Operadores de Toeplitz en espacios poli-Bergman del dominio de Siegel D_2
Ponente(s): Yessica Hernandez Eliseo
En el estudio de los operadores de Toeplitz, una de las estrategias comunes consiste en seleccionar un conjunto de símbolos acotados S de manera que el álgebra generada por los operadores de Toeplitz con símbolos en S pueda ser descrita hasta isomorfomo, es decir, con un álgebra de funciones continuas o encontrando su espectro. En este sentido, en esta plática se tratará el álgebra generada por los operadores de Toeplitz en espacios tipo poly-Bergman del dominio de Siegel bidimensional, seleccionando dos clases de símbolos nilpotentes continuos y se describirá hasta isomorfismo el espectro del álgebra generada.