \tag{2.7}
\end{equation*}
$$

then by (2.6), (2.7) and the fact that $p_{1}-1 \geq \frac{2}{3} p_{1}$ it follows that

$$
\begin{equation*}
\sigma\left(2^{\alpha} m\right)<2^{\alpha+1} \times \frac{3}{2} p_{1}^{\alpha_{1}}=3 \times 2^{\alpha} m . \tag{2.8}
\end{equation*}
$$

On the other hand by the assumption it follows that $2^{\alpha} m>2^{2} \times \frac{1}{4} e^{e^{2}}>e^{e^{2}}$. Hence, we have

$$
\begin{equation*}
e^{\gamma} \log \log 2^{\alpha} m>1.6 \log \log e^{e^{2}}>1.6 \times 2=3.2>3 . \tag{2.9}
\end{equation*}
$$

From (2.9) and (2.8) we get

$$
\sigma\left(2^{\alpha} m\right)<e^{\gamma} 2^{\alpha} m \log \log 2^{\alpha} m,
$$

and the proof of the Lemma (2.1) is finished.
Lemma (2.10). Let m be an odd positive integer and let $m=\prod_{j=1}^{k} p_{j}^{\alpha_{j}}$, If $I(m)+\frac{2.51}{e^{\gamma}(\log \log 2 m)^{2}}<1$, for $m>m_{o}$, where $I(m)=\prod_{j=1}^{k}\left(1-\frac{1}{p_{j}^{1+\alpha_{j}}}\right)$ then

$$
\begin{equation*}
\frac{\sigma(2 m)}{2 m}<\frac{3}{4} e^{\gamma} \log \log 2 m \tag{2.11}
\end{equation*}
$$

Proof. From the identity (1.8), Rosser-Schoenfeld's inequality (1.6) and the assumption of the Lemma (2.10) it follows that

$$
\begin{equation*}
\frac{\sigma(2 m)}{2 m}<\frac{3}{4} I(m)\left(1+\frac{2.51}{e^{\gamma}(\log \log 2 m)^{2}}\right) e^{\gamma} \log \log 2 m . \tag{2.12}
\end{equation*}
$$

Since $I(m)<1$ then by the assumption of the Lemma (2.10) it follows that

$$
\begin{equation*}
I(m)\left(1+\frac{2.51}{e^{\gamma}(\log \log 2 m)^{2}}\right)<I(m)+\frac{2.51}{e^{\gamma}(\log \log 2 m)^{2}}<1 . \tag{2.13}
\end{equation*}
$$

Hence, from (2.13) and (2.12) we obtain the inequality 2.11.
Lemma (2.14). Let $n=2 m_{1}$ and m_{1} be an odd positive integer such that $\omega\left(m_{1}\right)=2$. Then for $m_{1}>\frac{1}{2} e^{e^{3}}$ we have

$$
\begin{equation*}
\frac{\sigma\left(2 m_{1}\right)}{2 m_{1}}<\frac{3}{4} e^{\gamma} \log \log 2 m_{1} . \tag{2.15}
\end{equation*}
$$

Proof. From the assumption of Lemma (2.14) we have that $m_{1}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$ and we get

$$
\begin{equation*}
\frac{\sigma\left(2 m_{1}\right)}{2 m_{1}}=\frac{\sigma(2) \sigma\left(m_{1}\right)}{2 m_{1}}=\frac{3}{2} \frac{\left(p_{1}^{1+\alpha_{1}}-1\right)\left(p_{2}^{1+\alpha_{2}}-1\right)}{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\left(p_{1}-1\right)\left(p_{2}-1\right)} . \tag{2.16}
\end{equation*}
$$

Since

$$
\begin{equation*}
p_{1}-1 \geq \frac{2}{3} p_{1}, \quad p_{2}-1 \geq \frac{4}{5} p_{2}, \quad p_{1}^{1+\alpha_{1}}-1<p_{1}^{1+\alpha_{1}}, \quad p_{2}^{1+\alpha_{2}}-1<p_{2}^{1+\alpha_{2}} \tag{2.17}
\end{equation*}
$$

then by (2.17) and (2.16) it follows that

$$
\begin{equation*}
\frac{\sigma\left(2 m_{1}\right)}{2 m_{1}}<\frac{3}{2} \times \frac{3}{2} \times \frac{5}{4}=\frac{3}{4} \times \frac{15}{4} . \tag{2.18}
\end{equation*}
$$

On the other hand since $e^{\gamma}>1.6$ and $2 m_{1}>e^{e^{3}}$, hence

$$
\begin{equation*}
e^{\gamma} \log \log 2 m_{1}>1.6 \times 3=4.8>\frac{15}{4} . \tag{2.19}
\end{equation*}
$$

From (2.18) and (2.19) we get

$$
\begin{equation*}
\frac{\sigma\left(2 m_{1}\right)}{2 m_{1}}<\frac{3}{4} \times \frac{15}{4}<\frac{3}{4} e^{\gamma} \log \log 2 m_{1}, \tag{2.20}
\end{equation*}
$$

and the proof of Lemma (2.14) is complete.

3. Proof of the Theorem (1.9)

From Lemma (2.1), Lemma (2.3) and Lemma (2.14) follows that we can assume that $\omega(m)=k>2$. Applying Lemma (2.3) we prove the inequality (2.4) for all odd positive integers $m>\frac{1}{2} e^{e^{9}}$.

Let $n=2 m,(2, m)=1$ and let

$$
\begin{equation*}
m=\prod_{j=1}^{k} p_{j}^{\alpha_{j}}, \quad I(m)=\prod_{j=1}^{k}\left(1-\frac{1}{p_{j}^{1+\alpha_{j}}}\right), \quad k=\omega(m)>2 . \tag{3.1}
\end{equation*}
$$

From the identity (1.8) we obtain

$$
\frac{\sigma(2 m)}{2 m}=\left(1-\frac{1}{2^{2}}\right) I(m) \frac{2 m}{\varphi(2 m)}=\frac{3}{4} I(m) \frac{2 m}{\varphi(2 m)} .
$$

Now, applying to $\frac{2 m}{\varphi(2 m)}$ the Rosser-Schoenfeld inequality (1.7) we get

$$
\begin{equation*}
\frac{\sigma(2 m)}{2 m}<\frac{3}{4}\left(I(m)+\frac{2.51}{e^{\gamma}(\log \log 2 m)^{2}}\right) e^{\gamma} \log \log 2 m \tag{3.2}
\end{equation*}
$$

On the other hand by the assumption that $m>\frac{1}{2} e^{e^{9}}$ and the inequality $e^{\gamma}>1.6$, $\alpha \geq 2$, it follows that

$$
\begin{equation*}
e^{\gamma}(\log \log 2 m)^{2}>1.6\left(\log \log 2 \times \frac{1}{2} e^{e^{9}}\right)^{2}>1.6 \times 81>50 \times 2.51 \tag{3.3}
\end{equation*}
$$

From (3.3) we get

$$
\begin{equation*}
\frac{2.51}{e^{\gamma}(\log \log 2 m)^{2}}<\frac{1}{50} \tag{3.4}
\end{equation*}
$$

Since $\omega(m)>2$, then we have $m=m_{1} M$, where $\omega\left(m_{1}\right)=2$. Moreover, we have

$$
\begin{equation*}
I(m)=\prod_{j=1}^{k}\left(1-\frac{1}{p_{j}^{1+\alpha_{j}}}\right)=I\left(m_{1}\right) I(M) \tag{3.5}
\end{equation*}
$$

By the assumption of the Theorem (1.9) it follows that $I\left(m_{1}\right)<\frac{49}{50}$, thus from (3.5) we obtain

$$
\begin{equation*}
I(m)<\frac{49}{50} I(M)<\frac{49}{50} \tag{3.6}
\end{equation*}
$$

because $I(M)<1$.
From (3.6) and (3.4) we have

$$
\begin{equation*}
I(m)+\frac{2.51}{e^{\gamma}(\log \log 2 m)^{2}}<\frac{49}{50}+\frac{1}{50}=1 . \tag{3.7}
\end{equation*}
$$

By (3.7), (3.2) and Lemma (2.10) it follows that
(3.8) $\frac{\sigma(2 m)}{2 m}<\frac{3}{4} e^{\gamma} \log \log 2 m \times\left(I(m)+\frac{2.51}{e^{\gamma}(\log \log 2 m)^{2}}\right)<\frac{3}{4} e^{\gamma} \log \log 2 m$.

From (3.8) and Lemma (2.3) we obtain that the proof of the Theorem (1.9) is complete.

Acknowledgment

I would like to thank the Referee for his valuable remarks for the improvement of this paper.

Department of Number Theory and Mathematical Teaching
Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra ul. Prof.Szafrana 4a
65-516 Zielona Góra, Poland

Department of Mathematics and Applications
Jan Pawee II Western Higher School of
International Marketing and Finance
in Zielona Góra,
Ul. Plac SŁowiañski 9
65-069 Zielona Góra,Poland
E-MAIL: algrytczuk@onet.pl,
A.GRYTCZUK@WMIE.UZ.ZGORA.PL

Received January 21, 2009,
Final version received May 25, 2010

References

[1] M. V. Berry and J. P. Keating, The Riemann zeros and eigenvalue asymptotics, SIAM Review 41 (1999) 236-266.
[2] J. B. Conrey, The Riemann hypothesis, Notices Amer. Math. Soc. 50 (2003), 341-353.
[3] Y. J. Choie, N. Lichardopol, P. Moree and P. Sole', On Robin's criterion for the Riemann hypothesis, J. Théorie des Nombres de Bordeaux, 19 (2007) 357-372.
[4] Grytczuk A., Upper bound for sum of divisors function and the Riemann hypothesis,Tsukuba J.Math.31.1(2007) 67-75.
[5] S. KANEMITSU AND M. Yoshimoto, Farey series and the Rieman hypothesis, Acta Arith. 75 (1996), 351-374.
[6] S. Kanemitsu and M. Yoshimoto, Farey series and the Riemann hypothesis III, Ramanujan J. 1 (1997) 363-378.
[7] N. Katz and P. Sarnak, Zeros of zeta functions and symmetry, Bull. Amer. Math. Soc. 36 (1999), 1-26.
[8] J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Amer. Math. Monthly, 109 (2002), 534-543.
[9] M. R. Murty, A motivated introduction to the Laglands program, in: Advances in Number Theory, Oxford Univ. Press, 1993, 37-66.
[10] P. Ribenboim, The Little Book of Big Primes, Springer-Verlag, 1991 (Polish edition, WNT Warszawa,1997).
[11] B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber. Akad. Berlin (1859), 671-680.
[12] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.
[13] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
[14] M. Yoshimoto, Farey series and the Riemann hypothesis II, Acta math. Hung. 78 (1990), 287-304.
[15] M. Yoshimoto, Farey series and the Riemann hypothesis IV, Acta Math. Hung. 87 (2000), 109-119.
[16] M. Yoshimoto, Abelian theorems, Farey series and the Riemann hypothesis, Ramanujan J. 8 (2004), 131-145.

ON THE CHARACTERIZATION OF THE KNEADING SEQUENCES ASSOCIATED TO INJECTIVE LORENZ MAPS OF THE INTERVAL AND TO ORIENTATION PRESERVING HOMEOMORPHISMS OF THE CIRCLE

Dedicated to Michael Robert Hermann (1942-2000)

RAFAEL LABARCA AND LAUTARO VÁSQUEZ

Abstract

In this paper we characterize the kneading sequences associated to injective Lorenz maps of the interval and to orientation preserving homeomorphisms of the circle.

1. Introduction

It is well known that the evolution of many processes can be dynamically explained by the iteration of a map on a interval (see for instance [7], [19]). In several other situations the dynamics of a higher dimensional system can be reduced to the study of a map defined on an interval (see for instance [2], [6], [9], [15], [14]). This is the case for the geometric model which R.F. Williams [20] proposes to explain the existence of the strange attractor numerically detected by E. N. Lorenz [17] for a quadratic vector field defined on \mathbb{R}^{3}. By assuming that certain foliations remain invariant by the Poincaré map associated to a doubly homoclinic loop of the vector field, the behavior of the flow in a neighborhood of the loop can be understood from the iteration of a map defined on an interval. In figure 1 we give a sketch of the geometric Lorenz attractor and in figure 2 we represent the one dimensional model associated to the attractor according to the orientation of the vector field along the homoclinic loop.

The increasing and discontinuous one dimensional map given in figure 2 was used by Guckenheimer and Williams ([6]) to show the existence of uncountable many classes of non-equivalent geometric Lorenz attractors. The evidence of the non-equivalence follows from the kneading sequences associated to these one dimensional maps: Each one of these maps is semi-conjugated to an ordered subshift of the shift map, σ, defined on the set, Σ_{2}, of sequences $\theta: \mathbb{N}_{0} \rightarrow$ $\{0,1\}$ endowed with the metric $d(\theta, \xi)=\frac{1}{2^{n}}$, where $n=\min \left\{k \in \mathbb{N}: \theta_{k} \neq \xi_{k}\right\}$ and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. In fact, if we consider in Σ_{2} the lexicographical order $(\theta<\alpha$ if $\theta_{i}=\alpha_{i}, i=0,1, \ldots, k-1$ and $\theta_{k}=0, \alpha_{k}=1$) we can define the minimal (resp. maximal) sequences in Σ_{2} as those $a \in \Sigma_{0}$ (resp. $b \in \Sigma_{1}$) such that $\sigma^{i}(a) \geq a$ (resp. $\left.\sigma^{i}(b) \leq b\right)$ for all $i \in \mathbb{N}$ (here $\left.\Sigma_{i}=\left\{\theta \in \Sigma_{2}: \theta(0)=i\right\}, i=0,1\right)$. For a, $b \in \Sigma_{2}$ let $[a, b]=\left\{\theta \in \Sigma_{2} ; a \leq \theta \leq b\right\}$ be the closed interval defined by the

[^4]

Figure I. Geometric Lorenz attractor

Figure 2. One-dimensional return map
lexicographical order in Σ_{2}. Let Min_{2} (resp. Max_{2}) denote the set of minimal (resp. maximal) sequences in Σ_{0} (resp. Σ_{1}). We define the Lexicographical world (see [11, 12] and [13]) as $L W=\left\{(a, b) \in \operatorname{Min}_{2} \times \operatorname{Max}_{2},\{a, b\} \subset \Sigma[a, b]\right\}$ where

$$
\begin{aligned}
\Sigma[a, b] & =\bigcap_{i=0}^{\infty} \sigma^{-i}([a, 0 b] \cup[1 a, b]) \\
& =\left\{\theta \in \Sigma_{2}: \sigma^{i}(\theta) \in[a, 0 b] \cup[1 a, b] \text { for all } i \in \mathbb{N}_{0}\right\} .
\end{aligned}
$$

The ordered subshifts mentioned above are, precisely, those of the form $\Sigma[a, b]$. In fact, since there are uncountably many different $(a, b) \in L W$ then there are uncountable many geometric Lorenz flows, as Guckenheimer and William showed.

We observe that these ordered subshifts not only modelled Geometric Lorenz flows. In fact, let $0<c<1$ and DC_{c} be the set of those maps $f:([0,1] \backslash\{c\}) \rightarrow$ $[0,1]$ such that

1. $\left.f\right|_{[0, c[}$ and $\left.f\right|_{]_{c, 1]}}$ are continuous increasing maps,
2. $f\left(c^{-}\right)=1$ and $f\left(c^{+}\right)=0$.

For $f \in \mathrm{DC}_{c}$ let

$$
\Lambda_{f}=\left([0,1] \backslash \bigcup_{n=0}^{\infty} f^{-n}(c)\right) \subset[0,1]
$$

the "continuity" set of the map f. Associated to any $x \in \Lambda_{f}$ (see section 2), there is an itinerary $I_{f}(x) \in \Sigma_{2}$ such that $\sigma \circ I_{f}(x)=I_{f} \circ f(x)$ for any $x \in$ Λ_{f}. These itineraries allow us to define $I_{f}\left(x^{ \pm}\right)$, for any $x \in[0,1]$ and the set $J_{f}=\left\{I_{f}\left(x^{ \pm}\right): x \in[0,1]\right\}$. It is not hard to prove that $J_{f}=\Sigma\left(\left[a_{f}, b_{f}\right]\right)$ where $a_{f}=I_{f}\left(0^{+}\right)$and $b_{f}=I_{f}\left(1^{-}\right)$are the kneading sequences associated to the map f. So the dynamic of the ordered subshift $\sigma: \Sigma\left[a_{f}, b_{f}\right] \rightarrow \Sigma\left[a_{f}, b_{f}\right]$ essentially represents the dynamic of any $f \in \mathrm{DC}_{c}$ any $0<c<1$.

For elements in DC_{c} there are (at least) three degrees of complexity for the dynamics of its elements that are:

$$
\begin{aligned}
& \left(C_{1}\right) \mathrm{DC}_{c}(1)=\left\{f \in \mathrm{DC}_{c}: f(0)>f(1)\right\} ; \\
& \left(C_{2}\right) \mathrm{DC}_{c}(2)=\left\{f \in \mathrm{DC}_{c}: f(0)=f(1)\right\} \text { and } \\
& \left(C_{3}\right) \mathrm{DC}_{c}(3)=\left\{f \in \mathrm{DC}_{c}: f(0)<f(1)\right\} .
\end{aligned}
$$

Maps in C_{1} and C_{2} may have the same combinatorial dynamics but it is certainly different from the combinatorial dynamics that presents the elements in C_{3}. The difference, in the combinatorial dynamics, comes from the sequences $\left(a_{f}, b_{f}\right) \in L W$ that elements in $\mathrm{DC}_{c}(1) \cup \mathrm{DC}_{c}(2)$ and $\mathrm{DC}_{c}(3)$ may attach.

In the present work we present a classification of all the possible sequences $a_{f} \in \mathrm{Min}_{2}$ that can be attached by the elements in $\mathrm{DC}_{c}(1) \cup \mathrm{DC}_{c}(2)$. Clearly, a similar result is true for the sequences $b_{f} \in \mathrm{Max}_{2}$ as we will make clear at the end of the work.

In a forthcoming paper(see [16]) we will present a classification of all possible sequences $a_{f} \in \mathrm{Min}_{2}$ that can be attached by the elements in $\mathrm{DC}_{c}(3)$.

2. Statement of the Main result

For $\theta \in \Sigma_{2}$ and $k \in \mathbb{N}$ such that $\theta_{k+j}=\theta_{j}$, for $j \in \mathbb{N}$ we will write $\theta=$ $\underline{\theta_{0} \cdots \theta_{k-1}}$. If $a=\alpha_{0} \cdots \alpha_{k-1} a_{k}$ we will denote $a_{*}=\alpha_{0} \cdots \alpha_{k-1} b_{k}$ with $b_{k} \neq a_{k}$.

Let $\underline{a_{1}}, \underline{a_{2}}$ be two periodic sequences in Σ_{2}. The sequence $m\left(a_{1}, a_{2}\right)=\underline{a_{1} a_{2}}$ will be called the average of the sequences a_{1} and a_{2}. For a string $a=a_{0} \cdots a_{k}$, $k \geq 0$ we will denote by a^{n} the string $a \cdots a$ (n times). For a subset $A \subset \Sigma_{2}$ whose points are isolated we will say that $a_{1}, a_{2} \in A$ are consecutive if $a_{1}<a_{2}$ and there is not $a \in A$ such that $a_{1}<a<a_{2}$.

Examples. For $\underline{a_{1}}=\underline{01}, \underline{a_{2}}=\underline{011}$ we have $m\left(a_{1}, a_{2}\right)=\underline{01011}$ and $\underline{a_{1}}$ and $\underline{a_{2}}$ are consecutive sequences in the set

$$
A_{0}=\left\{\underline{0^{n} 1}, \underline{01^{n}}: n \in \mathbb{N}\right\}=\{\ldots, \underline{0001}, \underline{001}, \underline{01}, \underline{011}, \underline{0111}, \ldots\}
$$

Let us consider A_{0} as in the example and define

$$
A_{n+1}=A_{n} \cup\left\{m\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in A_{n} \text { and } \underline{\alpha_{1}}<\underline{\alpha_{2}} \text { are consecutives }\right\}
$$

for any $n \geq 0$.
Let $A_{\infty}=\bigcup_{n=0}^{\infty} A_{n}$. The aim of the present work is to prove
Theorem (2.1). The set $\mathrm{KDC}_{c}=\left\{a_{f} \in \Sigma_{0}: f \in\left(\mathrm{DC}_{c}(2) \cup \mathrm{DC}_{c}(1)\right)\right\}=\overline{A_{\infty}}$.

It is not hard to see that for any $R_{\alpha}:[0,1] \rightarrow[0,1], 0<\alpha<1$ such that $R_{\alpha}(x)=x+\alpha$ if $0 \leq x<1-\alpha$ and $R_{\alpha}(x)=x+\alpha-1$ if $1-\alpha<x \leq 1$, there is $f_{\alpha} \in \mathrm{DC}_{c}(2)$ and an homeomorphism $H:[0,1] \rightarrow[0,1]$ such that $H(0)=0$, $H(1-\alpha)=c, H(1)=1$ and $H \circ R_{\alpha} \circ H^{-1}(x)=f_{\alpha}(x)$. Clearly the rotation number of R_{α} (when considered as a map $\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$) is α, and consequently the rotation number of f_{α}, is α. It is not hard to see that for $a_{\alpha}=a_{f_{\alpha}}$ and for $m(n)=\#$ \{number one presents in $\left.a_{0} \cdots a_{n-1}\right\}$ that

$$
\lim _{n \rightarrow \infty} \frac{m(n)}{n}=\alpha .
$$

For instance, for the canonical family $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ given by $f_{\tau, b}(x)=(x+$ $\tau+b \sin (2 \pi x)) \bmod 1$, it is well known that for $b \leq 1$ the map $f_{\tau, b}$ is an orientation preserving homeomorphism of the circle and a description of the set $T_{r}=\left\{(\tau, b)\right.$: rotation number $\left.\left(f_{\tau, b}\right)=r\right\} \subset\{(\tau, b): \tau \leq 1\}$ is known. For rational r these sets are known as the "Arnold tongue of rational number r " (see [1]) and for r irrational these sets are curves with the following remarkable property: for fixed b the set $T_{r} \cap\{(\tau, b): 0 \leq \tau \leq 1\}$ has positive Lebesgue measure (see [8]). This canonical family is homologous to a family $\tilde{f}_{\tau, b} \in \mathrm{DC}_{c}(2)$ and the two parameter family of sequences $a(\tau, b)=\alpha_{\tilde{f}_{\tau}, b}$ can be used, instead of the rotation number, to parameterize the bifurcation diagram associated to the canonical family $\left(f_{\tau, b}\right)$ such that $0<\tau<1,0 \leq b \leq 1$ (compare with [3] and [5]).

The good news is that this parametrization for the bifurcation diagram, for two parameter families of elements in $\mathrm{DC}_{c}(2)$, can be extended to parameterized families in $\mathrm{DC}_{c}(2) \cup \mathrm{DC}_{c}(3)$ as it is shown in [11] and [12]. We will present the exact scope of this extension in a forthcoming work (see [16]).

Remark: The search for the characterization of the kneading sequences of maps in DC_{c} in not new. In fact, it has a long history as may be appreciated in [18] and the references there in. Nevertheless, our approach is certainly new.

For instance, some differences between our approach and those described in [18] include the followings: (a) our presentation of the set of itineraries associated to elements in $\mathrm{DC}_{c}(2)$ is simpler than the representation given in [18]; (b) our presentation is more explicit (with respect to the sequences that effectively belongs to KDC_{c}) and (c) our presentation applies to elements in $\mathrm{DC}_{c}(3)$ (as we will shown in a forth coming paper, see [16])

The sequence of this paper is organized as follows: In section 3 we introduce the lexicographical world, describe the set DC_{c} and we prove the realization lemma for elements in $D C_{c}(2)$. In section 4 prove some properties of the set A_{∞} and in section 5 we will prove our main result.

3. Symbolic dynamics for Lorenz maps

(3.1) The set DC_{c}. In the sequel DC_{c} will denote the set of maps $f:([0,1] \backslash$ $\{c\}) \rightarrow[0,1]$ such that

1. $f_{[0, c[}$ and $f_{\mathrm{yc}, 1]}$ are continuous and increasing maps,
2. $f\left(c^{-}\right)=\lim _{x \uparrow c} f(x)=1, f\left(c^{+}\right)=\lim _{x \downarrow c} f(x)=0$.

For elements $f, g \in \mathrm{DC}_{c}$ we can define $d(f, g)=\sup \{|f(x)-g(x)|: x \in$ $[0, c[\}+\sup \{|f(x)-g(x)|: x \in] c, 1]\}$. Since $\left.f\right|_{[0, c[}$ and $\left.g\right|_{[0, c[}$ (resp. $\left.f\right|_{]_{c, 1]}}$ and
$\left.g\right|_{\mathrm{c}, 1]}$) can be extended (in a unique way) to continuous increasing maps \bar{f}, $\bar{g}:[0, c] \rightarrow[0,1]$ (resp. $\tilde{f}, \tilde{g}:[c, 1] \rightarrow[0,1])$ such that

1. $\bar{f}(c)=\bar{g}(c)=1(\operatorname{resp} . \tilde{f}(c)=\tilde{g}(c)=0)$ and
2. $\sup \{|\bar{f}(x)-\bar{g}(x)|: x \in[0, c]\}=\sup \{|f(x)-g(x)|: x \in[0, c[\}$ (resp. $\sup \{|\tilde{f}(x)-\tilde{g}(x)|: x \in[c, 1]\}=\sup \{|f(x)-g(x)|: x \in] c, 1]\})$
then we conclude that $d: \mathrm{DC}_{c} \times \mathrm{DC}_{c} \rightarrow[0,1]$ is a metric and $\left(\mathrm{DC}_{c}, d\right)$ is a complete metric space.
(3.2) The Lexicographical order. Let Σ_{2} denote the set of sequences θ : $\mathbb{N} \rightarrow\{0,1\}$ endowed with the topology given by the metric $d(\alpha, \beta)=\frac{1}{2^{n}}$ where $n=\min \left\{k: \alpha_{k} \neq \beta_{k}\right\}$. Let $\sigma: \Sigma_{2} \longrightarrow \Sigma_{2}$ be the shift map $\sigma\left(\theta_{0}, \theta_{1}, \theta_{2}, \ldots\right)=$ $\left(\theta_{1}, \theta_{2}, \ldots\right)$. Let Σ_{0} and Σ_{1} denote the sets $\left\{\theta \in \Sigma_{2}: \theta_{0}=0\right\}$ and $\left\{\theta \in \Sigma_{2}: \theta_{0}=\right.$ $1\}$, respectively. It is clear that $\Sigma_{2}=\Sigma_{0} \cup \Sigma_{1}$ and that the restriction $\left.\sigma\right|_{\Sigma_{i}}$: $\Sigma_{i} \rightarrow \Sigma_{2}, i=0,1$ is an homeomorphism. In Σ_{2} we consider the lexicographical order $\theta<\alpha$ for any $\theta \in \Sigma_{0}$ and $\alpha \in \Sigma_{1}$ or $\theta<\alpha$ if there is $n \in \mathbb{N}$ such that $\theta_{i}=\alpha_{i}$ for $i=0,1,2, \ldots, n-1$ and $\theta_{n}=0$ and $\alpha_{n}=1$.

For $\alpha, \beta \in \Sigma_{2}$ we define $\alpha \leq \beta$ if $\alpha<\beta$ or $\alpha=\beta$. In this situation, $\alpha \leq \beta$, we define

$$
\Sigma[\alpha, \beta]=\left\{\theta \in \Sigma_{2}: \alpha \leq \sigma^{i}(\theta) \leq \beta \text { for all } i \in \mathbb{N}_{0}\right\}=\bigcap_{n=0}^{\infty} \sigma^{-n}([\alpha, 0 \beta] \cup[1 \alpha, \beta]) .
$$

(3.3) The set $\Sigma_{a_{f}, b_{f}}$. For $f \in \mathrm{DC}_{c}$ let

$$
\Gamma_{f}=\left([0,1] \backslash \bigcup_{j=0}^{\infty} f^{-j}(\{c\})\right)
$$

denote the set of "continuity" of the map. For $x \in \Gamma_{f}$ we define $I_{f}(x) \in \Sigma_{2}$ by $I_{f}(x)(i)=0$ if $f^{i}(x)<c$ and $I_{f}(x)(i)=1$ if $f^{i}(x)>c$.

For $x=c$ we define $I_{f}\left(c^{-}\right)=\lim _{x \uparrow c, x \in \Gamma_{f}} I_{f}(x)$ and $I_{f}\left(c^{+}\right)=\lim _{x \downarrow c, x \in \Gamma_{f}} I_{f}(x)$.
In the same way to any $x \in \bigcup_{j=0}^{\infty} f^{-j}(\{c\})$ such that $f^{i}(x) \neq c, 0 \leq i<n$ and $f^{n}(x)=c$ we associate the sequences $I_{f}\left(x^{ \pm}\right)=\left(I_{f}(x)(0), \ldots, I_{f}(x)(n-1), I_{f}\left(c^{ \pm}\right)\right)$ where $I_{f}(x)(i)=0$ if $f^{i}(x)<c$ and $I_{f}(x)(i)=1$ if $f^{i}(x)>c$ for $0 \leq i<n$.

For $x \in \Gamma_{f}$ we define $I_{f}\left(x^{ \pm}\right)=I_{f}(x)$. Let $I_{f}=\left\{I_{f}\left(x^{ \pm}\right): x \in[0,1]\right\}$ and let us denote by $a_{f}=I_{f}\left(0^{+}\right), b_{f}=I_{f}\left(1^{-}\right)$. The following lemma is a classical fact that associate an ordered symbolic dynamical system to a Lorenz map on the interval via kneading sequences. See, for instance [10] or [13].

Lemma (3.1). $I_{f}=\Sigma\left[a_{f}, b_{f}\right]$
Let $f, g \in \mathrm{DC}_{c}$. We will say that f has essentially the same dynamics as g if $I_{f}=I_{g}$. We observe that, in this situation, up to the existence of some intervals where the itineraries of the points are the same, the dynamics of the maps f and g are topologically equivalent (see [4] and [10]).
(3.4) The Lexicographical world. Let $\operatorname{Min}_{2}=\left\{a \in \Sigma_{0}: \sigma^{k}(a) \geq a\right.$ for all $k \in \mathbb{N}\}$ and $\operatorname{Max}_{2}=\left\{b \in \Sigma_{1}: \sigma^{k}(b) \leq b\right.$ for all $\left.k \in \mathbb{N}\right\}$. The elements in Min_{2} (resp. Max ${ }_{2}$) will be called minimal (resp. maximal).

Notes:

1. Min_{2} and Max_{2} are closed sets in Σ_{2}.
2. Assume $a \in \operatorname{Min}_{2} \cap \Sigma_{0}$ is a periodic sequence with period $a_{0} \cdots a_{k}$ then for $k \geq 1$ we have $a_{0}=0$ and $a_{k}=1$.
3. Assume $b \in \operatorname{Max}_{2} \cap \Sigma_{1}$ is a periodic sequence with period $b_{0} \cdots b_{k}$ then for $k \geq 1$ we have $b_{0}=1$ and $b_{k}=0$.
The set $L W=\left\{(a, b) \in \operatorname{Min}_{2} \times \operatorname{Max}_{2}:\{a, b\} \subset \Sigma[a, b]\right\}$ will be called the lexicographical world.
(3.5) The realization lemma. Let us consider $(a, b) \in L W$. The following result was proved in [10] and [13].

Proposition (3.2). There is $f \in \mathrm{DC}_{c}$ such that $I_{f}=\Sigma[a, b]$.
In this work we will prove the following
Proposition (3.3). For any $a \in A_{\infty}$ there is an element $f \in \mathrm{DC}_{c}(2)$ such that

1. $\left.f\right|_{[0, c[}$ and $\left.f\right|_{[c, 1]}$ are injective,
2. $a_{f}=a$ and $b_{f}=\max \left\{\sigma^{i}(\alpha): i \in \mathbb{N}\right\}$.

That is, any element in A_{∞} is realized as the a_{f}-kneading sequence of some element $f \in \mathrm{DC}_{c}(2)$ that induces an homeomorphism $F: \mathbb{S}^{1} \longrightarrow \mathbb{S}^{1}$.

Proof. Let $a_{0}<a_{1}<\cdots<a_{\text {last }}=a_{p}<0 \underline{1}<1 \underline{0}<b_{\text {first }}=b_{p+1}<\cdots<$ $b_{k}=b(a)=\max \left\{\sigma^{i}(a): i \in \mathbb{N}\right\}$ denote consecutive elements in the finite orbit $\left\{\sigma^{j}(a): j \in \mathbb{N}\right\}=\left\{a, \sigma(a), \sigma^{2}(a), \ldots, \sigma^{k-1}(a)\right\}$.

Consider closed intervals $L_{0}, L_{1}, \ldots, L_{k}$ such that

$$
\begin{aligned}
\bigcup_{j=0}^{k} L_{j} & =[0,1], \min \left(L_{0}\right)=0, \\
\max \left(L_{0}\right) & =\min \left(L_{1}\right), \ldots, \max \left(L_{p}\right)=c=\min \left(L_{p+1}\right), \\
\max \left(L_{p+1}\right) & =\min \left(L_{p+2}\right), \ldots, \max \left(L_{k-1}\right)=\min \left(L_{k}\right) \text { and } \\
\max \left(L_{k}\right) & =1 .
\end{aligned}
$$

Here $\min [x, y]=x$ and $\max [x, y]=y$.
Now define a map f which is continuous and strictly increasing and satisfies:

$$
\begin{aligned}
f\left(L_{p+1}\right) & =L_{0}, f\left(L_{p+2}\right)=L_{1}, \ldots, f\left(L_{k}\right)=L_{k-p-1}, f\left(L_{0}\right)=L_{k-p} \\
f\left(L_{1}\right) & =L_{k-p+1}, \ldots, f\left(L_{p}\right)=L_{k} .
\end{aligned}
$$

Clearly $f \in \mathrm{DC}_{c}(2)$ satisfy 1 and 2 .
Corollary (3.4). Let $a \in\left(\overline{A_{\infty}} \backslash A_{\infty}\right)$ then there is a map $f \in \mathrm{DC}_{c}(2)$ that satisfies

1. $\left.f\right|_{[0, c[}$ and $\left.f\right|_{\mathrm{cc}, 1]}$ are injective;
2. $a_{f}=a$ and $b_{f}=b(a)=\sup \left\{\sigma^{i}(a): i \in \mathbb{N}\right\}$.

Proof. Take a sequence $\left(a_{n}\right) \subset A_{\infty}$ such that $\lim _{n \rightarrow \infty} a_{n}=a$. Let $\left(f_{n}\right) \subset \mathrm{DC}_{c}(2)$ the sequence constructed as in the proposition. It is clear that this construction can be realized in such way that the extension $\left(\bar{f}_{n}\right), \bar{f}_{n}:[0, c] \longrightarrow[0,1]$ and
$\tilde{f}_{n}:[c, 1] \longrightarrow[0,1]$ form a Cauchy sequence. Its limits in $\mathrm{DC}_{c}(2)$ satisfies 1 and 2.

As a consequence of proposition 3.3 and its corollary we have
Corollary (3.5). $\overline{A_{\infty}} \subset \mathrm{KDC}_{c}$.
(3.6) The renormalization map. Let $a=a_{0} \cdots a_{k}$ and $b=b_{0} \cdots b_{p}$ be two different strings of 0's and 1's such that $\underline{a}<\underline{b}$. Let $\sum(a, b)$ denote the set of sequences $\theta: \mathbb{N} \longrightarrow\{a, b\}$ with the induced topology as a subset of Σ_{2}.

The renormalization map $R_{a, b}: \Sigma_{2} \rightarrow \Sigma(a, b)$ is defined by $R_{a, b}\left(c_{0}, c_{1}, c_{2}, \ldots\right)=$ $\left(\bar{c}_{0}, \bar{c}_{1}, \bar{c}_{2}, \ldots\right)$ where $\bar{c}_{i}=a$ if $c_{i}=0$ and $\bar{c}_{i}=b$ if $c_{i}=1$

Examples. $R_{a, b}(\underline{01})=\underline{a b}, R_{01,1}(\underline{011})=\underline{0111}, R_{0,01}(\underline{011})=\underline{00101}$.
It is clear that the renormalization map is continuous and bijective.
Lemma (3.6). Assume $\alpha \leq \beta$ in Σ_{2} then $R_{a, b}(\alpha) \leq R_{a, b}(\beta)$ in Σ_{2}. (That is: the renormalization map is order preserving.)

Proof. If length $(a)=k=p=$ length (b) then the result is obvious. In fact for some $r<k=p$ we have $a_{i}=b_{r}, 0 \leq i<r$ and $a_{r}=0, b_{r}=1$. Since $\alpha \leq \beta$ then there is n_{0} such that $\alpha_{i}=\beta_{i}$ for $0 \leq i<n_{0}$ and $\alpha_{n_{0}}=0, \beta_{n_{0}}=1$. So $R_{a, b}(\alpha)=\left(\tilde{\alpha}_{0}, \ldots, \tilde{\alpha}_{n_{0}-1}, a, \ldots\right)<R_{a, b}(\beta)=\left(\tilde{\alpha}_{0}, \ldots, \tilde{\alpha}_{n_{0}-1}, b, \ldots\right)$.

Assume length $(a)=k<p=$ length (b). If for some $r \leq k$ we have $a_{r} \neq b_{r}$ then the result follows as in the previous case.

So, let us assume that $b=a^{s} b_{s k}, \ldots, b_{p}$ with $0 \leq p-s k<k$. If $b_{s k+i} \neq a_{i}$ for some $0 \leq i<p-s k$ then the result follows as in the previous case.

Assume $\bar{b}_{s k+i}=a_{i}, 0 \leq i \leq p-s k$. In this condition, and because $\underline{a}<\underline{b}$, we must have $a_{0} \cdots a_{p-s k} a_{0} \cdots a_{(s+1) k-p-1}>a_{0} \cdots a_{k}$ and, consequently, $\bar{b} a>a^{s+1}$ which imply $b a>a b$. So, we have $\underline{a}<a \underline{b}<b \underline{a}<\underline{b}$. Inductively, for any $\theta_{0} \theta_{1} \cdots \theta_{k}$ with $\theta_{i} \in\{a, b\}$ we have $\theta_{0} \cdots \theta_{k} \underline{a}<\theta_{0} \cdots \theta_{k} a \underline{b}<\theta_{0} \cdots \theta_{k} b \underline{a}<$ $\theta_{0} \cdots \theta_{k} \underline{b}$.

Now, any $\alpha=\alpha_{0} \cdots \alpha_{k} 0 \alpha_{k+2} \cdots$ satisfy

$$
R_{a, b}(\alpha)=\bar{\alpha}_{0} \cdots \bar{\alpha}_{k} \alpha \bar{\alpha}_{k+2} \cdots \in\left[\bar{\alpha}_{0} \cdots \bar{\alpha}_{k} \underline{a}, \bar{\alpha}_{0} \cdots \bar{\alpha}_{k} a \underline{b}\right]
$$

and any

$$
\beta=\alpha_{0} \cdots \alpha_{k} 1 \beta_{k+2} \cdots
$$

satisfy

$$
R_{a, b}(\beta)=\bar{\alpha}_{0} \cdots \bar{\alpha}_{k} b \bar{\beta}_{k+2} \cdots \in\left[\bar{\alpha}_{0} \cdots \bar{\alpha}_{k} b \underline{a}, \bar{\alpha}_{0} \cdots \bar{\alpha}_{k} \underline{b}\right] .
$$

In particular, $R_{a, b}(\alpha)<R_{a, b}(\beta)$.
The case length $(\alpha)=k>$ length $(b)=p$ can be done in a similar way.
Lemma (3.7). Assume $a \in \operatorname{Min}_{2}$ then $\left\{R_{0,01}(a), R_{01,1}(a)\right\} \subset \operatorname{Min}_{2}$. That is $R_{0,01}\left(\operatorname{Min}_{2}\right) \subset \operatorname{Min}_{2}$ and $R_{01,1}\left(\operatorname{Min}_{2}\right) \subset \operatorname{Min}_{2}$.

Proof. Assume $a \in \mathrm{Min}_{2}$ is a periodic sequence. That is

$$
a=\underline{0^{k_{1}}} 1^{p_{1}} 0^{k_{2}} 1^{p_{2}} \cdots 0^{k_{r}} 1^{p_{r}} .
$$

Since $\sigma^{i}(a) \geq a$ for all $i \in \mathbb{N}$ we have $0^{0_{j}} 1^{p_{j}} 0^{k_{j+1}} 1^{p_{j+1}} \cdots 0^{k_{j-1}} 1^{p_{j-1}} \geq a$ for any $j=$ $1,2, \ldots, r$. In particular $R_{0,01}\left(0^{k_{j}} 1^{p_{j}} \cdots 0^{k_{j-1}} 1^{p_{j-1}}\right)=0^{k_{j}(01)^{p_{j}} \cdots 0^{k_{j-1}}(01)^{p_{j-1}}} \geq$ $R_{0,01}(a)=\underline{0^{k_{1}}(01)^{p_{1}} 0^{k_{2}}(01)^{p_{2}} \cdots 0^{k_{r}}(01)^{p_{r}}}$ for any $j=\overline{1,2, \ldots, r \text {. Since any other }}$
σ-iteration of $R_{0,01}(\alpha)$ start with (01) or 1 we have $\sigma^{k}\left(R_{0,01}(a)\right) \geq R_{0,01}(a)$ for all $k \in \mathbb{N}$.

In a similar way we obtain the result for $R_{01,1}$.

4. Some properties of A_{∞}

Let $a=a_{0} \cdots a_{k}$ and $b=b_{0} \cdots b_{p}$ be two strings of zeros and ones. We define the average of these two strings as the sequence $m(a, b)=\underline{a b}=\underline{a_{0} \cdots a_{k} b_{0} \cdots b_{p}}$, which is a periodic sequence.

Lemma (4.1). If $a=a_{0} \cdots a_{k}, b=b_{0} \cdots b_{p}$ are two strings such that $\underline{a} \in \operatorname{Min}_{2}$ and $\underline{b} \in \operatorname{Min}_{2}$ and $\underline{a}<\underline{b}$ then $m(a, b) \in \operatorname{Min}_{2}$ and $\underline{a}<m(a, b)<\underline{b}$.

Proof. Let us first prove the inequality. Assume $\underline{a}=a_{0} \ldots a_{k}$ and $\underline{b}=$ $b_{0} \ldots b_{k}$, then the condition $\underline{a}<\underline{b}$ implies that there exists $\overline{i, 0<i}<k$ such that $a_{i}=0$ and $b_{i}=1$.So, in this situation we easily get $\underline{a}<m(a, b)<\underline{b}$.

Let us now consider that $\underline{a}=\left(0^{k_{1}} 1^{l_{1}}\right)^{r_{1}}\left(0^{k_{2}} 1^{l_{2}}\right)^{r_{2}} \ldots\left(0^{k_{s}} 1^{l_{s}}\right)^{r_{s}}$. The condition $a \in \operatorname{Min}_{2}$ imply that $k_{1} \leq k_{2}$ and $k_{1}=\min \left\{k_{1}, k_{2}, \ldots, k_{s}\right\}$. Let us assume that $\operatorname{period}(\underline{b})>\operatorname{period}(\underline{a})$. Let us write $\underline{b}=\underline{b_{0} b_{1} \ldots b_{p}}$ and $\underline{a}=\alpha_{0} \alpha_{1} \ldots \alpha_{p} \ldots$

Claim. In this situation there is $i, 1 \leq i \leq p$ such that $b_{i} \neq \alpha_{i}$.
In fact, otherwise $b_{0}=\alpha_{0}, b_{1}=\alpha_{1}, \ldots, b_{p}=\alpha_{p}$. hence, and without loss, we can assume that $\underline{b}=\left(\left(0^{k_{1}} 1^{l_{1}}\right)^{r_{1}}\left(0^{k_{2}} 1^{l_{2}}\right)^{r_{2}} \ldots\left(0^{k_{s}} 1^{l_{s}}\right)^{r_{s}}\right)^{t} 0^{k_{1}} 1^{p_{1}}$. Let $N=\left[\left(k_{1}+\right.\right.$ $\left.\left.p_{1}\right) r_{1}+\left(k_{2}+p_{2}\right) r_{2} \cdots+\left(k_{s}+p_{s}\right) r_{s}\right] t$ then we have

$$
\sigma^{N}(\underline{b})=0^{k_{1}} 1^{p_{1}}\left(\left(0^{k_{1}} 1^{l_{1}}\right)^{r_{1}}\left(0^{k_{2}} 1^{l_{2}}\right)^{r_{2}} \ldots\left(0^{k_{s}} 1^{l_{s}}\right)^{r_{s}}\right)^{t} 0^{k_{1}} 1^{p_{1}} \ldots
$$

So, we must have $\sigma^{N}(\underline{b})<\underline{b}$ a contradiction with $\underline{b} \in \operatorname{Min}_{2}$. Therefore, in this case, we obtain the claim.

In a similar way, for $\underline{b}=\left(\left(0^{k_{1}} 1^{l_{1}}\right)^{r_{1}}\left(0^{k_{2}} 1^{l_{2}}\right)^{r_{2}} \ldots\left(0^{k_{s}} 1^{l_{s}}\right)^{r_{s}}\right)^{t} 0^{k_{1}} 1^{i}$ for some $1 \leq$ $i \leq r_{1}$ or $\underline{b}=\left(\left(0^{k_{1}} 1^{l_{1}}\right)^{r_{1}}\left(0^{k_{2}} 1^{l_{2}}\right)^{r_{2}} \ldots\left(0^{k_{s}} 1^{l_{s}}\right)^{r_{s}}\right)^{t}\left(0^{k_{1}} 1^{p_{1}}\right)^{i}$ for some $1 \leq i \leq r_{2}$ or $\underline{b}=\underline{\left(\left(0^{k_{1}} 1^{l_{1}}\right)^{r_{1}}\left(0^{k_{2}} 1^{l_{2}}\right)^{r_{2}} \ldots\left(0^{k_{s}} 1^{l_{s}}\right)^{r_{s}}\right)^{t}\left(0^{k_{1}} 1^{p_{1}}\right)^{r_{1}}\left(0^{k_{2}} 1^{p_{2}}\right)^{i}}$ for some $1 \leq i \leq r_{2}$, we obtain a contradiction with $\underline{b} \in \operatorname{Min}_{2}$.

Now, by the claim, we must have

$$
\underline{a}=\alpha_{0} \ldots \alpha_{i-1} 0 \ldots \alpha_{p} \cdots=a_{0} \alpha_{1} \ldots a_{k} \alpha_{0} \ldots a_{k} \ldots
$$

and

$$
\underline{b}=\alpha_{0} \alpha_{1} \ldots \alpha_{i-1} 1 \ldots b_{p} \ldots
$$

Assuming $i=(k+1) p+l$ then $a_{l-1}=0$ and $\underline{b}=\left(a_{0} \ldots a_{k}\right)^{p} a_{0} \ldots a_{l-1} 1$. This implies that

$$
\underline{a}=\left(a_{0} \ldots a_{k}\right)^{p+1} a_{0} \ldots a_{l-1} a_{l} \cdots<\underline{a b}=\left(a_{0} \ldots a_{k}\right)^{p+1} a_{0} \ldots a_{l-1} 1 \text { and } \underline{a b}<\underline{b}
$$

as we announced.
Let us now prove that $m(a, b) \in \operatorname{Min}_{2}$. So, assume $\underline{a}=0^{k_{1}} 1^{p_{1}} 0^{k_{2}} 1^{p_{2}} \cdots 0^{k_{s}} 1^{p_{s}}$ and $\underline{b}=\underline{0}^{l_{1}} 1^{m_{1}} 0^{l_{2}} 1^{m_{2}} \cdots 0^{l_{t}} 1^{m_{t}}$. Without loss of generality let us assume that $s \geq t$.

Since $\underline{\alpha}, \underline{b} \in \operatorname{Min}_{2}$ we have $k_{1}=\max \left\{k_{1}, \ldots, k_{s}\right\}$ and $l_{1}=\max \left\{l_{1}, \ldots, l_{t}\right\}$. Moreover the condition $a<b$ imply $l_{1} \leq k_{1}$.

We have $\underline{a b}=\underline{0^{k_{1}} 1^{p_{1}} \cdots 0^{k_{s}} 1^{p_{s}} 0^{l_{1}} 1^{m_{1}} \cdots 0^{l_{1}} 1^{m_{t}}}$.
For $1 \leq i \leq t$ put $k_{s+i}=l_{i}$ and $p_{s+i}=m_{i}$.
We have $\underline{a b}=\underline{0^{k_{1}} 1^{m_{1}} \cdots 0^{k_{s}} 1^{m_{s}} 0^{k_{s+1}} 1^{p_{s+1}} \cdots 0^{k_{s+t}} 1^{p_{s+t}}}$.

Note that if for some $j, 1 \leq j \leq s+t$ we have

1. $k_{1}<k_{j}$ for some $j \in\{2,3, \ldots, s+t\}$ and we contradicts $\underline{a} \in \operatorname{Min}_{2}(2 \leq$ $j \leq s)$ or $\underline{b} \in \operatorname{Min}_{2}(s+1 \leq j \leq s+t)$ or
2. $k_{1}=k_{j}$ for any $j \in\{2, \ldots, s+t\}$. In this situation $p_{1}>p_{j}$ for some $j \in\{2, \ldots, s+t\}$. Hence we contradicts $\underline{a} \in \operatorname{Min}_{2}(2 \leq j \leq s)$ or $\underline{b} \in$ $\operatorname{Min}_{2}(s+1 \leq j \leq s+t)$.
Therefore: $\sigma^{i}(\underline{a b}) \geq \underline{a b}$ for any $i \in \mathbb{N}$.
Now, as in section 2, let $A_{0}=\left\{\underline{0^{n}} 1, \underline{01^{n}}: n \in \mathbb{N}\right\}, A_{n+1}=A_{n} \cup\left\{m\left(a_{1}, a_{2}\right)\right.$: $a_{1}, a_{2} \in A_{n}$ are consecutive sequences $\}$ and $A_{\infty}=\bigcup_{n=0}^{\infty} A_{n}$.

Corollary (4.2). $A_{\infty} \subset \operatorname{Min}_{2}$.
Proof. Clearly $A_{0} \subset \operatorname{Min}_{2}$. Assume $A_{n} \subset \operatorname{Min}_{2}$. For $a \in A_{n+1}$ we have either $a \in A_{n}$ or there are two consecutive sequences $\underline{a_{1}}<\underline{a_{2}}$ such that $a=$ $m\left(a_{1}, a_{2}\right)$. In the first case $a \in \operatorname{Min}_{2}$ and in the second one $a \in \operatorname{Min}_{2}$ by lemma 4.1.

In order to prove the main result, we will give a different presentation of the set A_{∞}, for this we will construct inductively a set \mathcal{A}_{∞} such that: $\left(\mathcal{A}_{\infty} \backslash\{\underline{0}, \underline{1}\}\right)=$ A_{∞}.

To do so, let us define $\mathcal{A}_{0}=\{\underline{0}, \underline{1}\}, \mathcal{A}_{1}=R_{0,01}\left(\mathcal{A}_{0}\right) \cup R_{01,1}\left(\mathcal{A}_{0}\right)$ and $\mathcal{A}_{n+1}=$ $R_{0,01}\left(\mathcal{A}_{n}\right) \cup R_{01,1}\left(\mathcal{A}_{n}\right)$ for $n \geq 1$.

Examples: $\mathcal{A}_{1}=\{\underline{0}, \underline{01}, \underline{1}\}, \mathcal{A}_{2}=\{\underline{0}, \underline{001}, \underline{01}, \underline{011}, \underline{1}\}$, $\mathcal{A}_{3}=\{\underline{0}, \underline{0001}, \underline{001}, \underline{00101}, \underline{01}, \underline{01011}, \underline{011}, \underline{0111}, \underline{1}\}$

In general we note that $\#\left(\mathcal{A}_{n+1}\right)=2 \#\left(\mathcal{A}_{n}\right)-1=2\left(2^{n}+1\right)-1=2^{n+1}-1$ and

$$
\begin{gathered}
\mathcal{A}_{n}=\left\{A^{l_{k+1}} B^{l_{k}} \cdots A^{l_{2}} B^{l_{1}}(0), B^{l_{k+1}} A^{l_{k}} \cdots B^{l_{2}} A^{l_{1}}(0),\right. \\
\left.A^{l_{k+1}} B^{l_{k}} \cdots A^{l_{2}} B^{l_{1}}(1), B^{l_{k+1}} A^{l_{k}} \cdots B^{l_{2}} A^{l_{1}}(1)\right\}
\end{gathered}
$$

for $l_{1}, l_{2}, \ldots, l_{k+1}$ such that $l_{1}+\cdots+l_{k+1}=n$ and $A=R_{0,01}, B=R_{01,1}$
Proposition (4.3). For $\mathcal{A}_{\infty}=\bigcup_{n=0}^{\infty} \mathcal{A}_{n}$ we have $A_{\infty}=\left(\mathcal{A}_{\infty} \backslash\{\underline{0}, \underline{1}\}\right)$.
Proof. Let us initially prove that $A_{\infty} \subset \mathcal{A}_{\infty}$. In the sequel we will use the notation $01=A(1)=B(0)$.

For $\underline{0^{k}} 1 \in A_{0}$ we have $\underline{0^{k} 1}=\underline{0^{k-1} 01}=\underline{A\left(0^{k-1} 1\right)}=\underline{A^{k-1}(01)}=\underline{A^{k}(1)}$.
For $\underline{01^{k}} \in A_{0}$ we have $\underline{01^{k}}=\underline{011^{k-1}}=\underline{B\left(01^{k-1}\right)}=\underline{B^{k-1}(01)}=\underline{B^{k}(0)}$. Hence, we get $A_{0} \subset \mathcal{A}_{\infty}$.

Without loss of generality, let us show that $\left.A_{n} \cap\right] \underline{A(01), ~} \underline{01[} \subset \mathcal{A}_{\infty}$ for any $n \geq 1$.

In fact, $\left.A_{1} \cap\right] A(01), \underline{01}\left[=\{\underline{A(01) 01}\}=\{\underline{A B(01)}\} \subset \mathcal{A}_{\infty}\right.$ and we have $A_{1} \cap$ $[\underline{A(01)}, \underline{01}]=\{\underline{A(01)}, \underline{01}, \underline{A B(01)}\} \subset \mathcal{A}_{\infty}$

For $\left(A_{2} \backslash A_{1}\right)$ we have $\left.\left(A_{2} \backslash A_{1}\right) \cap\right] A(01), \underline{1}[=\{A(01) A B(01), \underline{A B(01) 01}\}=$ $\{A(01 B(01)), \underline{0010101}\}=\{A B A(01), \overline{A B} B(01)\}$. So, we get $A_{2} \cap[\underline{A(01)}, \underline{01]}=$ $\{\underline{A(01)}, \underline{01}, \underline{A B(01)}, \underline{A B A(01)}, \underline{A B B(01)}\}$.

For $\left(A_{3} \backslash A_{2}\right)$ we have

$$
\begin{aligned}
&\left.\left(A_{3} \backslash A_{2}\right) \cap\right] \underline{A(01)}, \underline{01}[=\{\underline{A(01) A B A(01)}, \underline{A B A(01) A B(01)}, \underline{A B(01) A B B(01)}, \\
&=\{\underline{A B B(01) 01}\} \\
&\left.\hline A B A(01), \underline{A B A B(01)}, \underline{A B B A(01)}, \underline{A B^{3}(01)}\right\} .
\end{aligned}
$$

So, we get

$$
\left.A_{3} \cap \underline{[A(01)}, \underline{01}\right]=\left\{\underline{A(01)}, \underline{01}, \underline{A B(01)}, \underline{A B A(01)}, \underline{A B B(01)}, \underline{A B A^{2}(01)},\right.
$$

Hence, for $n \geq 3$ let us assume inductively that

$$
\begin{aligned}
A_{n} \cap[\underline{A(01)}, \underline{01}]=\{ & \left\{A(01), \underline{01}, \underline{A B(01)}, \underline{A B A(01),}, \underline{A B B(01,} \underline{A B A^{2}(01),}\right. \\
& \frac{A B A B(01),}{A B B A(01),} \underline{A B B^{2}(01)}, \ldots, \underline{A B A^{n-1}(01),}, \\
& \frac{A B A^{n-2} B(01),}{A B A^{n-3} B A(01),} \underline{A B A^{n-3} B^{2}(01), \ldots,}, \\
& \frac{A B B^{n-3} A^{2}(01),}{A B B^{n-3} A B(01),} \underline{A B B^{n-2} A(01),} \\
& \underline{\left.A B B^{n-1}(01)\right\} \subset \mathcal{A}_{\infty} .}
\end{aligned}
$$

In this situation for $\left(A_{n+1} \backslash A_{n}\right)$ we have

$$
\begin{aligned}
& \left(A_{n+1} \backslash A_{n}\right) \cap \underline{A(01)}, \underline{01[}=\left\{\underline{A(01) A B A^{n-1}(01)}, \underline{A B A^{n-1}(01) A B A^{n-2}(01)}\right. \text {, } \\
& A B A^{n-2}(01) A B A^{n-2} B(01) \text {, } \\
& \underline{A B A^{n-2} B(01) A B A^{n-3} B(01)}, \ldots \\
& A B B^{n-2} A(01) A B B^{n-2}(01) \text {, } \\
& \left.A B B^{n-2}(01) A B B^{n-1}(01), A B B^{n-1}(01) 01\right\} \\
& =\left\{A B A^{n}(01), A B A^{n-1} B(01), A B A^{n-2} B A(01),\right. \\
& \left.\underline{A B A^{n-2} B^{2}(01)}, \ldots \underline{A B B^{n-1} A(01)}, \underline{A B B^{n}(01)}\right\} .
\end{aligned}
$$

We conclude that $\left.\left(A_{n+1} \backslash A_{n}\right) \cap\right] \underline{A(01)}, \underline{01}\left[\subset \mathcal{A}_{\infty}\right.$. We proceed in a similar way to

$$
\begin{aligned}
& A_{n} \cap\left[\underline{A^{i+1}(01)}, \underline{A^{i}(01)}\right]=\left\{\underline{A^{i+1}(01)}, \underline{A^{i}(01)}, \underline{A^{i} B(01)}, \underline{A^{i} B A(01)},\right. \\
& \underline{A^{i} B B(01)}, \ldots, A^{i} B A^{n-1}(01), A^{i} B A^{n-2} B(01), \\
& \underline{A^{i} B A^{n-3} B A(01)}, \ldots, \underline{A^{i} B B^{n-2} A(01)}, \\
& \left.\underline{A^{i} B B^{n-1}(01)}\right\} \subset \mathcal{A}_{\infty} .
\end{aligned}
$$

We also can prove, simmilarly, that $A_{n} \cap\left[\underline{B^{i-1}(01)}, \underline{B^{i}(01)}\right] \subset \mathcal{A}_{\infty}$ for $i \geq 1$. So we conclude that $A_{n} \subset \mathcal{A}_{\infty}$ for all $n \geq \overline{1 \text { and then } A_{\infty}} \subset \mathcal{A}_{\infty}$.

Let us now prove that $\left(\mathcal{A}_{\infty} \backslash\{\underline{0}, \underline{1}\} \subset A_{\infty}\right.$. It is clear that

$$
\left(\mathcal{A}_{0} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3} \backslash\{\underline{0}, \underline{1}\}\right) \subset A_{\infty}
$$

Let us assume that $\left(\bigcup_{i=0}^{n} \mathcal{A}_{i} \backslash\{\underline{0}, \underline{1}\}\right) \subset A_{\infty}$. Let $\alpha \in\left(\mathcal{A}_{n+1} \backslash\{\underline{0}, \underline{1}\}\right)$ we have that $\alpha=R_{0,01}(\alpha)$ or $\alpha=R_{01,1}(a)$ for some $a \in \mathcal{A}_{n}$. By the inductive hypothesis we have $a \in A_{\infty}$.

For $a=\underline{0^{m} 1}$ we have

$$
\alpha=R_{01,1}\left(\underline{0^{m} 1}\right)=\underline{(01)^{m} 1}=\underline{(01)^{m-1} 011}=m\left(01,(01)^{m-2} 011\right) \in A_{\infty}
$$

or $a=R_{0,01}\left(\underline{0^{m} 1}\right)=\underline{0^{m+1} 1} \in A_{\infty}$.
For $a=\underline{01^{m}}$ we have

$$
\alpha=R_{0,01}\left(\underline{01^{m}}\right)=\underline{0(01)^{m}}=\underline{001(01)^{m-1}}=m\left(001(01)^{m-1}, 01\right) \in A_{\infty}
$$

or $\alpha=R_{01,1}\left(\underline{01^{m}}\right)=\underline{011^{m}}=\underline{01^{m+1}} \in A_{\infty}$.
In all the other cases there is an m such that (i) $\underline{0^{m+1} 1}<a<\underline{0^{m} 1}$ or (ii) $\underline{01^{m}}<a<\underline{01^{m+1}}$. Without loss of generality let us assume that (i) is the case. In this situation $a \in A_{p}$ for some $p \in \mathbb{N}$ and $a=m\left(a_{1}, a_{2}\right)$ for $\underline{a_{1}}, \underline{a_{2}} \in A_{p-1}$ two consecutives sequences. We may have (*) $\underline{0^{m+1} 1} \leq \underline{a_{1}}<\underline{a_{2}} \leq \underline{0^{m+1} 10^{m}}$
 that (*) is the case.

For $\underline{a_{1}}=\underline{0^{m} 1}$ we must have $\underline{a_{2}}=\underline{\left(0^{m+1} 1\right)^{p-1} 0^{m} 1}$ and $a=\underline{\left(0^{m+1} 1\right)^{p} 0^{m} 1}$. In this situation for α we have either

$$
\alpha=R_{0,01}\left(\underline{\left(0^{m+1} 1\right)^{p} 0^{m} 1}\right)=\underline{\left(0^{m+2} 1\right)^{p} 0^{m+1} 1} \in A_{p}
$$

or

$$
\begin{aligned}
\alpha & =R_{01,1}\left(\underline{\left(0^{m+1} 1\right)^{p} 0^{m} 1}\right)=\underline{\left((01)^{m+1} 1\right)^{p}(01)^{m} 1} \\
& =\underline{\left((01)^{m} 011\right)^{p}(01)^{m-1} 011} \in A_{\infty} .
\end{aligned}
$$

For $a_{1}=\underline{\left(0^{m+1} 1\right)^{p-1} 0^{m} 1}$ we must have $a_{2}=\underline{\left(0^{m+1} 1\right)^{p-2} 0^{m} 1}$ and

$$
a=\underline{\left(0^{m+1} 1\right)^{p-1} 0^{m} 1\left(0^{m+1} 1\right)^{p-2} 0^{m} 1 .}
$$

Hence, for α we have either

$$
\begin{aligned}
\alpha & =R_{0,01}\left(\left(0^{m+1} 1\right)^{p-1} 0^{m} 1\left(0^{m+1} 1\right)^{p-2} 0^{m} 1\right) \\
& =\left(0^{m+2} 1\right)^{p-1} 0^{m+1} 1\left(0^{m+2} 1\right)^{p-2} 0^{m+1} 1 \\
& =m\left(\left(0^{m+2} 1\right)^{p-1} 0^{m+1} 1,\left(0^{m+2} 1\right)^{p-2} 0^{m+1} 1\right) \in A_{p}
\end{aligned}
$$

since $\underline{\left(0^{m+2} 1\right)^{p-1} 0^{m+1} 1}$ and $\underline{\left(0^{m+2} 1\right)^{p-2} 0^{m+1} 1}$ are consecutives sequences in A_{p-1} or

$$
\begin{aligned}
\alpha & =R_{01,1}\left(\underline{\left(0^{m+1} 1\right)^{p-1} 0^{m} 1\left(0^{m+1} 1\right)^{p-2} 0^{m} 1}\right) \\
& =\underline{\left((01)^{m+1} 1\right)^{p-1}(01)^{m} 1\left((01)^{m+1} 1\right)^{p-2}(01)^{m} 1} \\
& =\underline{\left((01)^{m} 011\right)^{p-1}(01)^{m-1} 011\left((01)^{m} 011\right)^{p-2}(01)^{m-1} 01} \\
& =m\left(\left((01)^{m} 011\right)^{p-1}(01)^{m-1} 011,\left((01)^{m} 011\right)^{p-2}(01)^{m-1} 011\right) \in A_{\infty} .
\end{aligned}
$$

For $a_{1}=\left(0^{m+1} 1\right)^{p-2} 0^{m} 1$ we must have $a_{2}=\left(0^{m+1} 1\right)^{p-2} 0^{m} 1\left(0^{m+1} 1\right)^{p-3} 0^{m} 1$ and $a=\left(0^{m+1} 1\right)^{p-2} 0^{m} 1\left(0^{m}+11\right)^{p-2} 0^{m} 1\left(0^{m+1} 1\right)^{p-3} 0^{m} 1$. In this case for α we have either

$$
\begin{aligned}
\alpha & =R_{0,01}(\alpha)=\left(0^{m+2} 1\right)^{p-2} 0^{m+1} 1\left(0^{m+2} 1\right)^{p-2} 0^{m+1} 1\left(0^{m+2} 1\right)^{p-3} 0^{m+1} 1 \\
& =m\left(\left(0^{m+2} 1\right)^{p-2} 0^{m+1} 1,\left(0^{m+2} 1\right)^{p-2} 0^{m+1} 1\left(0^{m+2} 1\right)^{p-3} 0^{m+1} 1\right) \in A_{\infty}
\end{aligned}
$$

or

$$
\begin{aligned}
\alpha & =R_{01,1}(a)=\underline{\left((01)^{m} 011\right)^{p-2}(01)^{m-1} 011\left((01)^{m} 011\right)^{p-3}(01)^{m-1} 011} \\
& =m\left(\left((01)^{m} 011\right)^{p-2}(01)^{m-1} 011,\left((01)^{m} 011\right)^{p-3}(01)^{m-1} 011\right) \in A_{\infty}
\end{aligned}
$$

For $a_{1}=\left(0^{m+1} 1\right)^{p-2} 0^{m} 1\left(0^{m+1} 1\right)^{p-3} 0^{m} 1$ we must have $a_{2}=\left(0^{m+1} 1\right)^{p-3} 0^{m} 1$. So, we get $\alpha=\left(0^{m+1} 1\right)^{p-2} 0^{m} 1\left(\left(0^{m+1} 1\right)^{p-3} 0^{m} 1\right)^{2}$. Therefore, for α we have either

$$
\begin{aligned}
\alpha & =R_{0,01}(\alpha)=\underline{\left(0^{m+2} 1\right)^{p-2} 0^{m+1} 1\left(\left(0^{m+2} 1\right)^{p-3} 0^{m+1} 1\right)^{2}} \\
& =m\left(\left(0^{m+2} 1\right)^{p-2} 0^{m+1} 1\left(0^{m+2} 1\right)^{p-3} 0^{m+1} 1,\left(0^{m+2} 1\right)^{p-3} 0^{m+1} 1\right) \in A_{\infty}
\end{aligned}
$$

or

$$
\begin{aligned}
\alpha= & R_{01,1}(\alpha)=\underline{\left((01)^{m} 011\right)^{p-2}(01)^{m} 011\left(\left((01)^{m} 011\right)^{p-3}(01)^{m-1} 011\right)^{2}} \\
= & m\left(\left((01)^{m} 011\right)^{p-2}(01)^{m} 011\left((01)^{m} 011\right)^{p-3}(01)^{m-1} 011,\right. \\
& \left.\quad\left((01)^{m} 011\right)^{p-3}(01)^{m-1} 011\right) \\
\in & A_{\infty} .
\end{aligned}
$$

In the same way we prove the result for

$$
\underline{\left(0^{m+1} 1\right)^{i} 0^{m} 1} \leq a_{1}<a_{2} \leq \underline{\left(0^{m+1} 1\right)^{i-1} 0^{m} 1}
$$

two consecutive sequences in A_{p-1} for $i=p-3, p-2, \ldots, 2$.
We proceed in a similar way for the case (\triangle).
Therefore, we conclude that $\alpha \in A_{\infty}$ for any $\alpha \in \mathcal{A}_{n+1} \backslash\{\underline{0}, \underline{1}\}$.

5. Proof of the main result

Let us now define $\mathcal{A} \subset \operatorname{Min}_{2}$ by $\mathcal{A}=\left\{a \in \operatorname{Min}_{2}: \sigma(a) \geq \sigma\left(\operatorname{Sup}\left\{\sigma^{k}(a): k \in\right.\right.\right.$ $\mathbb{N}\})\}$. It is not hard to prove that \mathcal{A} is a closed set.

Let us now prove the following
Proposition (5.1). $\mathcal{A}=\overline{A_{\infty}}$.
Proof. To prove the inclusion $A_{\infty} \subset \mathcal{A}$ we proceed as in the proposition 3.3. That is: initially we prove that $A_{0} \subset \mathcal{A}$, we assume, inductively, that $A_{0} \cup \cdots \cup A_{n} \subset \mathcal{A}$ and we prove, exhaustively, that $\left(A_{n+1} \backslash A_{n}\right) \subset \mathcal{A}$. Hence, we conclude $A_{\infty} \subset \mathcal{A}$.

So, let us prove that $\mathcal{A} \subset \overline{A_{\infty}}$.
Let $a \in \mathcal{A}$ and $b(a)=\sup \left\{\sigma^{i}(a): i \in \mathbb{N}\right\}$.
For $a=0 \underline{1}$ we have $\sigma(a)=\underline{1}, b(a)=\underline{1}$ and $a \in \mathcal{A}$. Since $a=\lim _{n \rightarrow \infty} \underline{01^{n}}$. We have that $a \in \overline{A_{\infty}}$.

For $a=\underline{0}$ we have $\sigma(a)=a$ and $b(a)=a$. Since $a=\lim _{n \rightarrow \infty} \underline{0^{n} 1}$. We have $a \in \overline{A_{\infty}}$.

For any other $a \in \mathcal{A}$ there is $n \in \mathbb{N}$ such that $\underline{0^{n+1} 1} \leq a \leq \underline{0^{n} 1}$ or $\underline{01^{n}} \leq a \leq$ 01^{n+1}.

Without loss of generality let us assume that $0^{n+1} 1 \leq a \leq \underline{0^{n} 1}$.
For $a=\underline{0^{n} 1}$ we have $\sigma(a)=\underline{0^{n-1} 10}$ and $b(a)=\underline{10^{n}}$. So, $\sigma(b(a))=\underline{0^{n} 1}=$ $a<\sigma(a)$.

That is $a \in \mathcal{A}$. The same is true for $a=\underline{0^{n+1} 1}$.
Since, by definition, we have $\underline{0^{n+1} 1} \in A_{\infty}$ and $\underline{0^{n} 1} \in A_{\infty}$ we have $a \in A_{\infty}$ in these cases.

Let us assume that $\underline{0^{n+1} 1}<a<\underline{0^{n} 1}$. It is clear that $b(a) \neq \underline{1}$. In fact, otherwise $\sigma(b(a))=\underline{1}>\sigma(a)$ since $\underline{0^{n} 1}<\sigma(a)<0^{n-1} 1 \underline{0^{n} 1}$. So, we must have $b(a)<1$.

We note, in this case, that a cannot have two consecutive ones. In fact, for $a=0^{n+1} 11 \ldots$ we have $\sigma(a)=0^{n} 11 \ldots$ If $b(a) \geq 110^{s_{1}} \ldots$ then $\sigma(b(a)) \geq 10^{s_{1}}>$ $\sigma(a)$, a contradiction.

For $a=0^{n} 10^{k_{1}} 10^{k_{2}} 1 \cdots 0^{k_{s}} 11 \cdots$ with $n \geq 2$ we also have obtain $\sigma(a)<$ $\sigma(b(a))$, a contradiction. For the case $n=1$ if $a=(01)^{r_{1}} 1(01)^{r_{2}} 1 \cdots$ we have $a>\underline{01}$ a contradiction with our assumption $\underline{0^{2} 1}<a<\underline{01}$.

So, $a \in \mathcal{A}$ cannot have two consecutive ones and $a=0^{n}(01)^{k_{1}} 0^{k_{2}}(01)^{k_{2}} \cdots$.
Let us now assume that a is a periodic sequence

$$
a=\underline{0^{n}(01)^{k_{1}} 0^{k_{2}}(01)^{k_{3}} \cdots 0^{k_{2 r}}(01)^{k_{2 r+1}} .}
$$

(I) Assume $n \geq 2$ then we must have $k_{1}=k_{3}=\cdots=k_{2 r+1}=1$. Otherwise assume, for instance, that $k_{1} \geq 2$. Then $b(a) \geq(10)^{k_{1}} 0^{k_{2}-1} \ldots$ and $\sigma(b(a)) \geq$ $\underline{010 \cdots}>\sigma(\alpha)=0^{n-1}(01)^{k_{1}} \cdots 0^{k_{2 r}}(01)^{k_{2 r+1}} a$, a contradiction.

Hence, for

$$
n \geq 2, a=\underline{0^{n}}(01) 0^{k_{2}}(01) \cdots 0^{k_{2 r}} 01=\underline{0^{n+1} 10^{k_{2}+1} 10^{k_{4}+1} 1 \cdots 0^{k_{2 r}+1} 1} .
$$

It is clear that $k_{i} \leq n$ because otherwise $a \notin \mathrm{Min}_{2}$, a contradiction. Moreover $k_{2 i} \geq n-1$ for any $i=1,2, \ldots, r$. Otherwise assume $k_{2 j}$ defined by $k_{2 j}=\min \left\{k_{2 i}: i=1, \ldots, r\right\}$ is such that $k_{2 j}<n-1$. We must have $b(a) \geq 10^{k_{2 j}+1} 10^{k_{2(j+1)}+1} \cdots 0^{k_{2 r}+1} 10^{n+1} 1 \cdots 10^{k_{2(j-1)}+1}$ and $\sigma(b(a)) \geq 0^{k_{2 j}+1} 10^{k_{2(j+1)}+1} \cdots 0^{k_{2 r}} 1 a>\sigma(a)=0^{n} 1 \cdots$ because $k_{2 j}+1<n$. Hence, $n-1 \leq k_{2 i} \leq n$ for $i=1,2, \ldots, r$.

So, $a=\underline{0^{n}(01) 0^{k_{2}}(01) \cdots 0^{k_{2 r}}(01)}$. Assume $k_{2 r}=n$. In this case we must have $k_{2}=k_{4}=\cdots=k_{2 r}=n$ and $a=\underline{0^{n+1} 1} \in A_{\infty}$. If not, let us assume for instance that $k_{2}=n-1$. In this situation we have $a=\underline{0^{n+1} 10^{n} 10^{k_{4}+1} 10^{k_{2(r-1)}+1} 10^{n+1} 1}$ and for some $j, \sigma^{j}(a)=\underline{0^{n+1}} 10^{n+1} 10^{n} 1 \cdots 0^{k_{2(n-1)}} 1<a$. Therefore $k_{2 r}=n-1$ and for the sequence a we get

$$
\begin{aligned}
a & =\underline{0^{n+1} 10^{k_{2}+1} 1 \cdots 0^{k_{2(r-1)}+1} 10^{n} 1} \\
& =\underline{0^{n}(01) 0^{k_{2}} 1 \cdots 0^{k_{2(n-1)}}(01) 0^{n-1}(01)} \\
& =R_{0,01}\left(0^{n} 10^{k_{2}} 1 \cdots 0^{n-1} 1\right) .
\end{aligned}
$$

Let $a_{1}=\underline{0}^{n} 10^{k_{2}} 1 \cdots 0^{n-1} 1$. It is clear that $a_{1} \in \operatorname{Min}_{2}$. In fact, otherwise there exists j such that $k_{2 j}=n, k_{2(j+1)}=k_{2}, \ldots, k_{2(j+p)}=k_{2 p}$ and $k_{2(j+p+1)}>$ $k_{2(p+1)}$. Applying these values to a we have that $a \notin \operatorname{Min}_{2}$, a contradiction. So, $a_{1} \in \operatorname{Min}_{2}$.

It is clear that $b(a)=10^{n} 10^{t_{2}+1} \cdots 10^{t_{2 r}+1}$ if and only if

$$
b\left(a_{1}\right)=\underline{10^{n-1} 10^{t_{2}} \cdots 10^{t_{2 r}}}
$$

and, consequently, $\sigma(b(a)) \leq b(a)$ imply $\sigma\left(b\left(a_{1}\right)\right) \leq \sigma\left(a_{1}\right)$. So, we conclude $a_{1} \in \mathcal{A}$ and $\underline{0^{n} 1}<a_{1}<\underline{0^{n-1}} 1$.

If $n-1 \geq 2$ we obtain $a_{2} \in \mathcal{A}$ such that $a_{1}=R_{0,01}\left(a_{2}\right)$ and $0^{n-1} 1<a_{2}<$ $\underline{0^{n-1} 1}$. Successively, we will continue up to find $a_{k} \in \mathcal{A}$ such that $\underline{\underline{0^{2} 1}<a_{k}<\underline{01}}$ and $a_{i-1}=R_{0,01}\left(a_{i}\right)$ for $i=1,2, \ldots, k, a_{0}=a$.
(II) So, let us consider the case $\underline{0^{2} 1}<\alpha<\underline{01}$ and $a \in \mathcal{A}$.

In this situation we must have

$$
\begin{aligned}
a & =\underline{\left(0^{2} 1\right)^{p_{1}}(01)^{p_{2}}\left(0^{2} 1\right)^{p_{3}} \cdots\left(0^{2} 1\right)^{p_{2 r}-1}(01)^{p_{2 r} r}} \\
& =R_{0,01}\left((01)^{p_{1}} 1^{p_{2}}(01)^{p_{3}} \cdots(01)^{p_{2 r}-1} 1^{p_{2 r}}\right) \\
& =R_{01,1} \circ R_{01,1}\left(\underline{0^{p_{1}}} 1^{p_{2}} 0^{p_{3}} \cdots 0^{p_{2 r-1}} 1^{p_{r}}\right.
\end{aligned} .
$$

 $a_{1}<\underline{0^{p_{1}-1} 1}$.

Now, we can apply the part (I) to a_{1} and we have $\alpha_{1}=R_{0,01}\left(\tilde{a}_{1}\right)$ for some $\tilde{a}_{1} \in \mathcal{A}$.

So, $a=R_{0,01} \circ R_{01,1} \circ R_{0,01}\left(\tilde{a}_{1}\right)$. Successively, we obtain that $a=R_{0,01} \circ R_{01,1} \circ$ $R_{0,01}^{i_{1}} \circ R_{01,1} \circ R_{0,01}^{i_{2}} \circ \cdots \circ R_{0,01}^{i_{k}}(\underline{01})$. Hence, by proposition 3.3, we conclude that $a \in A_{\infty}$. Since any $a \in \mathcal{A}$ can be approximated by periodic sequences in \mathcal{A} we conclude that $\mathcal{A} \subset \overline{A_{\infty}}$.

To complete the proof of the Theorem (2.1) we need to prove the following
Proposition (5.2). For any $f \in \mathrm{DC}_{c}(2)$ the kneading sequence $a_{f}=I_{f}\left(0^{+}\right)$ satisfy $a \in \mathcal{A}$. The same result is true for $f \in \mathrm{DC}_{c}(1)$.

Proof. Clearly $a \in \operatorname{Min}_{2}$. Since $f(0)=f(1)$ and $\left.f\right|_{[0, c[}$ and $\left.f\right|_{[c, 1]}$ are increasing we have $f(x) \geq f(y)$ for any $x \in[0, c[$ and $y \in] c, 1]$.

Assume $\left.x_{0}=f(0)=f(1) \in\right] 0,1[$. Assume $\varepsilon>0$ is such that $] x_{0}-\varepsilon, x_{0}+\varepsilon[\subset$ $] 0,1[$. Since $\left.\left.\left.] x_{0}-\varepsilon, x_{0}\right] \subset f(] c, 1\right]\right)$ then there is $\delta>0$ such that $f(1-\delta)=x_{0}-\varepsilon$ and for any $\left.z \in] x_{0}-\varepsilon, x_{0}\right]$ there is $\left.\left.y \in\right] 1-\delta, 1\right]$ such that $f(y)=z$.

Since $\left[x_{0}, x_{0}+\varepsilon\left[\subset f\left(\left[0, c[)\right.\right.\right.\right.$ then there is $\tilde{\delta}>0$ such that $f(\tilde{\delta})=x_{0}+\varepsilon$ and for any $z \in] x_{0}, x_{0}+\varepsilon[$ there is $y \in[0, \tilde{\delta}[$ such that $f(y)=z$.

In this situation

$$
I_{f}\left(x_{0}^{+}\right)=\lim _{z \downarrow x_{0}, z \in \Gamma_{f}} I_{f}(z)=\lim _{y \downarrow 0, y \in \Gamma_{f}} I_{f}(f(y))=I_{f}\left(f\left(0^{+}\right)\right)=\sigma \circ I_{f}\left(0^{+}\right)=\sigma\left(a_{f}\right)
$$

and

$$
I_{f}\left(x_{0}^{-}\right)=\lim _{z \uparrow x_{0}, z \in \Gamma_{f}} I_{f}(z)=\lim _{y \uparrow 1, y \in \Gamma_{f}} I_{f}(f(y))=I_{f}\left(f\left(1^{-}\right)\right)=\sigma \circ I_{f}\left(1^{-}\right)=\sigma\left(b_{f}\right) .
$$

Since $I_{f}\left(x_{0}^{-}\right) \leq I_{f}\left(x_{0}\right)$ we obtain $\sigma\left(b_{f}\right) \leq \sigma\left(a_{f}\right)$. For $b\left(a_{f}\right)=\sup \left\{\sigma^{i}\left(a_{f}\right): i \in\right.$ $\mathbb{N}\}$ we have $b\left(a_{f}\right) \leq b_{f}$ and, consequently, $\sigma\left(b\left(a_{f}\right)\right) \leq \sigma\left(b_{f}\right)$. Hence, we obtain $\sigma\left(b\left(a_{f}\right)\right) \leq \sigma\left(a_{f}\right)$ as we claim. Clearly a similar argument apply for elements in $\mathrm{DC}_{c}(1)$.

Theorem (2.1) is now a consequence of corollary (3.5) and proposition (5.2).

Remark. Now we can consider the sets $\mathrm{KDC}_{c}(b)=\left\{b_{f}: f \in D C(1) \cup \mathrm{DC}_{c}(2)\right\}$ and $B_{\infty}=\left\{b(a): a \in A_{\infty}\right\}$ and, in a similar way as we did for the proof of the theorem 2.1, we can prove that $\mathrm{KDC}_{c}(b)=\overline{B_{\infty}}$.

Acknowledgment

Part of this paper is an outgrowth of research during a visit of the authors to IMPA-Brazil and of the first author to the Universidad de Oviedo during a sabbatical leave. We thanks to these institutions for their support and hospitality while preparing this paper. Also, we would like to thanks to two unknown referees for their suggestions to improve the presentation of our work.

Departamento de Matemática y Ciencia de la Computación
Universidad de Santiago de Chile (USACH)
Casilla 307, correo 2 - Santiago - Chile
rafael.labarca@usach.cl
lautaro.vasquez@usach.cl
Received January 31, 2008
Final version received July 27, 2010

References

[1] V. I. Arnold, Small Denominations I: Mappings of the circunference into itself Translations of the Amer. Math. Soc., Series 2, pp 213-284 (1965).
[2] R. Bamón, R. Labarca, R. Mañe, M. J. Pacifico, The explosion of singular cycles Publ. Math. IHES vol 78 pp 207-232 (1993).
[3] P. Boyland, Bifurcation of circle maps: Arnold's Tongues, Bistability and Rotation Intervals Comm. Math. Phys. 106 pp 353-381 (1986).
[4] W. de Melo, S. Van Strien, One Dimensional Dynamics, Ergebhisse der Mathematik. Springer Verlag (1993).
[5] L. Glass, R. Pérez, Fine Structure of Phase Locking Phys. Rev. Lett.Vol. 48 N\{ 26 pp 17721775 (1982).
[6] J. Guckenheimer, R. Williams, Structural Stability of Lorenz Attractors Publ. Math. IHES vol. 50 pp 59-72 (1979).
[7] L. Glass, M. Guevara, J.Belair, A. Sbrier, Global Bifurcations of a periodically forced Biological Oscillator Phys. Rev. A. vol 29 N\{3 pp 1348-1357 (1984).
[8] M. Hermann, Mesure de Lebesgue et nombre de Rotation Lecture Notes in Math. 597 pp 271-293 (1977) Springer-Verlag.
[9] R. Labarca, Bifurcation of contracting singular cycles Ann. Scient. Ec. Norm. Sup. $4^{\text {eme }}$ Serie t $28 \mathrm{pp} 705-745$ (1995).
[10] R. Labarca, A note of topological classification of Lorenz Maps of the interval. Topics in Symbolic Dynamics and Applications (Temuco 1997) London Math. Soc. Lect. Notes Ser. 299 pp 229-245 (2000).
[11] R. Labarca, C. Moreira, Bifurcation of the Essential Dynamics of Lorenz Maps of the real Line and the Bifurcation Scenario for the Linear family Scientia Ser A Math. Sci (N-S) vol. 7 pp 13-29 (2001).
[12] R. Labarca, C. Moreira, Bifurcation of Essential Dynamics of Lorenz Maps and applications to Lorenz Like Flows: Contributions to the study of the Expanding Case. Bol. Soc. Bros. Mat. (N-S) Vol. 32 pp 107-144 (2001).
[13] R. Labarca, C. Moreira, Essential Dynamics for Lorenz Maps on the real line and Lexicographical World. Ann. de L'Institut H. Poincaré Anal. non Linneaire vol. 23 pp 683-694 (2006).
[14] R. Labarca, M. J. Pacifico, Stability of Singular Horseshoes Topology 25 N\{3 pp 337-352 (1986).
[15] R. Labarca, S. Plaza, Bifurcations of Discontinuous maps of the interval and Palindromic numbers Bol. Soc. Mat. Mexicana (3) vol 7 pp 99-116 (2001).
[16] R. Labarca, L. Vasquez, On the characterization of the kneading sequences associated to Lorenz Maps of the interval. pre-print 2010.
[17] E. N. Lorenz, Deterministic non-periodic flows J. Atmos. Sci. 20 pp 130-141 (1963).
[18] R. Siegel, C. Tresser, G. Zehler, A Decoding problem in Dynamics and Number Theory Chaos vol. 2 N. 4 pp 473-493 (1992).
[19] J. Testa, J. Pérez, C. Jeffries, Evidence for universal chaotic behaviour of a driven nonlinear oscillator Phys. Rev. Lett. vol. 48 N. 11 pp 714-717 (1982).
[20] R. F. Williams, The structure os Lorenz attractors Turbulence Seminar Berkeley 1979/1977 P. Bernard, T. Rateu (Eds) pp 94-112 Springer-Verlag.

SPACE-LIKE HYPERSURFACES WITH CONSTANT k-TH MEAN CURVATURE IN $S_{1}^{n+1}(c)$

SHICHANG SHU AND SANYANG LIU

Abstract

In this paper, we give some characterizations of Riemannian product $H^{m}\left(c_{1}\right) \times S^{n-m}\left(c_{2}\right)$ and show that the Riemannian product $H^{m}\left(c_{1}\right) \times$ $S^{n-m}\left(c_{2}\right)$ is the only complete connected space-like hypersurface in a de Sitter space $S_{1}^{n+1}(c)$ with constant k-th mean curvature $H_{k}>0(k<n)$ and two distinct principal curvatures, if (1) the multiplicities of both principal curvatures are greater than 1 , in this case $1<m<n-1$, or (2) one of the both principal curvatures is simple and $H_{k}^{2 / k}<c$ and the sectional curvature of M^{n} is non-negative or the squared norm of the second fundamental form of M^{n} satisfies some pinching conditions, respectively, in this case $m=1$ or $m=n-1$. We extend recent result of Z . Hu et al. [7].

1. Introduction

Let $S_{1}^{n+1}(c)$ be an $(n+1)$-dimensional de Sitter space with constant sectional curvature $c(c>0)$. A hypersurface in a de Sitter space is said to be space-like if the induced metric on the hypersurface is positive definite.

In connection with the negative settlement of the Bernstein problem due to Calabi [3], Cheng-Yau [4] and Choquet-Bruhat et al. [5] proved for $c \geq 0$ and T. Ishihara [8] proved for $c<0$ the following theorem.

THEOREM (1.1). ([4], [5], [8]). Let M^{n} be an n-dimensional ($n \geq 2$) complete maximal space-like hypersurface in an ($n+1$)-dimensional Lorentzian space form $M_{1}^{n+1}(c)$. Then
(i) if $c \geq 0, M^{n}$ is totally geodesic.
(ii) if $c<0$, then $S \leq n$ and $S=n$ if and only if $M^{n}=H^{m}\left(-\frac{n}{m}\right) \times$ $H^{n-m}\left(-\frac{n}{n-m}\right)$, $(1 \leq m \leq n-1)$, where S denotes the squared norm of the second fundamental form of M^{n}.

As a generalization of Theorem (1.1), complete space-like hypersurfaces with constant mean curvature in a Lorentz manifold have been investigated by many mathematicians. For example, let M^{n} be an n-complete space-like hypersurface with constant mean curvature in a de Sitter space $S_{1}^{n+1}(c)$, Goddard [6] conjectured that every such hypersurface must be totally umbilical. Akutagawa [2] and Ramanathan [14] had proved independently that Goddard's conjecture is true if $H^{2} \leq c$ when $n=2$, and $n^{2} H^{2}<4(n-1) c$ when $n \geq 3$. Montiel [12] solved this conjecture in the case when M is compact. Further

[^5]discussions in this regard have been carried out by many other authors, we can see [7]-[11] and the author [15].

In [18] and [7], by considering the sectional curvature and the squared norm S of the second fundamental form of M^{n}, Zheng and Z. Hu et al. proved the following result, respectively.

THEOREM (1.2). ([18]). Let M^{n} be an n-dimensional compact space-like hypersurface in an ($n+1$)-dimensional de Sitter space $S_{1}^{n+1}(c)$ with constant scalar curvature $n(n-1) r$. If $r<c$ and the sectional curvature of M^{n} is non-negative, then M^{n} is isometric to a sphere.

Theorem (1.3). ([7]). Let M^{n} be an n-dimensional ($n \geq 3$) complete connected and oriented space-like hypersurface in an ($n+1$)-dimensional de Sitter space $S_{1}^{n+1}(1)$ with constant scalar curvature $n(n-1) r$ and with two distinct principal curvatures, one of which is simple.
(i) If $r \neq 0$ and $S \geq(n-1) \frac{n(1-r)-2}{n-2}+\frac{n-2}{n(1-r)-2}$, then M^{n} is isometric to the hyperbolic cylinder $H^{1}\left(c_{1}\right) \times S^{n-1}\left(c_{2}\right)$, where $c_{1}=-\frac{n r}{n(1-r)-2}, c_{2}=\frac{n r}{n-2}$ and $r>0$ or spherical cylinder $H^{n-1}\left(c_{1}\right) \times S^{1}\left(c_{2}\right)$, where $c_{1}=\frac{n r}{n-2}, c_{2}=-\frac{n r}{n(1-r)-2}$ and $r<0$.
(ii) If $r>0$ and $S \leq(n-1) \frac{n(1-r)-2}{n-2}+\frac{n-2}{n(1-r)-2}$, then M^{n} is isometric to the hyperbolic cylinder $H^{1}\left(c_{1}\right) \times S^{n-1}\left(c_{2}\right)$, where $c_{1}=-\frac{n r}{n(1-r)-2}$ and $c_{2}=\frac{n r}{n-2}$.

We denote by h the second fundamental form of M^{n} and denote by $\lambda_{1}, \lambda_{2}, \ldots$, λ_{n} the principal curvatures at an arbitrary point of M^{n}. From [11], we know that the k-th mean curvature H_{k} of M^{n} is defined by

$$
P_{n}(t)=\left(1+t \lambda_{1}\right)\left(1+t \lambda_{2}\right) \cdots\left(1+t \lambda_{n}\right)=1+C_{n}^{1} H_{1} t+\cdots+C_{n}^{n} H_{n} t^{n},
$$

that is, the k-th mean curvature H_{k} is the normalized k-th symmetric function of principal curvatures of the hypersurface M^{n} defined by

$$
\begin{equation*}
C_{n}^{k} H_{k}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \lambda_{i_{1}} \cdots \lambda_{i_{k}}, \tag{1.4}
\end{equation*}
$$

where $C_{n}^{k}=\frac{n!}{k!(n-k)!}$.
We should note that if $k=1, H_{1}$ is the mean curvature of M^{n} and if $k=2$, from (1.1) and (2.11), we have $H_{2}=c-r$, where r is the normalized scalar curvature of M^{n}.

In this paper, we investigate complete hypersurfaces in a de Sitter space $S_{1}^{n+1}(c)$ with constant k-th mean curvature $H_{k}(k<n)$ and with two distinct principal curvatures. In order to state our theorem clearly, we introduce, see UH.Ki et al. [10], the well-known standard models of complete space-like hypersurfaces with non-zero constant k-th mean curvature in an $(n+1)$-dimensional de Sitter space $S_{1}^{n+1}(c)$:

$$
\begin{aligned}
H^{m}\left(c_{1}\right) \times S^{n-m}\left(c_{2}\right) & =\left\{(x, y) \in S_{1}^{n+1}(c)\right. \\
& \left.\subset R_{1}^{n+2}=R_{1}^{m+1} \times R^{n-m+1}:|x|^{2}=-\frac{1}{c_{1}},|y|^{2}=\frac{1}{c_{2}}\right\},
\end{aligned}
$$

where $\frac{1}{c_{1}}+\frac{1}{c_{2}}=\frac{1}{c}, c_{1}<0, c_{2}>0$ and $m=1, \cdots, n-1$. We note that $H^{m}\left(c_{1}\right) \times S^{n-m}\left(c_{2}\right)$ in $S_{1}^{n+1}(c)$ has two distinct principal curvatures $\sqrt{c-c_{1}}$ with multiplicity m and $\sqrt{c-c_{2}}$ with multiplicity $n-m$.

From U-H. Ki et al. [10], $H^{1}\left(c_{1}\right) \times S^{n-1}\left(c_{2}\right)$ or $H^{n-1}\left(c_{1}\right) \times S^{1}\left(c_{2}\right)$ is, in particular, called a hyperbolic cylinder or a spherical cylinder in $S_{1}^{n+1}(c)$.

From above, we know that the hyperbolic cylinder or spherical cylinder has two distinct principal curvatures one of which is simple. Without loss of generality, we can denote the two distinct principal curvatures by λ and μ, and say that λ has multiplicity $n-1$ and μ has multiplicity 1 . Therefore, from (1.1), we obtain

$$
C_{n}^{k} H_{k}=C_{n-1}^{k} \lambda^{k}+C_{n-1}^{k-1} \lambda^{k-1} \mu,
$$

this implies that

$$
\begin{equation*}
\lambda^{k-1}[(n-k) \lambda+k \mu]=n H_{k} . \tag{1.5}
\end{equation*}
$$

For the hyperbolic cylinder $H^{1}\left(c_{1}\right) \times S^{n-1}\left(c_{2}\right)$ and the spherical cylinder $H^{n-1}\left(c_{1}\right) \times S^{1}\left(c_{2}\right)$ in $S_{1}^{n+1}(c)$, we know that $\lambda \neq 0, \mu \neq 0$ and λ and μ satisfy

$$
\begin{equation*}
\lambda \mu=c \tag{1.6}
\end{equation*}
$$

From (1.2), we have

$$
\begin{equation*}
\mu=\frac{n}{k} H_{k} \lambda^{1-k}-\frac{n-k}{k} \lambda . \tag{1.7}
\end{equation*}
$$

From (1.6) and (1.7), we know that λ satisfies

$$
-\frac{n}{k} H_{k} \lambda^{2-k}+\frac{n-k}{k} \lambda^{2}+c=0,
$$

that is,

$$
c k \lambda^{k-2}+(n-k) \lambda^{k}-n H_{k}=0 .
$$

Putting $t=\lambda^{k}$, we have

$$
\begin{equation*}
c k t^{\frac{k-2}{k}}+(n-k) t-n H_{k}=0, \tag{1.8}
\end{equation*}
$$

and the squared norm of the second fundamental form of the hyperbolic cylin$\operatorname{der} H^{1}\left(c_{1}\right) \times S^{n-1}\left(c_{2}\right)$ or the spherical cylinder $H^{n-1}\left(c_{1}\right) \times S^{1}\left(c_{2}\right)$ is

$$
S=(n-1) \lambda^{2}+c^{2} \lambda^{-2}=(n-1) t^{2 / k}+c^{2} t^{-2 / k},
$$

where t satisfies (1.8).
Denote by $P_{H_{k}}(t)$ the following function

$$
\begin{equation*}
P_{H_{k}}(t)=c k t^{\frac{k-2}{k}}+(n-k) t-n H_{k}, \quad\left(t>0, \quad H_{k}>0\right), \tag{1.9}
\end{equation*}
$$

where $c>0$ and $H_{k}^{2 / k}<c$. From Lemma (3.21), we know that (1.9) has a positive real root t_{1}.

We shall prove the following result:
Main Theorem. Let M^{n} be an n-dimensional ($n \geq 3$) complete connected space-like hypersurface in an $(n+1)$-dimensional de Sitter space $S_{1}^{n+1}(c)$ with constant k-th mean curvature $H_{k}>0(k<n)$ and with two distinct principal curvatures. Then
(1) if the multiplicities of both principal curvatures are greater than 1, then M^{n} is isometric to the Riemannian product $H^{m}\left(c_{1}\right) \times S^{n-m}\left(c_{2}\right)$, where $\frac{1}{c_{1}}+\frac{1}{c_{2}}=\frac{1}{c}$, $c_{1}<0, c_{2}>0$ and $1<m<n-1$.
(2) if one of the both principal curvatures is simple and $H_{k}^{2 / k}<c$, then M^{n} is isometric to the hyperbolic cylinder $H^{1}\left(c_{1}\right) \times S^{n-1}\left(c_{2}\right)$ or spherical cylinder $H^{n-1}\left(c_{1}\right) \times S^{1}\left(c_{2}\right), \frac{1}{c_{1}}+\frac{1}{c_{2}}=\frac{1}{c}, c_{1}<0, c_{2}>0$, if one of the following conditions is satisfied:
(i) the sectional curvature of M^{n} is non-negative on M^{n}, or
(ii) $S \leq(n-1) t_{1}^{2 / k}+c^{2} t_{1}^{-2 / k}$ on M^{n}, where $k>2$ or
(iii) $S \geq(n-1) t_{1}^{2 / k}+c^{2} t_{1}^{-2 / k}$ on M^{n}, where $k>2$ and t_{1} is the positive real root of (1.9).

Remark (1.10). If $c=1, k=1$ and $k=2$, the result of (1) in Main Theorem was proved by A. Brasil Jr et al. [9] and Z. Hu et al. [7], respectively.

Remark (1.11). We know that if $c=1$ and $k=2$, Z. Hu et al. [7] obtained an interesting result, see Theorem (1.3). In this paper, we extend recent result of Z. Hu et al. [7] to the case $k>2$.

2. Preliminaries

Let M^{n} be an n-dimensional space-like hypersurface in an ($n+1$)-dimensional de Sitter space $S_{1}^{n+1}(c)$. We choose a local field of semi-Riemannian orthonormal frames $\left\{e_{1}, \ldots, e_{n+1}\right\}$ in $S_{1}^{n+1}(c)$ such that at each point of $M^{n},\left\{e_{1}, \ldots, e_{n}\right\}$ span the tangent space of M^{n} and form an orthonormal frame there. We use the following convention on the range of indices:

$$
1 \leq A, B, C, \cdots \leq n+1 ; \quad 1 \leq i, j, k, \cdots \leq n .
$$

Let $\left\{\omega_{1}, \ldots, \omega_{n+1}\right\}$ be the dual frame field so that the semi-Riemannian metric of $S_{1}^{n+1}(c)$ is given by $d \bar{s}^{2}=\sum_{i} \omega_{i}^{2}-\omega_{n+1}^{2}=\sum_{A} \epsilon_{A} \omega_{A}^{2}$, where $\epsilon_{i}=1$ and $\epsilon_{n+1}=-1$.

The structure equations of $S_{1}^{n+1}(c)$ are given by

$$
\begin{gather*}
d \omega_{A}=\sum_{B} \epsilon_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0 \tag{2.1}\\
d \omega_{A B}=\sum_{C} \epsilon_{C} \omega_{A C} \wedge \omega_{C B}+\Omega_{A B} \tag{2.2}
\end{gather*}
$$

where

$$
\begin{equation*}
\Omega_{A B}=-\frac{1}{2} \sum_{C, D} K_{A B C D} \omega_{C} \wedge \omega_{D} \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
K_{A B C D}=\epsilon_{A} \epsilon_{B} c\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}\right) \tag{2.4}
\end{equation*}
$$

Restrict these forms to M^{n}, we have

$$
\begin{equation*}
\omega_{n+1}=0 \tag{2.5}
\end{equation*}
$$

Cartan's Lemma implies that

$$
\begin{equation*}
\omega_{n+1 i}=\sum_{j} h_{i j} \omega_{j}, \quad h_{i j}=h_{j i} . \tag{2.6}
\end{equation*}
$$

The structure equations of M^{n} are

$$
\begin{equation*}
d \omega_{i}=\sum_{j} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}+\omega_{j i}=0 \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
d \omega_{i j}=\sum_{k} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l} \tag{2.8}
\end{equation*}
$$

where $R_{i j k l}$ are the components of the curvature tensor of M^{n} and

$$
\begin{equation*}
h=\sum_{i, j} h_{i j} \omega_{i} \otimes \omega_{j} \tag{2.10}
\end{equation*}
$$

is the second fundamental form of M^{n}.
From the above equation, we have

$$
\begin{equation*}
n(n-1)(r-c)=S-n^{2} H^{2} \tag{2.11}
\end{equation*}
$$

where $n(n-1) r$ is the scalar curvature of M^{n}, H is the mean curvature, and $S=\sum_{i, j} h_{i j}^{2}$ is the squared norm of the second fundamental form of M^{n}.

We choose e_{1}, \cdots, e_{n} such that $h_{i j}=\lambda_{i} \delta_{i j}$. From (2.6) we have

$$
\begin{equation*}
\omega_{n+1 i}=\lambda_{i} \omega_{i}, \quad i=1,2, \cdots, n \tag{2.12}
\end{equation*}
$$

Hence, we have from the structure equations of M^{n}

$$
\begin{aligned}
d \omega_{n+1 i} & =d \lambda_{i} \wedge \omega_{i}+\lambda_{i} d \omega_{i} \\
& =d \lambda_{i} \wedge \omega_{i}+\lambda_{i} \sum_{j} \omega_{i j} \wedge \omega_{j}
\end{aligned}
$$

On the other hand, we have for the curvature forms of $S_{1}^{n+1}(c)$,

$$
\begin{align*}
\Omega_{n+1 i} & =-\frac{1}{2} \sum_{C, D} K_{n+1 i C D} \omega_{C} \wedge \omega_{D} \\
& =\frac{1}{2} \sum_{C, D} c\left(\delta_{n+1 C} \delta_{i D}-\delta_{n+1 D} \delta_{i C}\right) \omega_{C} \wedge \omega_{D} \tag{2.14}\\
& =c \omega_{n+1} \wedge \omega_{i}=0
\end{align*}
$$

Therefore, from the structure equations of $S_{1}^{n+1}(c)$, we have

$$
\begin{align*}
d \omega_{n+1 i} & =\sum_{j} \omega_{n+1 j} \wedge \omega_{j i}-\omega_{n+1 n+1} \wedge \omega_{n+1 i}+\Omega_{n+1 i} \tag{2.15}\\
& =\sum_{j} \lambda_{j} \omega_{i j} \wedge \omega_{j} .
\end{align*}
$$

From (2.13) and (2.15), we obtain

$$
\begin{equation*}
d \lambda_{i} \wedge \omega_{i}+\sum_{j}\left(\lambda_{i}-\lambda_{j}\right) \omega_{i j} \wedge \omega_{j}=0 \tag{2.16}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\psi_{i j}=\left(\lambda_{i}-\lambda_{j}\right) \omega_{i j} \tag{2.17}
\end{equation*}
$$

Then $\psi_{i j}=\psi_{j i}$. (2.16) can be written as

$$
\begin{equation*}
\sum_{j}\left(\psi_{i j}+\delta_{i j} d \lambda_{j}\right) \wedge \omega_{j}=0 \tag{2.18}
\end{equation*}
$$

By E. Cartan's Lemma, we get

$$
\begin{equation*}
\psi_{i j}+\delta_{i j} d \lambda_{j}=\sum_{k} Q_{i j k} \omega_{k} \tag{2.19}
\end{equation*}
$$

where $Q_{i j k}$ are uniquely determined functions such that $Q_{i j k}=Q_{i k j}$.
On the other hand, since the covariant derivative of the second fundamental form $h_{i j}$ of M^{n} is defined by

$$
\sum_{k} h_{i j k} \omega_{k}=d h_{i j}+\sum_{k} h_{i k} \omega_{k j}+\sum_{k} h_{k j} \omega_{k i},
$$

from $h_{i j}=\lambda_{i} \delta_{i j}$, we have

$$
\sum_{k} h_{i j k} \omega_{k}=\delta_{j i} d \lambda_{j}+\left(\lambda_{i}-\lambda_{j}\right) \omega_{i j}
$$

Combining with (2.19), we know that $Q_{i j k}=h_{i j k}$. From (2.6) and the Codazzi equations $h_{i j k}=h_{i k j}$, we have $h_{i j k}=h_{j i k}=h_{i k j}$, that is

$$
\begin{equation*}
Q_{i j k}=Q_{j i k}=Q_{i k j} . \tag{2.20}
\end{equation*}
$$

3. Proof of Main Theorem

We firstly state a Proposition which can be proved by making use of the similar method due to Otsuki [13] for Riemannian space forms (see [7]).

Proposition (3.1). Let M^{n} be a hypersurface in an ($n+1$)-dimensional de Sitter space $S_{1}^{n+1}(c)$ such that the multiplicities of the principal curvatures are constant. Then the distribution of the space of the principal vectors corresponding to each principal curvature is completely integrable. In particular, if the multiplicity of a principal curvature is greater than 1, then this principal curvature is constant on each integral submanifold of the corresponding distribution of the space of the principal vectors.

Proof of (1) in Main Theorem. Let λ and μ be the two distinct principal curvatures of multiplicities m and $n-m$ respectively, where $1<m<n-1$. From (1.4), we have

$$
C_{n}^{k} H_{k}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \lambda_{i_{1}} \cdots \lambda_{i_{k}},
$$

this is always a equality of H_{k}, λ and μ, we can denote it by

$$
\begin{equation*}
C_{n}^{k} H_{k}=\mathcal{F}(\lambda, \mu) \tag{3.2}
\end{equation*}
$$

Denote by D_{λ} and D_{μ} the integral submanifolds of the corresponding distribution of the space of principal vectors corresponding to the principal curvature λ and μ, respectively. From Proposition (3.1), we know that λ is constant on D_{λ}. Since the k-th mean curvature H_{k} is constant, (3.2) implies that μ is constant on D_{λ}. By making use of Proposition (3.1) again, we have μ is constant on D_{μ}. Therefore, we know that μ is constant on M^{n}. By the same assertion we know
that λ is constant on M^{n}. Therefore M^{n} is isoparametric. By the congruence Theorem of Abe, Koike and Yamaguchi [1], we know that M^{n} is isometric to the Riemannian product $H^{m}\left(c_{1}\right) \times S^{n-m}\left(c_{2}\right)$, where $\frac{1}{c_{1}}+\frac{1}{c_{2}}=\frac{1}{c}, c_{1}<0, c_{2}>0$ and $1<m<n-1$. This completes the proof of (1) in Main Theorem.

From now on, we consider that $n(n \geq 3)$-dimensional complete connected space-like hypersurface with constant k-th mean curvature $H_{k}>0$ ($k<n$) and with two distinct principal curvatures, one of which is simple. Without loss of generality, we may assume

$$
\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n-1}=\lambda, \quad \lambda_{n}=\mu,
$$

where λ_{i} for $i=1,2, \cdots, n$ are the principal curvatures of M^{n}. Therefore, we obtain

$$
C_{n}^{k} H_{k}=C_{n-1}^{k} \lambda^{k}+C_{n-1}^{k-1} \lambda^{k-1} \mu,
$$

this implies that

$$
\begin{equation*}
\lambda^{k-1}[(n-k) \lambda+k \mu]=n H_{k} . \tag{3.3}
\end{equation*}
$$

For $k \geq 2$, if $\lambda=0$ at some point, from (3.2), we have $H_{k}=0$ at this point, this is a contradiction to the fact that $H_{k}>0$. By changing the orientation for M^{n} and renumbering e_{1}, \ldots, e_{n} if necessary, we may assume that $\lambda>0$. Therefore, we have for all k

$$
\begin{equation*}
\mu=\frac{n}{k} H_{k} \lambda^{1-k}-\frac{n-k}{k} \lambda . \tag{3.4}
\end{equation*}
$$

Since

$$
\lambda-\mu=n \frac{\lambda^{k}-H_{k}}{k \lambda^{k-1}} \neq 0,
$$

we know that $\lambda^{k}-H_{k} \neq 0$.
Let $\boldsymbol{\sigma}=\left|\lambda^{k}-H_{k}\right|^{-\frac{1}{n}}$. We denote the integral submanifold through $x \in M^{n}$ corresponding to λ by $M_{1}^{n-1}(x)$. Putting

$$
\begin{equation*}
d \lambda=\sum_{k=1}^{n} \lambda,{ }_{k} \omega_{k}, \quad d \mu=\sum_{k=1}^{n} \mu,{ }_{k} \omega_{k} . \tag{3.5}
\end{equation*}
$$

From Proposition (3.1), we have

$$
\begin{equation*}
\lambda, 1=\lambda, 2=\cdots=\lambda,{ }_{n-1}=0 \text { on } M_{1}^{n-1}(x) . \tag{3.6}
\end{equation*}
$$

From (3.4), we have

$$
\begin{equation*}
d \mu=\left[\frac{n(1-k)}{k} H_{k} \lambda^{-k}-\frac{n-k}{k}\right] d \lambda . \tag{3.7}
\end{equation*}
$$

Thus, we also have

$$
\begin{equation*}
\mu, 1=\mu, 2=\cdots=\mu, n-1=0 \quad \text { on } \quad M_{1}^{n-1}(x) . \tag{3.8}
\end{equation*}
$$

In this case, we may consider locally that λ is a function of the arc length s of the integral curve of the principal vector field e_{n} corresponding to the principal
curvature μ. From (2.19) and (3.6), we have for $1 \leq j \leq n-1$,

$$
\begin{align*}
d \lambda & =d \lambda_{j}=\sum_{k=1}^{n} Q_{j j k} \omega_{k} \\
& =\sum_{k=1}^{n-1} Q_{j j k} \omega_{k}+Q_{j j n} \omega_{n}=\lambda,_{n} \omega_{n} . \tag{3.9}
\end{align*}
$$

Therefore, we have

$$
\begin{equation*}
Q_{j j k}=0, \quad 1 \leq k \leq n-1, \quad \text { and } \quad Q_{j j n}=\lambda, n \tag{3.10}
\end{equation*}
$$

By (2.19) and (3.8), we have

$$
\begin{equation*}
d \mu=d \lambda_{n}=\sum_{k=1}^{n} Q_{n n k} \omega_{k} \tag{3.11}
\end{equation*}
$$

$$
=\sum_{k=1}^{n-1} Q_{n n k} \omega_{k}+Q_{n n n} \omega_{n}=\sum_{i=1}^{n} \mu_{, i} \omega_{i}=\mu, n \omega_{n}, .
$$

Hence, we obtain

$$
\begin{equation*}
Q_{n n k}=0, \quad 1 \leq k \leq n-1, \quad \text { and } \quad Q_{n n n}=\mu, n \tag{3.12}
\end{equation*}
$$

From (3.7), we get

$$
\begin{equation*}
Q_{n n n}=\mu_{, n}=\left[\frac{n(1-k)}{k} H_{k} \lambda^{-k}-\frac{n-k}{k}\right] \lambda,_{n} . \tag{3.13}
\end{equation*}
$$

From the definition of $\psi_{i j}$, if $i \neq j$, we have $\psi_{i j}=0$ for $1 \leq i \leq n-1$ and $1 \leq j \leq n-1$. Therefore, from (2.19), if $i \neq j$ and $1 \leq i \leq n-1$ and $1 \leq j \leq n-1$ we have

$$
\begin{equation*}
Q_{i j k}=0, \text { for any } k \tag{3.14}
\end{equation*}
$$

By (2.19), (2.20), (3.10), (3.12), (3.13) and (3.14), we get

$$
\begin{align*}
\psi_{j n} & =\sum_{k=1}^{n} Q_{j n k} \omega_{k} \tag{3.15}\\
& =Q_{j j n} \omega_{j}+Q_{j n n} \omega_{n}=\lambda,{ }_{n} \omega_{j} .
\end{align*}
$$

From (2.19), (3.4) and (3.15) we have

$$
\begin{align*}
\omega_{j n} & =\frac{\psi_{j n}}{\lambda-\mu}=\frac{\lambda,_{n}}{\lambda-\mu} \omega_{j} \\
& =\frac{k \lambda^{k-1} \lambda,_{n}}{n\left(\lambda^{k}-H_{k}\right)} \omega_{j} . \tag{3.16}
\end{align*}
$$

Therefore, from the structure equations of M^{n} we have

$$
d \omega_{n}=\sum_{k=1}^{n-1} \omega_{k} \wedge \omega_{k n}+\omega_{n n} \wedge \omega_{n}=0
$$

Therefore, we may put $\omega_{n}=d s$. By (3.9) and (3.11), we get

$$
d \lambda=\lambda,_{n} d s, \quad \lambda,_{n}=\frac{d \lambda}{d s}
$$

and

$$
d \mu=\mu,_{n} d s, \quad \mu,_{n}=\frac{d \mu}{d s}
$$

Then we have

$$
\begin{align*}
\omega_{j n} & =\frac{k \lambda^{k-1} \lambda,_{n}}{n\left(\lambda^{k}-H_{k}\right)} \omega_{j}=\frac{k \lambda^{k-1} \frac{d \lambda}{d s}}{n\left(\lambda^{k}-H_{k}\right)} \omega_{j} \tag{3.17}\\
& =\frac{d\left\{\log \left|\lambda^{k}-H_{k}\right|^{\frac{1}{n}}\right\}}{d s} \omega_{j}
\end{align*}
$$

From (3.17) and the structure equations of $S_{1}^{n+1}(c)$, we have

$$
\begin{aligned}
d \omega_{j n} & =\sum_{k=1}^{n-1} \omega_{j k} \wedge \omega_{k n}+\omega_{j n} \wedge \omega_{n n}-\omega_{j n+1} \wedge \omega_{n+1 n}+\Omega_{j n} \\
& =\sum_{k=1}^{n-1} \omega_{j k} \wedge \omega_{k n}-\omega_{j n+1} \wedge \omega_{n+1 n}-c \omega_{j} \wedge \omega_{n} \\
& =\frac{d\left\{\log \left|\lambda^{k}-H_{k}\right|^{\frac{1}{n}}\right\}}{d s} \sum_{k=1}^{n-1} \omega_{j k} \wedge \omega_{k}-(c-\lambda \mu) \omega_{j} \wedge d s
\end{aligned}
$$

From (3.17), we have

$$
\begin{aligned}
d \omega_{j n} & =\frac{d^{2}\left\{\log \left|\lambda^{k}-H_{k}\right|^{\frac{1}{n}}\right\}}{d s^{2}} d s \wedge \omega_{j}+\frac{d\left\{\log \left|\lambda^{k}-H_{k}\right|^{\frac{1}{n}}\right\}}{d s} d \omega_{j} \\
& =\frac{d^{2}\left\{\log \left|\lambda^{k}-H_{k}\right|^{\frac{1}{n}}\right\}}{d s^{2}} d s \wedge \omega_{j}+\frac{d\left\{\log \left|\lambda^{k}-H_{k}\right|^{\frac{1}{n}}\right\}}{d s} \sum_{k=1}^{n} \omega_{j k} \wedge \omega_{k} \\
& =\left\{-\frac{d^{2}\left\{\log \left|\lambda^{k}-H_{k}\right|^{\frac{1}{n}}\right\}}{d s^{2}}+\left[\frac{d\left\{\log \left|\lambda^{k}-H_{k}\right|^{\frac{1}{n}}\right\}}{d s}\right]^{2}\right\} \omega_{j} \wedge d s \\
& +\frac{d\left\{\log \left|\lambda^{k}-H_{k}\right|^{\frac{1}{n}}\right\}}{d s} \sum_{k=1}^{n-1} \omega_{j k} \wedge \omega_{k}
\end{aligned}
$$

From the above two equalities, we have

$$
\begin{equation*}
\frac{d^{2}\left\{\log \left|\lambda^{k}-H_{k}\right|^{\frac{1}{n}}\right\}}{d s^{2}}-\left\{\frac{d\left\{\log \left|\lambda^{k}-H_{k}\right|^{\frac{1}{n}}\right\}}{d s}\right\}^{2}-(c-\lambda \mu)=0 . \tag{3.18}
\end{equation*}
$$

From (3.4) we get

$$
\begin{align*}
\frac{d^{2}\left\{\log \left|\lambda^{k}-H_{k}\right|^{\frac{1}{n}}\right\}}{d s^{2}} & -\left\{\frac{d\left\{\log \left|\lambda^{k}-H_{k}\right|^{\frac{1}{n}}\right\}}{d s}\right\}^{2} \tag{3.19}\\
& +\frac{n}{k} H_{k} \lambda^{2-k}-\frac{n-k}{k} \lambda^{2}-c=0 .
\end{align*}
$$

Since we define $\varpi=\left|\lambda^{k}-H_{k}\right|^{-\frac{1}{n}}$, we obtain from the above equation

$$
\begin{equation*}
\frac{d^{2} \varpi}{d s^{2}}+\varpi \frac{c k \lambda^{k-2}+(n-k) \lambda^{k}-n H_{k}}{k \lambda^{k-2}}=0 . \tag{3.20}
\end{equation*}
$$

We can prove the following Lemmas:

Lemma (3.21). Let

$$
P_{H_{k}}(t)=c k t^{\frac{k-2}{k}}+(n-k) t-n H_{k}, \quad\left(t>0, \quad H_{k}>0, \quad k>2\right) .
$$

where $c>0$ and $H_{k}^{2 / k}<c$. Then $P_{H_{k}}(t)$ has a positive real root t_{1} and
(i) if $t>H_{k}$, then $P_{H_{k}}(t)>0$;
(ii) if $t<H_{k}$, then $t \geq t_{1}$ holds if and only if $P_{H_{k}}(t) \geq 0$ and $t \leq t_{1}$ holds if and only if $P_{H_{k}}(t) \leq 0$.

Proof. We have

$$
\begin{equation*}
\frac{d P_{H_{k}}(t)}{d t}=c(k-2) t^{-2 / k}+(n-k) \tag{3.22}
\end{equation*}
$$

For $k>2$, we easily see that

$$
\frac{d P_{H_{h}}(t)}{d t}>0
$$

it follows that $P_{H_{k}}(t)$ is a strictly monotone increasing function of t and $\lim _{t \rightarrow+\infty} P_{H_{k}}(t)=+\infty$. For $k>2$, we have $P_{H_{k}}(0)=-n H_{k}<0$, Therefore, from the continuity property of $P_{H_{k}}(t)$, we infer that $P_{H_{k}}(t)$ has a positive real root, which can be denoted by t_{1}.

Now we prove the second part of Lemma (3.21).
Since $k>2$, we know that $P_{H_{k}}(t)$ is a strictly monotone increasing function of t and has a positive real root t_{1}. From $H_{k}^{2 / k}<c$, we have $P_{H_{k}}\left(H_{k}\right)=$ $k H_{k}^{\frac{k-2}{k}}\left(c-H_{k}^{2 / k}\right)>0$. Thus, we have $H_{k}>t_{1}$. Therefore, from the strictly monotone increasing property of $P_{H_{k}}(t)$, we know that (i) if $t>H_{k}$, then $P_{H_{k}}(t)>P_{H_{k}}\left(H_{k}\right)>0$, (ii) if $t<H_{k}$, then $t \geq t_{1}$ holds if and only if $P_{H_{k}}(t) \geq P_{H_{k}}\left(t_{1}\right)=0$ and $t \leq t_{1}$ holds if and only if $P_{H_{k}}(t) \leq P_{H_{k}}\left(t_{1}\right)=0$. We complete the proof of Lemma (3.21).

Lemma (3.23). Let

$$
S(t)=\frac{1}{k^{2} t^{(2 k-2) / k}}\left\{(n-1) k^{2} t^{2}+\left[n H_{k}-(n-k) t\right]^{2}\right\}, \quad\left(t>0, \quad H_{k}>0, \quad k>2\right)
$$

where $c>0$ and $H_{k}^{2 / k}<c$. If $t \leq H_{k}$, then $t \geq t_{1}$ holds if and only if $S(t) \leq$ $(n-1) t_{1}^{2 / k}+c^{2} t_{1}^{-2 / k}$ and $t \leq t_{1}$ holds if and only if $S(t) \geq(n-1) t_{1}^{2 / k}+c^{2} t_{1}^{-2 / k}$, where t_{1} is the positive real root of (1.9).

Proof. We have

$$
\frac{d S(t)}{d t}=\frac{2 t^{(2-3 k) / k}}{k^{3}}\left\{\left(n^{2}-2 n k+n k^{2}\right) t^{2}+n(k-2)(n-k) H_{k} t+(1-k) n^{2} H_{k}^{2}\right\}
$$

it follows that the solution of $\frac{d S(t)}{d t}=0$ is $t=H_{k}$. Therefore, we know that $t \leq H_{k}$ holds if and only if $S(t)$ is a decreasing function, $t \geq H_{k}$ holds if and only if $S(t)$ is an increasing function and $S(t)$ obtain its minimum at $t=H_{k}$ (also see [17]).

Since $t \leq H_{k}$ if and only if $S(t)$ is a decreasing function, we infer that if $t \leq H_{k}$, then $t \geq t_{1}$ holds if and only if

$$
\begin{aligned}
S(t) & \leq S\left(t_{1}\right)=\frac{1}{k^{2} t_{1}^{(2 k-2) / k}}\left\{(n-1) k^{2} t_{1}^{2}+\left[n H_{k}-(n-k) t_{1}\right]^{2}\right\} \\
& =\frac{1}{k^{2} t_{1}^{(2 k-2) / k}}\left\{(n-1) k^{2} t_{1}^{2}+\left[n H_{k}-(n-k) t_{1}-c k t_{1}^{\frac{k-2}{k}}+c k t_{1}^{\frac{k-2}{k}}\right]^{2}\right\} \\
& =\frac{1}{k^{2} t_{1}^{(2 k-2) / k}}\left\{(n-1) k^{2} t_{1}^{2}+\left[-P_{H_{k}}\left(t_{1}\right)+c k t_{1}^{\frac{k-2}{k}}\right]^{2}\right\} \\
& =(n-1) t_{1}^{2 / k}+c^{2} t_{1}^{-2 / k},
\end{aligned}
$$

and $t \leq t_{1}$ holds if and only if $S(t) \geq S\left(t_{1}\right)=(n-1) t_{1}^{2 / k}+c^{2} t_{1}^{-2 / k}$. We complete the proof of Lemma (3.23).

Lemma (3.24). If $H_{k}^{2 / k}<c$, then the positive function ϖ is bounded.
Proof. From the definition of ϖ and (3.20), we have

$$
\begin{align*}
\frac{d^{2} \varpi}{d s^{2}} & +\varpi\left[-\frac{n}{k} H_{k}\left(H_{k}+\varpi^{-n}\right)^{\frac{2}{k}-1}\right. \tag{3.25}\\
& \left.+\frac{n-k}{k}\left(H_{k}+\varpi^{-n}\right)^{\frac{2}{k}}+c\right]=0, \text { for } \lambda^{k}-H_{k}>0
\end{align*}
$$

or

$$
\begin{align*}
\frac{d^{2} \varpi}{d s^{2}} & +\varpi\left[-\frac{n}{k} H_{k}\left(H_{k}-\varpi^{-n}\right)^{\frac{2}{k}-1}\right. \tag{3.26}\\
& \left.+\frac{n-k}{k}\left(H_{k}-\varpi^{-n}\right)^{\frac{2}{k}}+c\right]=0, \text { for } \lambda^{k}-H_{k}<0 .
\end{align*}
$$

By making use of the following integral formula

$$
\int u^{m}\left(a+b u^{q}\right)^{p} d u=\frac{u^{m+1}\left(a+b u^{q}\right)^{p}}{p q+m+1}+\frac{a p q}{p q+m+1} \int u^{m}\left(a+b u^{q}\right)^{p-1} d u
$$

where all m, p, q, a, b are not zero and all m, p, q are rational number, we have

$$
\begin{aligned}
-\frac{n-k}{k} \int \varpi\left(H_{k} \pm \varpi^{-n}\right)^{\frac{2}{k}} d \varpi & =\frac{1}{2} \varpi^{2}\left(H_{k} \pm \varpi^{-n}\right)^{\frac{2}{k}} \\
& -\frac{n}{k} H_{k} \int \varpi\left(H_{k} \pm \varpi^{-n}\right)^{\frac{2}{k}-1} d \varpi .
\end{aligned}
$$

Integrating (3.25) or (3.26), we can get

$$
\left(\frac{d \varpi}{d s}\right)^{2}+c \varpi^{2}-\varpi^{2}\left(H_{k}+\varpi^{-n}\right)^{\frac{2}{k}}=C, \text { for } \lambda^{k}-H_{k}>0
$$

or

$$
\left(\frac{d \varpi}{d s}\right)^{2}+c \varpi^{2}-\varpi^{2}\left(H_{k}-\varpi^{-n}\right)^{\frac{2}{k}}=C, \text { for } \lambda^{k}-H_{k}<0
$$

where C is a constant. Therefore, we have

$$
\begin{equation*}
\varpi^{2}\left[c-\left(H_{k}+\varpi^{-n}\right)^{\frac{2}{k}}\right] \leq C, \text { for } \lambda^{k}-H_{k}>0, \tag{3.27}
\end{equation*}
$$

or

$$
\begin{equation*}
\boldsymbol{\varpi}^{2}\left[c-\left(H_{k}-\boldsymbol{\varpi}^{-n}\right)^{\frac{2}{k}}\right] \leq C, \text { for } \lambda^{k}-H_{k}<0 . \tag{3.28}
\end{equation*}
$$

Since we assume that $H_{k}^{2 / k}<c$, we have $c-H_{k}^{2 / k}>0$, from (3.27) and (3.28), we infer that the positive function ϖ is bounded from above. We complete the proof of Lemma (3.24).

Proof of (2) in Main Theorem. (i) From (3.18), we have

$$
\begin{equation*}
\frac{d^{2} \varpi}{d s^{2}}+\varpi(c-\lambda \mu)=0 \tag{3.29}
\end{equation*}
$$

If the sectional curvature of M^{n} is non-negative, that is, for $i \neq j, R_{i j i j}=$ $c-\lambda_{i} \lambda_{j} \geq 0$, we have $c-\lambda \mu \geq 0$. From (3.29), we have $\frac{d^{2} \sigma}{d s^{2}} \leq 0$. Thus, $\frac{d \sigma}{d s}$ is a monotonic function of $s \in(-\infty,+\infty)$. Therefore, by the similar assertion in Wei [16], we have $\varpi(s)$ must be monotonic when s tends to infinity. Since we assume that $H_{k}^{2 / k}<c$, from Lemma (3.24), we know that the positive function $\varpi(s)$ is bounded. Since $\varpi(s)$ is bounded and monotonic when s tends to infinity, we know that both $\lim _{s \rightarrow-\infty} \varpi(s)$ and $\lim _{s \rightarrow+\infty} \varpi(s)$ exist and then we get

$$
\begin{equation*}
\lim _{s \rightarrow-\infty} \frac{d \varpi(s)}{d s}=\lim _{s \rightarrow+\infty} \frac{d \varpi(s)}{d s}=0 \tag{3.30}
\end{equation*}
$$

From the monotonicity of $\frac{d \varpi(s)}{d s}$, we have $\frac{d \varpi(s)}{d s} \equiv 0$ and $\varpi(s)=$ constant. From $\boldsymbol{\sigma}=\left|\lambda^{k}-H_{k}\right|^{-\frac{1}{n}}$ and (3.3), we have λ and μ are constant, that is, M^{n} is isoparametric. Therefore, by the congruence Theorem of Abe, Koike and Yamaguchi [1], we know that M^{n} is isometric to the hyperbolic cylinder $H^{1}\left(c_{1}\right) \times S^{n-1}\left(c_{2}\right)$ or spherical cylinder $H^{n-1}\left(c_{1}\right) \times S^{1}\left(c_{2}\right), \frac{1}{c_{1}}+\frac{1}{c_{2}}=\frac{1}{c}, c_{1}<0, c_{2}>0$.
(ii) If $S \leq(n-1) t_{1}^{2 / k}+c^{2} t_{1}^{-2 / k}$, putting $t=\lambda^{k}$, we obtain that $S=S(t)$. From (3.20), we have

$$
\begin{equation*}
\frac{d^{2} \varpi}{d s^{2}}+\varpi \frac{1}{k t^{(k-2) / k}} P_{H_{k}}(t)=0 . \tag{3.31}
\end{equation*}
$$

Since

$$
\lambda-\mu=n \frac{\lambda^{k}-H_{k}}{k \lambda^{k-1}} \neq 0
$$

we know that $\lambda^{k}-H_{k} \neq 0$. Thus, we have $t \neq H_{k}$. We consider two cases $t>H_{k}$ or $t<H_{k}$.

If $t>H_{k}$, from Lemma (3.21), we know that $P_{H_{k}}(t)>0$. From (3.31), we have $\frac{d^{2} \varpi(s)}{d s^{2}}<0$. This implies that $\frac{d \varpi(s)}{d s}$ is a strictly monotone decreasing function of s and thus it has at most one zero point for $s \in(-\infty,+\infty)$. If $\frac{d \sigma(s)}{d s}$ has no zero point in $(-\infty,+\infty)$, then $\varpi(s)$ is a monotone function of s in $(-\infty,+\infty)$. If $\frac{d \omega(s)}{d s}$ has exactly one zero point s_{0} in $(-\infty,+\infty)$, then $\varpi(s)$ is a monotone function of s in both $\left(-\infty, s_{0}\right]$ and $\left[s_{0},+\infty\right)$.

On the other hand, from Lemma (3.24), we know that $\varpi(s)$ is bounded. Since $\varpi(s)$ is bounded and monotonic when s tends to infinity, we know that both $\lim _{s \rightarrow-\infty} \boldsymbol{\varpi}(s)$ and $\lim _{s \rightarrow+\infty} \boldsymbol{\varpi}(s)$ exist and (3.30) holds. This is impossible because $\frac{d \sigma(s)}{d s}$ is a strictly monotone decreasing function of s. Therefore, we know that the case $t>H_{k}$ does not occur.

If $t<H_{k}$, from Lemma (3.21), Lemma (3.23) and (3.31), we have $S(t) \leq$ $(n-1) t_{1}^{2 / k}+c^{2} t_{1}^{-2 / k}=S\left(t_{1}\right)$ holds if and only if $t \geq t_{1}$ if and only if $P_{H_{k}}(t) \geq 0$ and if and only if $\frac{d^{2} \sigma}{d s^{2}} \leq 0$. Thus $\frac{d \sigma}{d s}$ is a monotonic function of $s \in(-\infty,+\infty)$. Since we assume that $H_{k}^{2 / k}<c$, from Lemma (3.24), we know that the positive
function $\varpi(s)$ is bounded. By the same assertion in the proof of (i) in (2), we know that λ and μ must be constant, that is, M^{n} is isoparametric. By the congruence Theorem of Abe, Koike and Yamaguchi [1], we know that M^{n} is isometric to the hyperbolic cylinder $H^{1}\left(c_{1}\right) \times S^{n-1}\left(c_{2}\right)$ or spherical cylinder $H^{n-1}\left(c_{1}\right) \times S^{1}\left(c_{2}\right), \frac{1}{c_{1}}+\frac{1}{c_{2}}=\frac{1}{c}, c_{1}<0, c_{2}>0$.
(iii) If $S \geq(n-1) t_{1}^{2 / k}+c^{2} t_{1}^{-2 / k}$, by the similar assertion in the case (ii), we know that M^{n} is isometric to the hyperbolic cylinder $H^{1}\left(c_{1}\right) \times S^{n-1}\left(c_{2}\right)$ or spherical cylinder $H^{n-1}\left(c_{1}\right) \times S^{1}\left(c_{2}\right), \frac{1}{c_{1}}+\frac{1}{c_{2}}=\frac{1}{c}, c_{1}<0, c_{2}>0$. This completes the proof of (2) in Main Theorem.

Acknowledgment

The authors would like to thank the referee for his / her many valuable suggestions that really improve the paper.

Received January 30, 2009
Final version received March 26, 2010

Shichang Shu

Department of Mathematics
Xianyang Normal University
Xianyang 712000 Shanani
P.R.China
shushichang@126.com
Sanyang Liu
Department of Applied Mathematics
Xidian University
XI'an 710071 ShaANXI
P.R.China
liusanyang@126.com

References

[1] N. Abe, N. Koike and S. Yamaguchi, Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form, Yokohama Math. J. 35 (2) (1987), 123-136.
[2] K. Akutagawa, On spacelike hypersurfaces with constant mean curvature in a de Sitter space, Math. Z. 196 (1987), 13-19.
[3] E. Calabi, Examples of Bernstein problems for some nonlinear equations, Proc. Symp. Pure Appl. Math. 15 (1970), 223-230.
[4] S. Y. Cheng and S. T. Yau, Maximal space-like hypersurfaces in the Lorentz- Minkowski spaces, Ann. of Math. (2) 104 (3), (1976), 407-419.
[5] Y. Choquet-Bruhat, A. E. Fisher, and J. E. Marsden, Maximal hypersurfaces and positivity mass, Proc. of the E. Fermi Summer School of the Italian Physical Society, J. Ehlers ed. North-Holland 1979.
[6] A. J. Goddard, Some remarks on the existence of spacelike hypersurfaces of constant mean curvature. Math. Proc. Cambridge Phil. Soc. 82 (1977), 489-495.
[7] Z. Hu, M. Scherfner and S.Zhai, On spacelike hypersurfaces with constant salar curvature in the de Sitter space, Differential Geometry and its Applications 25 (2007), 594-611.
[8] T. Ishinara, Maximal space-like submanifolds of a pseudo-Riemannian space form of constant curvature, Michigan Math. J. 35 (1988), 345-352.
[9] A. Brasil Jr, A. G. Colares and O. Palmas, Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: A gap Theorem, Illinois Journal of Mathematics 47 (2003), 847-866.
[10] U-H. Ki, H-J. Kim and H. Nakagawa, On space-like hypersurfaces with constant mean curvature of a Lorentz space form, Tokyo J. Math. 14 (1) (1991), 205-215.
[11] H. Li and W. Chen, Integral formulas for compact spacelike hypersurfaces in de Sitter space and their applications to Goddard's conjecture, Acta Mathematica Sinica, New Series 14 (2) 1998, 285-288.
[12] S. Montiel, An integral inequality of complete space-like hypersurfaces in the de Sitter space and applications to the case of constant mean curvature, Indiana Univ. Math. J. 37 (1988), 909-917.
[13] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970), 145-173.
[14] J. Ramanathan, Complete spacelike hypersurfaces of constant mean curvature in the de Sitter space, Indiana University Math. J. 36 (1987), 349-359.
[15] S. SHU—, Complete spacelike hypersurfaces in a de Sitter space, Bull. Austral Math. Soc. 73 (2006), 9-16.
[16] G. Wei, Complete hypersurfaces with constant mean curvature in a unit sphere, Monatsh. Math. 149 (2006), 251-258.
[17] G. Wei, Complete hypersurfaces in a Euclidean space \mathbb{R}^{n+1} with constant m-th mean curvature, Differential Geometry and its Applications 26 (2008), 298-306.
[18] Y. Zheng, Space-like hypersurfaces with constant salar curvature in the de Sitter space, Differential Geometry and its Applications 6 (1996), 51-54.

[^0]: 2010 Mathematics Subject Classification: 05B35; 05C38; 05C20; 05C60.
 Keywords and phrases: cotransversal matroid, planted graph, swapping, saturation.
 Supported by the National Science Foundation CAREER Award DMS-0956178, the National Science Foundation Grant DMS-0801075, and an SFSU Presidential Award.

 Supported by an Achievement Rewards for College Scientists (ARCS) Scholarship.

[^1]: ${ }^{1}$ This name is due to Postnikov, and originates as follows. Suppose that S is the set of women and $\{1, \ldots, r\}$ is the set of men in a village, and let A_{i} be the set of women who are willing to marry man i. A dragon comes to the village and takes one of the women. When is it the case that all the men can still get married, regardless of which woman the dragon takes away? Postnikov showed that this is the case if and only if \mathcal{A} satisfies the dragon marriage condition.

[^2]: 2010 Mathematics Subject Classification: Primary 05C69; Secondary 05C70, 05C35.
 Keywords and phrases: graph, stabiliy number, clique number.
 The authors where partially supported by CONACyT grant 49835 and SNI.

[^3]: 2010 Mathematics Subject Classification: Primary 11A25, Secondary 11 M26.
 Keywords and phrases: sum of divisors function, Riemann Hypothesis, Robin criterion.

[^4]: 2010 Mathematics Subject Classification: Primary: 37E05, 37B10. Secondary: 37E10.
 Keywords and phrases: lexicographical world, kneading sequences, Lorenz maps.
 Partially supported by Fondecyt-CHILE grant \# 1000098, PROSUL-BRAZIL on Dynamical Systems and DICYT-USACH..

[^5]: 2000 Mathematics Subject Classification: Primary: 53C42; Secondary: 53A10.
 Keywords and phrases: space-like hypersurface, de Sitter space, k-th mean curvature, principal curvature.

 Project supported by NSF of Shaanxi Province(SJ08A31)and NSF of Shaanxi Educational Committee(2008JK484).

