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Foreword

We were all shocked and devastated by the news of Jorge’s passing. His math-
ematical ideas and personal relationship have permanently influenced our lives.
Jorge constructively affected our professional attitudes, gave us a strong sense of
responsibility as researchers and professionals, and was a close personal friend.
We believe that nobody is better suited to express the feelings confronting Jorge’s
premature departure than Alfonso Vignoli, his dearest friend and close collabora-
tor for forty years.

I met Jorge in June 1973 at a conference in Canada. Our encounter
could have not been more explosive. I found myself talking to a per-
son very different from me: reserved and of few, albeit essential words.
After each conference I was astounded by the depth in analysis of the
results submitted. He often put me in a difficult spot by asking my
opinion on a newly announced theorem. He was not, I underscore, a
mathematics ‘crank’. He adored art, food, traveling and knowing the
history of nations. He was abreast of politics, even Italian, and his
readings were always lucid. I remember our visits to the church of
Santa Maria Maggiore in Rome, with Jorge equipped with small, pow-
erful binoculars to probe the mosaics, looking for precious particulars.
I think some of the best results we achieved upon return in our Roman
home with a good glass of wine that was never missing. Coming to
Italy relieved him from the headaches that assailed him after a glass
of wine in Mexico City, probably, due to altitude. I believe one of the
reasons our friendship grew stronger over the years is tied to (quite) a
few hearty drinks and laughters, and to his subtle irony that let tran-
spire a deep affection for me and my family. Of his extended scientific
production I only want to highlight the book Equivariant Degree The-
ory –a book Jorge did not want to write. I had to insist manifold, and
almost court him, to convince him. The result was a much cleaner ver-
sion of the theory and a text filled with his ideas that I believe will
give several cues to the coming schools of researchers. Many were the
research projects upon which we fantasized, dreamed and ironized of.
Many were the meetings we had planned for the coming months and
years, even ‘just’ to drink our glass of wine, to laugh and see him raise
his eyebrow to my free and odd stories.

Alfonso Vignoli.
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1. Introduction

Without doubt the name of Jorge Ize will ultimately be attached to two related
areas of nonlinear functional analysis. The first is the topological approach to
bifurcation of solutions of a parametrized family of nonlinear equations, termed by
him “topological bifurcation”. The second is the degree theory for maps which are
equivariant with respect to the action of a compact Lie group. Roughly speaking,
he worked mainly on topological bifurcation for the twenty years between 1972 to
1992, and devoted the next twenty years mainly to the equivariant degree and its
applications to bifurcation theory.

Our aim here is to give a non-technical presentation of the main achievements
of Jorge Ize in both of these areas and of the influence of his ideas on the work of
other researchers in this field, and in particular on our own research. The third
named author will deal with topological bifurcation in Part I, while the other two
authors will present the material related to the equivariant degree in Part II.

In Part I, after a short introduction to topological methods in bifurcation the-
ory (sections 2.1, 2.2), we will discuss what are, in our opinion, the main contribu-
tions to one-parameter bifurcation of Ize’s brilliant PhD thesis Bifurcation theory
for Fredholm operators and of his paper [50] which appeared in Memoires of AMS
with the same title (section 2.3). Then we will review his work on several parame-
ter bifurcation (section 2.4) and present some recent developments. Section 2.5 is
devoted to Jorge’s work on the global structure and dimension of branches of so-
lutions to multiparameter nonlinear equations. We finish this part by discussing
the use of the equivariant obstruction theory in multiparameter Hopf bifurcation
(section 2.6) which paved the way to the equivariant degree theory.

Part II starts with the motivation (section 3.1) behind the equivariant degree
theory. Then, in section 3.2, we present the construction of the equivariant degree
due to Ize et al. Next, in section 3.3, we discuss its range of values (i.e. the equi-
variant homotopy groups of spheres). Computability and various versions of the
equivariant degree are considered in section 3.4. Applications of the equivariant
degree are outlined in section 3.5. Finally, in section 3.6, we give some comments
on the monograph “Equivariant Degree Theory” by Ize and Vignoli.

Let us point out that our presentation of Ize’s work is very far from being com-
prehensive. It leaves aside all of his applied research related to his activity as
coordinator of Fenomec, an interdisciplinary group of scientists from UNAM de-
voted to the study of nonlinear phenomena in natural sciences. It also leaves
aside several mathematical textbooks, articles about the history of mathematics
and academic politics, and several surveys of bifurcation theory and equivariant
degree [52, 55, 56] which he wrote.

2. Part I Topological bifurcation

(2.1) Bifurcation from the trivial branch. Bifurcation is one of those ill-
defined concepts in the mathematical literature. The study of bifurcation, vaguely
understood as “change in morphology”, arises in many different areas of mathe-
matics as well as in the natural sciences and engineering. Each of these fields has
given his own imprint to the concept, which ultimately led to its indeterminacy.

However, one particular aspect of bifurcation theory, namely bifurcation of so-
lutions of a parametrized family of equations from a trivial branch of solutions,



JORGE IZE: A TRIBUTE 91

is one of the oldest and best understood notions of bifurcation in mathematics.
Indeed, the earliest example of a specific bifurcation phenomenon of this type can
be traced back to Leonard Euler who, in 1757, studied the deviation of a loaded
vertical elastic column as it buckled from its position of equilibrium, which he
modeled as a boundary value problem parametrized by the load. By increasing
the load on the top of the column the vertical equilibrium position becomes un-
stable and the column changes its configuration, acquiring a new configuration
each time the amount of load, considered as a parameter, crosses some critical
values. The boundary value problem always has a solution corresponding to the
vertical configuration, but new solutions appear at critical values of the load. Eu-
ler proved that those critical values, when suitably normalized, coincide with the
eigenvalues of the linearization of the problem at the trivial solution.

Another bifurcation phenomenon was studied in 1834 by Jacobi, who discov-
ered new gyrostatic equilibria taking shapes of asymmetric ellipsoids, bifurcat-
ing from the known branch of MacLaurin spheroids. Prior to his discovery the
MacLaurin spheroids were considered as the only possible shape of a liquid body
in gyrostatic equilibrium [48]. We remark in passing that Jacobi’s last geomet-
ric theorem, which characterizes conjugate points along an extremal of a varia-
tional integral as intersection points of the given extremal with the envelope of
the family of extremals through the initial point, can be understood as yet another
manifestation of bifurcation from a trivial branch.

In his article L’Équilibre d’une masse fluide animée d’un mouvement de ro-
tation, published in 1885 in Acta Mathematica, Henri Poincaré conjectured the
existence of another branch of gyrostatic equillibria exiting from the branch of
Jacobi ellipsoids, using, for the first time, the word “bifurcation” to designate the
phenomenon.

The above classical examples belong to a much wider variety of bifurcation
phenomena which arise in geometry, analysis, mathematical elasticity, hydro-
dynamics, elementary particle physics, engineering, mathematical biology and
many other fields of knowledge. They provide sufficient motivation for the formu-
lation of a general mathematical theory of bifurcation from the trivial branch.

The leitmotiv of such a theory, as seen from the above discussion, can be
schematized as follows: assuming that there is a known (trivial) branch of so-
lutions of a parametrized family of nonlinear equations, find necessary and suffi-
cient conditions for the appearance of nontrivial solutions arbitrarily close to some
points of the trivial branch. The corresponding values of the parameter are called
bifurcation points. In many cases one has to deal with one parameter, either real
or complex, but several parameter bifurcation is also of considerable interest.

Toward the end of the nineteenth century, motivated by the study of periodic
orbits of small amplitude near equilibrium points of an autonomous differential
equation, Henri Poincaré laid the foundations of bifurcation theory. However, in
the framework of his qualitative theory of dynamical systems, the term bifurca-
tion acquired a broader meaning than the one discussed in this work.

An important tool for the analysis of bifurcation was invented by Lyapunov
and Schmidt at the beginning of the past century. It is known as the Lyapunov-
Schmidt reduction. It permits a given bifurcation problem for a family of integral
or differential equations to be recast as a locally equivalent bifurcation problem
for a finite number of nonlinear equations in a finite number of unknowns.
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Granting enough smoothness, by the implicit function theorem, bifurcation can
only arise at a point of the branch of trivial solutions corresponding to a parameter
λ at which the corresponding linearization fails to be invertible: such values of
the parameter are called singular points. This gives a necessary condition for
bifurcation and the starting point for the search of sufficient conditions via the
Lyapunov-Schmidt reduction.

Assuming that the singular points are isolated, there is a large variety of meth-
ods which, combined with the Lyapunov-Schmidt reduction, provide sufficient
conditions for the appearance of nontrivial solutions close to the singular point.
See for instance: [18, 49, 67, 65, 87, 19, 85]. The two most prominent methods
use either elementary singularity theory or topological invariants. In the former,
whether the singular point under consideration is a bifurcation point or not is de-
termined by investigating higher order jets of the Lyapunov-Schmidt reduction.
In the latter, the presence of bifurcation is determined from topological invariants
associated to the family of linearizations at points of the trivial branch.

(2.2) Topological Methods in Bifurcation Theory. The origin of topological
bifurcation can be traced back to two classical bifurcation theorems of M. A. Kras-
nosel’skii, his collaborator P. Zabreiko and others. Both appeared in Kras-
nosel’skii’s book “Topological Methods in Nonlinear Integral Equations” [66],
which deeply influenced the nonlinear analysis of the sixties. As was then cus-
tomary in the Soviet scientific literature, both results were quoted without any
reference to the original papers in which they were proven.

The two theorems are as follows: Let g be compact map from a Banach space
X into itself, such that g(0) = 0. Let f (λ, x) = x−λ g(x). Consider {(λ,0) : λ ∈ R} as
the trivial branch of solutions of the equation f (λ, x) = 0. If g is differentiable,
then every characteristic value of the Fréchet derivative A ≡ D g(0) of odd alge-
braic multiplicity is a bifurcation point from the trivial branch. Moreover, if X is
a Hilbert space and g is the gradient of a functional, then all characteristic val-
ues of A, irrespective of their multiplicity, are bifurcation points. The proofs of
both theorems use topological tools in order to draw conclusions about the nonlin-
ear equation from assumptions about the linearization at a potential bifurcation
point. The first is based on the classical formula for the Leray-Schauder degree
of a map in terms of its linearization. The second combines Lagrange multiplier
techniques with the existence of critical points of weakly continuous functionals.

Another result known as the “Global Rabinowitz Alternative” [79] gave a
strong impulse to the development of topological methods in bifurcation theory,
showing that one can draw very strong global conclusions about the structure and
behavior of bifurcating branches of solutions, based solely on local data about the
linearization at bifurcation points. Using his global alternative, Paul Rabinowitz
proved that the set of solutions of certain nonlinear Sturm-Liouville eigenvalue
problems presented a topological pattern analogous to the linear ones.

The Rabinowitz bifurcation theorem was widely recognized by nonlinear ana-
lysts, and this renewed interest in bifurcation theory prompted four PhD theses:
E.N. Dancer (Cambridge 1972), D. Westreich (Yeshiva 1972), W. Magnus (Sus-
sex 1974) and J. Ize (Courant 1974), which have greatly contributed to further
progress of this theory. We will review the Global Rabinowitz Alternative later, in
the improved form due to Jorge Ize.
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(2.3) Bifurcation Theory for Fredholm Operators. First of all, let us de-
scribe the general setting of Ize’s thesis: let X ,Y be Banach spaces and let
f : Rk × X → Y be a continuously differentiable map such that f (λ,0) = 0 for all
λ in Rk. Solutions of the equation f (λ, x) = 0 of the form (λ,0) are called trivial
and the set Rk × {0} is called the trivial branch. In what follows we will identify
the parameter space Rk with the set of trivial solutions and we will frequently
write the parameter variable as a subscript. Accordingly we denote by fλ : X →Y
the map defined by fλ(x)= f (λ, x).

A bifurcation point for solutions of the equation f (λ, x) = 0 is a point λ∗ in
Rk such that every neighborhood of (λ∗,0) contains nontrivial solutions of this
equation.

Let Lλ ≡ D fλ(0) be the Fréchet derivative of the map fλ at the point 0. The
map L which sends λ ∈ Rk to Lλ is called the family of linearizations along the
trivial branch. By the Implicit Function Theorem, bifurcation cannot occur at
points where the operator Lλ is an isomorphism. Therefore, bifurcation can oc-
cur only at points belonging to the “generalized spectrum”of L Σ(L) ≡ {λ ∈ Rk |
Lλ is singular}. However not every singular point of L is a bifurcation point. For
example, if fλ(x) = x−λK x+ o(‖x‖) with K a linear compact operator, then char-
acteristic values of K of even multiplicity may or may not be bifurcation points,
depending on the higher order terms of the Taylor expansion at 0.

Following Jorge Ize we will assume that A = L0 is a Fredholm operator, that
is, ker A is finite dimensional and Im A is a finite codimensional subspace of Y .
Moreover, in order to simplify the presentation, we also assume that the Fredholm
index of A, ind A ≡ dimker A −dimcoker A, is zero and that λ = 0 is an isolated
point of Σ(L). Thus Lλ = D fλ(0) is invertible for 0 < ‖λ‖ < ε, provided ε is suffi-
ciently small. The more general case of positive Fredholm index, which was also
considered by Ize, can be reduced to the zero-index case by the methods explained
in his thesis.

We will also assume all the smoothness needed in order to make our arguments
valid. This deviates considerably from his approach. Indeed Ize used minimal
Lipschitz assumptions on the nonlinear perturbation gλ = fλ−Lλ and gave rather
precise growth estimates on the nonlinearity g needed for his results.

Under our assumptions, each fλ is a Fredholm map of index zero defined on a
neighborhood U of 0, that is, D fλ(x) is Fredholm of index zero for λ and x small
enough. Let Q′ and Q be projections of Y onto Y1 = Im A and of X onto E0 = ker A,
respectively. Let F0 ≡ kerQ′ ' coker A. Under the splitting of Y and X into direct
sums Y1 ⊕F0 and X1 ⊕E0, the Frechet derivative Dx1Q′ f (0,0) in the direction of
X1 is an isomorphism.

By the implicit function theorem, there is a map ρ defined on a neighborhood
of (0,0) in Rk ×E0 with values in X1 such that, close enough to (0,0) ∈ Rk × X ,
we have Q′ f (λ, x1 + x0) = 0 if and only if x1 = ρ(λ, x0). Let us define a map b on a
product neighborhood of (0,0) in Rk ×E0 by

(2.1) b(λ, x0)= (Id −Q′) f (λ,ρ(λ, x0)+ x0).

From its definition it follows that, for small (λ, x), the solutions of f (λ, x) = 0
are in one to one correspondence with the solutions of the finite dimensional re-
duced system b(λ, x0) = 0, called the bifurcation equation. This is in essence the
Lyapunov-Schmidt reduction. Clearly b(λ,0) = 0. Identifying E0 ' F0 ' Rn via
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an isomorphism we are left with the problem of finding sufficient conditions for
the bifurcation of solutions of the finite dimensional system b(λ, x) = 0, where
b : Rk ×Rn →Rn.

Let Bλ = D bλ(0) be the linearization of b at the trivial branch. We can write
the map b in the form

(2.2) b(λ, x)= Bλx+ g(λ, x),

with g(λ, x)= o(‖x‖) uniformly in λ.
For any small enough closed disk Dk = D(0,δ) centered at 0, the restriction of

B to the boundary ∂Dk ' Sk−1 defines a map

(2.3) B : Sk−1 →GL(n),

where as usual GL(n) = {A ∈ Rn×n| det A 6= 0}. Clearly the homotopy class γ ≡
[B |∂Dk ] ∈ πk−1(GL(n)) of this map is independent of the choice δ > 0 if δ is suffi-
ciently small. The topological approach to (linearized) bifurcation consist in the
study of topological invariants attached to the homotopy class γ whose nontrivi-
ality forces bifurcation of zeroes of f from the trivial branch.

For k = 1, the homotopy class γ is completely determined by the change in
sign of the determinant of B as λ crosses λ = 0. Moreover, using the homotopy
invariance of the Brouwer degree, one easily shows that the change of sign of the
determinant forces the appearance of nontrivial solution of b(λ, x) = 0 (and hence
of f (λ, x)= 0) arbitrary close to (0,0).

After discussing the general setting of Ize’s dissertation let us describe his one-
parameter bifurcation results. Chapters regarding the several-parameter case
will be discussed in the next section together with his other papers in this area.
Among the many topics considered in the thesis we choose: bifurcation criteria
at eigenvalues of finite multiplicity, the definition of generalized multiplicity, and
the proof of an improved version of the Global Rabinowitz Alternative.

2.3.1. Bifurcation criteria at eigenvalues of finite multiplicity. The first chapter of
Ize’s thesis deals with the case k = 1. He begins by looking at maps of the special
form

(2.4) f (λ, x)= Ax−λx+ g(λ, x),

with g(λ, x) = o(‖x‖) uniformly in λ. Here X ⊂ Y and A is viewed both as a closed
unbounded Fredholm operator with domain D(A) ⊂ Y and as a bounded opera-
tor from X to Y , where X =D(A) is endowed with the graph norm of A. Using a
variant of the Lyapunov-Schmidt reduction in which Ker A is substituted by the
generalized eigenspace E(0) = ker Am, he relates the change of sgndetB with the
(finite) multiplicity of the eigenvalue λ= 0 of the unbounded operator A, showing
in this way that bifurcation arises whenever the multiplicity is odd. In doing so
he also gives a partial answer to a question raised by A.E. Taylor in [86], showing
that isolated points in the spectrum are precisely the ones having a finite alge-
braic multiplicity. More precisely, he proves that the following statements are
equivalent:

i) 0 is an eigenvalue of A of finite algebraic multiplicity,
ii) Y = Im Am ⊕ker Am, for some,

iii) 0 is isolated in the spectrum of A.
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2.3.2. Definition of the Generalized Multiplicity. In the next section he considers
more general maps of the form

(2.5) f (λ, x)= Ax−T(λ)x+ g(λ, x),

where T(λ)=λT1+λ2T2+·· ·+λkTk is a polynomial in λ with values in the space
of bounded operators.

In the more general case (2.5), the change of sign of the determinant is no
longer related to the algebraic multiplicity of 0 as an eigenvalue of A. However,
there is a natural way to define a notion of generalized multiplicity of an isolated
point in Σ(L). Namely, the generalized multiplicity m is the smallest integer such
that detBλ = aλm +higher order terms, with a 6= 0. Clearly, when Tλ = λId , the
generalized multiplicity coincides with the algebraic multiplicity of 0 as an eigen-
value of A.

Ize proves that the parity of m is independent of the choice of projections used
in the Lyapunov-Schmidt reduction and that bifurcation arises whenever the gen-
eralized multiplicity m is odd.

More or less at the same time, two other definitions of generalized multiplicity
were given, by Westreich in [88] and by Magnus in [70], and later several more
were found. For the comparison between various definitions see [81, 34, 30].

Note that the generalized multiplicity is not a topological invariant of the lin-
earization, and as a consequence only its parity is inherent to topological bifur-
cation. Indeed, Jorge Ize proved that if the generalized multiplicity of 0 is even
then one can find a higher order perturbation g such that the map f of (2.5) has
no bifurcation points.

2.3.3. Global Rabinowitz Alternative. A new proof of this famous result is given
in Chapter III of Ize’s thesis; see also [74]. He considers maps f of the form
(2.5) with A = Id , T a polynomial in λ with values in the linear compact opera-
tors and a compact nonlinear perturbation g = o(‖x‖). Here, the fact that T is a
polynomial is used only in order to ensure that Σ(Id −T) discrete. What is essen-
tial is the compactness of the perturbation, since the main tool used in the proof
is the Leray-Schauder degree for compact perturbations of identity. The Global
Rabinowitz Alternative for general Fredholm maps was proved by Fitzpatrick,
Pejsachowicz and Rabier 18 years later, once a special degree theory for Fredholm
maps of index 0 was constructed [35].

In what follows we will refer to elements of Σ(Id −T) as the “generalized char-
acteristic values” and we will use “multiplicity” for the generalized multiplicity of
a characteristic value.

Theorem 2.10 of the thesis states that every generalized characteristic value
λ0 of odd algebraic multiplicity is a bifurcation point. Moreover, if C is the con-
nected component of (λ0,0) in the closure of the set S of nontrivial solutions of the
equation f (λ, x)= 0, we have:

i) either C is unbounded
ii) or C is bounded and if λ1 < λ2 < ·· · < λp+1 are such that (λi,0) ∈ C; then,

denoting by ni the number of characteristic values strictly between λi and
λi+1, one has

(2.6) 1= (−1)n1 − (−1)n1+n2 +·· ·+ (−1)p(−1)
∑p

i=1 ni .
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In particular, it follows from (2.6) that C connects λ0 to an odd number of charac-
teristic numbers of odd multiplicity.

The above result improves the main theorem of [79] in providing some extra
information about the behavior of the bifurcating branch. However, what is in-
teresting is Ize’s proof of this theorem. We will only indicate here how he proves
that a characteristic value of odd multiplicity is a bifurcation point. Instead of us-
ing the homotopy invariance of the degree, his approach is based on the following
device which has far reaching consequences since it works in the multiparameter
case as well.

The device consists in “complementing” the map f with the real valued func-
tion ‖x‖2 − ε2 in the following sense: Consider the compact perturbation of the
identity F : R× X →R× X defined by

(2.7) F(λ, x)= (‖x‖2 −ε2, f (λ, x)).

It is easy to see that one can choose a δ > 0 small enough such that for all small
ε> 0 the map F does not vanish on the boundary ofΩ= D(λ0,2δ)×D(0,2ε). Hence,
the Leray-Schauder degree deg(F,Ω,0) is defined. Any zero of F has the second
component of norm ε. Thus, if λ0 is not a bifurcation point, then deg(F,Ω,0)= 0.

On the other hand, on Ω̄ there is an admissible homotopy between F and the
map G(λ, x)= (δ2−(λ−λ0)2, f (λ, x)) which, for δ small enough, has two non degen-
erate zeroes (λ0 ±δ,0). Denoting with i( f , x) the index of an isolated zero of f , it
follows from the product property of the Leray-Schauder degree that

(2.8) 0= deg(F,Ω,0)= i( fλ0−δ,0)− i( fλ0+δ,0).

Since the index of an isolated zero remain (up to sign) unchanged under the
Lyapunov-Schmidt reduction, we have

i( fλ0±δ,0)= i(bλ0±δ,0)=±sgndetBλ0±δ,

where B is the linearization of the bifurcation equation arising in (2.2). But
this contradicts our assumptions since an odd generalized multiplicity produces a
change in sign of the determinant of Bλ.

The formula (2.6) follows from a similar calculation, applied to an open subset
isolating a bounded component C.

An extension of the above result to compact perturbations of the identity de-
pending on one complex parameter λ was also obtained. The proof used the
additivity property of a generalized cohomology theory, introduced by Geba and
Granas in [44]. Another version of this proof can be found in [52]. All the remain-
ing proofs in the thesis used only elementary homotopy theory. Indeed, Jorge
Ize mastered the art of deforming families of matrices depending on parameters,
using the Jordan canonical form.

Ize’s complementing device and its generalizations have been applied by many
people; see, for example, [46, 8, 90, 82, 69]. But its importance will be better
appreciated in the next section.

(2.4) Several Parameter Bifurcation and the J -Homomorphism. James
Alexander and Jorge Ize can be considered as the cofounders of topological sev-
eral parameter bifurcation theory. The role of Whitehead’s J -homomorphism as
the fundamental topological invariant in linearized several parameter bifurcation
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was discovered independently by Ize and Alexander more or less at the same time.
While Alexander, motivated by his work with Jim Yorke on global Hopf bifurca-
tion, used the stable J -homomorphism, Ize considered the unstable version as
well.

The J -homomorphism arises in bifurcation theory as follows: let us recall that
by the Lyapunov-Schmidt reduction (2.1) the solutions of the equation f (λ, x) = 0
close to the point (0,0) are in one to one correspondence with the solutions of the
bifurcation equation b(λ, x)= 0, where b : Rk ×Rn →Rn and b(λ,0)= 0.

For k = 1, bifurcation is determined directly by the homotopy class of the lin-
earization B defined in (2.2), restricted to S0 = ∂D1, that is, by the change in sign
of the determinant of Bλ.

For k > 1, the nonvanishing of the homotopy class γ = [B |∂Dk ] is no longer
sufficient in order to guarantee bifurcation and one has to look at the image of γ
under Whitehead’s J -homomorphism.

Whitehead’s J -homomorphism [89] is the group homomorphism

J : πk−1(Gl(n))→πk−1(Sn)

which associates to θ ∈ πk−1(Gl(n)) the element obtained by applying the Hopf
construction to the map (λ, x) → T(λ)x, where T : Sk−1 → O(n) ' GL(n) is any
representative of the homotopy class θ.

If J(γ) 6= 0, then (0,0) is a bifurcation point for any nonlinear perturbation b
of B as in (2.2) and hence also a bifurcation point of f . The bifurcation is global,
but in a weaker sense than the one discussed in the previous section. Indeed, the
connected component of (0,0) is either unbounded or it connects (0,0) to another
bifurcation point, or it reaches the boundary of the open set where the Lyapunov-
Schmidt reduction is valid. If f is a compact perturbation of the identity then
one has a full global alternative whenever J s(γ) 6= 0. Here Js is the stable J -
homomorphism of [1].

We will see below that J(γ) 6= 0 entails bifurcation by interpreting this class
as an obstruction to the extension of a map. It follows from classical obstruction
theory that there is yet another topological invariant which detects bifurcation.
Namely, the image of γ under the homomorphism

P : πk−1(Gl(n))→πk−1(Rn − {0}),

defined by P(θ) = [λ→ T(λ)x0], where x0 ∈ ∂D(0,ε) is fixed. In this case, there is
bifurcation in every direction. However, from the point of view of nonlinear anal-
ysis this invariant is less interesting, since it vanishes for k < n, and in general
one cannot ensure that n = dimker A is smaller than the number of parameters of
the problem.

In proving that the nonvanishing of J s(γ) causes bifurcation, Alexander uses
heavy machinery from algebraic topology. He relates global bifurcation to nonva-
nishing of an element belonging to the framed cobordism group of a topological
space which arise in the problem and then computes this element as the im-
age under the stable J -homomorphism of γ. In contrast, the approach of Ize is
completely elementary and strictly tied to his complementing device. We briefly
outline it.

Let Dn = D(0,2ε) and let Dk+n = Dk ×Dn. As in the previous section, the ap-
pearance of nontrivial solutions is related to the nonexistence of a nonvanishing
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extension of the map
F(λ, x)= (b(λ, x),‖x‖2 −ε2)

sending the boundary of the disk ∂Dk+n ' Sk+n−1 into Rn+1 − {0}' Sn. On ∂Dk+n,
the map F is clearly homotopic to the map G defined by

G(λ, x)= (Bλx,‖x‖2 −ε2).

Another simple homotopy leads to the map

H(λ, x)= (Bλx,‖x‖2 −‖λ‖2)

whose homotopy class in πk+n−1(Sn) is precisely J(γ). A proof of this fact can be
found in [54] and [46].

Using his elementary approach, Jorge Ize gives in [50] a simpler proof of the
global Hopf bifurcation theorem first proved by Alexander and Yorke in the paper
[3], which circulated in preprint form at that time.

In the long paper [54], using obstruction theory, Jorge Ize proves that the two
invariants discussed above are the only homotopy invariants of the linearization
whose nonvanishing entails bifurcation. If they vanish one can find a higher order
nonlinear perturbation g of the linearization L at points of the trivial branch such
that L + g has no bifurcation points. Ize works with parametrized families of
maps from RN into itself only, but his results can be easily extended to infinite
dimensions. Analogous result holds for global bifurcation; see also [1].

It is appropriate at this point to say two words about a personal characteristic
of Jorge which endured through all of his mathematical activity. His intellectual
curiosity always pushed him to find a proof of any result of his interest based
on his own, mainly elementary, methods. In this way, he produced an almost
infinite number of examples and counterexamples in bifurcation theory and equi-
variant degree which led to an intense professional correspondence with many
researchers in his field. As a personal remembrance, let us mention that the third
author was delighted when, to the surprise of all present, Ize found a disappoint-
ing orbit of period two in an iteration algorithm, invented at the Computer Center
of the University of Calabria, which was supposed to converge to a fixed point ir-
relevant of the choice of the starting point.

There has been a great amount of work related to multiparameter bifurcation.
Most of the literature deals with various forms of Hopf bifurcation. This aspect
will be thoroughly covered in the second part of the paper. We only mention here
a few of the papers which appeared prior the development of equivariant degree
theory. Jorge Ize in [51] and Fiedler in [31] extended the topological approach to
bifurcation of periodic solutions of parabolic partial differential equations. Fitz-
patrick’s paper [32] is a good introduction to the computation of the Alexander-
Yorke invariant arising in Hopf bifurcation. Many multiparameter continuation
and bifurcation problems arise in mathematical elasticity. Pioneering applica-
tions to this field were obtained by S. Antman and J. Alexander. Some of them
are described in Antman’s book “Nonlinear Problems of Elasticity” [4]. Alexander-
Ize’s discovery of the role of the J -homomorphism in bifurcation theory prompted
further theoretical research by Thomas Bartsch [12]. An extension of bifurcation
theory to more general parameter spaces can be found in [11] and [14]. Global
bifurcation of fixed points using related methods was considered in [15]. In [16]
thanks to a combined use of J -homomorphism and the fiberwise Conley index,
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introduced in that paper, Bartsch obtained the first, to the best of our knowledge,
result on topological bifurcation for critical points of functionals parametrized by
general spaces.

After completing his Ph.D. thesis Jorge Ize never came back to the study of
bifurcation for general Fredholm maps. He devoted most of his research to the
Hopf bifurcation, where general Fredholm maps are not strictly needed, since
working with periodic orbits of systems of differential equations in Rn one has
at hand a rather natural finite-dimensional approximation obtained by cutting
the Fourier expansion of the periodic solution after the n-th coefficient. A similar
disregard to the use of infinite dimensional function spaces in dealing with Morse
theory of geodesics on Riemannian manifolds was manifested more than once by
Raoul Bott. He considered the use of broken geodesics, as a finite-dimensional
approximation to the problem, to be a more flexible and robust tool.

Nevertheless, there are several reasons for investigating bifurcation in the
framework of nonlinear Fredholm maps. On the one hand, the Lyapunov-Schmidt
reduction shows that locally a Fredholm map is equivalent to a map between two
finite dimensional spaces, and hence the local bifurcation invariants for Fred-
holm maps do not differ from the ones for maps between finite dimensional vector
spaces. However, on the other hand, the space of all linear Fredholm operators
between infinite dimensional spaces has many nonvanishing homotopy groups.
As a consequence, the linearized bifurcation theory for Fredholm maps possesses
global topological invariants that are not present neither in finite dimensions nor
in the case of compact perturbations of the identity.

This type of invariants were studied in [75] using K-theoretical methods. In
that paper the construction of an index of bifurcation points for nonlinear com-
pact perturbations of linear Fredholm operators was sketched. Global continua-
tion and bifurcation theorems for maps of this class were proved by Bartsch in [13]
using a similar approach. Both [75] and [13] contain two different versions of an
index of bifurcation points. The one from [75] was extended to an index of bifurca-
tion for continuous families of C1-Fredholm maps parametrized by general spaces
in [76]. At an isolated bifurcation point, the index is related to the Alexander-
Ize invariant, but the nonvanishing of the total index arise only in the infinite
dimensional Fredholm setting. Applications of these ideas to elliptic boundary
value problems for systems of partial differential equations can be summarized
as follows: substituting Whithead’s J -homomorphism with the generalized J -
homomorphism of Atiyah-Adams, and the matrix family B of this paper with the
principal symbol of the linearization at the trivial branch, sufficient conditions for
bifurcation are obtained directly from the coefficients of the top order derivatives
of the linearized operator using the family version of the Atiyah-Singer index the-
orem [76, 77]. These results complement the work of Alexander and Ize, since
criteria of the above type cannot be obtained via Lyapunov-Schmidt reduction,
which depends in an essential way on the lower order terms.

(2.5) Structure and Dimension of Branches of Solutions to Multiparam-
eter Nonlinear Equations. The work of Alexander and Antman [2] and its ap-
plications to mathematical elasticity motivated many extensions of Ize’s comple-
menting technique. In [33] more general complementing maps were defined in or-
der to obtain an unified approach to multiparameter continuation and bifurcation
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problems and also provide estimates on the topological dimension of the branch.
Assuming that f (λ, x) is a compact perturbation of the identity, results about the
global behavior and dimension of the branch were obtained using cohomological
methods.

During a visit of Jorge Ize to the University of Calabria the above approach was
changed into one of a homotopic nature. This provided not only simpler proofs for
the earlier results but also permitted an extension of the theory to a more general
class of maps. The maps under consideration were the 0-epi maps introduced by
Furi, Martelli and Vignoli in [37]. The results were published in [57]. We won’t
discuss this paper in details. Chapter III of Ize’s survey [55] is an excellent review
of its contents. We only point out a few aspects of the article. First of all, in order
to obtain from the main result (Theorem 3.1) a global version of the implicit func-
tion theorem (Theorem 4.1) was used a scaling property of 0-epi maps discovered
by Jorge Ize. To some extent, it compensated for the lack of an additive degree
theory in this setting. In addition, the relation of 0-epi maps with the J - homo-
morphism of the previous section is throughly described in Proposition 4.5 of that
paper. Finally, Propositions 4.3 and 4.5 can be considered as a partial exception to
what we said in the previous section. In fact, they deal with the nonlinear k-set
of contractive perturbations of linear Fredholm operators of positive index.

(2.6) Multiparameter Hopf Bifurcation. The Poincaré-Andronov-Hopf bifur-
cation provides one of the most illuminating examples of the power of topological
methods in nonlinear functional analysis. The use of function spaces allows one to
formulate this classical problem, belonging to the qualitative theory of dynamical
systems, in the abstract framework of bifurcation from the trivial branch. The
use of topological invariants permits the replacement of some rather strong, al-
beit generic, assumptions with considerably weaker ones which moreover provide
some information of global nature. The same approach can be used in order to
study other bifurcation phenomena of dynamical systems, e.g., bifurcation of ho-
moclinic and heteroclinic orbits. Of course, in the topological approach, the very
precise local information generated by the singularity theory is lost.

To some extent, the Hopf bifurcation can be considered as a motivating example
for the evolution of Ize’s research interests. Indeed, bifurcation of periodic orbits
of a one parameter family of vector fields requires a second parameter, namely
the unknown period of the bifurcating orbit. This stimulated the development of
a bifurcation theory for families of maps depending on several parameters. Fur-
thermore, the natural action of S1 on the space of periodic maps led to equivariant
bifurcation theory [53], and ultimately to a degree theory for maps equivariant
under the action of S1, as a tool which permitted to improve Alexander-Yorke’s
earlier results on global Hopf bifurcation. Dealing with various types of symme-
tries arising in dynamics, equivariance under more general group actions had to
be considered.

Ize’s paper [53] is an inspiring example of an application of obstruction theory
to a concrete problem in dynamics. Motivated by the results of [20], Ize uses
obstruction theory for the extension of S1-equivariant maps in order to study local
and global bifurcation of periodic orbits of an ordinary differential system of the
form

(2.9) ẋ = L(λ)x+ g(λ, x),
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where λ ∈ Rk, L(λ) ∈ Rn×n, k < 2n, and g is a higher order perturbation. Un-
der the usual transversality assumption in Hopf bifurcation, after numbering the
multiples m1 = 1 < m2 < ·· · < ml , such that im jβ belongs to the spectrum of the
complexification Lc of L, he proves that a global branch of period orbits bifurcates
from (0,0,2π/m jβ) provided a number n j(k), associated to the eigenvalue im jβ,
does not vanish. Moreover, if the branch is bounded, then, under appropriate
nondegeneracy assumptions, he obtains a formula of the same type as (2.6). Not
surprisingly, for k = 1, n j(1) coincides with the spectral flow of Lc through im jβ,
i.e., the number of eigenvalues of Lc crossing the imaginary axis trough im jβ in
one direction, minus the number of those crossing the axis in the opposite direc-
tion, as λ traverses 0. However, what in our opinion is the most interesting result
of Ize in [53] is the identification of n j(k) for k > 1. The number n j(k), whose
nonvanishing is shown by Ize to force bifurcation, is the Bott degree of the fam-
ily of matrices B(λ,µ) = im jµId−Lc(λ) restricted to the boundary of a small disk
centered at (0,β).

This completes our review of the first part of Ize’s research activity. However
it would be unfair to finish this chapter without acknowledging how much this
present chapter owes to Ize’s comprehensive survey of 25 years of topological bi-
furcation theory [55].

3. Part II: Equivariant Degree

(3.1) Symmetries and Equivariant Degree. Complexity of the natural world
gave rise to fundamental problems of modern science dealing with the impact of
symmetries on physical and biological systems. These real world problems are
expressed as mathematical models usually exhibiting nonlinear character accom-
pany by the presence of symmetries, which may be related to some physical or
geometric regularities. For such systems, the existence of multiple solutions is
not just a possibility but it is a fact. Getting knowledge of such solution sets and
their symmetric classification constitutes an important problem for a complete
analysis of these mathematical models. For instance, phase transitions in crys-
tals correspond exactly to the changes of their symmetries; in a mechanical sys-
tem, the presence of symmetries allows one to decrease the number of its degrees
of freedom; breaking spherical symmetry of a hydrogen atom by introducing a
magnetic field gives rise to the elimination of its degeneracy resulting in splitting
energy levels (Zeeman’s phenomena); in biological systems symmetry provides
an explanation for pattern generation and synchrony, etc. Related mathematical
models usually inherit symmetries of the prototypal real life phenomena in the
form of the so-called equivariance of the corresponding maps. To be more specific,
given two representations W and V of a (compact Lie) group G, a continuous map
f : W →V is called equivariant if f gx = gf x for all x ∈W and g ∈G.

Unfortunately, studying nonlinear symmetric problems is not a simple task
and involves advanced mathematical methods and technicalities that make this
area difficult. The equivariant degree theory which emerged in the late 80s, was
a paramount contribution to the development of the new mathematical tools for
studying symmetric models. In short, the equivariant degree is a topological tool
allowing “counting” orbits of solutions to symmetric equations in the same way
as the usual Brouwer degree does, but according to their symmetry properties.
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Jorge Ize, who was one of the principal founders of the equivariant degree, played
a fundamental role in the creation and development of the concepts and methods
in this theory.

The equivariant degree theory is both powerful and difficult. It emanated
from the intersection of several mathematical fields and its ideas can be traced
back to many classical premises: Borsuk-Ulam theorems, fundamental domains
in Riemannian geometry/invariant theory, equivariant retract theory, equivari-
ant homotopy groups of spheres, equivariant general position theorems, topo-
logical invariants of equivariant gradient maps, geometric obstruction theory, J-
homomorphism in multiparameter bifurcation, and many others.

(3.2) Construction. The elegant construction of the equivariant degree was pre-
sented by Jorge Ize et al. in [59] (see also [58, 64]). This construction is essentially
parallel to the homotopy definition of the Brouwer degree. To be more specific,
let Ω ⊂ Rl be an open bounded subset and f : (Ω,∂Ω) → (Rl ,Rl \ {0}) a continuous
map. The homotopical definition of the Brouwer degree deg( f ,Ω) contains three
ingredients: (i) assigning to f an element of the group πl+1 of homotopy classes of
maps of pairs

(
B(Rl+1),∂(B(Rl+1))

) → (
Rl+1,Rl+1 \ {0}

)
, (ii) usage of the canonical

isomorphism πl+1 'πl(Sl), and (iii) usage of an isomorphism πl(Sl)'Z.
Following the same paradigm, Jorge Ize considered two orthogonal represen-

tations W :=Rk ⊕U and V of a compact Lie group G (Rk equipped with the trivial
G-action can be thought of as a space of “free” parameters) and a G-equivariant
map f : W → V such that f (x) 6= 0 for x ∈ ∂Ω, where Ω is on open bounded G-
invariant subset of W , and assigned to f the equivariant degree degG( f ,Ω) being
an element of the corresponding equivariant homotopy group of spheres. More
precisely, since the map f can have zeros outside Ω, one introduces an auxiliary
invariant function ϕ : W → [0,1] with value 1 outside Ω and 0 on an invariant
neighborhood of f −1(0)∩Ω. Then the map

f̂ (t, x)= (2t+2ϕ(x)−1, f (x)), f̂ : [0,1]×B →R⊕V

is non-zero on ∂([0,1]×B), where B ⊂W is an open ball centred at the origin and
containing Ω (G acts trivially on R and [0,1]). Then the G-equivariant degree
degG( f ,Ω) is defined as the class of the map f̂ from ∂([0,1]×B) to (R⊕V ) \ {0} in
the abelian group ΠG

SW (SV ) of equivariant homotopy classes of maps from SW to
SV , where SW and SV stand for the corresponding (invariant) one-point compact-
ifications.

The constructed above equivariant degree satisfies the usual properties ex-
pected from a degree theory, like Existence, Equivariant Homotopy Invariance,
Additivity (up to one suspension), etc. Roughly speaking, the equivariant degree
“measures” (equivariant) homotopy obstructions for f|∂Ω to have an equivariant
extension without zeros over Ω (composed of several orbit types).

For the case G = S1, the construction of the equivariant degree was outlined in
[58]. It was shown in [59, 60]) that the well-known Fuller index for autonomous
differential equations (cf. [36]) and the S1-degree of S1-equivariant gradient
maps defined by N. Dancer (cf. [21]) can be viewed as particular cases of the
S1-equivariant degree. Also, a connection of the S1-equivariant degree to the
Dancer-Toland invariant (cf. [26]) (associated to systems with first integral) and
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to a number of indices due to J. Mallet-Paret and J. A. Yorke (cf. [73]), G. Dylaw-
erski (cf. [27]), and K. Gȩba et al. (cf. [28]) was established.

(3.3) Range of Values. The computations of the groups ΠG
SW (SV ) is crucial for

an effective usage of the equivariant degree theory. Combining the concept of fun-
damental cell with the so-called complementing map approach, Ize et al. analyzed
these groups in the case G is compact and abelian (see [61]; see also [60], [59]
for G = S1). The notion of a fundamental cell can be traced back to many classi-
cal mathematical disciplines: (i) fundamental domain for isometry groups of Rie-
mannian manifolds, (ii) Weierstrass section in the invariant theory, (iii) Poincaré
section in ODEs, to mention a few. A detailed exposition of the concept of a fun-
damental domain for arbitrary (in general, non-abelian) compact Lie group action
on a metric space in the context relevant to the equivariant extension problems
can be found in [68]. The complementing maps approach is relevant to a kind of
general position results in the equivariant setting (cf. equivariant transversal-
ity and invariant foliation techniques developed in [68] and normal maps based
techniques suggested in [45], see also [8]).

To simplify our exposition of the main results from [61], assume U = V . The
following direct sum decomposition obtained in [61] plays an important role in
applications:

(3.1) ΠG
SW (SV )=Πk−1 ⊕

⊕
(H)
Π(H)

where Π(H) ' Z and the summation is taken over all orbit types (H) occurring
in SW and satisfying the “maximality” condition dimG/H = k (and, therefore,
called primary components). The component Πk−1 is relevant to the orbit types
(H) with dimG/H < k (and, therefore, called secondary). In a parallel way, one can
speak on the primary and secondary components of the equivariant degree. This
terminology is determined by a different nature of the (equivariant) topological
obstructions appearing in both cases (as well as different techniques utilized in
their computations; Brouwer degree methods in the “primary case” and higher
obstruction tools in the “secondary case”). In general, when k > 1, the part Πk−1
is very difficult to analyze. In [61], a complete characterization of Πk−1 (including
explicit generators) was obtained for the case k = 1. In particular, under certain
natural simply-connectedness conditions,

(3.2) Πk−1 =
⊕

{(H) : dimG/H=0}
(Z2 ⊕G/H).

After intensive personal discussions with Jorge Ize, Wieslaw came up with the
idea to extending decompositions (3.1) and (3.2) to arbitrary compact Lie groups.
This was done by Z. Balanov and W. Krawcewicz in [9] (see also [71] and [78]).
Other interesting results related to the secondary groups for G = SO(3)×S1 were
obtained by H. Steinlein and J. Arpe (see [5]).

(3.4) Computability and Different Faces. The equivariant degree has differ-
ent faces reflecting a diversity of symmetric equations related to applications: (i)
(quasi)-periodic solutions (in particular, Hopf bifurcation phenomenon) appeal to
the primary degree, (ii) steady-state bifurcation is related to the secondary de-
gree, (iii) Hamiltonian and Newtonian systems give rise to the equivariant gradi-
ent/orthogonal degree, etc.



104 Z. BALANOV, W. KRAWCEWICZ, AND J. PEJSACHOWICZ

Up to certain technicalities related to the so-called bi-orientability property of
compact Lie groups (cf. [78]), the primary equivariant degree is a projecton of the
general equivariant degree onto the primary components of decomposition (3.1).
Using a different approach, the orthogonal degree was introduced in [45]. For
k = 1 and G being an abelian group, the computational formulae for the primary
degree (reduction to the Brouwer degree on slices to the orbits) have been worked
out in [62] (see also [8] for the case of an arbitrary compact Lie group). The multi-
parameter primary degree still awaits the development of effective computational
techniques.

Being highly inspired by Jorge’s ideas, Z. Balanov and W. Krawcewicz proposed
the concept of the so-called twisted degree for G = Γ× S1 for studying periodic
solutions to Γ-symmetric dynamical systems (see [7]).

The well-known (functorial) product property of the Brouwer degree is reflected
in similar product properties of different versions of the equivariant degree. In the
case of abelian group action, this property was extensively explored in [64] (for the
case of non-abelian twisted degree, see [8]).

One should also mention important contributions of Ize in establishing Borsuk-
Ulam type results/congruences for Brouwer degrees of equivariant maps W → V
with dimW = dimV . Motivated by his exquisite examples, a general version of the
congruence principle was suggested in [68]. In fact, it was Jorge Ize who pointed
out a gap in a preliminary version of [68] (this gap was eliminated after a careful
analysis of one of Ize’s examples).

In contrast to the primary degree, the computational techniques for the sec-
ondary degree (i.e. the projection of the general equivariant degree onto Πk−1 (see
(3.2)) allowing its effective usage, are still needed. For G being abelian and k = 1,
Jorge Ize has established interesting computational results in [62] (see also [8]).

The problem of classifying symmetric properties of solutions to the equation
∇ f (x)= 0, x ∈Ω, where f : W →R is a smooth invariant function, has been stud-
ied by many authors using various methods: Lusternik-Schnirelman theory (cf.
[72, 80]), equivariant Conley index theory (cf. [17]), Morse-Floer techniques (cf.
[6]), to mention a few. The degree-theoretic treatment of this problem (for G = S1)
was initiated in [21], where a rational-valued gradient S1-homotopy invariant
was introduced (see also [23], where a similar invariant was considered in the
context of systems with first integral). K. Gȩba (cf. [43]) suggested a method
to study the above problem using the so-called equivariant gradient degree (for
more information on the equivariant gradient degree, we refer to [84]). Under
reasonable conditions, the equivariant gradient degree turns out to be the full
equivariant gradient homotopy invariant (cf. [22]).

It is a standard fact of undergraduate multivariable analysis that the gradi-
ent of a smooth function is orthogonal to the corresponding level surface. In the
case of a G-invariant function, the above fact translates to the orthogonality of
the gradient to the corresponding G-orbit (in particular, the gradient field is G-
equivariant). This simple observation leads to the general concept of G-orthogonal
maps, to which one can associate the so-called orthogonal equivariant degree.
Roughly speaking, a map f : Rn → Rn is said to be G-orthogonal if f (x) is orthog-
onal to the orbit G(x). For G = S1, this degree was introduced by S. Rybicki (cf.
[83]). The setting when the acting group is different from S1 is rather involved
since one has to deal with orbits of different dimensions. An elegant construction
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of the orthogonal degree when G is an arbitrary (infinite) compact abelian Lie
group, was carried out by J. Ize in [63]. The equivariant degree for orthogonal
maps is an element of the equivariant group of sphere (for G-orthogonal maps),
which is denoted by ΠG

⊥Sn−1 (Sn−1). Jorge Ize was able to explicitly evaluate these
homotopy groups and establish computational formulae for the equivariant degree
of G-orthogonal maps for the most important generic cases.

(3.5) Applicability. As any abstract theory “survives” only by having a wide
spectrum of applications, Jorge Ize developed several important techniques al-
lowing effective usage of the equivariant degree methods for qualitative study of
various types of differential equations. His original ideas led to many interest-
ing examples in differential equations, which could be used as models for further
applications. His innovative techniques cover a large number of situations includ-
ing autonomous differential equations, differential equations with fixed period, or
with first integrals, time dependent equations, symmetry breaking for differen-
tial equations, existence of twisted orbits, Hopf bifurcation with symmetries and
Hopf bifurcation for time dependent systems, other bifurcation problems, exis-
tence of periodic solutions for Hamiltonian systems, time reversible systems, and
spring-pendulum system, provide the reader with a solid basis for an independent
research in the case of even more sophisticated problems. This impressive list of
possible applications of the equivariant degree methods will probably have a long
lasting effect on their further applications in real life mathematical models. Very
often, Jorge Ize modestly called the obtained results just examples. However, as
we clearly see today, many of these “examples” opened interesting and quite non-
trivial possibilities for the further applications of the equivariant degree theory.

Existence of Periodic Solutions. In [64], Jorge Ize showed how the primary
S1-equivariant degree could be applied to study the averaged system of van der
Pol-like equations (in fact, this is just a particular case of integro-differential
equations). To be more specific, in the setting considered, he established a for-
mula for the computation of the local index (i.e. the equivariant degree in a small
neighborhood around an isolated periodic orbit). His approach is based on a sys-
tematic usage of some (canonical) maps which, to some extent, are parallel to the
concept of the so-called “basic maps” exploited, for example, in [8]. The results
related to the index computations can be effectively applied for studying, for ex-
ample, cascades of period-doubling bifurcations.

In order to illustrate another stream of Ize’s ideas, let us consider a
parametrized system of autonomous equations

(3.3) ẋ = g(x,ν), x ∈Rn.

Assume x0 = x0(t) is a given 2π-periodic solution with minimal period 2π
m (1 <

m ∈ N). To establish the existence of other periodic solutions (for example, by
means of the bifurcation theory), it is natural to reformulate system (3.3) as an
operator equation in an appropriate Sobolev space W := H1(S1;Rn), and further
to compute the local index around the known orbit x0 in terms of the operators.
Jorge suggested an effective algorithm for this kind of computations. With this
information in hand, the standard degree theoretic methodology provides options
for finding additional periodic solutions.
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Let us observe that the so-called Newtonian systems coming from celestial me-
chanics normally do not have stationary solutions (a configuration of celestial bod-
ies must be in motion in order to be “stable”). However, several periodic orbits
(the so-called relative equilibria) can serve as reasonable analogues of stationary
solutions. Finding less obvious periodic solutions (exhibiting more sophisticated
behavior) is a significant challenge in celestial mechanics. Such systems clearly
admit first integrals. To be more specific, let us elaborate further Ize’s ideas re-
lated to this kind of systems.

Consider a system

(3.4) ẋ = g(x), x ∈Rn

with first integral V (x), i.e.

(3.5) ∇V (x)• ẋ =∇V (x)• g(x)= 0.

Suppose that a 2π
m -periodic solution to (3.4) is given and one is interested in

finding new periodic solutions to (3.4). To this end, Ize considered an auxiliary
parametrized system (cf. [23], [25])

(3.6) ẋ = g(x)+ν∇V (x), x ∈Rn,

(ν is an additional parameter) for which he looked for another 2π-periodic solution
x1 = x1(t) satisfying the condition ∇V (x1(t)) 6≡ 0. Clearly, the expression

(3.7) ẋ1 •∇V (x)= ν‖∇V (x1)‖2 = d
dt

V (x1(t))

integrated from 0 to 2π yields

(3.8) ν‖∇V (x1)‖2
L2 = 0,

thus ν = 0 and, therefore, x1 is in fact a solution to (3.4). This simple observa-
tion allows one to employ the equivariant degree techniques to study multiple
solutions systems with first integral (see [64]).

Symmetric Hopf Bifurcation. The (symmetric) Hopf bifurcation, with no
doubt, was Ize’s main motivation for develop equivariant degree theory. Roughly
speaking, in a parametrized dynamical system, a Hopf bifurcation phenomenon is
related to the appearance of small amplitude periodic solutions, bifurcating from
a stationary point when it changes its stability. To be more specific consider an
autonomous system of ODEs

(3.9) ẋ = L(µ)+ f (µ, x), x ∈V =RN ,

where L(µ) : V → V is a linear operator (continuously depending on µ ∈ R) and f
is continuous and such that f (µ, x) = O(‖x‖2), for which one is interested to find
p-periodic solutions (for some unknown p > 0). By introducing the frequency ν as
an additional parameter, system (3.9) can be rewritten as

(3.10) νẋ = L(µ)+ f (µ, x), x ∈V =RN ,

and the problem is reduced to finding 2π-periodic solutions. The Hopf bifurca-
tion occurs when µ crosses some critical value µo (for which the linearization
admits a purely imaginary eigenvalue iν0) and results in appearance of small
amplitude periodic solutions near (µo,0). Problem (3.10) can be reformulated as
an operator equation F(µ,ν,u)= 0, u ∈W := H1(S1;V ), with two parameters (µ,ν).
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Next, by applying a complementing function ϕ, one can associate to (µ0,ν0) an S1-
equivariant map Fϕ : R2 ⊕W → R⊕W , Fϕ(µ,ν,u) = (ϕ(µ,ν,u),F(µ,ν,u)), for which
the one-parameter S1-degree degS1 (Fϕ,Ω) is correctly defined in a neighborhood
Ω of (µ0,ν0,0). The nontrivaiality of the degree degS1 (Fϕ,Ω) guarantees the oc-
currence of the Hopf bifurcation.

Assuming, in addition, that V is a representation of a compact Lie group Γ
and the right hand side of (3.9) is Γ-equivariant, by following the same construc-
tions one can associate to the system considered a Γ-symmetric Hopf bifurcation
invariant degG(Fϕ,Ω), G = Γ×S1, allowing (in addition to the occurrence of Hopf
bifurcation) a complete classification of symmetric properties of the bifurcation
branches. For Γ being an abelian group, Jorge Ize provided full computation of
degG(Fϕ,Ω) ∈ΠG

SR2⊕W
(SR⊕W ), including both primary and secondary components.

The secondary part of degG(Fϕ,Ω) is useful for studying the Hopf bifurcation phe-
nomenon when L(µo) is singular, as well as in the case of symmetry breaking by a
time dependent periodic forcing. For the case of non-abelian Γ, we refer to [8]. It
is our belief that this method is simple enough to be understood by a large spec-
trum of applied mathematicians, and effective enough to be applied in a standard
way to various types of symmetric dynamical systems (including ODEs, FDEs,
PDEs, FPDEs, etc), and allows a computerization. Moreover, this method is gen-
eral enough to treat many kinds of “pathological” systems exhibiting, for example,
lack of smoothness, equivariantly multiple and resonant purely imaginary char-
acteristic roots.

Symmetric Variational Systems. The equivariant orthogonal G-degree tech-
niques (for a compact abelian group G) can be effectively applied to determine
the existence of 2π-periodic solutions in symmetric Hamiltonian and Newtonian
systems. To be more specific, consider the following Hamiltonian system

(3.11) Jẋ+∇H(x)= 0, x = (y, z) ∈R2N ,

where J is the standard symplectic matrix and H is a C2-function on R2N . We
assume that a compact abelian group Γ acts symplectically on V := R2N (i.e. the
Γ-action commutes with J). The group G :=Γ×S1 acts on spaces of 2π-periodic V -
valued functions, thus (3.11) can be rewritten as F(x) = 0, where F : H

1
2 (S1;V ) →

H
1
2 (S1;V ) is a G-orthogonal map. Similarly, a Newtonian system

(3.12) − ẍ+∇V (x)= 0, x ∈V :=RN ,

where V is again a Γ-invariant C2-function, can be reformulated as a variational
G-equivariant problem F(x) = 0, with a G-gradient map (i.e. also G-orthogonal)
F : H1(S1;V )→ H1(S1;V ).

Using this framework, Ize et al. applied the T2-orthogonal degree to study
symmetric bifurcation in two spring-pendulum system, where he established a
bifurcation from an S1-orbit to T2-orbit (see [64]).

In his last papers ([38, 39, 40, 41, 42]), Ize’s interests evolved to applications of
the equivariant orthogonal degree in celestial mechanics and fluid dynamics (vor-
tex and filament problems). Let us mention his very interesting results related to
a (polygonal) Zn-symmetric n-body configuration in a plane (see [38]). Symmetric
periodic solution bifurcating from this relative equilibrium are described in de-
tails. Historically, this model was suggested by Maxwell to explain the stability of
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Saturn’s rings. In paper [41], Ize et al. considered the movement of n+1 almost
parallel vortices/coupled anharmonic oscillators, for which the authors provided a
description of a global symmetric bifurcation of relative equilibria.

(3.6) Monograph “Equivariant Degree Theory”. Special consideration
should be given to the monograph Equivariant Degree Theory by Ize and Vig-
noli –the first book written on the topic of the equivariant degree theory and its
applications to differential equations with symmetries. This pioneering work con-
stitutes a significant contribution to the area of nonlinear analysis. Although it
requires only minimal mathematical background, it is a serious work which is
not easy to read. One should remember that this was just the first attempt to
open the stream of ideas related to the equivariant degree theory to a wide pub-
lic. Therefore, one should not be surprised to find out that many important topics
were only briefly outlined or presented in very technical way. Nevertheless, the
reader will discover there a multitude of interesting ideas and new approaches
that will give an inspiration to conduct further research. We believe that all spe-
cialists in the field of nonlinear analysis should appreciate this book, which is an
excellent source of information and ideas related to the equivariant degree and
its applications.
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THE WORK OF JORGE IZE REGARDING THE n-BODY PROBLEM

C. GARCíA-AZPEITIA

ABSTRACT. In this paper we present a summary of the last works of Jorge Ize re-
garding the global bifurcation of periodic solutions from the equilibria of a satel-
lite attracted by n primary bodies. We present results on the global bifurcation
of periodic solutions for the primary bodies from the Maxwell’s ring, in the plane
and in space, where n identical masses on a regular polygon and one central
mass are turning in a plane at a constant speed. The symmetries of the problem
are used in order to find the irreducible representations, and with the help of the
orthogonal degree theory, all the symmetries of the bifurcating branches. The
results presented in this paper were done during the Ph.D. of the author under
the direction of Jorge Ize (see [16], [17], [18], [19], [20]). This paper is dedicated
to his memory.

This paper is devoted to present the results of the author in collaboration to
Jorge Ize regarding the movement of a satellite attracted by n primary bodies.
In particular, when the primary bodies form the polygonal relative equilibrium
corresponding to n identical masses arranged on a regular polygon with one mass
in the centre. This model was posed by Maxwell in order to explain the stability
of Saturn’s rings.

For this polygonal relative equilibrium, we give also a description of bifurca-
tion of planar and spatial periodic solutions. According to the value of the central
mass, there are up to 2n branches of planar periodic solutions, with different sym-
metries, and up to n additional branches, with non trivial vertical components,
if some non resonance condition is satisfied. The linearization of the system is
degenerated due to rotational symmetries. These facts imply that the classical
bifurcation results for periodic solutions may not be applied directly. The proof is
carried on with the use of a topological degree for maps that commute with sym-
metries and are orthogonal to the infinitesimal generators for these symmetries.

We also expose the global bifurcation of periodic solutions for a satellite at-
tracted by n primary bodies. These solutions will form a continuum in the plane
of the primaries and other solutions outside the plane. A particular attention is
given to the case where n+1 primaries form the Maxwell’s Saturn ring.

In order to explain the results, we give a short description of the steps to prove
the bifurcation theorem. The ideas we follow are from the book [24], where gen-
eral bifurcation theorems are proven. In addition, in [15] there is a systematic
application to Hamiltonian systems. The results exposed here for the n-body prob-
lem and the satellite are from the papers [16], [17], and [19].

1. Orthogonal degree

A Hilbert space V is a Γ-representation if there is a morphism of groups

ρ :Γ→GL(V ).

113
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The action of the group over a point generates one orbit denoted by Γx. A set
Ω⊂V is Γ-invariant if it is made of orbits, this is Γx ⊂Ω for all x ∈Ω.

The isotropy group of a point x is defined by

Γx = {γ ∈Γ : γx = x},

and the fixed point space of the subgroup H is

X H = {x ∈ X : hx = x, ∀h ∈ H}.

A space V is an irreducible representation when V does not have Γ-invariant
proper subspaces. The irreducible representations of the action of a compact
abelian Lie group are always two dimensional, and as such, equivalent to the
complex space.

A function f :Ω→W is Γ-equivariant if

f (γx)= γ′ f (x),

and Γ-invariant if the action in the range is trivial, f (γx)= f (x).

PROPOSITION (1.1). A differentiable Γ-equivariant function at x satisfies

d f (γx)γ= γ′d f (x)

for all γ ∈ Γ. In particular, the derivative f ′(x) is a Γx–equivariant map. Moreover,
the gradient of a Γ-invariant functional is a Γ-equivariant map when the action is
orthogonal.

Proof. The first statement follows from the uniqueness of the derivative, and from
the equality

d f (γx)γy+ o(y)= f (γ(y+ x))− f (γx)

= γ′[ f (y+ x)− f (x)]= γ′d f (x)y+ o(y).

The second statement is a consequence of

γT∇ f (γx)= [D f (γx)γ]T = D f (x)T =∇ f (x).

Let γ be an element of a torus γ = (ϕ1, ...,ϕn) ∈ Tn, with ϕ j ∈ (−π,π). The j-th
generator of the torus Tn is the vector fields tangent to the orbit

A j x = ∂

∂ϕ j
(γx)|γ=0.

The gradient of a Γ-invariant function is Γ-equivariant by the previous propo-
sition. Moreover, this kind of gradient is orthogonal to the generators because

〈∇ f (x), A j x
〉= ∂

∂ϕ j
f (γx)|γ=0 = 0.

A general Γ-equivariant map is called Γ-orthogonal if it satisfy
〈

f (x), A j x
〉= 0 for all x ∈Ω.

The following definition of Γ-orthogonal degree for compact abelian Lie groups
is due to J. Ize and A. Vignoli, see [23].

Let Γ be a compact abelian Lie group, an Ω a Γ-invariant domain of V . Let f0
an f1 two Γ-orthogonal maps which are non-zero on the boundary ∂Ω. It is said
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To define the Γ-orthogonal degree of a map f :Ω→V , it is necessary to extend

the function f to a ball, f̄ : Ω ⊂ B → V . Also, one needs a Urysohn Γ-invariant

map with value 0 in Ω̄, and value 1 in B\N, where N is a small neighborhood

of Ω̄. The existence of the Urysohn map ϕ and the extension f̄ follows from the

Γ-orthogonal extension theorem of Borsuk. The proof of this theorem is only for

actions of compact abelian Lie groups on finite spaces, see [24] .

t

1/2 b 0

(2t+2ϕ−1, f̄ )

Ω
f = f̄
ϕ= 0 ϕ= 1

Figure 1: Degree definition.

Definition 2 The Γ-orthogonal degree of f is defined as the homotopy class

deg⊥( f ;Ω) = [(2t+2ϕ−1, f̄ )]⊥ ∈Π⊥[SV ].

When the domain is a ball, the degree is just the homotopy class of the sus-

pension deg⊥( f ;B)= [(2t−1, f )]⊥, and this definition is equivalent to the Brouwer

degree if the action of the group is trivial.

In [24] it is proven that for each isotropy group of Γ, H ∈ Iso(Γ), the group

Π⊥[SV ] has a copy of a group isomorphic to the group Z, this is

Π⊥[SV ]=
⊕

H∈Iso(Γ)

Z.

Moreover, the degree of the map f is

deg⊥( f ;Ω)=
∑

H∈Iso(Γ)

dH [FH]⊥,

where [FH]⊥ is the generator of one Z corresponding to each isotropy group H ∈
Iso(Γ), and dH is just an integer.

The orthogonal degree has the known properties of a degree: existence, exci-

sion and Γ-orthogonal homotopy invariance. In this case, the existence property

means that the map f must have a zero in Ω∩V H if dH 6= 0.

Remark 3 For a k-dimensional orbit, with a tangent space generated by k of the

infinitesimal generators of the group, one uses a Poincaré section for the map aug-

mented with k Lagrange-like multipliers for the generators. (See the construction

in [24], section 4.3). For instance, for the action of SO(2), the study of zeros of the

4

Figure 1. Degree definition.

that two maps f0 and f1 are Γ-orthogonal homotopic when there is a continuous
deformation

f t : Ω̄× [0,1]→ E,
where the map f t is Γ-orthogonal and non-zero in the boundary ∂Ω for each step
t.

The ball B = {x ∈ V : ‖x‖ ≤ r} is Γ-invariant when the representation in V is an
isometry. In this case, let us define C as the set of Γ-orthogonal maps of the form

f : ∂([0,1]×B)→R×V − {0}.

Since the boundary of [0,1]×Br is isomorphic to the sphere SV , and since the set
R×V −{0} is Γ-homotopic to SV , then the map f may be thought from SV into SV .

Since the Γ-orthogonal homotopy forms an equivalent relation in C, then one
define Π⊥[SV ] as the set of equivalent classes of C and

[ f ]⊥ ∈Π⊥[SV ]

as the equivalent class of f .
Shrinking the top {0}×B and the bottom {1}×B to the point (1,0), one may

prove that all homotopy classes [ f ]⊥ have one function such that f (t, x)= (1,0) for
t ∈ {0,1}. With these functions one may define the sum of homotopy classes as
[ f ]⊥+ [g]⊥ = [ f ⊕ g]⊥ with

f ⊕ g =
{

f (2t, x) for t ∈ [0,1/2],
g(2t−1, x) for t ∈ [1/2,1].

With this sum, the set Π⊥[SV ] has a group structure. The identity is the map
[(1,0)]⊥, and the inverse of some class [ f ]⊥ is the class [ f (1− t, x)]⊥. Moreover, one
may prove that the group Π⊥[SV ] is abelian when VΓ is non trivial.

To define the Γ-orthogonal degree of a map f :Ω→V , it is necessary to extend
the function f to a ball, f̄ : Ω ⊂ B → V . Also, one needs a Urysohn Γ-invariant
map with value 0 in Ω̄, and value 1 in B\N, where N is a small neighborhood
of Ω̄. The existence of the Urysohn map ϕ and the extension f̄ follows from the
Γ-orthogonal extension theorem of Borsuk. The proof of this theorem is only for
actions of compact abelian Lie groups on finite spaces, see [24].

Definition (1.2). The Γ-orthogonal degree of f is defined as the homotopy class

deg⊥( f ;Ω)= [(2t+2ϕ−1, f̄ )]⊥ ∈Π⊥[SV ].
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When the domain is a ball, the degree is just the homotopy class of the sus-
pension deg⊥( f ;B)= [(2t−1, f )]⊥, and this definition is equivalent to the Brouwer
degree if the action of the group is trivial.

In [24] it is proven that for each isotropy group of Γ, H ∈ Iso(Γ), the group
Π⊥[SV ] has a copy of a group isomorphic to the group Z, this is

Π⊥[SV ]=
⊕

H∈Iso(Γ)
Z.

Moreover, the degree of the map f is

deg⊥( f ;Ω)=
∑

H∈Iso(Γ)
dH[FH]⊥,

where [FH]⊥ is the generator of one Z corresponding to each isotropy group H ∈
Iso(Γ), and dH is just an integer.

The orthogonal degree has the known properties of a degree: existence, excision
and Γ-orthogonal homotopy invariance. In this case, the existence property means
that the map f must have a zero in Ω∩V H if dH 6= 0.

REMARK (1.3). For a k-dimensional orbit, with a tangent space generated by k
of the infinitesimal generators of the group, one uses a Poincaré section for the map
augmented with k Lagrange-like multipliers for the generators. (See the construc-
tion in [24], Section 4.3). For instance, for the action of SO(2), the study of zeros
of the equivariant map F(x), orthogonal to the generator Ax, is equivalent to the
study of the zeros of F(x)+λAx; if x is not fixed by the group, i.e., if Ax is not 0,
for which λ is 0. In this way, one has added an artificial parameter. This trick
has been used very often and, in the context of a topological degree argument, was
called “orthogonal degree” by Rybicki in [29]. See also [10] and [22] for the case
of gradients. The general case of the action of abelian groups was treated in [23].
The complete study of the orthogonal degree theory is given in [24], Chapters 2 and
4. From the theoretical point of view, the theory has to be extended to the action of
non-abelian groups and to abstract infinite dimensional spaces.

2. Satellite

The restricted n-body problem is the study of the movement of a satellite at-
tracted by n primary bodies which are rotating, at a constant angular speed,
around an axis. Since the mass of the satellite is small, one assumes that the
satellite does not perturb the trajectories of the primaries, which follow the tra-
jectories of relative equilibrium and, as such, are in a plane.

Let q(t) ∈R3 be the position of the satellite without mass, and let (a j,0) be the
position of a primary body with mass m j. Let J be the standard symplectic matrix
in R2. In rotating coordinates q(t) = (eωJtu(t), z(t)), u ∈ R2, Newton’s equations
describing the movement of the satellite, with angular speed ω= 1, are

ü+2Ju̇−u =−
n∑

j=1
m j

u−a j∥∥(u, z)− (a j,0)
∥∥3 ,(2.1)

z̈ =−
n∑

j=1
m j

z
∥∥(u, z)− (a j,0)

∥∥3 .

One may ask for existence of bifurcation of periodic solutions starting from the
equilibria of the satellite. These solutions will form a continuum in the plane of
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the primaries and there are other global branches outside of that plane. The proof
is based on the use of the orthogonal degree.

(2.1) The orthogonal bifurcation map. Let H2
2π(Rn) be the Sobolev space of

2π-periodic functions. Define the collision points set as Ψ = {a1, ...,an}, and the
collision-free paths as

H2
2π(R3\Ψ)= {x ∈ H2

2π(R3) : x(t) 6= a j}.

Changing variables from t to t/ν, the 2π/ν-periodic solutions are zeros of the map

f : H2
2π(R3\Ψ)×R+ → L2

2π

f (x,ν)=−ν2 ẍ−2ν diag(J,0)ẋ+∇V (x).

where V is the potential

V (u, z)= |u|2 /2−
n∑

j=1
m j

1∥∥(u, z)− (a j,0)
∥∥ .

In view of the definitions, the collision-free 2π-periodic solutions are zeros of
the bifurcation operator f (x,ν). Furthermore, the operator f is well defined and
continuous.

Define the actions of the group Z2 ×S1 on H2
2π(R3\Ψ) as

ρ(κ)x = diag(1,1,−1)x and ρ(ϕ)x = x(t+ϕ).

Since the equation of the satellite is invariant by this reflection, and since the
equation is autonomous, then f is Z2×S1-equivariant. The generator of the group
S1 in the space H2

2π is

Ax = d
dϕ

(ρ(ϕ)x)ϕ=0 = ẋ.

Moreover, the map f is Z2×S1-orthogonal because it satisfies the orthogonal con-
dition

〈 f (x), ẋ〉L2
2π

=
∫ 2π

0

(−ν2 |ẋ|2 /2+V (x)
)′

dt = 0.

REMARK (2.2). For periodic and non-periodic solutions of the equations, the
conservation of energy is written as

E =−ν2 |ẋ|2 /2+V (x)= cte.

Thus, one may think that the orthogonal condition is equivalent to conservation of
energy.

The Fourier transform of the bifurcation map is

f (x)=
∑

l∈Z

(
l2ν2xl −2ilν diag(J,0)xl + gl

)
eilt,

where xl and gl are the Fourier modes of x and ∇V (x) respectively.
Since the matrix

l2ν2I −2ilν diag(J,0)
is invertible for all l’s, except a finite number. One may perform a global Lyapunov-
Schmidt reduction using the global implicit function theorem for non-collision
paths. In this way, one gets the reduced map f1(x1, x2(x1,ν),ν), where x1 corre-
sponds to a finite number of modes and x2 to the complement. Moreover, the
reduced map is a Γ-orthogonal map, see [24] or [15] for details. Furthermore, for
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bifurcation without resonances one may reduce the map to the principal Fourier
mode l = 1.

For isolated orbits Γx0, the degree is calculated in terms of the linearization at
x0. Close to an equilibrium x0 one has that ∇V (x0+h)= D2V (x0)h+o(h), then the
linearization of the reduced map is

f ′1(x0,ν)x1 =
∑

finite l′s
M(lν)xl eilt with

M(ν)= ν2I −2iν diag(J,0)+D2V (x0).

So the linearization of the reduced map is a diagonal matrix with blocks M(lν) for
a finite number of l’s. For bifurcation without resonances, it has only the block
M(ν), for the 1-th Fourier mode.

(2.2) Symmetries. The action of the element (κ,ϕ) ∈Z2 ×S1 satisfy

ρ(κ,ϕ)x = ρ(κ)x(t+ϕ)=
∑

l
ρ(κ)eilϕxl eilt,

thus the action of the group is inherited on the Fourier modes as

ρ(κ,ϕ)xl = ρ(κ)eilϕxl .

Since all the equilibria are planar, the isotropy subgroup of any equilibrium is
Z2 ×S1, this means that all equilibria are fixed by the action of Z2 ×S1. When
one apply orthogonal degree to the bifurcation problem, one need to know the
irreducible representations of the action of Γx0 =Z2 ×S1.

2.2.1. Planar symmetries. In order to simplify the exposition, only the symme-
tries of the group Z2×S1 for the 1-th mode will be studied. This correspond to the
case without resonances. The space C3 corresponding to the 1-th mode has two
spaces of similar irreducible representations: V0 = C2 × {0} and V1 = {0}×C. This
is, the group Z2 acts as ρ(κ)= I on V0 , and as ρ(κ)=−1 on V1 . Consequently, the
action of the group Z2 ×S1 in V0 for the 1-th mode is

ρ(κ,ϕ)x = eiϕx.

Since (κ,0) is the only element that fix the points of V0, the isotropy subgroup of
the points in V0 is generated by (κ,0),

Z2 = 〈(κ,0)〉 .

Solutions x = (u, z) to the equation (2.1) with isotropy group Z2 satisfy

x(t)= ρ(κ)x(t)= diag(1,1,−1)x(t).

Therefore, solutions to the equation (2.1) with symmetry Z2 are just planar solu-
tions, i.e. z(t)= 0.

2.2.2. Spatial symmetries. In V1 the action of the group Z2 ×S1 is

(κ,ϕ)x =−eiϕx.

Since (κ,π) is the only element that fix the points of V1, thus the isotropy subgroup
for V1 is generated by (κ,π),

Z̃2 = 〈(κ,π)〉 .
Solutions x = (u, z) to the equation (2.1) with isotropy group Z̃2 satisfy

x(t)= ρ(κ,π)x(t)= diag(1,1,−1)x(t+π),
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this is
u(t)= u(t+π) and z(t)=−z(t+π).

Solutions to the equation (2.1) with these symmetries follows twice the planar
π-periodic curve u, one time with the spatial coordinate z and a second time with
−z. Consequently, there is at least one t0 where z(t0)= z(t0 +π)= 0. For instance,
if only one of these zeros exists, then the solution looks like a spatial eight near
the equilibrium. For this reason, these solutions will be called eight-solutions.

(2.3) Bifurcation theorem. For bifurcation without resonances, one may re-
duce the bifurcation study to the 1-th Fourier mode. In this case, the Z2 ×S1-
orthogonal degree of the reduced map complemented by the right function is

ηZ2 (ν0)[FZ2 ]+ηZ̃2
(ν0)[FZ̃2

],

where [FZ2 ] and [FZ̃2
] are generators of one Z in the homotopy group Π⊥. The

numbers η∗(ν0) correspond to the change of Morse index of the block M(ν) in the
space V0, for Z2, and in the space V1, for Z̃2.

From the existence property of the degree, one has a zeros of the bifurcation
map when η(ν0) 6= 0, this is, there is periodic solutions near (x0,ν0) with isotropy
group Z2, if ηZ2 (ν0) 6= 0, and with isotropy group Z̃2, if ηZ̃2

(ν0) 6= 0. For resonances
one may have more generators of Π⊥ corresponding to bifurcation of harmonic
periods of the principal one.

What remains is to analyze the Morse index in the subspaces V0 and V1. This
is done in [16], where one arrives at the following conclusion.

THEOREM (2.3). Let T and D be the trace and determinant of the Hessian of
the potential in the plane, V , at the equilibrium x0. If D < 0, there is one global
bifurcation of planar periodic solutions from x0. If 0< D < (2−T/2)2, there are two
global bifurcations of planar periodic solutions.

THEOREM (2.4). Every equilibrium x0 has a global bifurcation of periodic eight
solutions

u(t)= u(t+π) and z(t)=−z(t+π).

Moreover, the local branch is truly spatial, z(t) 6= 0, provided that some nonreso-
nant condition between the periods of the spatial and the planar solutions is satisfy.

By global branch, one means that there is a continuum of solutions starting at
the equilibrium, where the continuum goes to infinity in the norm of the solution
or in the period , or goes to collision, or otherwise goes to other relative equilibria
in such a way that the sum of the jumps in the orthogonal degrees is zero.

2.3.1. A Morse potential. One may easily prove that all equilibria for the satel-
lite are planar. Moreover, provided that the potential in the plane V is a Morse
function, there are at least one global minimum and n saddle points, see [16]. For
example, in the classical restricted three body problem, case n = 2, there are two
minimums where the satellite form an equilateral triangle with the primaries,
and three saddle points where the satellite is collinear with the two primaries.

THEOREM (2.5). Provided that the potential in the plane V is a Morse func-
tion, each one of the n saddle points has one global bifurcation of planar periodic
solutions, and one global bifurcation of periodic eight solutions.
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Figure 2: Example for n= 3.

it crosses it eventually). An immediate drawback of this approach is that topo-

logical methods do not provide a detailed information on the local behavior of the

bifurcating branch, such as stability or the existence of other type of solutions, like

KAM tori. Other methods, such as normal forms or special coordinates, should

be used for these purposes but they only provide local information near the crit-

ical point. In a similar way, the degree arguments give only partial results on

resonances and other tools should be used.

3 The n-body problem

Let q j(t) ∈R3 be the position of the j-th body with mass m j , for j ∈ {0,1, ...,n}. Let

J be the standard symplectic matrix in R2. Newton’s equations of the n bodies,

in rotating coordinates q j(t) = (e
p
ωtJu j(t), z j(t)), are

m j ü j +2m j

p
ωJu̇ j =ωm ju j −

n∑

i=0(i 6= j)

mim j

u j −ui∥∥(u j , z j)− (ui , zi)
∥∥3

(2)

m j z̈ j =−
n∑

i=0(i 6= j)

mi m j

z j − zi∥∥(u j , z j)− (ui , zi)
∥∥3

.

Relative equilibria of the n-body problem correspond to equilibria in these

rotating coordinates. Since all relative equilibria are planar, the positions (a j ,0)

correspond to a relative equilibrium if they satisfy the relations

ωa j =
n∑

i=0(i 6= j)

mi

a j −ai∥∥a j −ai

∥∥3
. (3)

Remark 13 Actually, identifying the plane and the complex plane, solutions of

(3) may give also homographic solutions of the form q j = qa j , where the function

q(t) ∈ C satisfy the Kepler equation. In these general solutions, the bodies may

move in ellipses, parabolas or hyperbolas, instead of circular orbits. One may

have also solutions with total collapse or growing like q(t) = (9ω/2)1/3t2/3.

10

Figure 2. Example for n = 3.

THEOREM (2.6). The minimum point satisfy one of the following options: (a)
it has two global bifurcations of planar periodic solutions and one bifurcation of
periodic eight solutions, or (b) it has only one bifurcation of spatial periodic eight
solutions.

2.3.2. The Maxwell’s Saturn ring. One may apply these results when the pri-
maries form the Maxwell’s Saturn ring, see Proposition (3.4). This is a classical
model for Saturn and one ring around it. In this case one has the following theo-
rem.

THEOREM (2.7). The potential has two Zn-orbits of saddle points (r1) and (r2),
when n ≥ 2, and one more Zn-orbit of saddle points when n ≥ 3 and µ is near from
zero. Furthermore, each saddle point has one global bifurcation of planar periodic
solutions and one global bifurcation of periodic eight-solutions.

THEOREM (2.8). The potential has one Zn-orbit of minimum points (r3) for
n ≥ 2. Moreover, provided µ is big enough, each minimum point has two global bi-
furcations of planar periodic solutions, and one global bifurcation of periodic eight
solutions. On the other hand, if µ is small and n ≥ 3, there is another Zn-orbit of
minimum points with only one bifurcation of spatial periodic eight-solutions.

REMARK (2.9). The equilibria of the Zn-orbit of minimum points (r3) are lin-
early stable if µ is big enough. This is proven in the paper [2]. The existence of
the two extra orbits of equilibria for µ small was pointed out in the paper [1]. The
stability and this fact is proven also in the paper [16]. The orthogonal degree has
been used to prove bifurcation in the restricted three body problem also in the paper
[25].

REMARK (2.10). The degree arguments, coupled with group representation ideas,
give global information, i.e., an indication of where the bifurcation branches could
go. Also, since the results are valid for problems which are deformation of the orig-
inal problem, the method does not require high order computations and they may
be applied in some degenerate cases (for instance it is not necessary that the bifur-
cation parameter crosses a critical value with non-zero speed; it is enough that it
crosses it eventually). An immediate drawback of this approach is that topological
methods do not provide a detailed information on the local behavior of the bifur-
cating branch, such as stability or the existence of other type of solutions, like KAM
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tori. Other methods, such as normal forms or special coordinates, should be used
for these purposes but they only provide local information near the critical point.
In a similar way, the degree arguments give only partial results on resonances and
other tools should be used.

3. The n-body problem

Let q j(t) ∈ R3 be the position of the j-th body with mass m j, for j ∈ {0,1, ...,n}.
Let J be the standard symplectic matrix in R2. Newton’s equations of the n bodies,
in rotating coordinates q j(t)= (e

p
ωtJ u j(t), z j(t)), are

m j ü j +2m j
p
ωJu̇ j =ωm ju j −

n∑

i=0
i 6= j

mim j
u j −ui∥∥(u j, z j)− (ui, zi)

∥∥3(3.1)

m j z̈ j =−
n∑

i=0
i 6= j

mim j
z j − zi∥∥(u j, z j)− (ui, zi)

∥∥3 .

Relative equilibria of the n-body problem correspond to equilibria in these ro-
tating coordinates. Since all relative equilibria are planar, the positions (a j,0)
correspond to a relative equilibrium if they satisfy the relations

(3.2) ωa j =
n∑

i=0
i 6= j

mi
a j −ai∥∥a j −ai

∥∥3 .

REMARK (3.3). Actually, identifying the plane and the complex plane, solutions
of (3.2) may give also homographic solutions of the form q j = qa j, where the func-
tion q(t) ∈C satisfy the Kepler equation. In these general solutions, the bodies may
move in ellipses, parabolas or hyperbolas, instead of circular orbits. One may have
also solutions with total collapse or growing like q(t)= (9ω/2)1/3t2/3.

PROPOSITION (3.4). Set the position of the bodies as: a0 = 0 with mas µ, and
a j = ei jζ with mass 1 for j ∈ {1, ...,n}, where ζ = 2π/n. The a j ’s correspond to a
relative equilibrium when ω=µ+ s1, where

s1 =
n−1∑

j=1

1− ei jζ

∥∥1− ei jζ
∥∥3 = 1

4

n−1∑

j=1

1
sin( jζ/2)

.

Proof. For j = 0 the equality is ωa0 −µ
∑n−1

j=0 ei jζ = 0. For j 6= 0 the equality is

n∑

i=1
i 6= j

a j −ai∥∥a j −ai
∥∥3 +µa j = (µ+ s1)a j =ωa j.

Therefore, the a j ’s form a relative equilibrium for the frequency ω=µ+s1. This
relative equilibrium was studied by Maxwell as a simplified model of Saturn and
its rings.

In the paper [17], Proposition 23, one finds that for each k ∈ {1, ...,n−1}, there is
one mass µk with one global bifurcation of relative equilibria. Let h be the max-
imum common divisor of k and n, the bifurcation branch from µk has solutions
where n bodies are arranged as n/h regular polygons of h sides. See the example
for n = 6.
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Proposition 14 Set the position of the bodies as: a0 = 0 with mas µ, and a j = ei jζ

with mass 1 for j ∈ {1, ...,n}, where ζ = 2π/n. The a j ’s correspond to a relative

equilibrium when ω=µ+ s1, where

s1 =
n−1∑

j=1

1− ei jζ

∥∥1− ei jζ
∥∥3

= 1

4

n−1∑

j=1

1

sin( jζ/2)
.

Proof. For j = 0 the equality is ωa0 −µ
∑n−1

j=0
ei jζ = 0. For j 6= 0 the equality is

n∑

i=1 (i 6= j)

a j −ai∥∥a j −ai

∥∥3
+µa j = (µ+ s1)a j =ωa j ,

Therefore, the a j ’s form a relative equilibrium for the frequency ω = µ+ s1.

This relative equilibrium was studied by Maxwell as a simplified model of Saturn

and its rings.

In the paper [17], Proposition 23, one finds that for each k ∈ {1, ...,n−1}, there

is one mass µk with one global bifurcation of relative equilibria. Let h be the

maximum common divisor of k and n, the bifurcation branch from µk has solu-

tions where n bodies are arranged as n/h regular polygons of h sides. See the

example for n= 6.
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Figure 3: n= 6.

Remark 15 The n-body problem has been the object of many papers, with differ-

ent techniques and different purposes. For the stability of the polygonal equilib-

rium, or the bifurcation of relative equilibria from it, one shall mention: [33], [30],

[27], [31], among others.

3.1 The orthogonal bifurcation map

Changing variables from t to t/ν, the 2π/ν-periodic solutions of equation (2) are

zeros of the bifurcation map f defined in the spaces

f : H2
2π(R3(n+1)\Ψ)×R+ → L2

2π,

11

Figure 3. n = 6.

REMARK (3.5). The n-body problem has been the object of many papers, with
different techniques and different purposes. For the stability of the polygonal equi-
librium, or the bifurcation of relative equilibria from it, one shall mention: [33],
[30], [27], [31], among others.

(3.1) The orthogonal bifurcation map. Changing variables from t to t/ν, the
2π/ν-periodic solutions of equation (3.1) are zeros of the bifurcation map f defined
in the spaces

f : H2
2π(R3(n+1)\Ψ)×R+ → L2

2π,

where Ψ = {x ∈ R3(n+1) : xi = x j} is the collision set, corresponding to two or more
of the bodies colliding, and H2

2π(R3(n+1)\Ψ) is the open subset, consisting of the
collision-free periodic (and continuous) functions of the Sobolev space H2

2π(R3(n+1)).
Define the action of (κ,θ) ∈Z2 ×SO(2) in R3(n+1) as

ρ(κ)(u j, z j)= (u j,−z j),

ρ(θ)(u j, z j)= (e−Jθu j, z j),

where the group Z2 reflects the z-axis, and where SO(2) rotates the (x, y)-plane.
Since Newton’s equations are invariant by isometries, the group Z2×SO(2) repre-
sents the inherited isometries in rotating coordinates and the map f is Z2×SO(2)-
equivariant.

Let Sn be the group of permutations of the numbers {1, ...,n}. Define the action
of an element γ ∈ Sn in x ∈R3(n+1) as ρ(γ)x0 = x0 for j = 0, and for j ∈ {1, ...,n} as

ρ(γ)x j = xγ( j).

Since the action of Sn permutes the n bodies with equal mass, then the map f is
Sn-equivariant.

The map f is S1-equivariant with the action ρ(ϕ)x(t) = x(t+ϕ), because the
equations are autonomous. As the orthogonal degree is defined only for abelian
groups, the map f will be considered only as Γ×S1-equivariant, where Γ is the
abelian group

Γ=Z2 ×Zn ×SO(2),
and Zn is the subgroup of Sn generated by ζ( j)= j+1.

The element κ ∈ Z2 always leaves an equilibrium fixed because all equilibria
are planar, see [15] for a proof. Let Z̃n be the subgroup of Γ generated by

(ζ,ζ) ∈Zn ×SO(2),
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where ζ = 2π/n ∈ SO(2). The actions of (ζ,ζ) send the point x0 to e−Jζx0, and it
sends x j to e−Jζx j+1 for the other j’s . One may easily verify that the a j ’s are fixed
by the action of (ζ,ζ), thus the isotropy group of a is the group Γa ×S1 with

Γa =Z2 × Z̃n.

In each component, the infinitesimal generator of the action of S1 is given by
A0x j = ẋ j, and the infinitesimal generators of SO(2) is given by

A1x j =
∂

∂θ
|θ=0(e−Jθu j, z j)= diag(−J,0)x j.

Thus, the equalities 〈 f (x), ẋ〉L2
2π

= 0 and 〈 f (x), A1x〉L2
2π

= 0 follow as the proof of
conservation of energy and angular momentum for Newton’s equations, see [19]
for a proof. Thus the map f is a Γ×S1-orthogonal map.

REMARK (3.6). The orbit of the polygonal equilibrium a consists of all the rota-
tions in the (x, y)-plane. Since f = 0 on the orbit Γa, deriving the map f along a
parametrization of this orbit one gets that the generator A1a is tangent to the or-
bit, and must be in the kernel of f ′(a). This is a well known fact where symmetries
imply degeneracies.

(3.2) Symmetries.

3.2.1. Planar symmetries. In the paper [17], it is proven that there are n sub-
spaces Wk for the similar irreducible representations of Z̃n, where the action of
κ ∈Z2 is ρ(κ)= I, and the action of (ζ,ζ) ∈ Z̃n is given by

ρ(ζ,ζ,ϕ)= eikζ.

Moreover, since the action of S1 on the fundamental Fourier mode is given by

ρ(ϕ)= eiϕ,

the isotropy subgroup of Γā × S1 in the space Wk is generated by κ ∈ Z2 and
(ζ,ζ,−kζ) ∈ Z̃n ×S1. This is, the points of Wk are fixed by the group

Z̃n(k)×Z2 = 〈(ζ,ζ,−kζ)〉×〈κ〉 .

As for the satellite, solutions with isotropy group Z2 must satisfy z j(t)= 0, and
solutions with isotropy group Z̃n(k) satisfy the symmetries

u j(t)= ρ(ζ,ζ,−kζ)u j(t)= e−iζuζ( j)(t−kζ).

In this case, for the central body one has the symmetry

u0(t)= e i jζu0(t+ jkζ).

Using the notation u j = u j+kn for j ∈ {1, ...,n}, one has that ζ( j) = j+1, then the n
bodies with equal mass satisfy

u j+1(t)= e i jζu1(t+ jkζ).

Thus, each one of the n bodies with equal mass follows the same planar curve, but
with different phase and with some rotation in the (x, y)-plane.
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Figure 4: For n= 5.

3.2.2 Spatial symmetries

In the paper [19] it is proven that there are n subspaces Wk for the similar irre-

ducible representations of Z̃n, where the action of κ ∈ Z2 is given by ρ(κ) = −I,

and the action of the element (ζ,ζ) ∈ Z̃n is

ρ(ζ,ζ,ϕ) = eikζ.

Since the action of S1 on the fundamental mode is ρ(ϕ) = eiϕ, then the el-

ements (ζ,ζ,−kζ) ∈ Z̃n × S1 and (κ,π) ∈ Z2 × S1 act trivially on Wk. Thus, the

isotropy group of Wk is generated by (ζ,ζ,−kζ) and (κ,π),

Z̃n(k)× Z̃2 = 〈(ζ,ζ,−kζ)〉×〈(κ,π)〉 .

As we saw for the satellite, solutions with isotropy group Z̃2 satisfy

u j(t) = u j(t+π) and z j(t) =−z j(t+π),

thus the projection of this solution on the (x, y)-plane follows twice the π-periodic

curve u(t), one time with the spatial coordinate z(t) and a second time with −z(t).

Thus solution looks like a spatial eight near the equilibrium.

Since the group Z̃n(k) is generated by (ζ,ζ,−kζ), the solutions satisfy also the

symmetries

u j(t) = e−iζuζ( j)(t−kζ),

z j(t) = zζ( j)(t−kζ).

Remark 18 To see one example, suppose that n = 2m and choose k = m. In this

case the central body remains at the center. Moreover, the n bodies with equal

masses satisfy

u j+1(t) = e i jζu1(t+ jπ) = e i jζu1(t)

14

Figure 4. For n = 5.

REMARK (3.7). In fixed coordinates, the solutions are q j(t) = ei
p
ωtu j(νt). Thus

in fixed coordinates the solutions are in general quasiperiodic solutions. In partic-
ular, when the central body has mass zero, we are considering the n-body problem
with equal masses. In this case, one has for j ∈ {1, ...,n} that

q j+1(t)= e i jζΩq1(t+ jkζ)

with Ω= 1−k
p
ω/ν. If Ω ∈ nZ, then solutions with isotropy group Z̃n(k) satisfy

q j+1(t)= q1(t+ jkζ).

These solutions where all the bodies follow the same path are known as choreogra-
phies, see [8].

3.2.2. Spatial symmetries. In the paper [19] it is proven that there are n sub-
spaces Wk for the similar irreducible representations of Z̃n, where the action of
κ ∈Z2 is given by ρ(κ)=−I, and the action of the element (ζ,ζ) ∈ Z̃n is

ρ(ζ,ζ,ϕ)= eikζ.

Since the action of S1 on the fundamental mode is ρ(ϕ)= eiϕ, then the elements
(ζ,ζ,−kζ) ∈ Z̃n×S1 and (κ,π) ∈Z2×S1 act trivially on Wk. Thus, the isotropy group
of Wk is generated by (ζ,ζ,−kζ) and (κ,π),

Z̃n(k)× Z̃2 = 〈(ζ,ζ,−kζ)〉×〈(κ,π)〉 .

As we saw for the satellite, solutions with isotropy group Z̃2 satisfy

u j(t)= u j(t+π) and z j(t)=−z j(t+π),

thus the projection of this solution on the (x, y)-plane follows twice the π-periodic
curve u(t), one time with the spatial coordinate z(t) and a second time with −z(t).
Thus solution looks like a spatial eight near the equilibrium.

Since the group Z̃n(k) is generated by (ζ,ζ,−kζ), the solutions satisfy also the
symmetries

u j(t)= e−iζuζ( j)(t−kζ),
z j(t)= zζ( j)(t−kζ).
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REMARK (3.8). To see one example, suppose that n = 2m and choose k = m. In
this case the central body remains at the center. Moreover, the n bodies with equal
masses satisfy

u j+1(t)= e i jζu1(t+ jπ)= e i jζu1(t)

and
z j+1(t)= z1(t+ jπ)= (−1) j z1(t).

Thus, there are two m-polygons which oscillate vertically, one with z1(t) and the
other with −z1(t). Furthermore, the projection of the two m-polygons in the plane
is always a 2m-polygon. These solutions are known as Hip-Hop orbits.

See [19] for a general description of the symmetries.

(3.3) Bifurcation theorem. The linearization of the system at the polygonal
equilibrium is a 3(n+1)×3(n+1) matrix, which is non invertible due to the rota-
tional symmetry. In [19] one finds a change of variables that organize the spaces
Wk ’s of similar irreducible representation of Γa ×S1, and also simplify the analy-
sis of the spectrum . This is, the arrange of the subspaces of similar irreducible
representations gives a decomposition of the linearization in 2n blocks, n of them
for the spatial coordinates, given in [19], and n of them for the planar coordinates,
given in [17].

Applying orthogonal degree to the reduced bifurcation map, one finds that the
degree has one component for each one of these 2n blocks, when there are no
resonances. In the case of the satellite there were only two components. Each
component has one number η(ν) which is the change of Morse index of the corre-
sponding block. By the existence property of the degree, there is one bifurcation
branch starting from (a,ν0) each time η(ν0) 6= 0, with the symmetries of the corre-
sponding block.

In this way one get the following theorems, see [19] for details.

THEOREM (3.9). For n ≥ 3 and each k ∈ {2, ...,n−2}, the polygonal equilibrium
has a global bifurcation of planar periodic solutions with symmetries Z̃n(k), if
µ ∈ (−s1,µk), and two global bifurcations if µ ∈ (m+,∞).

For n ≥ 7 and each k ∈ {1,n−1}, the polygonal equilibrium has two global bifur-
cation branches of planar periodic solutions with symmetries Z̃n(k) when µ> m+.

By global branch, one means that there is a continuum of solutions starting
at the ring configuration, and the continuum goes to infinity in the norm of the
solution or in the period, or goes to collision, or otherwise goes to other relative
equilibria in such a way that the sum of the jumps in the orthogonal degrees is
zero.

THEOREM (3.10). The polygonal equilibrium has a global bifurcation of peri-
odic solutions with symmetries Z̃n(k)×Z̃2 for each k ∈ {1, ...,n}. Except for a possible
finite number of µ’s and frequencies, for µ positive, bounded and different from µk,
due to resonances, these solutions are truly spatial, this is z j(t) 6= 0 for some j-th
body.

REMARK (3.11). Here, only the generic cases were exposed for simplicity. In [19]
all cases of bifurcation from the polygonal equilibrium were studied for n ≥ 2. In
the paper [19], there is also a theorem for the general n-body problem, where it



126 C. GARCíA-AZPEITIA

is proven that any relative equilibrium has one bifurcation of spatial like eight
solutions, and that generically there are n−1 of these bifurcations.

The planar bifurcation for k = n consists of solutions with u0(t)= 0 and u j(t)=
ei jζun(t). This branch was constructed in an explicit way in [28], by reducing the
problem to a 6-dimensional dynamical system and a normal form argument.

The spatial bifurcation for k = n is made of solutions where the ring moves as a
whole and the central body makes the contrary movement in order to stabilize the
forces, that is z j(t) = z1(t) for j ∈ {1, ...n} and z0 = −nz j. This solution was called
an oscillating ring in [28].

The spatial bifurcation for k = n/2 has the symmetries of the well known Hip-
Hop orbits. This kind of solutions appears first in the paper [11] without the
central body. Later on, in [28] for a big central body in order to explain the pul-
sation of the Saturn ring, where they are called kink solutions. Finally, there is a
proof in [4] when there is no central body.

REMARK (3.12). The same group of symmetries of the polygonal equilibrium
for the n-body problem is present also in the papers: In [19] for charges instead of
bodies. In [18] for vortices and traveling waves in almost parallel filaments, and in
[20] for a periodic lattice of coupled nonlinear Schrödinger oscillators . Although
there are many similarities with the n body problem, in particular in the change
of variables, these results are of a quite different nature.

As we saw before, due to the rotational symmetry, the linearization at any
equilibrium has at least one dimensional kernel. In order to find bifurcation of
relative equilibria, in the paper [17], one get rid of this degeneracy looking for
solutions in fixed-point subspaces of some reflection, where one is able to use
ordinary degree or another method.

For bifurcation of periodic solutions, the polygonal equilibrium is fixed only by
the action of

κ̃x j(t)= diag(1,−1,1)xn− j(−t),

which is a coupling between the reflection on the plane, a reversal of time, and a
permutation of bodies. This is the only reflection able to get ride of the degeneracy.

However, when one restricts the problem to the fixed-point subspace of κ̃, one
may prove bifurcation of periodic solutions only for the symmetries k = n and
k = n/2. For the remaining k’s, the linearization on the fixed-point subspace of κ̃ is
a complex matrix with non-negative determinant as a real matrix. One could also
use the gradient structure and apply the results for bifurcation based on Conley
index. Actually, analytical studies with normal forms of high order and additional
hypotheses of non-resonance are proposed in [7] for these cases. However, this ap-
proach do not provide the proof of the existence of a global continuum, something
which follows from the application of the orthogonal degree. This fact implies that
one may not use a classical degree argument or other simple analytical proofs to
find the solutions presented here.

REMARK (3.13). Variational techniques have been quite successful in treating
the existence of closed solutions. In particular, [14], [12] and [13], classify all the
possible groups which give periodic solutions which are minimizers of the action
without collisions. Thus, the issue is different from ours, since one has the proof
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of the existence of a solution in the large, with a specific symmetry. For choreogra-
phies, following the seminal paper [8], with no central mass, there are studies with
more than 3 bodies in [6] and [5], for instance. In the case of hip-hop solutions,
these methods were successful in [9] and [32]. One of the advantages of the orthog-
onal degree is that it applies to problems which are not necessarily variational, but
present conserved quantities.

Received September 18, 2012

Final version received October 23, 2012

C. GARCÍA-AZPEITIA

DEPARTMENT OF MATHEMATICS & STATISTICS

MCMASTER UNIVERSITY

1280 MAIN STREET WEST

HAMILTON, ONTARIO L8S 4K1
CANADA

cgazpe@hotmail.com

REFERENCES

[1] M. ARRIBAS AND A. ELIPE, Bifurcations and equilibria in the extended n-body ring problem,
Mech. Res. Comm., 31 (1), (2004), 1–8.

[2] D. BANG AND B. ELMABSOUT, Restricted n+1-body problem: existence and stability of relative
equilibria, Celestial Mech. Dynam. Astronom., 89 (4), (2004), 305–318.

[3] Z. BALANOV, W. KRAWCEWICZ, AND H. STEINLEIN, Applied equivariant degree, AIMS Series
on Differential Equations & Dynamical Systems, 1. American Institute of Mathematical Sciences
(AIMS), 2006.

[4] E. BARRABAS, J. M. CORS, C. PINYOL, AND J. SOLER, Hip-hop solutions of the 2n-body problem,
Celestial Mech. Dynam. Astronom., 95 (1-4), (2006), 55–66.

[5] V. BARUTELLO AND S. TERRACINI, Action minimizing orbits in the n-body problem with simple
choreography constraint, Nonlinearity, 17 (6), (2004), 2015–2039.

[6] K. C. CHEN, Action-minimizing orbits in the parallelogram four-body problem with equal masses,
Arch. Ration. Mech. Anal., 158, (2001), 293–318.

[7] A. CHENCINER AND J. FEJOZ, Unchained polygons and the n-body problem, Regular and chaotic
dynamics, 14 (1), (2009), 64–115.

[8] A. CHENCINER AND R. MONTGOMERY, A remarkable periodic solution of the three-body problem
in the case of equal masses, Ann. of Math., 152 (2), (2000), 881–901.

[9] A. CHENCINER AND A. VENTURELLI, Minima de l’integrale d’action du problème newtonien de
4 corps de masses égales dans R3: orbites “hip-hop”, Celest. Mech. Dyn. Astron., 77, (2000), 139–
152.

[10] N. DANCER, A new degree for S1-invariant gradient mappings and applications, Ann. Inst. H.
Poincaré, Anal. Non Lineaire, 2, (1985), 329–370.

[11] I. DAVIES, A. TRUMAN, AND D. WILLIAMS, Classical periodic solutions of the equal-mass 2n-
body problem, 2n-ion problem and the n-electron atom problem, Physics Letters A., 99 (1), (1983),
15–18.

[12] D. FERRARIO, Symmetry groups and non-planar collisionless action-minimizing solutions of the
three-body problem in three-dimensional space, Arch. Ration. Mech. Anal., 179 (3), (2006), 389–
412.

[13] D. FERRARIO, Transitive decomposition of symmetry groups for the n-body problem, Adv. Math.,
213 (2), (2007), 763–784.

[14] D. FERRARIO AND S. TERRACINI, On the existence of collisionless equivariant minimizers for the
classical n-body problem, Invent. Math., 155 (2), (2004), 305–362.

[15] C. GARCÍA-AZPEITIA, Aplicación del grado ortogonal a la bifurcación en sistemas hamiltonianos,
UNAM, Mexico, PhD thesis, 2010.



128 C. GARCíA-AZPEITIA

[16] C. GARCÍA-AZPEITIA AND J. IZE, Global bifurcation of planar and spatial periodic solutions in
the restricted n-body problem, Celestial Mech. Dyn. Astr., 110, (2011), 217-227.

[17] C. GARCÍA-AZPEITIA AND J. IZE, Global bifurcation of polygonal relative equilibria for masses,
vortices and dNLS oscillators, J. Dif. Eq., 251, (2011), 3202–3227.

[18] C. GARCÍA-AZPEITIA AND J. IZE, Bifurcation of periodic solutions from a ring configuration in
the vortex and filament problems, J. Dif. Eq., 252, (2012), 5662–5678.

[19] C. GARCÍA-AZPEITIA AND J. IZE, Global bifurcation of planar and spatial periodic solutions from
the polygonal relative equilibria for the n-body problem, To appear in J. Dif. Eq.

[20] C. GARCÍA-AZPEITIA AND J. IZE, Bifurcation of periodic solutions from a ring configuration of
discrete nonlinear oscillators, To appear in Discrete and Continuous Dynamical Systems Series
S.

[21] J. IZE, Topological bifurcation In Topological nonlinear analysis, Progr. Nonlinear Differential
Equations Appl., 15, (1995), 341–463. Birkhäuser Boston.

[22] J. IZE, I. MASSABO, AND A. VIGNOLI, Degree theory for equivariant maps, I, Trans. AMS, 315,
(1989), 433–510.

[23] J. IZE AND A. VIGNOLI, Equivariant degree for abelian actions. Part III: orthogonal maps, Top.
Methods Nonlinear Anal., 13, (1999), 105–146.

[24] J. IZE AND A. VIGNOLI, Equivariant degree theory, De Gruyter Series in Nonlinear Analysis and
Applications 8. Walter de Gruyter, Berlin, 2003.

[25] A. MACIEJEWSKI AND S. RYBICKI, Global bifurcation of periodic solutions of the restricted three-
body problem, Celestial Mechanics and Dynamical Astronomy, 88, (2004), 293–324.

[26] K.R MEYER AND G. R. HALL, An Introduction to Hamiltonian Dynamical Systems, Springer-
Verlag, New York, (1991).

[27] K. R. MEYER AND D. S. SCHMIDT, Bifurcations of relative equilibria in the n-body and Kirchhoff
problems, SIAM J. Math. Anal., 19 (6), (1988), 1295–1313.

[28] K. MEYER AND D. S. SCHMIDT, Librations of central configurations and braided saturn rings,
Celestial Mech. Dynam. Astronom., 55 (3), (1993), 289–303.

[29] S. RYBICKI, S1-degree for orthogonal maps and its applications to bifurcation theory, Nonl. Anal.
TMA., 23, (1994), 83–102.

[30] G. E. ROBERTS, Linear stability in the 1+n-gon relative equilibrium In Hamiltonian systems and
celestial mechanics. HAMSYS-98. Proceedings of the 3rd international symposium, J. Delgado
editor, World Sci. Monogr. Ser. Math. 6, (2000), 303–330.

[31] D. S. SCHMIDT, Central configurations and relative equilibria for the n-body problem In Classical
and celestial mechanics, (2003), 1–33. Princeton Univ. Press.

[32] S. TERRACINI AND A. VENTURELLI, Symmetric trajectories for the 2n-body problem with equal
masses, Arch. Rat. Mech. Anal., 184 (3), (2007), 465–493.

[33] R. J. VANDERBEI AND E. KOLEMEN, Linear stability of ring systems, The astronomical journal,
133, (2007), 656–664.



Bol. Soc. Mat. Mexicana (3) Vol. 18, 2012

THE ACADEMIC LEGACY OF ERNESTO A. LACOMBA

ERNESTO PÉREZ CHAVELA

Semblance

On 26th June 2012, México lost one of its most outstanding mathematicians,
when Ernesto Alejandro Lacomba Zamora passed away. These lines are by way of
a tribute to him.

Ernesto Lacomba was born on December 2, 1945 in Mexico City; his father,
Antonio Lacomba, had a bookstore in downtown Mexico City, where Ernesto La-
comba passed many afternoons. He became a great reader and fan of mathe-
matics, a discipline at which he shone from a very young age. At the Instituto
Politécnico Nacional (IPN), he studied simultaneously for a bachelor’s degree in
mathematical physics and electronic engineering, At this time, just prior to 1968,
the city was convulsed by student unrest and disquiet.

When he finished his bachelor degrees, he travelled to the United States to con-
tinue his studies in mathematics. He obtained his Ph. D. under the supervision
of Stephen Smale (1966 Fields Medal winner); the results of his thesis appeared
in a paper published in the Transactions of the American Mathematical Society
[1]. His thesis won a prize which consisted of travel to Brazil (joint with Ruth,
with whom he had just married in Berkeley) with a year’s visiting position at the
University of Brasilia.

He returned to Mexico City in 1973, joining a research group in the Applied
Mathematics and Systems Institute (IIMAS), at the National Autonomous Uni-
versity of Mexico (UNAM). In 1974, a new University in Mexico City, the Univer-
sidad Autónoma Metropolitana (UAM), was founded. This new project had the
intention of creating new and modern degree programmes, with a new academic
calendar and a new administration and structure. The challenge of forming a
new university excited and stimulated Ernesto. He became a founder member of
this new university, and it became the place where he spent the rest of his aca-
demic life as a teacher and researcher. In the mathematics department of the
UAM, campus Iztapalapa, Ernesto created an active research group in celestial
mechanics which today, in this subject, is of world renown.

As can be ascertained from his Curriculum Vitae, throughout his life Ernesto
wrote sixty three research papers published in top international journals with
high impact factor, twenty three papers in proceedings and eight chapters in
books. He also wrote ten expository papers and some pedagogical material; he
was also co-editor of five books (corresponding to the Proceedings of the interna-
tional symposia HAMSYS).

Ernesto was deeply involved in the design and later in the modification of
many courses in the undergraduate and graduate programmes of mathematics at
the UAM where he was a dedicated teacher. Many students, finishing one of his
courses would ask him to continue with the following course. He was a speaker
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in many conferences concerning Hamiltonian systems and celestial mechanics.
In 1990, he and Jaume Llibre from the Universidad Autónoma de Barcelona de-
cided to organize periodically the now famous series of International Symposia
on Hamiltonian Systems and Celestial Mechanics (HAMSYS). To date, six have
taken place: Hamsys-91, at CIMAT, Guanajuato; Hamsys-94, at Cocoyoc, More-
los; Hamsys-98, at Pátzcuaro, Michoacan; Hamsys-2001, at CIMAT, Guanajuato;
Hamsys-2006, at CIMAT, Guanajuato; and Hamsys-2010 in Mexico City; at this
last conference, Ernesto’s 65th birthday was celebrated. The Proceedings of all
these symposia were published by prestigious editorial houses and all articles
passed a strict review process.

A synthesis of part of his academic work

As I mentioned before, the results of Ernesto’s Ph.D. thesis were published in
the Transactions of the American Mathematical Society in 1973 (see [1]); in this
article he generalized the classical results of S. Smale [17], [18]. In order to give
the main results of his paper, I need to give some definitions:

We say that a mechanical system with symmetry is a quadruple (M,K ,V ,G),
where M is a manifold (M is the configuration space, the phase space is the tan-
gent bundle TM) endowed with a Riemannian metric, K is the kinetic energy (the
square of the norm of the Riemannian metric), V is the potential energy defined
on M, and G is a Lie group acting on M and leaving K and V invariant. Let G
be the Lie algebra of G. The momentum of the system J, is a first integral which
can be studied as a map J : TM → G∗, where G∗ is the dual of the Lie algebra G
associated to the Lie group G . Another first integral is the total energy defined
by E = K +V . Then we can study the energy-momentum map defined by

I = (E, J) : TM →R×G∗.

The function I can also be seen as a first integral of the system, then given any
(c, p) ∈R×G∗, the set Ic,p = I−1(c, p) is invariant under the flow of the respective
vector field. In this way, the topological structure of the sets Ic,p allows us to
describe the global topology of the phase space of a mechanical system with sym-
metry. The relative equilibria are the orbits which are invariant by the action of
one-parameter subgroup of G. The bifurcations of the system occur at the relative
equilibria. Let H be a closed subgroup of the Lie group G; G/H is called a homo-
geneous space. A transitive mechanical system with symmetry is a mechanical
system with symmetry where M =G/H is a homogeneous space where the poten-
tial V = 0, so in this case the total energy is E = K ; then, the vector field describes
the geodesic flow in the phase space. These transitive mechanical systems were
tackled by Ernesto in his thesis, where in particular he described the bifurcation
set in the phase space.

Another important paper, published during his first years of research, corre-
sponds to the regularization by surgery in the restricted three body problem [2],
where using the techniques introduced by R. Easton [15], he obtained a regular-
ization of the singularities. Here the idea is to use isolating blocks (neighbor-
hoods) around the singularity, then applying changes of coordinates, newly re-
scaled time and some topological methods it is possible to glue a solution entering
in the block with one which is leaving the block, the solution so obtained is unique
and analytic.



THE ACADEMIC LEGACY OF ERNESTO A. LACOMBA 131

In a series of articles with the French mathematician Lucette Losco [3], [4],
[5], Ernesto gave a topological analysis of the variational characterization of con-
tact vector fields in the group of diffeomorphisms. With her, using McGehee co-
ordinates (see [16] for more details) they also studied the triple collision in the
isosceles three body problem.

In a nice paper with Carles Simó [6], Ernesto studied the escape of particles
in celestial mechanics; for this, they used the blow up technique introduced some
years before by R. McGehee [16] in order to prove that the escape of particles is
qualitatively different depending on the sign of the total energy of the system.
The change of coordinates in order to obtain the blow up of infinity is different if
the total energy h is h < 0, h = 0 or h > 0. In this paper they applied these new
techniques to a number of interesting problems.

In [7], also with Carles Simó, a complete analysis was done of some degenerate
quadruple collisions, this being one of the first papers dealing with global dynam-
ics in the four body problem. More specifically, they studied the trapezoidal four
body problem, where two different masses are symmetrically located at the ver-
tices of a trapezium, taking symmetric initial conditions with regard to position
and velocity, and assuming that the masses are moving according to Newton’s
gravitational law, they gave the equations of motions and studied two degenerate
cases. The first corresponded to the case where the trapezium is a rectangle, while
the second concerned the case where all particles lie on a straight line, both cases
having two degrees of freedom. Using the blow-up technique (see [16]), they glued
an invariant manifold (of codimension 1 in the phase space) which represented the
quadruple collision, then they studied the flow on it and using the continuity of
the solutions with respect to the initial data they obtained properties of the global
flow for the orbits which end in collision and for those which pass close to total
collision.

One of Ernesto’s most important results (from my viewpoint), appears in [7],
where again with C. Simó, they obtained a nice regularization of the singularities
due to simultaneous binary collisions in the n–body problem, a type of singular-
ities which are not easy to understand. The main results stated that a solution
suffering a simultaneous binary collision can be continued analytically in terms
of t1/3.

Another important result appears in [9], where using new changes introduced
by the authors, they obtained a compact model for the rhomboidal 4–body prob-
lem. First they studied the total collision manifold using the classical McGehee
coordinates [16], then they regularized the singularities due to double collision in
an innovative way, which with a re-parametrization of time gave a compact model.
Some years later, these ideas were generalized by Q. Wang to obtain a global solu-
tion of the n–body problem: I repeat, a global solution of the n–body problem. In
[19], Q. Wang obtained a convergent power series solution for the n–body problem,
where he omitted only the solutions leading to collision singularities. A paradox
emerges from this result: With this result it would appear that we may describe
the motion of all the celestial bodies in our Solar system. However, this is not
really the case. Wang’s work is correct, but there is still a big problem, the series
solution obtained are convergent in the whole real axis, but they converge very
slowly, we have to sum many millions of terms in the series to obtain information
regarding the motion of the particles in a short time interval. Nevertheless the
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result, although theoretical is curious and interesting. In [10], also concerning
the rhomboidal problem, the authors showed the existence of chaos. The idea is to
use the blow-up technique in two different ways, first to study the total collision,
and second to study the escapes to infinity. In both case we glue invariant sub-
manifolds on the borders of the phase space. The global flow is extended to these
submanifolds. Taking the mass ratio as a parameter, the authors find a bifurca-
tion value say α0. The main result states that if the mass ratio is lesser than α0,
then the stable submanifold associated to the escapes intersects transversality
to the unstable manifold associated to the total collision. From here they intro-
duce symbolic dynamics in a small neighborhood of the transversal intersection,
showing the existence of chaos.

The above results formed part of my Ph.D. thesis - I was Ernesto’s second Ph.D.
student.

Ernesto maintained an important collaboration with Jaume Llibre of the Uni-
versidad Autónoma de Barcelona; with him, Ernesto wrote several articles. In
[11], they studied a particular restricted collinear three body problem where the
masses at the ends are positive and between them there is a massless particle, the
question is simple, is it possible to show the existence of chaos and is it possible to
introduce symbolic dynamics on it. Using several clever changes of coordinates,
they gave an affirmative answer to the above questions. In two papers with J.
Delgado, J. Llibre and E. Pérez-Chavela [12] and [13], the authors applied the
Poincaré compactification to study first the Kepler and the collinear three body
problem. They regularized the singularities in such a way to obtain a polynomial
vector field, then they studied the global flow of the above problems showing that
all singularities are on the equator of the respective sphere (also a sphere of codi-
mension 1 with respect to the previous one). Then they extended the above results
to a general Hamiltonian polynomial vector fields.

In vortex dynamics, joint with M. Celli and E. Pérez-Chavela [14], they studied
polygonal relative equilibria. In a planar incompressible fluid with zero viscosity,
a relative equilibrium is a particular solution where the mutual distances among
the vortices remain constant during all motions. The main results stated that in
order to have a polygonal relative equilibrium, all vorticities at the edges of the
polygon must be equal. These authors also proved that in the case of two nested
concentric squares, where the vorticities on each square are equal, it is possible
to have a relative equilibrium where the corresponding diagonals of the different
squares form an angle of forty five degrees for any value of the vorticities; this
was one the last articles written by Dr. Lacomba.

The results mentioned above show only a small part of Ernesto’s work, slanted
by the academic background and interests of the author of this note, but I must
mention that Ernesto had many collaborators and with them he wrote many pa-
pers on applications to symplectic geometry, thermodynamics, celestial mechan-
ics, electrical circuits, geometric mechanics and vortex theory. In chronological
order his collaborators are: L. Losco, C. Simó, J. Bryant, L. Ibort, J. Cariñena, J.
Llibre, M. de León, H. Cendra, W. M. Tulczyjew, F. Cantrijn, E. Pérez-Chavela, A.
Verdiell, J. Delgado, F. Diacu, C. Stoica, V. Mioc, A. Mingarelli, H.K. Bhaskara,
K.K. Rama, D. Martin, P. Pitanga, G. Hernández, J.C. Marrrero, J.G. Reyes, S.
Craig, M. Falconi, C. Vidal, M. Medina, A. Hernández, S. Kaplan, H. Jiménez, M.
Celli, A. Castro.
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His students

Ernesto was an excellent teacher, a good speaker and a great motivator of
young students. He was an invited speaker (frequently a plenary speaker) at
many conferences in the area. He was thesis supervisor of 8 Ph. D. students:

(1984) Felipe Peredo, Cinvestav, IPN.
(1991) Ernesto Pérez-Chavela, UAM-Iztapalapa.
(1991) Joaquín Delgado, UAM-Iztapalapa.
(1993) José G. Reyes, UAM-Iztapalapa.
(1996) Manuel Falconi, Facultad de Ciencias, UNAM.
(2006) Mario Medina, UAM-Iztapalapa.
(2010) Hugo Jiménez, UAM-Iztapalapa.
(2012) Alberto Castro, UAM-Iztapalapa.

Awards

Ernesto received awards on many occasions: Since its foundation in 1984 he
was a member of the Sistema Nacional de Investigadores (SNI), first at Level II,
and from 1990 until his death at level III, the highest of the system. In 2011, he
received the distinction of emeritus researcher of the SNI. He also formed part of
the judging committee of SNI, from 1993 to 1995.

In 1993 he won the prize “Lázaro Cárdenas”, given by the Instituto Politéc-
nico Nacional to the most distinguished graduates of this institution. In 1985 he
received a Honorific Mention within the Research Prize in Exact Sciences “Nor-
iega Morales”, granted by the Organization of American States and in 2007, he
received the prize “Silvia Torres Castilleja” in basic sciences, being part of the
“Ciudad de México, Heberto Castillo” prize.

He was named Distinguished Professor by the Universidad Autónoma Metro-
politana (UAM) in 1991 In early 2012, for his excellence as a researcher and
teacher, the Faculty of Basic Sciences and Engineering of the UAM, recommended
to the University Council that he be named Professor Emeritus of the UAM (this
being the highest honour that the UAM can confer on its faculty members in recog-
nition of outstanding teaching, research and scholarship). At that time (April,
2012) Ernesto’s health was deteriorating and unfortunately this distinction was
finally confirmed by the University Council the day after his death.

In the process of his nomination for this distinction he received the support
of many professors from different academic departments of the UAM, and from
members of the mathematical community, both In Mexico and elsewhere. The
confirmation of the distinction was finally awarded to his widow Ruth Lacomba,
daughter Roxana and grandson Daniel.
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ON THE ISOSCELES SOLUTIONS OF THE THREE-BODY PROBLEM

To Ernesto Lacomba Zamora, in memoriam

HILDEBERTO E. CABRAL

ABSTRACT. The goal of this note is to present the classification of the isosceles
solutions of the Three-Body Problem. We follow Wintner’s presentation and cor-
rect a point in his arguments at the end of § 345 of his book “The Analytical Foun-
dations of Celestial Mechanics”. Also, we make a comment on the fundamental
problem that the masses at the base of an isosceles solution are necessarily equal.

1. Introduction

The particular solutions of the 3-body problem whose configurations form an
isosceles triangle for every time without degenerating into an equilateral triangle,
a Lagrangian solution, or into a line segment, an Eulerian solution, were discov-
ered around the end of the XIX century by A. E. Fransén, [4]. He arrived at these
solutions assuming that the masses at the base of the triangle are equal. In 1913
E. J. Wilczynski published a paper [14] containing a proof, attributed by him to W.
D. MacMillan, of the fundamental fact that the masses at the base of the isosceles
configuration have necessarily to be equal. Notice that this is not true if we al-
low the isosceles triangle to be equilateral, as the Lagrange equilateral solutions
exist for any three masses. In 1921, J. Chazy [3] gave a new proof of the above
fact claiming it to be simpler than that of MacMillan-Wilczynski. Both proofs use
analytic function theory. In Chazy’s proof he studies the singularities of the equa-
tions that he was led to in his analysis and imposing compatibility conditions on a
system of five equations on four variables he got the equality of the masses at the
base of the triangle. Chazy says that while MacMillan in his proof applies several
theorems of analytic function theory he applies just one namely, Fuchs’ theorem
on the singular points of linear differential equations, see [5], p. 85. His analysis
however is by no means trivial. In his book published in 1941, Wintner raises the
question of whether there exists a dynamical proof of this fact. Quoting from §
389 of [15]: “It would, of course, be desirable to find a proof based on dynamical,
rather than on function-theoretical, principles. But it is quite doubtful that such
a proof exists”. At the end of this note we come back to this point.

Once established the equality of the masses at the base of the isosceles con-
figuration a complete classification of such motions can be easily done. Following
Wintner [15], §§ 344-346, we present such a classification in Section 3, taking this
opportunity to correct a mistake in his analysis.

2010 Mathematics Subject Classification: 34C14, 70F07.
Keywords and phrases: isosceles configuration, three-body problem, celestial mechanics.
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2. The heliocentric equations of motion

Let r1,r2,r3 be the position vectors of masses m1,m2,m3, in the Newtonian
three-body problem, relative to an inertial frame. We consider the heliocentric
vectors Y1, Y2 defined by (mass m3 as “sun”)

(2.1) Y1 = r1 −r3 and Y2 = r2 −r3.

Considering the center of mass

r= 1
M

(
m1r1 +m2r2 +m3r3

)
, where M = m1 +m2 +m3,

we have from (2.1)

(2.2)

r1 = r+ m2 +m3

M
Y1 − m2

M
Y2,

r2 = r− m1

M
Y1 + m1 +m3

M
Y2,

r3 = r− m1

M
Y1 − m2

M
Y2.

The dynamics of the three-body problem with center of mass fixed at the origin
can be completely described by the motion of the heliocentric vectors Y1, Y2.

The Newtonian equations of motion in terms of the inertial vectors

m j r̈ j =
∑
i 6= j

mim j

||ri −r j||3
(
ri −r j

)
,

give rise to the heliocentric equations of motion

(2.3) Ÿ1 = q11Y1 + q12Y2, Ÿ2 = q21Y1 + q22Y2,

where

(2.4) qii =−mi +m3

||Yi||3
− m j

||Y1 −Y2||3
, qi j =

m j

||Y1 −Y2||3
− m j

||Y j||3
(i 6= j = 1,2).

Definition (2.5). An isosceles solution of the three-body problem is defined as a
solution for which the configuration of the masses form an isosceles triangle for
every time without degenerating identically into an equilateral triangle or a line
segment.

We notice that for reasons of analyticity the configuration along an isosceles
solution can eventually become equilateral or rectilinear at an isolated value t0
of the time but cannot persist as such in any open interval around t0. In fact,
this instant of time cannot even be an accumulation point of such degenerate
configurations.

3. The classification of the isosceles solutions

The goal of this section is to classify all the isosceles solutions with the masses
m1 = m2 at the base of the isosceles configuration. In our exposition we follow
Wintner [15], §§ 343bis-346. See also Chazy [3], pp. 184-188.

So the goal is to classify all the motions for which

(3.1) m1 = m2 and ||Y1|| = ||Y2||,
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under the assumption that

(3.2) q12 6= 0 and Y1 ×Y2 6= 0.

In view of (2.4), the first condition in (3.2) excludes the equilateral configurations
while the second excludes those which are collinear.

We see from (2.4) that the conditions (3.1) imply the symmetry conditions

(3.3) q11 = q22 and q12 = q21.

Conversely, under the fulfilment of the first inequality in (3.2), the equalities (3.3)
imply (3.1).

Therefore, our problem is to classify all the motions for which the symmetry
conditions (3.3) hold, under the assumptions stated in (3.2). Taking these into
consideration, then in terms of the vectors1

(3.4) X1 = 1
2

(Y1 +Y2), X2 = 1
2

(Y1 −Y2),

the heliocentric equations (2.3) become

(3.5) Ẍ1 = (q11 + q12)X1, Ẍ2 = (q11 − q12)X2.

It follows immediately from the equations of motion (3.5) that X1 × Ẋ1 and
X2× Ẋ2 are constants of motion, that is there are two constant vectors A1 and A2
satisfying the equations

(3.6) X1 × Ẋ1 = A1 and X2 × Ẋ2 = A2,

where × denotes the cross product in R3.

PROPOSITION (3.7). The following equalities hold among the four vectors X1,
X2, A1, A2,

(3.8) X1 · X2 = 0, A1 · X1 = 0, A2 · X2 = 0 and A1 · A2 = 0.

Proof. The first equality follows immediately from the second equality in (3.1),
while the second and third are obvious. It remains to prove the last one. We first
notice that

(3.9) (X1 · Ẋ2)2 = A1 · A2.

Indeed, this follows from (3.6) by using the vector identity

(a×b) · (c×d)= (a ·c)(b ·d)− (a ·d)(b ·c)

together with the orthogonality of X1 and X2, expressed by the first equality in
(3.8), which also gives

(3.10) X1 · Ẋ2 =−X2 · Ẋ1.

Let us now prove that A1 · A2 = 0. Differentiating (3.9) we get

2(X1 · Ẋ2)
[
Ẋ1 · Ẋ2 + X1 · Ẍ2

]= 0.

If the first factor is zero, we have A1 · A2 = 0 by (3.9). If the second factor is zero,
then

Ẋ1 · Ẋ2 = 0,

1The vector X1 determines the direction of the symmetry axis and X2 that of the basis of the
triangle
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because X1 · Ẍ2 = 0 by the second equation of motion (3.5) together with the or-
thogonality of X1 and X2. Differentiating the left-hand side of this equation we
get

Ẋ1 · Ẍ2 + Ẍ1 · Ẋ2 = 0.
Substituting into this the double derivatives from (3.5) and using (3.10) we get

q12
(
X1 · Ẋ2

)= 0.

Since q12 6= 0 by (3.2), the second factor vanishes hence A1 · A2 = 0 by (3.9).

Now, we have the following possibilities for the vectors A1 and A2:2

(1) A1 = A2 = 0, (2) A1 6= 0, A2 = 0, (3) A1 = 0, A2 6= 0 (4) A1 6= 0, A2 6= 0.

PROPOSITION (3.11). One or both of the vectors X1, X2 moves along a fixed
direction.

Proof. This is clear in cases (1)–(3) due to the identity for a vector function x= x(t)
in R3,

d
dt

( x
||x||

)
= (x× ẋ)×x

||x||3 .

In case (4), because A1 · A2 = 0 we can consider the orthonormal frame e1,e2,e3,
where e1 = A1/||A1||, e2 = A2/||A2|| and e3 = e1 ×e2. Writing

X1 =α1e1 +β1e2 +γ1e3, X2 =α2e1 +β2e2 +γ2e3,

by Proposition (3.7), we have that

α1α2 +β1β2 +γ1γ2 = 0, α1 = 0 and β2 = 0,

hence γ1γ2 = 0 also. If γ1 = 0 we get X1 = β1e2 while for γ2 = 0 we get X2 =
α2e1.

From (2.1) and (3.4) we see that

X1 =− M
2m1

r3 and X2 = 1
2

(r1 −r2).

In the cases when only one or none of the vectors A1 or A2 vanishes denote by
e the fixed direction of X1, or X2 as the case may be. Taking e directed upwards,
which means that the nonzero angular momentum C in these cases have this
direction, the figures 1, 2, 3 illustrate the three types of isosceles motion at which
we arrived through our analysis. Notice that the angular momentum of the planar
solution is zero.

This exhausts all the possibilities so it gives the classification of all the isosceles
motions of the three-body problem with the masses m1 = m2 at the base of the
isosceles configuration.

Of these three types of isosceles solutions, the planar one (see figure 1) and
the spatial solution with a symmetry axis (see figure 3) are the most studied. Be-
ginning with the work of McGehee [10], many papers have appeared applying his
coordinates to study the behaviour of near collision orbits in the planar model and
related problems. The Mexican school under the leadership of Ernesto Lacomba

2At this stage there is a mistake in Wintner’s arguments. See the end of § 345 of [15], where he
says that the four conditions (3.8) imply that at least one of the vectors A1 or A2 is zero and proceeds
with the conclusion that one, or both, of the vectors X1 or X2 moves along a fixed direction.
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The planar isosceles solution
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Figure 1. The planar isosceles solution.
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The isosceles solution with a fixed symmetry plane
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Figure 2. The isosceles solution with a fixed symmetry plane.

The isosceles solution with a fixed symmetry line
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C z
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Figure 3. The isosceles solution with a fixed symmetry line.

has made important contributions in this area (see for instance the references [6],
[7], [8]).

A limiting case of the spatial solution with a symmetry axis, the Sitnikov prob-
lem [13], was considered in detail in the applications of a general theory in a
series of papers by Alekseev [1]. A very nice study of Sitnikov problem appears
in the monograph by Moser [11]. After stating the main theorem on the symbolic
dynamics of the zero mass particle m3 = 0, [11], Theorem 3.5, he mentions an
observation of Alekseev that the theorem would hold true even for small positive
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values of m3 (see figure 3). Recently in a joint paper with Daniel Offin [12], hyper-
bolicity for periodic orbits have been studied in this problem with general values
of the masses. The case of the isosceles spatial solution with a symmetry plane,
see figure 2, only now begins to be studied. A paper on the existence of periodic
orbits, after regularization of the binary collisions, has been recently submitted
for publication by Mateus-Venturelli-Vidal [9].

4. Comments on the problem of equal masses at the basis of an isosceles
solution

In 1913 MacMillan gave a proof of the following theorem, published by Wilczyn-
ski [14].

THEOREM (4.1). The masses at the basis of an isosceles solution are necessarily
equal.

In 1921 Jean Chazy gave another proof but did not avoid using analytical func-
tion theory to study the singularities of linear systems of differential equations in
the complex plane. Wintner raises the question of whether there is a proof based
on dynamical principles rather than on function theoretical arguments. In [2] we
tried this approach but our proof has problems and does not settle the question.
Let us examine this question again.

Differentiating the identity ||Y1||2 = ||Y2||2 twice and using the equations of mo-
tion (2.3) and (2.4), we get the identity

(4.2) ||Ẏ1||2 −||Ẏ2||2 = (m2 −m1)
( 1
||Y1 −Y2||)3

− 1
||Y1||3

)(〈Y1,Y2〉− ||Y1|| ||Y2||
)
.

We know that the left-hand side vanishes because it is already established the
equality of the masses. But if we could provide a direct dynamical proof that
||Ẏ1|| = ||Ẏ2|| we would get m1 = m2. Indeed, the right-hand side of (4.2) would then
be zero. The time-dependent factors in this equality cannot vanish identically
because the annihilation of the second factor would give an equilateral solution of
the three-body problem, while by the Cauchy-Schwarz inequality the annihilation
of the third factor would give a collinear motion. Both of these possibilities are
excluded from the definition of an isosceles solution, so it would remain to have
m1 = m2.
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RADÓ’S THEOREM FOR FACTORISATIONS OF THE LAPLACE
OPERATOR

To Ernesto Lacomba Zamora, in memoriam

C. GONZALEZ–FLORES AND EDUARDO S. ZERON

ABSTRACT. Let D̂ and D be a pair of first order differential operators with con-
stant coefficients and such that the product D̂D is equal to the Laplace operator
∇2. A classical theorem of Tibor Radó states that if a function h is continuous on
an open setΩ⊂Cn and holomorphic on the complement of its zero locus, then it is
holomorphic everywhere on Ω. We show that a similar result holds, if one substi-
tutes the condition that h is holomorphic by the assumption that the differential
Dh vanishes.

1. Introduction

The Laplace operator ∇2 has played a prominent role in physics and mathemat-
ics since the eighteenth century. The fact that it can be factorised into the product
of two first order differential operators has important consequences as well. We
know for example that the real and imaginary parts of a holomorphic function are
harmonic, because ∇2 can be expressed in the complex plane as the product 4∂∂
of the Cauchy-Riemann operators ∂ and ∂. Furthermore, physics became strongly
interested in the factorisation of ∇2 around 1925, when Dirac, Klein, and Gordon
factorised the relativistic Schrödinger equation for a free particle:

(1.1)
m̂2c2

ħ2 =∇2 − 1
c2 ·

∂2

∂t2 =
(

ı̂β4

c
· ∂
∂t

+
3∑

j=1
β j

∂

∂x j

)2

.

The symbols βk stand for real or complex square matrices that satisfy the con-
ditions: β2

k is the identity matrix and β jβk is equal to −βkβ j for all indices j 6= k.
The first order factor at the right hand side of (1.1) is the classical example of a
Dirac operator; i.e., the example of an operator that is the formal square root of
the Laplace or d’Alembert operator. In the same way, the pair of Cauchy-Riemann
operators 2∂ and 2∂ is the classical example of a Dirac pair, because their prod-
uct is equal to ∇2; see for example [7]. We analyse in this paper factorisations
of the Laplace operator ∇2 into general homogeneous Dirac pairs with constant
coefficients; i.e., we consider the following formula:

(1.2) ∇2 = D̂D, where D̂ =
n∑

j=1
A j

∂

∂x j
, D =

n∑
k=1

Bk
∂

∂xk
,
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{A j} are [µ×m]-complex matrices of full rank, µ ≤ m, and {Bk} are some gener-
alised inverse (pseudoinverse) [m×µ]-matrices such that

(1.3) AkBk = Identity and A jBk =−AkB j ∀ j 6= k.

Notice that the choice of the matrices {Ak} and {Bk} is by no means unique, but
they must all have full rank because the products AkBk have to be equal to the
identity matrix.

On the other hand, a classical theorem of Tibor Radó states that if a function
h is continuous on an open set U ⊂ Cn and holomorphic on the complement of
its zero locus, then it is holomorphic everywhere on U . A natural problem is to
decide whether a similar result holds, if one substitutes the condition that h is
holomorphic by the assumption that the differential Ph vanishes for an elliptic
differential operator P . Several positive answers to this problem have been pub-
lished since the middle of the twentieth century. It is quite interesting to analyse
for example the works of Hounie and Tavares [4], Král [6], Tarkhanov [9], and
Tavares [10]. Consider in particular the following result presented in [9], p. 40.

THEOREM (1.4) (Tarkhanov). Let Ω⊂ Rn be an open domain, and h be a func-
tion in Cp(Ω) whose p-th derivatives are all locally Lipschitz. Given an elliptic
differential operator P of order p+1, if the differential Ph vanishes on the comple-
ment of the zero locus Ω\h−1(0), then Ph vanishes everywhere on Ω.

The theorem above can be improved when P is equal to the first order differ-
ential operator D given in the factorisation (1.2)–(1.3) of the Laplace operator, so
that p = 0. We proved in [3] that Theorem (1.4) holds when P ≡D and the func-
tion h has locally finite Dirichlet energy ‖Jh‖2 for the Jacobian J; no Lipschitz
condition on h was required at all. The main objective of this work is to remove
completely the conditions that h is locally Lipschitz or has locally finite Dirichlet
energy, so that we prove the following result.

THEOREM (1.5). Let Ω⊂Rn be an open domain, and D be the first order differ-
ential operator defined in the factorisation (1.2)–(1.3). Given a continuous function
F defined from Ω to Rµ, if DF vanishes in the sense of distributions on the open set
Ω\F−1(0), then F is harmonic and DF vanishes everywhere on Ω.

Recall that F is harmonic if each of its entries is harmonic. The previous the-
orem is a direct generalisation of Radó’s theorem, because the Laplace operator
∇2 in the complex plane can be factorised as the product of the Cauchy-Riemann
operators ∂ and ∂. The following lemma is necessary in the proof of Theorem (1.5).
This result is important, because it gives conditions for which the differential DF
vanishes in the sense of distributions whenever DF is equal to zero almost every-
where (calculated in the strong sense).

LEMMA (1.6). Let U ⊂ Rn be an open domain, and E = F−1(0) be the zero locus
of a continuous function F defined from U to Rµ. Assume that F is continuously
differentiable on the open set U\E and consider the operator D given in the factori-
sation (1.2)–(1.3). If the equation (1.7) below holds for every real smooth function
ϕ with compact support in U\E, then the differential DF exists almost everywhere
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(calculated in the strong sense) and is L1-integrable on every compact ball con-
tained in the original set U :

(1.7)
∫

x∈U

(
n∑

j=1

∂ϕ(x)
∂x j

A j

)
DF(x)dx = 0.

Moreover, the function F is harmonic in U if and only if the equation above
holds for every real smooth function ϕ with compact support in U .

Recall that {A j} are [µ×m]-matrices and DF is a function defined almost ev-
erywhere from U into Rm. The lemma above implies in particular that the dif-
ferential DF vanishes in the sense of distributions whenever DF is equal to zero
almost everywhere. This result is not trivial at all, because the Cantor function is
an example of a continuous function that is locally constant almost everywhere,
but its derivative does not vanish in the sense of distributions. We may also take
for example the non-continuous function F(x) equal to zero when x1> 0 and equal
to a fixed vector v 6= 0 everywhere else. We easily have that F is locally constant
almost everywhere, but DF is not equal to zero in the sense of distributions when
D has a non-trivial component B1

∂
∂x1

.
The results presented in this paper can be easily extended to consider factori-

sations of the Laplace operator into non-homogeneous Dirac pairs with constant
coefficients, i.e.

∇2 =
(
C1 +

n∑
j=1

A j
∂

∂x j

)(
C2 +

n∑
k=1

Bk
∂

∂xk

)
,

so that the matrices {A j} and {Bk} should satisfy (1.3) and the products C1C2,
A jC2, and C1Bk are all equal to the zero matrix. Nevertheless, we think that
the above generalisation complicates the notation and does not really give a new
perspective to the main theorem of this work. Theorem (1.5) is shown in the
following chapter, while Lemma (1.6) is proved in the last section of this paper.

2. Proof of Main Theorem (1.5)

Let Ω⊂Rn be an open domain, and E = F−1(0) be the zero locus of a continuous
function F defined fromΩ to Rµ. Given the operator D defined in the factorisation
(1.2)–(1.3), assume that DF vanishes in the sense of distributions in the open set
Ω\E. Then the Laplacian ∇2F also vanishes in the sense of distributions there;
see for example [3] or directly analyse the last two lines in equation (3.1) in order
to verify that all the integrals there vanish for every point y with Euclidean norm
small enough and each real smooth function ϕ well defined and with compact
support in Ω\E. Weyl’s lemma then implies that F is harmonic in Ω\E; see for
example [1], p. 27, [2], p. 33, or [5], p. 19.

We prove that both F is harmonic and DF vanishes everywhere in Ω. The
result is trivial when E is empty or equal to Ω, so we suppose from now on that
none of these cases holds. We need the following lemma originally presented in
[3]; we include its proof for the sake of completeness.

LEMMA (2.1). Let f : I →R be a continuous function defined on an open interval
I of the real line, and E be the zero locus of f . Assume that the derivative f ′ exists
and it is continuous and L1-integrable on the open set I \ E. Then f is absolutely
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continuous on I and the derivative f ′ ≡ 0 almost everywhere on E. Finally, if f has
compact support in the open interval I, then the integral

∫
I f ′dt vanishes.

Proof. The result is trivial when E is empty or equal to I. Hence, we assume from
now on that the open set U := I\E is not empty and that we may fix a point w in
E. Define the functions

g(t)=
{

f ′(t) if t ∈U ,
0 if t ∈ E; and h(x)=

∫ x

w
g(t)dt.

The function g is L1-integrable on I because f ′ is L1-integrable on the open set
U . We assert that h and f coincide on I. Every connected component of U is an
open interval (b, c) with at least one of its end points in E, because E is not empty.
The function h(x) vanishes whenever x is contained in E, because

h(x)=
∫ x

w
gdt =∑

θ

∫ cθ

bθ
f ′dt =∑

θ

(
f (cθ)− f (bθ)

)
= 0.

The sums are calculated over all connected components (bθ, cθ) of U that lie
between the points w and x of E, so that their respective end points bθ and cθ are
all in the zero locus E of f . Moreover, when x is contained in U , let s ∈ E be one of
the end points of the connected component of U that contains x, so that

h(x)=
∫ s

w
gdt+

∫ x

s
gdt =

∫ x

s
f ′dt = f (x)− f (s)= f (x).

Therefore, f ≡ h is absolutely continuous on I, and so the derivative f ′ exists
and is also equal to g almost everywhere on I; see for example Theorem 8.17
of [8]. In particular, the derivative f ′ ≡ 0 almost everywhere on E, because g
vanishes there. Assume that d < e are the end points of the open interval I. The
following identities hold when f has compact support properly contained in I,∫

I
f ′(t)dt =

∫ e

d
g(t)dt = lim

t→e
f (t)− lim

t→d
f (t)= 0.

Coming back to the proof of Theorem (1.5): We already have that each entry
F` is continuous on Ω, harmonic on Ω\E, and equal to zero on E. Whence the
positive and negative parts

(2.2) max{F`(x),0} and max{−F`(x),0}

are all continuous and subharmonic on Ω. Lemma 1 in [6], p. 63, implies that the
partial derivatives ∂F`/∂xk exist almost everywhere inΩ and are all L1-integrable
(with respect to the Lebesgue measure) on every compact parallelogram

(2.3) P =
n∏

k=1

[
ak,bk

]
contained in Ω.

We obviously take ak < bk. Moreover, the entries F` are all finite and ab-
solutely continuous on almost every line segment contained in P and oriented
parallel to the coordinate axes. We assert that F is harmonic on the interior of
any fixed parallelogram P ⊂ Ω. The result is trivial when P is contained in or
disjoint to E, so we suppose from now on that none of these cases holds. Define
the following line segments in Rn,

Lξ := [a1,b1]× {ξ} with ξ ∈Rn−1.
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The partial derivative ∂F`/∂x1 is L1-integrable on Lξ for every index ` and
almost all points ξ such that Lξ⊂P. For each of these points ξ we have that
F` is continuous on Lξ, smooth on Lξ\E, and equal to zero on Lξ∩E. Hence
the partial derivative ∂F`/∂x1 vanishes almost everywhere on Lξ∩E according
to Lemma (2.1). Fubini’s theorem implies that ∂F`/∂x1 is equal to zero almost
everywhere on P ∩E with respect to Lebesgue measure; see for example [8].

A similar analysis yields that the partially derivatives ∂F`/∂xk vanish almost
everywhere on P ∩E with respect to Lebesgue measure and for all indices k and
`. Notice that the differential DF is equal to zero in P\E, because F is harmonic
and DF vanishes in the sense of distributions there. Moreover, DF is a linear
combination of the terms ∂F`/∂xk according to (1.2). Therefore, DF vanishes al-
most everywhere on P, and so equation (1.7) holds for U equal to the interior of
P and every real smooth function ϕ well defined and with compact support in U .
Lemma (1.6) implies then that F is harmonic and DF is identical to zero in the
interior of P.

The desired result follows from the fact that the compact parallelogram P in Ω
was chosen in an arbitrary form. We only need to prove Lemma (1.6) in order to
conclude this paper.

3. Weak version of Weyl’s lemma

The final section of this paper is devoted to prove (1.6). We restate the hypothe-
ses in order to improve the presentation.

LEMMA (1.6). Let U ⊂ Rn be an open domain, and E = F−1(0) be the zero locus
of a continuous function F defined from U to Rµ. Assume that F is continuously
differentiable on the open set U\E and consider the operator D given in the factori-
sation (1.2)–(1.3). If the equation (1.7) below holds for every real smooth function
ϕ with compact support in U\E, then the differential DF exists almost everywhere
(calculated in the strong sense) and is L1-integrable on every compact ball con-
tained in the original set U :

(1.7)
∫

x∈U

( n∑
j=1

∂ϕ(x)
∂x j

A j

)
DF(x)dx = 0.

Moreover, the function F is harmonic in U if and only if the equation above
holds for every real smooth function ϕ with compact support in U .

Proof. First assume that F is continuously differentiable on U , so that DF is well
defined and L1-integrable on every compact set in U . Recall that F is smooth
whenever it is harmonic. The factorisation ∇2 = D̂D given in (1.2)–(1.3) implies
that F is harmonic if and only if the following formulae vanish for each point y
in Rn with Euclidean norm small enough and every real smooth functions ϕ well
defined and with compact support in the open set U ,
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∫
x∈U

(
n∑

j=1

∂ϕ(x−y)
∂x j

A j

)
DF(x)dx =

= −
n∑

j=1
A j

∂

∂yj

∫
x∈U

ϕ(x−y)

(
n∑

k=1
Bk

∂F(x)
∂xk

)
dx(3.1)

=
n∑

j=1
A j

∂

∂yj

∫
x∈U

(
n∑

k=1

∂ϕ(x−y)
∂xk

Bk

)
F(x)dx

= −
∫

x∈U

(
n∑

k=1

∂2ϕ(x−y)
∂x2

k

)
F(x)dx.

We only need to consider the case when ∇2F vanishes in the sense of distribu-
tions because of Weyl’s lemma; see for example [1], p. 27, [2], p. 33, or [5], p. 19.
The equality between the second and third lines in (3.1) can be easily verified; we
only need to observe that the following identities hold for all indexes k and `,

(3.2) 0=
∫

x∈U

∂ϕF`

∂xk
dx =

∫
x∈U

(
∂ϕ

∂xk
F`+ϕ∂F`

∂xk

)
dx.

On the other hand, consider the zero locus E = F−1(0) of the continuous func-
tion F defined on U . The original hypotheses yield that F is continuously differen-
tiable in U\E and that equation (1.7) holds for every real smooth function ϕ well
defined and with compact support in U\E. The analysis done at the beginning of
this proof implies that F is harmonic on U\E. Hence the positive and negative
parts of the entries F` are all continuous and subharmonic on U ; see (2.2). Let
P be any compact parallelogram contained in U ; recall definition (2.3). Lemma
1 in [6], p. 63, implies that the partial derivatives ∂F`/∂xk and the differential
DF exist almost everywhere in U and are all L1-integrable on P with respect to
Lebesgue measure. This analysis concludes the first part of the proof.

We only need to prove now that F is harmonic whenever the integral in (1.7)
vanishes for every smooth function ϕ with compact support in U . Let ϕ be any
real smooth function well defined and with compact support in the interior of the
parallelogram P. Define the following line segments in Rn,

Lξ := [a1,b1]× {ξ} with ξ ∈Rn−1.

The partial derivative ∂ϕF`
∂x1

is L1-integrable on Lξ for every index ` and almost
all points ξ such that Lξ⊂P. For each of these points ξ we have that the product
ϕF` is smooth on Lξ\E, equal to zero on Lξ∩E, and continuous with compact
support in Lξ. The integral of ∂ϕF`

∂x1
over Lµ vanishes according to Lemma (2.1).

Fubini’s theorem implies that the integral of ∂ϕF`
∂x1

over P vanishes as well for
every index `; see for example [8].

We obtain the same result if we derivate with respect to the variable xk instead
of x1, so that equation (3.2) holds for U equal to the interior of P, all indices k and
`, and every real smooth function ϕ with compact support in the interior of P.
Hence, all equalities in (3.1) hold. Actually the first and third equalities in (3.1)
hold because ϕ is smooth, while the second equality follows from (3.2). Since
the integral in (1.7) vanishes according to the given hypotheses, the integrals
in (3.1) are all equal to zero, and so the Laplacian ∇2F vanishes in the sense of
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distributions in the interior of P. We can conclude that F is harmonic in U because
of Weyl’s lemma and the fact that the compact parallelogram P was chosen in an
arbitrary form inside U .
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THE STRONG MATRIX STIELTJES MOMENT PROBLEM

ABDON E. CHOQUE RIVERO AND SERGEY M. ZAGORODNYUK

ABSTRACT. In this paper we study the strong matrix Stieltjes moment prob-
lem. We obtain necessary and sufficient conditions for its solvability. An analytic
description of all solutions of the moment problem is derived. Necessary and
sufficient conditions for the determinateness of the moment problem are given.

1. Introduction

In this paper we analyze the following problem: find a non-decreasing matrix
function M(x) = (mk,l(x))N−1

k,l=0, on R+ = [0,+∞), M(0) = 0, which is left-continuous
on (0,+∞), and such that

(1.1)
∫
R+

xndM(x)= Sn, n ∈Z,

where {Sn}n∈Z is a prescribed sequence of Hermitian (N × N) complex matrices
(moments), N ∈ N. This problem is said to be a strong matrix Stieltjes moment
problem. The problem is said to be determinate if it has a unique solution and
indeterminate in the opposite case.

The scalar (N = 1) strong Stieltjes moment problem (in a slightly different set-
ting) was introduced in 1980 by Jones, Thron and Waadeland [17]. Necessary
and sufficient conditions for the existence of a solution with an infinite number
of points of increase and for the uniqueness of such a solution were established
in [17], Theorem 6.3. Also necessary and sufficient conditions for the existence of
a unique solution with a finite number of points of increase were obtained [17],
Theorem 5.2. The approach of Jones, Thron and Waadeland’s investigation was
made through the study of special continued fractions related to the moments.

In 1995, Njåstad described some classes of solutions of the scalar strong Stielt-
jes moment problem [35, 34]. He used properties of some associated Laurent
polynomials.

In 1996, Kats and Nudelman obtained necessary and sufficient conditions for
the existence of a solution of the scalar strong Stieltjes moment problem [19],
Theorem 1.1 (without additional requirements for the solution). The degenerate
case was studied in full: in this case the solution is unique, given explicitly and it
has a finite number of points of increase. In the non-degenerate case, conditions
for the determinacy were given and the unique solution was presented. In the
(non-degenerate) indeterminate case a Nevanlinna-type parameterization for all
solutions of the scalar strong Stieltjes moment problem was obtained [19], Theo-
rem 4.1. Canonical solutions and Weyl-type lunes were studied, as well. Kats and
Nudelman used the results of Krein on the semi-infinite string theory.

2010 Mathematics Subject Classification: 47A57, 30E05.
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Various other results on the scalar strong Stieltjes moment problem can be
found in papers [36, 7, 18, 37, 38] (see also references therein).

The moment problem (1.1) where the half-axis R+ is replaced by the whole
axis R is said to be the strong matrix Hamburger moment problem. The scalar
(N = 1) strong matrix Hamburger moment problem has been intensively studied
since 1980-th, see a survey [18], a recent paper [6] and references therein. For the
matrix case, see papers [40, 43] and papers cited there.

The aim of our present investigation is threefold. Firstly, we obtain necessary
and sufficient conditions for the solvability of the strong matrix Stieltjes moment
problem (1.1). Consider the following block matrices constructed by moments:

(1.2) Γn = (Si+ j)n
i, j=−n =



S−2n . . . S−n . . . S0
...

...
...

S−n . . . S0 . . . Sn
...

...
...

S0 . . . Sn . . . S2n

 ,

(1.3) Γ̃n = (Si+ j+1)n
i, j=−n =



S−2n+1 . . . S−n+1 . . . S1
...

...
...

S−n+1 . . . S1 . . . Sn+1
...

...
...

S1 . . . Sn+1 . . . S2n+1

 ,

where n = 0,1,2, . . .. We shall prove that conditions

(1.4) Γn ≥ 0, Γ̃n ≥ 0 n = 0,1,2, ...,

are necessary and sufficient for the solvability of the moment problem (1.1).
Secondly, we obtain an analytic description of all solutions of the moment prob-

lem (1.1) using an operator approach.
The operator approach to the moment problems probably takes its origin in

1940-1943, in papers of Neumark [32, 33] for the case of the Hamburger moment
problem. Neumark used an operator related to the corresponding Jacobi matrix.
First, he obtained a description in terms of spectral functions of the operator.
Then Neumark obtained the Nevanlinna formula using his results on the gener-
alized resolvents of a symmetric operator with the deficiency index (1,1). Then
this approach was developed by Krein and Krasnoselskiy [27], using the ideas of
Krein of 1946-1948 [21, 24]. Various modifications appeared afterwards. Matrix
or operator moment problems by the operator-theoretic approach were studied by
(in the alphabetical order) Adamyan, Ando, Aleksandrov, Berezansky, Dudkin, Er-
shov, Ilmushkin, Inin, Kheifets, Krasnoselskiy, Krein, Luks, Simonov, Tkachenko,
Turitsin (see, e.g., [1, 2, 5, 14, 6, 11, 13, 16, 20, 27, 25, 26, 30, 39, 40, 15]), among
others. We shall use an abstract operator approach close to the “pure operator”
approach of Szökefalvi-Nagy and Koranyi to the Nevanlinna-Pick interpolation
problem, see [41, 42], and to the original approach of Neumark [32, 33].

We are not going to survey matricial and algebraic methods applied to var-
ious (not strong) truncated or full matrix moment problems, since these meth-
ods are quite different from the above-mentioned operator-theoretic methods, and
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the problems under considerations by the methods are different. Instead of this,
we shall illustrate the basic strategy, used in the present paper, on the exam-
ple of the matrix trigonometric moment problem (see [44, 45] for more details).
The truncated matrix trigonometric moment problem consists of finding a non-
decreasing matrix-valued function M(t)= (mk,l)N−1

k,l=0, t ∈ [0,2π], M(0)= 0, which is
left-continuous in (0,2π], and such that∫ 2π

0
eintdM(t)= Sn, n = 0,1, ...,d,

where {Sn}d
n=0 is a prescribed sequence of (N × N) complex matrices (moments).

Here N ∈N and d ∈Z+ are fixed numbers. Set

Td = (Si− j)d
i, j=0 =


S0 S−1 S−2 . . . S−d
S1 S0 S−1 . . . S−d+1
S2 S1 S0 . . . S−d+2
...

...
...

. . .
...

Sd Sd−1 Sd−2 . . . S0

 ,

where Sk := S∗
−k, k = −d,−d + 1, ...,−1. Assume that Td ≥ 0 (this condition is

necessary and sufficient for the solvability of the moment problem, see, e.g. [5]).
The matrix Td may be viewed as a usual complex matrix: Td = (γn,m)(d+1)N−1

n,m=0 .

Then there exists a Hilbert space H and a sequence of elements {xn}(d+1)N−1
n=0 in H,

such that

(1.5) (xn, xm)H = γn,m, 0≤ n,m ≤ (d+1)N −1,

and span{xn}(d+1)N−1
n=0 = Lin{xn}(d+1)N−1

n=0 = H. Then we define a linear operator A
with D(A)=Lin{xn}dN−1

n=0 by equalities

Axn = xn+N , 0≤ n ≤ dN −1.

All solutions of the moment problem can be obtained from the following relation:

M(t)= (mk, j(t))N−1
k, j=0, t ∈ [0,2π], mk, j(t)= (Etxk, x j)H ,

where Et is a left-continuous spectral function of the isometric operator A. By the
important result of Chumakin on the generalized resolvents of isometric opera-
tors [9] it follows that all solutions are given by the following relations

M(t)= (mk, j(t))N−1
k, j=0, t ∈ [0,2π],

where mk, j are obtained from the following relation:

(1.6)
∫ 2π

0

1
1−ζeit dmk, j(t)= (

[
EH −ζ(A⊕Φζ)

]−1 xk, x j)H , ζ ∈D.

Here Φζ is an analytic in D operator-valued function which values are linear con-
tractions from HªD(A) into HªR(A), D= {z ∈C : |z| = 1}. The last step is to obtain
the Nevanlinna-type formula. One should apply the Gram-Schmidt orthogonal-
ization procedure to the vectors x0, x1, . . . , xdN+N−1. During this procedure the
numbers γ·,· are used, as well as relation (1.5). The elements of the obtained
orthonormal basis are explicitly expressed as linear combinations of vectors xn.
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Calculating the matrix of the operator on the right in (1.6) with respect to this
basis, we come to the following formula:

(1.7)
∫ 2π

0

1
1−ζeit dMT (t)= 1

hζ
Aζ− ζ

h2
ζ

BζFζ

(
Iδ+

1
hζ

CζFζ

)−1
Dζ, ζ ∈D,

where Aζ, Bζ, Cζ, Dζ, are matrix polynomials, explicitly expressed in terms of
the given moments, which values are matrices of sizes N ×N, N ×δ, δ×δ, δ×N,
respectively. The polynomial hζ is scalar, and it is also explicitly calculated by the
moments. Here Fζ is an analytic in D, (δ×δ) matrix-valued function which values
are such that F∗

ζ
Fζ ≤ Iδ, ∀ζ ∈D, Iδ = (δk,l)δk,l=1.

We shall use this strategy for the strong Stieltjes moment problem, except the
last step. In our case, when the moment problem is full, expressions in terms
of moments are not so clearly effective. In fact, even in the case of the classical
Hamburger moment problem, how to construct numerically the elements of the
Nevanlinna matrix? On the other hand, operator expressions are compact. We
shall also remark that the strategy was used in papers [43, 46] and we adapt
ideas from these papers. However, after a description of solutions of the moment
problem (1.1) in terms of spectral functions of the corresponding operator we shall
go in another direction. We present a description of generalized Π-resolvents of
a non-negative operator which does not use improper elements or relations as it
was done in the original work of Krein [22] and in the paper of Derkach and Mala-
mud [10]. We adapt some ideas from [8] of Chumakin who studied generalized
resolvents of isometric operators. We shall need some properties of generalized Π-
resolvents of non-negative operators and generalized sc-resolvents of Hermitian
contractions, established by Krein and Ovcharenko in [23, 29].

Finally, we obtain necessary and sufficient conditions for the strong matrix
Stieltjes moment problem to be determinate.

Notations

As usual, we denote by R,C,N,Z,Z+, the sets of real numbers, complex num-
bers, positive integers, integers and non-negative integers, respectively; R+ =
[0,+∞). The space of n-dimensional complex vectors a = (a0,a1, . . . ,an−1), we de-
note by Cn, n ∈N. If a ∈ Cn, then a∗ means the complex conjugate vector. By PL
we denote the space of all complex Laurent polynomials, i.e. functions

∑b
k=aαkxk,

a,b ∈Z: a ≤ b, αk ∈C.
Let M(x) be a left-continuous non-decreasing matrix function M(x)= (mk,l(x)

)N−1
k,l=0 on R+, M(0) = 0, and τM(x) := ∑N−1

k=0 mk,k(x); Ψ(x) = (dmk,l /dτM)N−1
k,l=0. By

L2(M) we denote a set (of equivalence classes) of vector-valued functions f :R+ →
CN , f = ( f0, f1, . . . , fN−1), such that (see, e.g., [31])

‖ f ‖2
L2(M) :=

∫
R+

f (x)Ψ(x) f ∗(x)dτM(x)<∞.

The space L2(M) equipped with the inner product

( f , g)L2(M) :=
∫
R+

f (x)Ψ(x)g∗(x)dτM(x), f , g ∈ L2(M)

is a Hilbert space. We denote~ek = (δ0,k,δ1,k, ...,δN−1,k), 0≤ k ≤ N−1, where δ j,k is
the Kronecker delta.
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If H is a Hilbert space then (·, ·)H and ‖ · ‖H mean the scalar product and the
norm in H, respectively. Indices may be omitted in obvious cases. For a linear
operator A in H, we denote by D(A) its domain, by R(A) its range, by Ker A its
kernel, and A∗ means the adjoint operator if it exists. If A is invertible then
A−1 means its inverse. A means the closure of the operator, if the operator is
closable. If A is self-adjoint, by Rz(A) we denote the resolvent of A, z ∈C\R. If A
is bounded then ‖A‖ denotes its norm. For an arbitrary set of elements {xn}n∈Z in
H, we denote by Lin{xn}n∈Z and span{xn}n∈Z the linear span and the closed linear
span (in the norm of H), respectively. For a set M ⊆ H we denote by M the closure
of M in the norm of H. By EH we denote the identity operator in H, i.e. EH x = x,
x ∈ H. If H1 is a subspace of H, then PH1 = PH

H1
is an operator of the orthogonal

projection on H1 in H. By [H] we denote the set of all bounded linear operators A
in H, D(A) = H. If A and B are some linear operators in a Hilbert space H then
A ⊇ B (A ⊆ B) means that A is an extension of B (respectively B is an extension of
A).

2. The solvability of the strong matrix Stieltjes moment problem

In this section we are going to establish the following theorem.

THEOREM (2.1). Let the strong matrix Stieltjes moment problem (1.1) with a
set of moments {Sn}n∈Z be given. The moment problem has a solution if and only
if the conditions in (1.4) are satisfied.

Proof. Necessity. Let the strong matrix Stieltjes moment problem (1.1) have a
solution M(x). Choose an arbitrary vector function f (x) = ∑n

k=−n
∑N−1

j=0 f j,kxk~e j,
f j,k ∈C. This function belongs to L2(M) and

0≤
∫
R+

f (x)xsdM(x) f ∗(x)=
n∑

k,r=−n

N−1∑
j,l=0

f j,k f l,r

∫
R+

xk+r+s~e jdM(x)~e∗l

=
n∑

k,r=−n

N−1∑
j,l=0

f j,k~e jSk+r+s f l,r~e∗l =
n∑

k,r=−n
( f0,k, f1,k, ..., fN−1,k)Sk+r+s

∗ ( f0,r, f1,r, ..., fN−1,r)∗ =
{

vΓnv∗, s = 0
vΓ̃nv∗, s = 1 ,

where v = ( f0,−n, f1,−n, . . . , fN−1,−n, f0,−n+1, f1,−n+1, . . . , fN−1,−n+1, . . . , f0,n, f1,n, . . . ,
fN−1,n). Since we can choose the complex numbers f j,k arbitrarily, it follows (1.4).

Sufficiency. Let the strong matrix Stieltjes moment problem (1.1) be given and
(1.4) be satisfied. Let S j = (S j;k,l)N−1

k,l=0, S j;k,l ∈ C, j ∈ Z. Consider the following
infinite block matrix:
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(2.2) Γ= (Si+ j)∞i, j=−∞ =



...
...

...
. . . S−2n . . . S−n . . . S0 . . .

. . .
...

...
... . . .

. . . S−n . . . S0 . . . Sn . . .

. . .
...

...
... . . .

. . . S0 . . . Sn . . . S2n . . .
...

...
...


,

where the element in the box corresponds to the indices i = j = 0.
We assume that the left upper entry of the element in the box stands in row 0,

column 0. Let us numerate rows (columns) in the increasing order to the bottom
(respectively to the right). Then we numerate rows (columns) in the decreasing
order to the top (respectively to the left). Thus, the matrix Γ may be viewed as a
numerical matrix: Γ= (γk,l)∞k,l=−∞, γk,l ∈C. Observe that the following equalities
hold

(2.3) γrN+ j,tN+n = Sr+t; j,n, r, t ∈Z, 0≤ j,n ≤ N −1.

From conditions (1.4) it easily follows that

(2.4) (γk,l)r
k,l=−r ≥ 0, (γk+N,l)r

k,l=−r ≥ 0, ∀r ∈Z+.

The first inequality in the latter relation implies that there exist a Hilbert space
H and a set of elements {xn}n∈Z in H such that

(2.5) (xn, xm)H = γn,m, n,m ∈Z,

and span{xn}n∈Z = H, see Lemma in [42], p. 177. The latter fact is well known
and goes back to the paper of Gelfand, Naimark [12].

By (2.3) we get

(2.6) γa+N,b = γa,b+N , a,b ∈Z.

Set L = Lin{xn}n∈Z. Choose an arbitrary element x ∈ L. Let x = ∑∞
k=−∞αkxk,

x =∑∞
k=−∞βkxk, where αk,βk ∈C. Here only a finite number of coefficients αk, βk

are non-zero. In what follows, this will be assumed in analogous situations with
elements of the linear span. By (2.5), (2.6) we may write( ∞∑

k=−∞
αkxk+N , xl

)
=

∞∑
k=−∞

αkγk+N,l =
∞∑

k=−∞
αkγk,l+N =

=
∞∑

k=−∞
αk(xk, xl+N )=

( ∞∑
k=−∞

αkxk, xl+N

)
= (x, xl+N ), l ∈Z.

Similarly we conclude that
(∑∞

k=−∞βkxk+N , xl
) = (x, xl+N ), l ∈ Z. Since L = H, we

get
∑∞

k=−∞αkxk+N =∑∞
k=−∞βkxk+N .

Set

(2.7) A0x =
∞∑

k=−∞
αkxk+N , x ∈ L, x =

∞∑
k=−∞

αkxk, αk ∈C.
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The above considerations ensure us that the operator A0 is defined correctly.
Choose arbitrary elements x, y ∈ L, x = ∑∞

k=−∞αkxk, y = ∑∞
n=−∞βnxn, αk,βn ∈ C,

and write

(A0x, y)H =
( ∞∑

k=−∞
αkxk+N ,

∞∑
n=−∞

βnxn

)
H

=
∞∑

k,n=−∞
αkβn(xk+N , xn)H =

=
∞∑

k,n=−∞
αkβn(xk, xn+N )H =

( ∞∑
k=−∞

αkxk,
∞∑

n=−∞
βnxn+N

)
H

= (x, A0 y)H .

Moreover, we have

(2.8) (A0x, x)H =
∞∑

k,n=−∞
αkαn(xk+N , xn)H =

∞∑
k,n=−∞

αkαnγk+N,n ≥ 0.

Thus, the operator A0 is a non-negative symmetric operator in H. Set A = A0. The
operator A always has a non-negative self-adjoint extension Ã in a Hilbert space
H̃ ⊇ H [23], Theorem 7, p. 450. We may assume that Ker Ã = {0}. In the opposite
case, since Ker Ã ⊥ R(Ã), R(Ã) ⊇ L, we conclude that Ker Ã ⊥ H. Therefore the
operator Ã, restricted to H̃ ªKer Ã, also will be a self-adjoint extension of the
operator A, with a null kernel.

Let {Ẽλ}λ∈R be the left-continuous orthogonal resolution of unity of the operator
Ã. By the induction argument it is easy to check that

xrN+ j = Arx j, r ∈Z, 0≤ j ≤ N −1.

By (2.3), (2.5) we may write

Sr; j,n = γrN+ j,n = (xrN+ j, xn)H = (Arx j, xn)H = (Ãrx j, xn)H̃

=
∫
R+

λrd(Ẽλx j, xn)H̃ =
∫
R+

λrd
(
P H̃

H Ẽλx j, xn

)
H

, 0≤ n ≤ N −1.

Therefore we get

(2.9) Sr =
∫
R+

λrdM̃(λ), r ∈Z,

where M̃(λ) :=
((

P H̃
H Ẽλx j, xn

)
H

)N−1

j,n=0
. Therefore the matrix function M̃(λ) is a so-

lution of the moment problem (1.1) (From the properties of the orthogonal res-
olution of unity it easily follows that M̃(λ) is left-continuous on (0,+∞), non-
decreasing and M̃(0)= 0).

3. An analytic description of solutions of the strong matrix Stieltjes
moment problem

Let A be an arbitrary closed Hermitian operator in a Hilbert space H, D(A) ⊆
H. Let Â be an arbitrary self-adjoint extension of A in a Hilbert space Ĥ ⊇ H.
Denote by {Êλ}λ∈R its orthogonal resolution of unity. Recall that an operator-
valued function Rz = P Ĥ

H Rz(Â) is said to be a generalized resolvent of A, z ∈ C\R.
A function Eλ = P Ĥ

H Êλ, λ ∈ R, is said to be a spectral function of A. There exists
a bijective correspondence between generalized resolvents and left-continuous (or
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normalized in some other way) spectral functions established by the following
relation [3]:

(3.1) (Rz f , g)H =
∫
R

1
λ− z

d(Eλ f , g)H , f , g ∈ H, z ∈C\R.

If the operator A is densely defined symmetric and non-negative (A ≥ 0), and
the extension Â is self-adjoint and non-negative, then the corresponding gener-
alized resolvent Rz and the spectral function Eλ are said to be a generalized Π-
resolvent and a Π-spectral function of A. Relation (3.1) establishes a bijective
correspondence between generalized Π-resolvents and left-continuous Π-spectral
functions.

If the operator A is a Hermitian contraction (‖A‖ ≤ 1), and the extension Â is
a self-adjoint contraction, then the corresponding generalized resolvent Rz and
the spectral function Eλ are said to be a generalized sc-resolvent and a sc-spectral
function of A. Relation (3.1) establishes a bijective correspondence between gen-
eralized sc-resolvents and left-continuous sc-spectral functions, as well.

If a generalized Π-resolvent (a generalized sc-resolvent) is generated by an
extension inside H, i.e. Ĥ = H, then it is said to be a canonical Π-resolvent (re-
spectively a canonical sc-resolvent).

Firstly, we shall obtain a description of solutions of the strong matrix Stieltjes
moment problem by virtue of Π-spectral functions.

THEOREM (3.2). Let the strong matrix Stieltjes moment problem (1.1) be given
and (1.4) be satisfied. Suppose that the operator A = A0 in a Hilbert space H
is constructed for the moment problem by (2.7) and the preceding procedure. All
solutions of the moment problem have the following form

(3.3) M(λ)= (mk, j(λ))N−1
k, j=0, mk, j(λ)= (Eλxk, x j)H ,

where Eλ is a left-continuous Π-spectral function of the operator A. On the other
hand, each left-continuous Π-spectral function of the operator A generates by (3.3)
a solution of the moment problem. Moreover, the correspondence between all left-
continuous Π-spectral functions of the operator A and all solutions of the moment
problem is bijective.

Proof. Let Eλ be an arbitrary Π-spectral function of the operator A. It corre-
sponds to a self-adjoint operator Ã ⊇ A in a Hilbert space H̃ ⊇ H. Then we repeat
considerations after (2.8) to obtain that M(λ), given by (3.3), is a solution of the
moment problem (1.1).

Let M̂(x) = (m̂k,l(x))N−1
k,l=0 be an arbitrary solution of the moment problem (1.1).

Consider the space L2(M̂). A set (of classes of equivalence) of functions f ∈ L2(M̂)
such that (the corresponding class includes) f = ( f0, f1, . . . , fN−1), f ∈PL, we denote
by P2

L(M̂). Set L2
L(M̂) :=P2

L(M̂).
For an arbitrary vector Laurent polynomial f = ( f0, f1, . . . , fN−1), f j ∈ PL, there

exists a unique representation of the following form:

(3.4) f (x)=
N−1∑
k=0

∞∑
j=−∞

αk, j x j~ek, αk, j ∈C,
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where all except for a finite number of coefficients αk, j are zero. Choose another
vector Laurent polynomial g with a representation

(3.5) g(x)=
N−1∑
l=0

∞∑
r=−∞

βl,rxr~e l , βl,r ∈C.

We may write

( f , g)L2(M̂) =
N−1∑
k,l=0

∞∑
j,r=−∞

αk, jβl,r

∫
R+

x j+r~ekdM̂(x)~e∗l

(3.6) =
N−1∑
k,l=0

∞∑
j,r=−∞

αk, jβl,r

∫
R+

x j+rdm̂k,l(x)=
N−1∑
k,l=0

∞∑
j,r=−∞

αk, jβl,rS j+r;k,l .

On the other hand, we have( ∞∑
j=−∞

N−1∑
k=0

αk, j x jN+k,
∞∑

r=−∞

N−1∑
l=0

βl,rxrN+l

)
H

=
N−1∑
k,l=0

∞∑
j,r=−∞

αk, jβl,r

(3.7) ∗ (x jN+k, xrN+l)H =
N−1∑
k,l=0

∞∑
j,r=−∞

αk, jβl,rγ jN+k,rN+l

=
N−1∑
k,l=0

∞∑
j,r=−∞

αk, jβl,rS j+r;k,l .

By (3.6), (3.7) we get

(3.8) ( f , g)L2(M̂) =
( ∞∑

j=−∞

N−1∑
k=0

αk, j x jN+k,
∞∑

r=−∞

N−1∑
l=0

βl,rxrN+l

)
H

.

Set

(3.9) V f =
∞∑

j=−∞

N−1∑
k=0

αk, j x jN+k,

for a vector Laurent polynomial f (x) = ∑N−1
k=0

∑∞
j=−∞αk, j x j~ek. If f , g are vector

Laurent polynomials with representations (3.4), (3.5), such that ‖ f − g‖L2(M̂) = 0,
then by (3.8) we may write

‖V f −V g‖2
H = (V ( f − g),V ( f − g))H = ( f − g, f − g)L2(M̂) = ‖ f − g‖2

L2(M̂)
= 0.

Thus, V is correctly defined as an operator from P2(M̂) to H. Relation (3.8) shows
that V is an isometric transformation from P2

L(M̂) on L. We extend V by continu-
ity to an isometric transformation from L2

L(M̂) on H. Observe that

(3.10) V x j~ek = x jN+k, j ∈Z; 0≤ k ≤ N −1.

Let L2
1(M̂) := L2(M̂)ªL2

L(M̂), and U :=V ⊕EL2
1(M̂). The operator U is an isometric

transformation from L2(M̂) on H⊕L2
1(M̂)=: Ĥ. Let Q be the operator of multipli-

cation by an independent variable in L2(M̂). Set

Â :=UQU−1.
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The operator Â is a self-adjoint operator in Ĥ. Let {Êλ}λ∈R be its left-continuous
orthogonal resolution of unity. Notice that

UQU−1x jN+k =VQV−1x jN+k =VQx j~ek =V x j+1~ek = x( j+1)N+k =
= x jN+k+N = Ax jN+k, j ∈Z; 0≤ k ≤ N −1.

By linearity we get: UQU−1x = Ax, x ∈ L, and therefore Â ⊇ A. Choose an arbi-
trary z ∈ C\R. Using the properties of integrals with respect to the resolution of
unity we may write∫

R+

1
λ− z

d(Êλxk, x j)Ĥ =
(∫
R+

1
λ− z

dÊλxk, x j

)
Ĥ

=
(
U−1

∫
R+

1
λ− z

dÊλxk,U−1x j

)
L2(M̂)

=
(∫
R+

1
λ− z

dU−1ÊλU~ek,~e j

)
L2(M̂)

,

Using the definition of the scalar product in L2(M̂) we write(∫
R+

1
λ− z

dU−1ÊλU~ek,~e j

)
L2(M̂)

=
(∫
R+

1
λ− z

dEλ~ek,~e j

)
L2(M̂)

= (
(Q− z)−1~ek,~e j

)
L2(M̂) =

∫
R+

1
λ− z

~ekdM̂(λ)~e j =
∫
R+

1
λ− z

dm̂k, j(λ),

where Eλ is a left-continuous orthogonal resolution of unity of the operator Q (see
e.g. [4]). By the Stieltjes-Perron inversion formula we conclude that

m̂k, j(λ)= (P Ĥ
H Êλxk, x j)H , λ ∈R.

Thus, M̂ is generated by a Π-spectral function of A.
Let us check that an arbitrary element u ∈ L can be represented in the follow-

ing form

(3.11) u = uz +u0, uz ∈ Hz, u0 ∈ LN ,

where LN := Lin{xn}N−1
n=0 , Hz := (A − zEH)D(A). Let u = ∑∞

k=−∞ ckxk, ck ∈ C, and
choose a number z ∈ C\R. Suppose that ck = 0, if k ≤ r or k ≥ R, where r ≤ −2;
R ≥ N +1. Set dk := 0, if k ≤ r or k ≥ R−N. Then we set

dk := 1
z

(dk−N − ck), k = r+1, ...,−1;

dk−N := zdk + ck, k = R−1,R−2, ..., N.

Set v :=∑∞
k=−∞ dkxk ∈ L. Then we directly calculate that

(A− zEH)v−u =
N−1∑
k=0

(dk−N − zdk − ck)xk,

and relation (3.11) holds. From the latter equality it easily follows that the defi-
ciency index of A is equal to (n,n), 0≤ n ≤ N.

Let us check that different left-continuous Π-spectral functions of the operator
A generate different solutions of the moment problem (1.1). Suppose that two
different left-continuous Π-spectral functions generate the same solution of the
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moment problem. This means that there exist two self-adjoint operators A j ⊇ A,
in Hilbert spaces H j ⊇ H, such that PH1

H E1,λ 6= PH2
H E2,λ, and

(PH1
H E1,λxk, x j)H = (PH2

H E2,λxk, x j)H , 0≤ k, j ≤ N −1, λ ∈R,

where {En,λ}λ∈R are orthogonal left-continuous resolutions of unity of operators
An, n = 1,2. By the linearity we get

(3.12) (PH1
H E1,λx, y)H = (PH2

H E2,λx, y)H , x, y ∈ LN , λ ∈R.

Set Rn,λ := PHn
H Rλ(An), n = 1,2. By (3.12), (3.1) we get

(3.13) (R1,λx, y)H = (R2,λx, y)H , x, y ∈ LN , λ ∈C\R.

Since

Rz(A j)(A− zEH)x = (A j − zEH j )
−1(A j − zEH j )x = x, x ∈ L = D(A0),

then Rz(A1)u = Rz(A2)u ∈ H, u ∈ Hz;

(3.14) R1,zu =R2,zu, u ∈ Hz, z ∈C\R.

We may write

(Rn,zx,u)H = (Rz(An)x,u)Hn = (x,Rz(An)u)Hn = (x,Rn,zu)H ,

where x ∈ LN , u ∈ Hz, n = 1,2, and therefore

(3.15) (R1,zx,u)H = (R2,zx,u)H , x ∈ LN , u ∈ Hz.

By (3.11) an arbitrary element y ∈ L can be represented in the following form
y= yz + y′, yz ∈ Hz, y′ ∈ LN . Using (3.13) and (3.15) we obtain

(R1,zx, y)H = (R1,zx, yz + y′)H = (R2,zx, yz + y′)H = (R2,zx, y)H ,

where x ∈ LN , y ∈ L. Since L = H, we obtain

(3.16) R1,zx =R2,zx, x ∈ LN , z ∈C\R.

For arbitrary x ∈ L, x = xz+x′, xz ∈ Hz, x′ ∈ LN , using relations (3.14),(3.16) we get

R1,zx =R1,z(xz + x′)=R2,z(xz + x′)=R2,zx, x ∈ L, z ∈C\R,

and therefore R1,z = R2,z, z ∈ C\R. By (3.1) this means that the corresponding
Π-spectral functions coincide. The obtained contradiction completes the proof.

We shall use some known important facts about sc-resolvents, see [29]. Let
B be an arbitrary Hermitian contraction in a Hilbert space H. Set D = D(B),
R= HªD. A set of all self-adjoint contractive extensions of B inside H, we denote
by BH(B). A set of all self-adjoint contractive extensions of B in a Hilbert space
H̃ ⊇ H, we denote by BH̃(B). By Krein’s theorem [23], Theorem 2, p. 440, there
always exists a self-adjoint extension B̂ of the operator B in H with the norm
‖B‖. Therefore the set BH(B) is non-empty. There are the "minimal" element Bµ

and the "maximal" element BM in this set, such that BH(B) coincides with the
operator segment

(3.17) {B̃ : Bµ ≤ B̃ ≤ BM}.

In the case Bµ = BM the set BH(B) consists of a unique element. This case is said
to be determinate. The case Bµ 6= BM is called indeterminate. The case Bµx 6= BM x,
x ∈R\{0}, is said to be completely indeterminate. The indeterminate case can be
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always reduced to the completely indeterminate. If R0 = {x ∈R : Bµx = BM x}, we
may set

(3.18) Bex = Bx, x ∈D; Bex = Bµx, x ∈R0.

The sets of generalized sc-resolvents for B and for Be coincide ([29], p. 1039).
Elements of BH(B) are canonical (i.e. inside H) extensions of B and their re-

solvents are said to be canonical sc-resolvents of B. On the other hand, elements
of BH̃(B) for all possible H̃ ⊇ H generate generalized sc-resolvents of B (here the
space H̃ is not fixed). The set of all generalized sc-resolvents we denote by Rc(B).
Set

(3.19) C = BM −Bµ,

(3.20) Qµ(z)=
(
C

1
2 Rµ

z C
1
2 +EH

)∣∣∣
R

, z ∈C\[−1,1],

where Rµ
z = (Bµ− zEH)−1.

An operator-valued function k(z) with values in [R] belongs to the class RR[−1,
1] if

1) k(z) is analytic in z ∈C\[−1,1] and
Imk(z)

Im z
≤ 0, z ∈C : Im z 6= 0;

2) For z ∈R\[−1,1], k(z) is a self-adjoint non-negative contraction.
Notice that functions from the class RR[−1,1] admit a special integral represen-
tation, see [29].

THEOREM (3.21). ([29], p. 1053). Let B be a Hermitian contraction in a Hilbert
space H with D(B)=D; R= HªD. Suppose that for B it takes place the completely
indeterminate case and that the corresponding operator C, as an operator in R, has
an inverse in [R]. Then the following equality:

(3.22) R̃c
z = Rµ

z −Rµ
z C

1
2 k(z)

(
ER+ (Qµ(z)−ER)k(z)

)−1 C
1
2 Rµ

z ,

where k(z) ∈ RR[−1,1], R̃c
z ∈Rc(B), establishes a bijective correspondence between

the set RR[−1,1] and the set Rc(B).
Moreover, the canonical resolvents correspond in (3.22) to the constant functions

k(z)≡ K , K ∈ [0,ER].

Let A be an arbitrary non-negative symmetric operator in a Hilbert space H,
D(A)= H. We are going to obtain a formula for the generalized Π-resolvents of A,
by virtue of Theorem (3.21). Set

(3.23) T = (EH − A)(EH + A)−1 =−EH +2(EH + A)−1, D(T)= (A+EH)D(A).

Then

(3.24) A = (EH −T)(EH +T)−1 =−EH +2(EH +T)−1, D(A)= (T +EH)D(T).

The latter transformations were introduced and intensively studied by Krein [23].
The operator T is a Hermitian contraction in H. In fact, for an arbitrary h =
(A+EH) f , f ∈ D(A) we may write

‖Th‖2
H = ‖(−EH +2(EH + A)−1)(A+EH) f ‖2

H = ‖− A f + f ‖2
H

= ‖A f ‖2
H +‖ f ‖2

H −2(A f , f )H ≤ ‖A f ‖2
H +‖ f ‖2

H +2(A f , f )H = ‖h‖2
H .



THE STRONG MATRIX STIELTJES MOMENT PROBLEM 163

Let Ã ⊇ A be a non-negative self-adjoint extension of A in a Hilbert space H̃ ⊇ H.
Then the operator

(3.25) T̃ = (EH̃ − Ã)(EH̃ + Ã)−1 =−EH̃ +2(EH̃ + Ã)−1, D(T̃)= (Ã+EH̃)D(Ã),

is a self-adjoint contraction T̃ ⊇ T in H̃, and

(3.26) Ã = (EH̃ − T̃)(EH̃ + T̃)−1 =−EH̃ +2(EH̃ + T̃)−1, D(Ã)= (T̃ +EH̃)D(T̃).

Consider the following fractional linear transformation:

(3.27) z = 1−λ

1+λ
=−1+2

1
1+λ

; λ= 1− z
1+ z

=−1+2
1

1+ z
.

Choose an arbitrary z ∈C\R and set λ := 1−z
1+z . Observe that λ ∈C\R. Then

Rz(T̃)= (T̃ − zEH̃)−1 =
(
−EH̃ +2(EH̃ + Ã)−1 − 1−λ

1+λ
EH̃

)−1

=
(

(−2)
1+λ

(EH̃ + Ã)(EH̃ + Ã)−1 +2(EH̃ + Ã)−1
)−1

=
((

2λ
1+λ

EH̃ − 2
1+λ

Ã
)
(EH̃ + Ã)−1

)−1

=−λ+1
2

((
Ã−λEH̃

)
(EH̃ + Ã)−1)−1 =−λ+1

2
(EH̃ + Ã)(Ã−λEH̃)−1

=− (λ+1)2

2
(Ã−λEH̃)−1 − λ+1

2
EH̃ =− (λ+1)2

2
Rλ(Ã)− λ+1

2
EH̃ .

Therefore

(3.28) Rλ(Ã)=− 2
(λ+1)2

R 1−λ
1+λ

(T̃)− 1
λ+1

EH̃ , ∀λ ∈C\R.

Applying the orthogonal projection on H, we get

(3.29) Rλ(A)=− 2
(λ+1)2

R 1−λ
1+λ

(T)− 1
λ+1

EH , ∀λ ∈C\R.

Here Rλ(A) is the generalized Π-resolvent corresponding to Ã, and Rz(T) is the
generalized sc-resolvent corresponding to T̃. Thus, an arbitrary generalized Π-
resolvent of A can be constructed by a generalized sc-resolvent of T by rela-
tion (3.29).

On the other hand, choose an arbitrary sc-resolvent R′
z(T) of T. It corresponds

to a self-adjoint contractive extension T̂ ⊇ T in a Hilbert space Ĥ ⊇ H. Observe
that

Ker(EĤ + T̂)⊥ R(EĤ + T̂)⊇ R(EH +T)= D(A),

and therefore Ker(EĤ + T̂) ⊥ H. We may assume that H1 := Ker(EĤ + T̂) = {0},
since in the opposite case one may consider the operator T̂ restricted to ĤªH1 ⊇
H. Then we set

(3.30) Â = (EĤ − T̂)(EĤ + T̂)−1 =−EĤ +2(EĤ + T̂)−1, D(Â)= (T̂ +EĤ)D(T̂).

The operator Â is densely defined since Â ⊇ A, and it is self-adjoint. For an arbi-
trary u ∈ D(T̂) we may write

(Â(T̂ +EĤ)u, (T̂ +EĤ)u)Ĥ = (−T̂u+u, T̂u+u)Ĥ = ‖u‖2
Ĥ
−‖T̂u‖2

Ĥ
≥ 0.
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Thus, the operator Â is non-negative. Observe that

(3.31) T̂ = (EĤ − Â)(EĤ + Â)−1 =−EĤ +2(EĤ + Â)−1.

Repeating the considerations after relation (3.27), we obtain that

(3.32) R′
λ(A)=− 2

(λ+1)2
R′

1−λ
1+λ

(T)− 1
λ+1

EH , ∀λ ∈C\R,

gives a generalized Π-resolvent of A (corresponding to Â).
Consequently, the relation (3.29) establishes a bijective correspondence be-

tween the set of all sc-resolvents of T and the set of all Π-resolvents of A. It
is not hard to see that the canonical sc-resolvents are related to the canonical
Π-resolvents.

For the operator A it takes place a completely indeterminate case, if for the
corresponding operator T it takes place the completely indeterminate case [28].

It is known that all self-adjoint contractive extensions of T are extensions of
the extended operator Te defined by (3.18), [29], Theorem 1.4. Set

(3.33) Ae = (EH −Te)(EH +Te)−1 =−EH +2(EH +Te)−1, D(Ae)= (Te+EH)D(Te).

It is easily seen that the above operator Ã is an extension of Ae. Therefore the
sets of generalized Π-resolvents for A and for Ae coincide.

THEOREM (3.34). Let A be a non-negative symmetric operator in a Hilbert
space H, D(A)= H. Suppose that for A it takes place the completely indeterminate
case. Let T be given by (3.23); D = D(T), R= HªD. Suppose that the correspond-
ing operator C = TM −Tµ, as an operator in R, has an inverse in [R]. Then the
following equality:

Rλ(A)=− 2
(λ+1)2

Rµ
1−λ
1+λ

− 1
λ+1

EH

(3.35) + 2
(λ+1)2

Rµ
1−λ
1+λ

C
1
2 k(λ)

(
ER+ (Qµ(λ)−ER)k(λ)

)−1 C
1
2 Rµ

1−λ
1+λ

,

where Qµ(λ)=Qµ

( 1−λ
1+λ

)
, k(λ)= k

( 1−λ
1+λ

)
; k(·) ∈ RR[−1,1], establishes a bijective cor-

respondence between the set RR[−1,1] and the set of all generalized Π-resolvents
of A. Here Qµ is defined by (3.20) for T, Rµ

z = (Tµ− zEH)−1, and Rλ(A) is a gener-
alized Π-resolvent of A.

Moreover, the canonical resolvents correspond in (3.35) to the constant functions
k(z)≡ K , K ∈ [0,ER].

Proof. It follows directly from the preceding considerations, formula (3.29) and by
applying Theorem (3.21).

Let the strong matrix Stieltjes moment problem be given and (1.4) be satis-
fied. Consider an arbitrary Hilbert space H and a sequence of elements {xn}n∈Z
in H, such that relation (2.5) holds. Let A = A0, where the operator A0 is defined
by (2.7). Denote LN =Lin{xk}N−1

k=0 . Define a linear transformation G from CN onto
LN by the following relation:

(3.36) G~uk = xk, k = 0,1, ..., N −1,

where ~uk = (δ0,k,δ1,k, ...,δN−1,k).
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THEOREM (3.37). Let the strong matrix Stieltjes moment problem (1.1) be given
and (1.4) be satisfied. Let {xn}n∈Z be a sequence of elements of a Hilbert space H
such that relation (2.5) holds. Let A = A0, where the operator A0 is defined by
relation (2.7). Let T =−EH +2(EH + A)−1. The following statements are true:

1) If Tµ = TM , then the moment problem (1.1) has a unique solution. This
solution is given by

(3.38) M(t)= (m j,n(t))N−1
j,n=0, m j,n(t)= (Eµ

t x j, xn)H , 0≤ j,n ≤ N −1,

where {Eµ
t } is the left-continuous orthogonal resolution of unity of the opera-

tor Aµ =−EH +2(EH +Tµ)−1.
2) If Tµ 6= TM , define the extended operator Te by (3.18); Re = H ª D(Te),

C = TM − Tµ, and Rµ
z = (Tµ − zEH)−1, Qµ,e(z) =

(
C

1
2 Rµ

z C
1
2 +EH

)∣∣∣
Re

, z ∈
C\[−1,1]. An arbitrary solution M(·) of the moment problem can be found by
the Stieltjes-Perron inversion formula from the following relation∫

R+

1
t− z

dMT (t)

(3.39) =A(z)−C(z)k(z)(ERe +D(z)k(z))−1B(z),

where k(λ)= k
( 1−λ

1+λ
)
, k(z) ∈ RRe [−1,1], and on the right-hand side one means

the matrix of the corresponding operator in CN . Here A(z),B(z),C(z),D(z) are
analytic operator-valued functions given by

(3.40) A(z)=− 2
(λ+1)2

G∗Rµ
1−λ
1+λ

G− 1
λ+1

G∗G : CN →CN ,

(3.41) B(z)= C
1
2 Rµ

1−λ
1+λ

G : CN →Re,

(3.42) C(z)= 2
(λ+1)2

G∗Rµ
1−λ
1+λ

C
1
2 : Re →CN ,

(3.43) D(z)=Qµ,e

(
1−λ

1+λ

)
−ERe : Re →Re.

Moreover, the correspondence between all solutions of the moment problem
and k(z) ∈ RRe [−1,1] is bijective.

Proof. Consider the case 1). In this case all self-adjoint contractions T̃ ⊇ T in a
Hilbert space H̃ ⊇ H coincide on H with Tµ, see [29], p. 1039. Thus, the corre-
sponding sc-spectral functions are spectral functions of the self-adjoint operator
Tµ, as well. However, a self-adjoint operator has a unique (normalized) spectral
function. Thus, a set of sc-spectral functions of T consists of a unique element.
Therefore the set of Π-resolvents of A consists of a unique element, as well. This
element is the spectral function of Aµ.

Consider the case 2). By Theorem (3.2) and relation (3.1) it follows that an
arbitrary solution M(t) = (m j,n(t))N−1

j,n=0 of the moment problem (1.1) can be found
from the following relation:∫

R+

1
t− z

dm j,n(t)= (Rzx j, xn)H , 0≤ j,n ≤ N −1; z ∈C\R,
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where Rz is a generalized Π-resolvent of the operator A. Moreover, the correspon-
dence between the set of all generalized Π-resolvents of A (which is equal to the
set of all generalized Π-resolvents of Ae) and the set of all solutions of the moment
problem is bijective. Notice that Tµ = Tµ

e and TM = TM
e . The operator (TM −Tµ),

as an operator in Re, has an inverse. Since Re is finite-dimensional, the inverse
is bounded. By Theorem (3.34) (applied to the operator Ae) we may rewrite the
latter relation in the following form:∫

R+

1
t− z

dm j,n(t)=
({

− 2
(λ+1)2

Rµ
1−λ
1+λ

− 1
λ+1

EH

+ 2
(λ+1)2

Rµ
1−λ
1+λ

C
1
2 k(λ)

(
ERe + (Qµ,e(λ)−ERe )k(λ)

)−1 C
1
2 Rµ

1−λ
1+λ

}
x j, xn

)
H

,

where k(λ)= k
( 1−λ

1+λ
)
, k(z) ∈ RRe [−1,1], Qµ,e(λ)=Qµ,e

( 1−λ
1+λ

)
. Then∫

R+

1
t− z

dm j,n(t)=
({

− 2
(λ+1)2

G∗Rµ
1−λ
1+λ

G− 1
λ+1

G∗G+ 2
(λ+1)2

G∗

∗Rµ
1−λ
1+λ

C
1
2 k(λ)

(
ERe + (Qµ,e(λ)−ERe )k(λ)

)−1 C
1
2 Rµ

1−λ
1+λ

G
}

u j,un

)
CN

.

Introducing functions A(z),B(z),C(z),D(z) by formulas (3.40)-(3.43) one easily ob-
tains relation (3.39).

THEOREM (3.44). Let the strong matrix Stieltjes moment problem (1.1) be given
and (1.4) be satisfied. Let {xn}n∈Z be a sequence of elements of a Hilbert space H
such that relation (2.5) holds. Let A = A0, where the operator A0 is defined by
relation (2.7). The moment problem is determinate if and only if Tµ = TM , where
Tµ,TM are the extremal extensions of the operator T =−EH +2(EH + A)−1.

Proof. The sufficiency follows from Statement 1 of Theorem (3.37). The necessity
follows from Statement 2 of Theorem (3.37), if we take into account that the class
RRe ([−1,1]), where dimRe > 0, has at least two different elements. In fact, from
the definition of the class RRe ([−1,1]) it follows that k1(z) ≡ 0, and k1(z) ≡ ERe ,
belong to RRe ([−1,1]).

Example (3.45). Consider the moment problem (1.1) with N = 2 and

Sn =
(

1 3p
10

3p
10

1

)
, n ∈Z.

In this case we have
Γ= (Si+ j)∞i, j=−∞ = (γn,m)∞n,m=−∞,

where
γ2k,2l = γ2k+1,2l+1 = 1, γ2k,2l+1 = γ2k+1,2l =

3p
10

, k, l ∈Z.

Consider the space C2 and elements u0,u1 ∈C2:

u0 = 1p
2

(1,1), u1 = 1p
5

(1,2).

Set
x2k = u0, x2k+1 = u1, k ∈Z.

Then relation (2.5) holds. Define by (2.7) the operator A0. In this case A = A0 =
EC2 . Therefore the operators A and T = −EH +2(EH + A)−1 are self-adjoint and
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have unique spectral functions. Hence, TM = Tµ, and by Theorem (3.44) we con-
clude that the moment problem has a unique solution. By Theorem (3.2) it has
the following form

M(λ)= (mk, j(λ))N−1
k, j=0, mk, j(λ)= (Eλxk, x j)H ,

where Eλ is the left-continuous spectral function of the operator EC2 . Conse-

quently, the matrix function M(t) is equal to 0, for t ≤ 1, and M(t)=
(

1 3p
10

3p
10

1

)
,

for t > 1.
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THE ALMOST SURE CENTRAL LIMIT THEOREM FOR RANDOMLY
INDEXED SUMS OF ASSOCIATED RANDOM VARIABLES

MARCIN DUDZIŃSKI AND PRZEMYSŁAW GÓRKA

ABSTRACT. Suppose that {Xn}∞n=1 is a sequence of associated, zero mean ran-
dom variables, the sums Sn :=∑n

i=1 X i have bounded, continuous densities, and
{Nn}∞n=1 denotes a sequence of independent, random indexes, independent of
{Xn}∞n=1. We prove the almost sure central limit theorem for suitably normal-
ized, randomly indexed sums SNn . Some example of application of our result is
also given.

1. Introduction

Starting with the discovery of the almost sure central limit theorem (ASCLT)
by Brosamler [5] and Schatte [27], a vast literature on this subject has developed
over the past two decades. The early results concerning the ASCLT dealt mostly
with partial sums of i.i.d. r.v.’s - among the celebrated papers of Brosamler [5]
and Schatte [27], we also refer to Lacey and Philipp [20] and Fisher [17] in this
context. For independent, but not necessarily identically distributed, r.v.’s a gen-
eral result for sums has been proved by Berkes and Dehling [3]. The mentioned
results have been later generalized for sums of some weakly dependent r.v.’s -
we cite in this context the papers of: Peligrad and Shao [25], Matuła [22], [23],
Mielniczuk [24], Rodzik and Rychlik [26], and Dudziński [10]. Except for the AS-
CLTs for sums, the ASCLTs for some other functions of r.v.’s have been studied as
well. Namely, in Fahrner and Stadtmuller [14] and Cheng et al. [7], the ASCLTs
for maxima of i.i.d. r.v.’s have been proved. On the other hand, the ASCLTs for
maxima of some dependent, stationary Gaussian sequences have been obtained
by Csaki and Gonchigdanzan [8] and Dudziński [9], while the ASCLT for maxima
of some dependent, but not necessarily stationary, Gaussian sequences has been
established by Chen and Lin [6]. Furthermore, the ASCLTs for some order statis-
tics have also been proved - see the papers of Stadtmuller [28] and Dudziński [12].
In addition, the ASCLT in the joint version for maxima and sums of some station-
ary Gaussian sequences has been established as well - we refer to Dudziński [11]
in this context. Some other works, which are also worthwile to mention in this
place are: the paper of Berkes and Csaki [2], where several interesting proofs of
the ASCLTs for some functions of independent r.v.’s have been given, the article
of Gonchigdanzan and Rempała [18], where the ASCLT for the product of par-
tial sums has been established, and the papers of Fazekas and Rychlik [16], [15],
which are devoted to the ASCLT for random fields and to the functional ASCLT,
respectively.
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sequences.
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172 MARCIN DUDZIŃSKI AND PRZEMYSŁAW GÓRKA

The above mentioned papers relate to the ASCLTs for non-randomly indexed
sequences. There are not many works devoted to the ASCLTs for randomly in-
dexed functions of r.v.’s. A notable exception is the paper of Krajka and Wa-
siura [19], where the ASCLT for suitably normalized, randomly indexed sums
SNn = ∑Nn

i=1 X i of i.i.d. r.v.’s has been established (Nn denotes, here and in fur-
ther considerations, a certain sequence of positive, integer-valued r.v.’s). We shall
pursue this direction and prove that this type of theorem occurs for randomly in-
dexed sums of associated r.v.’s. Our approach differs from the one in [19] that:
firstly, we consider the random version of the ASCLT for sums of some dependent
r.v.’s, and secondly, our assumptions on the sequence of random indexes {Nn} are
milder and more general, since we omit the restrictive condition that Nn/ln

a.s.→ ∞
for some sequence of real numbers {ln}.

Let us recall that (cf. [13]) {Xn}∞n=1 is a sequence of associated r.v.’s, if for ev-
ery finite subcollection Xn1 , Xn2 , ..., Xnk and any coordinatewise, nondecreasing
functions f , g: Rk →R, the inequality

Cov
(
f
(
Xn1 , Xn2 , ..., Xnk

)
, g

(
Xn1 , Xn2 , ..., Xnk

))≥ 0

holds, whenever the given covariance is defined.
Associated processes belong to the class of weakly dependent r.v.’s. They play

a significant role in mathematical physics and statistics. The ASCLTs for non-
randomly indexed sums of associated r.v.’s have been intensively studied by Peligr-
ad and Shao [25] and Matuła [22], [23].

Except for the current Section, our paper consists of the four other Sections. It
is organized as follows. In Section 2, we present our main result. In Section 3, we
state and prove some auxiliary result, we make an extensive use of in the proof
of the our main result. Section 4 contains the proof of the main result, while an
example of its application is shown in Section 5.

Notations

Throughout the paper {Xn}∞n=1 is a sequence of associated, zero mean r.v.’s and:

u (n) := sup
k∈N

∑
j:| j−k|≥n

Cov
(
X j, Xk

)
, Sn :=

n∑
i=1

X i, σ2
n := ES2

n.

Furthermore, f ( j,n) ¿ h ( j,n) denotes that f ( j,n) ≤ C ·h ( j,n) for all sufficiently
large j,n and some absolute constant C > 0 (i.e., f ( j,n)=O (h ( j,n))), I (A) stands
for the indicator function of the set A and a∧b :=min(a,b).

2. Main result

Our aim is to prove the following ASCLT for randomly indexed sums of some
associated r.v.’s.

THEOREM (2.1). Let {Xn}∞n=1 be a sequence of associated, zero mean r.v.’s, such
that the sums Sn := X1 + X2 + ...+ Xn, n ∈N, have bounded, continuous densities.
Suppose that:

u (n)¿ e−λn for some λ> 0,(2.2)

inf
n∈N

σ2
n/n > 0, sup

n∈N
E |Xn|3 <∞.(2.3)
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Assume moreover that {Nn}∞n=1 is a sequence of independent random indexes, inde-
pendent of the sequence {Xn}∞n=1. In addition, suppose that, there exists 0 < µ< 1,
such that:

(2.4)
n∑

j=1

1
j
E

{((
6

√
N j Nn

jn
∧1

)
6

√
N j

Nn
+ (log Nn)2√

Nn

)
I
(
N j < Nn

)}¿ (logn)1−µ ,

(2.5)
n∑

j=1

1
j
E

{((
6

√
N j Nn

jn
∧1

)
6

√
Nn

N j
+

(
log N j

)2√
N j

)
I
(
N j > Nn

)}¿ (logn)1−µ ,

(2.6)
n∑

j=1

1
j
P

(
N j = Nn

)¿ (logn)1−µ .

Then, we have
(2.7)

P

 lim
N→∞

1
log N

N∑
n=1

1
n

I

 SNn√
n

Nn
σNn

≤ x

−Φ
(
x
√

n
Nn

)= 0

= 1 for any x ∈R.

3. Auxiliary result

We need the following lemma for the proof of Theorem (2.1).

LEMMA (3.1). Let

g jn
(
k j,kn, x

)

:= E

I

 Sk j√
j

k j
σk j

≤ x

−Φ
(
x

√
j

k j

)
I

 Skn√
n
kn
σkn

≤ x

−Φ
(
x
√

n
kn

) .

Then, under the assumptions of Theorem (2.1) on the sequence {Xn}∞n=1, we have
that, there exists an absolute constant C, such that:
(i) If k j < kn, then

(3.2)
∣∣g jn

(
k j,kn, x

)∣∣≤ C

{(
6

√
k jkn

jn
∧1

)
6

√
k j

kn
+ (logkn)2√

kn

}
for any x ∈ R,

(ii) If k j > kn, then

(3.3)
∣∣g jn

(
k j,kn, x

)∣∣≤ C

{(
6

√
k jkn

jn
∧1

)
6

√
kn

k j
+

(
logk j

)2√
k j

}
for any x ∈ R,

(iii) If k j = kn and j ≤ n, then

(3.4)
∣∣g jn

(
k j,kn, x

)∣∣¿


√
kn/n

exp(n/kn)
+ (logkn)2√

kn
, if x ≥p

2 and n/kn →∞,

1, otherwise.
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Proof of Lemma (3.1) (i). Assume that k j < kn. It follows from the definition of
g jn

(
k j,kn, x

)
that

∣∣g jn
(
k j,kn, x

)∣∣=
∣∣∣∣∣∣∣∣∣P

 Sk j√
j

k j
σk j

≤ x,
Skn√
n
kn
σkn

≤ x

−P

 Sk j√
j

k j
σk j

≤ x

Φ
(
x
√

n
kn

)

−Φ
(
x

√
j

k j

)
P

 Skn√
n
kn
σkn

≤ x

+Φ
(
x

√
j

k j

)
Φ

(
x
√

n
kn

)∣∣∣∣∣∣∣ .

We can write that∣∣g jn
(
k j,kn, x

)∣∣
=

∣∣∣∣∣∣∣∣∣P
 Sk j√

j
k j
σk j

≤ x,
Skn√
n
kn
σkn

≤ x

−P

 Sk j√
j

k j
σk j

≤ x

P

 Skn√
n
kn
σkn

≤ x



+P

 Sk j√
j

k j
σk j

≤ x

P

 Skn√
n
kn
σkn

≤ x

−P

 Sk j√
j

k j
σk j

≤ x

Φ
(
x
√

n
kn

)

−Φ
(
x

√
j

k j

)
P

 Skn√
n
kn
σkn

≤ x

+Φ
(
x

√
j

k j

)
Φ

(
x
√

n
kn

)∣∣∣∣∣∣∣ .

Therefore, we have∣∣g jn
(
k j,kn, x

)∣∣(3.5)

≤

∣∣∣∣∣∣∣∣∣P
 Sk j√

j
k j
σk j

≤ x,
Skn√
n
kn
σkn

≤ x

−P

 Sk j√
j

k j
σk j

≤ x

P

 Skn√
n
kn
σkn

≤ x


∣∣∣∣∣∣∣∣∣

+2

∣∣∣∣∣∣∣P
 Skn√

n
kn
σkn

≤ x

−Φ
(
x
√

n
kn

)∣∣∣∣∣∣∣ =: A1 + A2.

Our goal now is to give the bounds for the components A1, A2 in (3.6).
In order to estimate A1, we shall rewrite it as follows

A1 =

∣∣∣∣∣∣∣∣∣P
 Sk j√

j
k j
σk j

≤ x,
Skn√
n
kn
σkn

≤ x

−P

 Sk j√
j

k j
σk j

≤ x

P

 Skn√
n
kn
σkn

≤ x


∣∣∣∣∣∣∣∣∣

=
∣∣∣∣∣P

(
Sk j

σk j

≤ x

√
j

k j
,
Skn

σkn

≤ x
√

n
kn

)
−P

(
Sk j

σk j

≤ x

√
j

k j

)
P

(Skn

σkn

≤ x
√

n
kn

)∣∣∣∣∣ .
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Notice that

 Sk j√
j

k j
σk j

,
Skn√
n
kn
σkn

 and

(
Sk j

σk j

,
Skn

σkn

)
are associated, as {Xn}∞n=1 is the

sequence of associated r.v.’s. This and Lemma 2.2 in Bagai and Prakasa Rao [1]
(see also Lemma 2 in Matuła [22]) imply that for some positive, absolute constant
C1 and any x ∈R

A1 ≤ C1


Cov

 Sk j√
j

k j
σk j

,
Skn√
n
kn
σkn




1/3

∧
(
Cov

(
Sk j

σk j

,
Skn

σkn

))1/3

(3.6)

= C1

(
6

√
k jkn

jn
∧1

)(
Cov

(
Sk j

σk j

,
Skn

σkn

))1/3

.

We now give the bound for the covariance

(
Cov

(
Sk j

σk j

,
Skn

σkn

))1/3

. We have

Cov
(
Sk j ,Sk j +

(
Skn −Sk j

))
σk jσkn

1/3

=
σ2

k j
+Cov

(
X1 + ...+ Xk j , Xk j+1 + ...+ Xkn

)
σk jσkn

1/3

≤
σ2

k j
+u (1)+u (2)+ ...+u

(
kn −k j

)
σk jσkn

1/3

.

Observe that, by (2.2), there exists a positive constant C2, independent of kn and
k j, such that

u (1)+u (2)+ ...+u
(
kn −k j

)≤ C2 for any k j < kn.

Furthermore, the assumptions in (2.3) and Theorem 1 in Birkel [4] imply that,
there exist the positive, absolute constants C3, C4, satisfying

C3kn ≤σ2
kn

≤ C4kn for any n ∈N.

Thus, we may write that, there exists the positive, absolute constant C5, such that

(3.7)

(
Cov

(
Sk j

σk j

,
Skn

σkn

))1/3

≤ C5

(
k j√

k j
√

kn

)1/3

= C5
6

√
k j

kn
.

Due to (3.6), (3.7), we obtain

(3.8) A1 ≤ C1C5

(
6

√
k jkn

jn
∧1

)
6

√
k j

kn
.

Our purpose now is to estimate the component A2 in (3.6).
It follows from our assumptions and Theorem 2.1 in Birkel [4] (see also Matuła

[22], p. 343) that, for some absolute constant C6,

sup
−∞<u<∞

∣∣∣∣P (
Sn

σn
≤ u

)
−Φ (u)

∣∣∣∣≤ C6
(logn)2p

n
,
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which yields

sup
−∞<x<∞

∣∣∣∣P (Skn

σkn

≤ x
√

n
kn

)
−Φ

(
x
√

n
kn

)∣∣∣∣≤ C6
(logkn)2√

kn
.

Therefore, we have for any x ∈R

(3.9) A2 = 2

∣∣∣∣∣∣∣P
 Skn√

n
kn
σkn

≤ x

−Φ
(
x
√

n
kn

)∣∣∣∣∣∣∣≤ 2C6
(logkn)2√

kn
.

By the relations in (3.6), (3.8) and (3.9), we conclude that (3.2) holds, which com-
pletes the proof of Lemma (3.1) (i).

Proof of Lemma (3.1) (ii). In order to prove (3.3), it remains to replace k j by kn
and kn by k j in the proof of Lemma (3.1) (i) and proceed analogously as in that
proof.

Proof of Lemma (3.1) (iii). Assume that k j = kn and j ≤ n. Then∣∣g jn
(
k j,kn, x

)∣∣= ∣∣g jn (kn,kn, x)
∣∣

=

∣∣∣∣∣∣∣P
 Skn√

j
kn
σkn

≤ x,
Skn√
n
kn
σkn

≤ x

−P

 Skn√
j

kn
σkn

≤ x

Φ(
x
√

n
kn

)

−Φ
(
x

√
j

kn

)
P

 Skn√
n
kn
σkn

≤ x

+Φ
(
x

√
j

kn

)
Φ

(
x
√

n
kn

)∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣P
 Skn√

j
kn
σkn

≤ x

−P

 Skn√
j

kn
σkn

≤ x

Φ(
x
√

n
kn

)

−Φ
(
x

√
j

kn

)
P

 Skn√
n
kn
σkn

≤ x

+Φ
(
x

√
j

kn

)
Φ

(
x
√

n
kn

)∣∣∣∣∣∣∣ .

Therefore, we may write that∣∣g jn (kn,kn, x)
∣∣(3.10)

≤
(
1−Φ

(
x
√

n
kn

))
+

∣∣∣∣∣∣∣P
 Skn√

n
kn
σkn

≤ x

−Φ
(
x
√

n
kn

)∣∣∣∣∣∣∣ .

It follows from (1.5.4) in Leadbetter et al. [21] that, if x > 0 and n/kn →∞, then

1−Φ
(
x
√

n
kn

)
≤ exp

(
− x2n

2kn

)
/x

√
n
kn

for all sufficiently large n.

Thus, we may write that

(3.11) 1−Φ
(
x
√

n
kn

)
¿

√
kn/n

exp(n/kn)
, if x ≥

p
2 and n/kn →∞.
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In addition, we have (see the relation above (3.9))

(3.12) sup
−∞<x<∞

∣∣∣∣∣∣∣P
 Skn√

n
kn
σkn

≤ x

−Φ
(
x
√

n
kn

)∣∣∣∣∣∣∣≤ C6
(logkn)2√

kn
.

The relations in (3.10)-(3.12) imply the desired result in (3.4).

4. Proof of the main result

In this Section, we shall give the proof of our main assertion.

Proof of Theorem (2.1). Let

(4.1) L (N, x) := 1
log N

N∑
n=1

1
n

I

 SNn√
n

Nn
σNn

≤ x

−Φ
(
x
√

n
Nn

) .

We have

Var(L (N, x))≤ E

 1
log N

N∑
n=1

1
n

I

 SNn√
n

Nn
σNn

≤ x

−Φ
(
x
√

n
Nn

)


2

≤

2

(log N)2
N∑

n=1

n∑
j=1

1
jn

E

I

 SN j√
j

N j
σN j

≤ x

−Φ
(
x

√
j

N j

)I

 SNn√
n

Nn
σNn

≤ x

−Φ
(
x
√

n
Nn

) .

Since {Nn}∞n=1 is a sequence of independent random indexes, independent of the
sequence {Xn}∞n=1, we get

Var(L (N, x))≤ 2

(log N)2
∞∑

k1=1
. . .

∞∑
kN=1

N∑
n=1

n∑
j=1

1
jn

∣∣g jn
(
k j,kn, x

)∣∣ N∏
i=1

P (Ni = ki) .

This and Lemma (3.1) imply

Var(L (N, x))

≤ 2C
(log N)2

∞∑
k1=1

. . .
∞∑

kN=1

N∑
n=1

n∑
j=1

1
jn

((
6

√
k j kn

jn ∧1

)
6

√
k j
kn

+ (logkn)2p
kn

)
P

(
N j < Nn

) N∏
i=1

P (Ni=ki)

+ 2C
(log N)2

∞∑
k1=1

. . .
∞∑

kN=1

N∑
n=1

n∑
j=1

1
jn

((
6

√
k j kn

jn ∧1

)
6

√
kn
k j

+(logk j)2
p

k j

)
P

(
N j > Nn

) N∏
i=1

P (Ni=ki)

+ 2
(log N)2

∞∑
k1=1

. . .
∞∑

kN=1

N∑
n=1

n∑
j=1

1
jn P

(
N j = Nn

) N∏
i=1

P (Ni = ki) .
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Therefore, since {Nn}∞n=1 is an independent sequence, we obtain

Var(L (N, x))

≤ 2C
(log N)2

N∑
n=1

1
n

n∑
j=1

1
j
E

{((
6

√
N j Nn

jn
∧1

)
6

√
N j

Nn
+ (log Nn)2√

Nn

)
I
(
N j < Nn

)}

+ 2C
(log N)2

N∑
n=1

1
n

n∑
j=1

1
j
E

{((
6

√
N j Nn

jn
∧1

)
6

√
Nn

N j
+

(
log N j

)2√
N j

)
I
(
N j > Nn

)}

+ 2

(log N)2
N∑

n=1

1
n

n∑
j=1

1
j
P

(
N j = Nn

)
.

The last relation and the assumptions in (2.4)-(2.6) yield that for any x ∈R

Var(L (N, x))≤ 2C1

(log N)2
N∑

n=1

1
n

(logn)1−µ¿ (log N)−µ for some 0<µ< 1.

This and Chebyshev’s inequality imply that for any x ∈R

(4.2) P (|L (N, x)| > ε)¿ (log N)−µ

ε2 for any ε> 0 and some 0<µ< 1.

Continuing our proof, we put N (l) :=
[
el1+1/µ +1

]
, where µ is such as in (4.2). Then,

we obtain that for any x ∈R

P (|L (N (l) , x)| > ε)¿
(
l1+1/µ)−µ

ε2 = 1
ε2lµ+1 for some 0<µ< 1,

which yields
∞∑

l=1
P (|L (N (l) , x)| > ε)<∞ for any x ∈R.

Thus, by the Borel-Cantelli Lemma,

(4.3) |L (N (l) , x)|→ 0 a.s. for any x ∈R, if l →∞.

Furthermore, for N (l)< N ≤ N (l+1), we have

(4.4) |L (N, x)| ≤ |L (N (l) , x)|+ 2
log N (l)

N(l+1)∑
n=N(l)+1

1
n

.

It is easily seen that

(4.5)
2

log N (l)

N(l+1)∑
n=N(l)+1

1
n
¿ log N (l+1)

log N (l)
−1→ 0, if l →∞.

The relations in (4.3)-(4.5) imply

(4.6) lim
N→∞

|L (N, x)| = 0 a.s. for any x ∈R.

Due to (4.1), (4.6), we have

lim
N→∞

1
log N

N∑
n=1

1
n

I

 SNn√
n

Nn
σNn

≤ x

−Φ
(
x
√

n
Nn

) a.s. for any x ∈R,

which yields the desired result in (2.7).
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5. Example of application

In this Section, we aim to show that, there exists a large class of indexes
{Nn}∞n=1, satisfying the assumptions of Theorem (2.1).

PROPOSITION (5.1). Let {Nn}∞n=1 be a sequence of independent, positive-integer
valued r.v.’s. Assume moreover that, there exist the positive constants c1, c2, c3 and
the nonnegative constants β1,β2, such that β1 +β2 < 1, and

P (Nn ∉ Jn)≤ c3 (logn)−β1−β2 for all sufficiently large n,

where Jn = (
c1n (logn)−1+β1 , c2n (logn)−β2

)
.

Then, the relations in (2.4)-(2.6) hold.

Proof. First, let us consider the events of the form
{
N j = Nn

}
. Note that

n∑
j=1

1
j
P

(
N j = Nn

)= ∑
{ j: J j∩Jn=φ}

1
j
P

(
N j = Nn

)+ ∑
{ j: J j∩Jn 6=φ}

1
j
P

(
N j = Nn

)
≤ ∑

{ j: J j∩Jn=φ}

1
j
P

({
N j ∉ J j

}∪ {Nn ∉ Jn}
)+ ∑

{ j: J j∩Jn 6=φ}

1
j
.

Hence, we have

(5.2)
n∑

j=1

1
j
P

(
N j = Nn

)¿ n∑
j=2

1
j
P

(
N j ∉ J j

)+ n∑
j=2

1
j
P (Nn ∉ Jn)+

∑
{ j: J j∩Jn 6=φ}

1
j
.

It follows from the assumptions on {Nn}, {Jn} that

(5.3)
∑

{ j: J j∩Jn 6=φ}

1
j
≤ ∑

{
j:

c1 n

c2 (logn)1−β1
< j≤n

}1
j
≤ c2

c1

(logn)1−β1 .

Due to (5.2) and (5.3), we obtain

(5.4)
n∑

j=1

1
j
P

(
N j = Nn

)¿ n∑
j=2

1
j
P

(
N j ∉ J j

)+ n∑
j=2

1
j
P (Nn ∉ Jn)+ (logn)1−β1 .

Now, let us consider the events of the form
{
N j > Nn

}
. We have

n∑
j=1

1
j
EI

(
N j > Nn

)= n∑
j=1

1
j
P

(
N j > Nn

)
= ∑

{ j: J j∩Jn=φ}

1
j
P

(
N j > Nn

)+ ∑
{ j: J j∩Jn 6=φ}

1
j
P

(
N j > Nn

)
≤ ∑

{ j: J j∩Jn=φ}

1
j
P

({
N j ∉ J j

}∪ {Nn ∉ Jn}
)+ ∑

{ j: J j∩Jn 6=φ}

1
j
.

Therefore, we obtain that

(5.5)
n∑

j=1

1
j
EI

(
N j > Nn

)¿ n∑
j=2

1
j
P

(
N j ∉ J j

)+ n∑
j=2

1
j
P (Nn ∉ Jn)+

∑
{ j: J j∩Jn 6=φ}

1
j
.

The relations in (5.5) and (5.3) yield

(5.6)
n∑

j=1

1
j
EI

(
N j > Nn

)¿ n∑
j=2

1
j
P

(
N j ∉ J j

)+ n∑
j=2

1
j
P (Nn ∉ Jn)+ (logn)1−β1 .
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Note that
n∑

j=1

1
j
P

(
N j = Nn

)+ n∑
j=1

1
j
E

{((
6

√
N j Nn

jn
∧1

)
6

√
Nn

N j
+

(
log N j

)2√
N j

)
I
(
N j > Nn

)}
(5.7)

≤
n∑

j=1

1
j
P

(
N j = Nn

)+ c4

n∑
j=1

1
j
EI

(
N j > Nn

)
,

where c4 := 1+max
k∈N

{
(logk)2 /

p
k
}
.

Furthermore, by (5.4) and (5.6), we have

(5.8)
n∑

j=1

1
j
P

(
N j = Nn

)+ c4

n∑
j=1

1
j
EI

(
N j > Nn

)
¿

n∑
j=2

1
j
P

(
N j ∉ J j

)+ n∑
j=2

1
j
P (Nn ∉ Jn)+ (logn)1−β1 .

Since P (Nk ∉ Jk)≤ c3 (logk)−β1−β2 for all sufficiently large k, we obtain

(5.9)
n∑

j=2

1
j
P

(
N j ∉ J j

)+ n∑
j=2

1
j
P (Nn ∉ Jn)¿ (logn)1−(β1+β2) .

It follows from (5.8) and (5.9) that

(5.10)
n∑

j=1

1
j
P

(
N j = Nn

)+ c4

n∑
j=1

1
j
EI

(
N j > Nn

)¿ (logn)1−β1 .

Thus, due to (5.7) and (5.10),

n∑
j=1

1
j
P

(
N j = Nn

)+ n∑
j=1

1
j
E

{((
6

√
N j Nn

jn
∧1

)
6

√
Nn

N j
+

(
log N j

)2√
N j

)
I
(
N j > Nn

)}
¿ (logn)1−β1 ,

and the relations in (2.5), (2.6) hold.
Our purpose now is to show (2.4). Put

X j,n :=
(

6

√
N j Nn

jn
∧1

)
6

√
N j

Nn
+ (log Nn)2√

Nn
,

and denote by A′ the complement of the set A. Obviously

n∑
j=1

1
j
EX j,nI

(
N j < Nn

)= ∑
{ j: J j∩Jn=φ}

1
j
EX j,nI

(
N j < Nn

)
+ ∑

{ j: J j∩Jn 6=φ}

1
j
EX j,nI

(
N j < Nn

)
.

Therefore, we may write that

n∑
j=1

1
j
EX j,nI

(
N j < Nn

)≤ ∑
{ j: J j∩Jn=φ}

1
j
EX j,nI

(
N j < Nn,

(
N j ∈ J j, Nn ∈ Jn

))
+ ∑

{ j: J j∩Jn=φ}

1
j
EX j,nI

(
N j < Nn,

(
N j ∈ J j, Nn ∈ Jn

)′)+ ∑
{ j: J j∩Jn 6=φ}

1
j
EX j,n.
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Consequently

n∑
j=1

1
j
EX j,nI

(
N j < Nn

)≤ ∑
{ j: J j∩Jn=φ}

1
j
EX j,nI

(
N j < Nn, N j ∈ J j, Nn ∈ Jn

)
+ ∑

{ j: J j∩Jn=φ}

1
j
EX j,nI

(
N j < Nn,

({
N j ∉ J j

}∪ {Nn ∉ Jn}
))+ ∑

{ j: J j∩Jn 6=φ}

1
j
EX j,n.

Hence, we have

n∑
j=1

1
j
EX j,nI

(
N j < Nn

)≤ ∑
{ j: J j∩Jn=φ}

1
j
EX j,nI

(
N j < Nn, N j ∈ J j, Nn ∈ Jn

)
+ c4

∑
{ j: J j∩Jn=φ}

1
j
P

(
N j ∉ J j

)+ c4
∑

{ j: J j∩Jn=φ}

1
j
P (Nn ∉ Jn)+ c4

∑
{ j: J j∩Jn 6=φ}

1
j
,

where, for recollection, c4 := 1+max
k∈N

{
(logk)2 /

p
k
}
.

This yields

n∑
j=1

1
j
E

{((
6

√
N j Nn

jn
∧1

)
6

√
N j

Nn
+ (log Nn)2√

Nn

)
I
(
N j < Nn

)}
(5.11)

¿
(

n∑
j=2

1
j
P

(
N j ∉ J j

)+ n∑
j=2

1
j
P (Nn ∉ Jn)+ (logn)1−β1

)

+ ∑
{ j: J j∩Jn=φ}

1
j
E

{(
6

√
N j

Nn

)
I
(
N j < Nn, N j ∈ J j, Nn ∈ Jn

)}

+ ∑
{ j: J j∩Jn=φ}

1
j
E

{(
(log Nn)2√

Nn

)
I
(
N j < Nn, N j ∈ J j, Nn ∈ Jn

)}
=: B1 +B2 +B3.

It follows from the previous derivations that

(5.12) B1 ¿ (logn)1−β1 .

Our goal now is to give the bound for B2 in (5.12). We have

B2 ¿

c1 n

c2 (logn)1−β1∑
j=2

1
j
E

{(
6

√
N j

Nn

)
I
(
N j < Nn, N j ∈ J j, Nn ∈ Jn

)}

¿ ∑
{

j: j≤ c1 n

c2 (logn)1−β1
∧ j1/6(log j)<n1/6

}1
j
E

{(
6

√
N j

Nn

)
I
(
N j < Nn, N j ∈ J j, Nn ∈ Jn

)}

+ ∑
{

j: j≤ c1 n

c2 (logn)1−β1
∧ j1/6(log j)≥n1/6

}1
j
E

{(
6

√
N j

Nn

)
I
(
N j < Nn, N j ∈ J j, Nn ∈ Jn

)}
.
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Thus, it follows from the definition of the sets J j, Jn that

B2 ¿ ∑
{

j: j≤ c1 n

c2 (logn)1−β1
∧ j1/6(log j)<n1/6

}1
j

6

√√√√ c2 j (log j)−β2

c1n (logn)−1+β1
(5.13)

+ ∑
{

j: j≤ c1 n

c2 (logn)1−β1
∧ j1/6(log j)≥n1/6

}1
j

6

√√√√ c2 j (log j)−β2

c1n (logn)−1+β1

=: B21 +B22.

We now give the bound for the component B21 in (5.14). Note that

B21 ¿
∑

{
j: j≤ c1 n

c2 (logn)1−β1
∧ j1/6(log j)<n1/6

} 1
j5/6n1/6

(logn)(1−β1)/6

(log j)β2/6

≤
n∑

j=2

1
j5/6 j1/6 (log j)

(logn)(1−β1)/6

(log j)β2/6 = (logn)(1−β1)/6
n∑

j=2

1

j (log j)1+β2/6 .

Since in addition,
∑∞

j=2
1

j(log j)1+β2/6 <∞, we get

(5.14) B21 ¿ (logn)(1−β1)/6 ≤ (logn)1/6 .

In order to estimate the component B22 in (5.14), observe that

B22 ¿
∑

{
j: j≤ c1 n

c2 (logn)1−β1
∧ j1/6(log j)≥n1/6

} 1
j5/6n1/6

(logn)(1−β1)/6

(log j)β2/6

≤ (logn)(1−β1)/6 ∑
{

j: n
(log j)6

≤ j≤ c1 n

c2 (logn)1−β1

}1
j
≤ (logn)(1−β1)/6 ∑

{
j: n

(logn)6
≤ j≤ c1 n

c2 (logn)1−β1

}1
j
,

which implies that

B22 ¿ (logn)(1−β1)/6
(
log

c1 n

c2 (logn)1−β1
− log

n
(logn)6

)

= (logn)(1−β1)/6 log
(

c1

c2

(logn)5+β1

)
¿ (logn)(1−β1)/6 log(logn) .

Therefore, we may write that

(5.15) B22 ¿ (logn)1/6 .

Due to (5.14)-(5.15), we obtain

(5.16) B2 ¿ (logn)1/6 .

Thus, it remains to estimate the component B3 in (5.12). It is clear that for any
0< γ< 1/2, there exists C

(
γ
)
, dependent only on γ, such that

(logn)2p
n

≤ C
(
γ
) 1

n1/2−γ for any n ∈N.
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Hence, for any fixed 0< γ< 1/2,

B3 ¿

c1 n

c2 (logn)1−β1∑
j=2

1
j
E

{
1

(Nn)1/2−γ I
(
N j < Nn, N j ∈ J j, Nn ∈ Jn

)}
,

and consequently

B3 ¿

c1 n

c2 (logn)1−β1∑
j=2

1
j

1(
c1n (logn)−1+β1

)1/2−γ ¿

c1 n

c2 (logn)1−β1∑
j=2

(logn)(1−β1)(1/2−γ)

jn1/2−γ

≤ (logn)(1−β1)(1/2−γ)

c1 n

c2 (logn)1−β1∑
j=2

1

j1+(1/2−γ) .

Therefore, we have

(5.17) B3 ¿ (logn)(1−β1)(1/2−γ) < (logn)1/2 .

The relations in (5.12), (5.12), (5.16) and (5.17) yield (2.4) for some 0<µ< 1.

Acknowledgements

P. Górka is partially supported by FONDECYT grant #3100019;

Received July 25, 2011

Final version received July 23, 2012

MARCIN DUDZIŃSKI
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