WELL-POSEDNESS OF INFINITE-DIMENSIONAL LINEAR SYSTEMS WITH NONLINEAR FEEDBACK

HANS ZWART^{$\dagger\ddagger$}, ANTHONY HASTIR*, AND FEDERICO CALIFANO^{\diamond}

For solutions of inhomogeneous, nonlinear partial differential equations (PDE's) we study the existence and well-posedness. The main idea is to use system theory to write the nonlinear PDE as a well-posed infinite-dimensional linear system interconnected with a static nonlinearity. Hence we assume that our nonlinear PDE has the following representation;

FIGURE 1. Representation of Σ^{f} .

Here Σ^P is a well-posed system, and f is a (static) nonlinearity, which is assumed to be (locally) Lipschitz. Let \mathbb{F}_t denote the input-output map of Σ^P restricted to the time interval [0, t]. Our main result is the following.

Theorem 1. If the following conditions are satisfied

(1) There exists $t^* > 0$ such that for all $t < t^*$, the operator \mathbb{F}_t is coercive, i.e., there exists $\tilde{c} > 0$ such that for all $u \in L^2([0, t^*); U)$, it holds

$$\langle \mathbb{F}_t u, u \rangle \geq \tilde{c} \langle u, u \rangle$$
, for all $t < t^*$,

- (2) f(0) = 0, f is continuous,
- (3) $\forall y_1, y_2, \langle f(y_1) f(y_2), y_1 y_2 \rangle_U \ge 0,$

then the nonlinear system Σ^{f} is well-posed and solutions exists globally.

With the use of this theorem we can show that a vibrating string with nonlinear damping is well-posed.

 $\dagger \rm University$ of Twente, Department of Applied Mathematics, P.O. Box 217 7500 AE Enschede, The Netherlands

‡EINDHOVEN UNIVERSITY OF TECHNOLOGY, DEPARTMENT OF MECHANICAL ENGINEERING, P.O. BOX 513, 5600 MB EINDHOVEN, THE NETHERLANDS

*University of Namur, Department of Mathematics and Namur Institute for Complex Systems (NAXYS), Rempart de la vierge, 8, B-5000 Namur, Belgium

 $\diamond \rm University$ of Twente, Robotics and Mechatronics (RAM), P.O. Box 217, 7500 AE, Enschede, The Netherlands